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Model for a metal-insulator transition in antidot arrays induced by an external driving field
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It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron
resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a
related model system in the presence of a magnetic field and an ac electric field is developed. In the limit of a
strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numeri-
cally and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of
the electric field is varied a metal-insulator transition may be found. The experimental conditions required for
this transition are discussed.

Transport phenomena of a two-dimensional electron gathat this system and models associated with KHM may be
embedded in a periodic potenti@ntidot array has attracted realized in experiments on cyclotron resonatftie was pro-
much attention in theoretical and experimental studifei- posed by lomin and Fishman that the KHM can be used to
vestigations of magnetotranspottand photoconductivify  model some aspects of electronic motion in antidot arrays. In
for GaAs heterostructures show that the electronic dynamicthis paper we show that a family of models associated with
is essentially nonlinear with possible transition to a chaoticKHM is relevant for cyclotron resonance experiméniis
regimel? Exploration of some chaotic systems illuminates aantidot arrays for some conditions.
deep connection between the electron transport phenomena The one particle Hamiltonian describing electrons in ex-
and quantum and classical chdds Specifically, the kicked ternal fields and in a periodic potential is
Harper model(KHM) is an example of a system which is
chaotic in the classical limit. It has been introduced theoreti-
cally in the field of quantum chaos because of its interesting
spectral and transport phenomena. It is defined by the Hamil-
tonian wherep=(py,py) is the two-dimensional momentum of an
electron with effective massn* and chargee, A(r,t)
=[(c/v)E,sin1t,xB—(c/v)E,cosut,0] is the vector potential
in such a gauge that takes into account a constant magnetic
field in thez direction,B=(0,0B), and an alternating elec-
where g is the coordinatep is the conjugate momentum, tric field E=(—E, cosut,E, sinut) with a frequency, while
while L andKy are constants. The units of time are chosenV(r)=V(x,y) is a two-dimensional periodic potential mod-
so that kicks take place when the time is an integer. Theling the antidot structure. For simplicity, the potential
model is related to the Harper mofi¢that is, just Eq.(1)
with = ,8(t—n) replaced by unity The Harper model is the
standard model for electronic motion in 2D in a strong mag-
netic field or for electronic motion in a one-dimensional po-

tential with two incommensurate periods. The modgland ~ Where a,b are periods in thex andy directions, will be
its variants appear naturally for the kicked harmonicconsidered, although it should be much sharper and contain

oscillator®7 It is of specific interest since it does not follow More Fourier components for the antidot lattfce. The

the KAM ( Kolmogorov, Amold, Moserpicture. Its dynam- €guations of motion for Eq2) are

ics corresponds to kicks combined with rotations of the four-

fqld symmetry. This system exhibits chaotic motion in.a re- bXZw* Py~ @* M* X+ SEy coswt | —
gion that increases withy andKy . The model was subject v

to extensive theoretical studié§-° For some regimes of

parameters, its spectrum of quasienergies is similar in nature . Py e
to the energy spectrum of the Harper motiet*2It exhib- X=—=—
its classical and quantum diffusion as well as localization m m-v

and anomalous diffusion, and even ballistic mofiot. The

motivation for the explorations of the kicked Harper model - ﬂ Py n

in the field of quantum chaos has so far been mainly theo- Py= ay’ y= m* w"X m* v
retical, because of the variety of interesting phenomena that (4)
were found. Since the system can be modeled approximately ] )

by the kicked harmonic oscillator, it can be realizedWhere o* =eB/m*c is the electronic cyclotron frequency.

experimentally:> Nevertheless, it has been shown recentlyThe following change of variableg=y -y, sinut with y,

e 2
H= py (p— EA(r,t)) +V(r), 2

HKH=L, cosp+K, cosq>, 8(t—n), (1)
n

2y

Sp (3

27X
V(r)=V,cos a +V,co

aV(X,y)
ax

E, sinut,

Ey cosrt,

0163-1829/2000/68)/20855)/$15.00 PRB 61 2085 ©2000 The American Physical Society



2086 A. IOMIN AND S. FISHMAN PRB 61

=eEy/m*1/2is useful. The equations of motion for thieom- PO B . 1 )
ponent in terms of this variable are (1" u'[Folj,s,u)=| fiw*| s+ 5 —hvj
- py . . &V(X,y) (5) X 65,5’ 5j’jré(u_u,). (12)
y=——w*X, py=-— . .
m* ’ ay The matrix elements o¥ can be found with the help of the
~ generating function of the Hermite polynomials and take the
The fact thatd/dy = 9/ dy was used. Analogously, we make ¢
change of variablep,=p,+ (ew*/v?) E, sint, leading to
(i"s".u'|Vlj,su)
s IV(X,Y)
px:w*(py_xw* m*)_ ox o~ ~ aT
:VXPS,’S(ha‘l)co% hu— E|s’ —s| |6 6(u—u’)
-1 w*eE ) eE _ 5 Vv
X= | Pt —5 Eysinut=CBcsinut | (6) + 2Py (Fa)dj (s 8(u—u'+2m)
If the amplitudesB,E, ,E, satisfy +(—1)S'*SP;’S(Fa)Jj,_j(K)é(u—u’—277)]. (13
*
w_Ey: E,, 7) whereJ,,(z) is the Bessel function, and
14
the equgtiog of motion fok is particularly simple and re- P; S(W)zeﬂm/z1 /i(zww)|sfs’|/2|_|ssfs’|(tWW)
duces tox=p,/m*. The equations of motio(b), (6) result ’ s’
from the effective Hamiltonian (14
for s’>s, while for s’ <s one should interchang&€ ands.
H= 1 [p2+ (py— w* M*x)2]+V COSZWX Here,Lﬁ(z) are the associated Laguerre polynomials, while
X ~
om* a a=bl/a and the effective Planck constant lis=2l%/ab
5 =®d,/P. The magnetic flux quantum i&,=hc/e and the
+Vyco{—w(y+yosinvt) flux through a unit cell of the periodic structure
b =abB. Because of the periodicity ig the allowed transi-

_ tions changeu only by integer multiples of z. This is also
= +V t).
Ho(Px:Py X)FVXY,1) ® clear from Eq.(13). For this reason, it is convenient to ex-
The tilde is omitted in Eq(8) and in what follows for the pressuin the formu=2mn+ & wheren is an integer, while
sake of simplicity of notation. Heré{,=Hy(py,py,X) cor-  0<d<2m. During the evolutiond is constant.

responds to the integrable system describing the cyclotron The eigenstatds., ) of the Floquet operatdt satisfying

motion, while V=V(xy.) is the perturbation leading to F|\,9)=\|\,9) are decomposed into the unperturbed basis
classical chaos. states

As the HamiltoniarfH is periodic in time with the period
T=2xlv, the following quantum mechanical analysis will _
be carried out in the framework of the Floquet theory. The IN 9= c Jj.sn9). (15
eigenvalue problem of the Floquet operator s
Projecting on the statéj,s,n,d| one finds that the coeffi-

E— —iﬁi+7:[0+\7:|30+\7 9) cientsc}, ¢ satisfy the following equation:
ot

is considered. An unperturbed basisFof is [A+vjlehs= '-Er Psi(ha™)

i — v —ijwt ~ I i

|J,S,u)—Ee |s,u). (10 xcogh(2mn+9)— > |s—r||c),,
The wave function|s,u) in the coordinate representation K . .
is12.15 +5 2 [P (ha)djj(x)ch,y,

r
: x_u +(=1)%"Pg,(ha)di_j(k)ch_y,].
<X,y|s7u>: erUIbws(___)v (ll) s,r 1= n—1r

where | =#c/eB is the magnetic length, while/s(z)  The following change of variables was used hepéw*
=[exp(-Z/2)IN 72! H(2) is a parabolic cylinder —hv and PX=[A—fw*(s+3)])/[fiw*], whie T
functiotl, andH(2z) is thesth Hermite polynomial. The ma- = */(Vx/Vy)/C, and K= ‘/(Vy/Vx)K- The parametelﬁIC
trix of F in this basis is diagonal, =VWV,\V,/hw* is the strength of the coupling of the Landau
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bands introduced in Ref. 12 for a stationary problem of Hallquired that cost,~0 or |sint,|~1. Consequently, the reso-
conductance in this system. In the case when it is not to@ant points arest,~ + 7/2 and therefore are approximately
large (C<6) the coupling between the Landau bands isequally spaced in time, and occur at the times = — /2
weak?? In the quantum case whére<1 andha *<1, we  +27l and vt ==/2+ 27l (I are integers The resulting
can neglect this interaction, i.e., the terms w8tas’ in EqQ.  map isM=M,M, with

(16) can be omitted. This can be seen from Egl) since the _

leading term ofPg, (w) behaves asvls' =52 Within this M. - p1=p+Kysin(@+ o)

approximation, Eq(16) reduces to ! g,=g—L;sinp;

[X+vjlcl=L cogh(27n+9)]c) Po= Py + Ky sin(gy— ko)
M.,: (21)

+K2 PR E RN d2=0q;—Lysinp;
= (k) (= c 1l )

2 7 ettt where L,;=(7/v)L while K,=\(27/xrH)K and ko=«
17) — /4. First we note that the map is periodic anwith the

5 5 5 5 ~ period 27 and therefore it is periodic in the magnitude of the
where L=LPJ(ha /P (ha), K=K, and [X electric field. This map is generated by the Hamiltonian:

+vj]/Psy(ha)—[X+vj], while the indexs was sup-

pressed in the notation. The Hamiltonian H,=L cosp+ vK,| cogq+ r) 2 sl vt+ g—an)
n=—o
H,;=L cosp+K cogq+ « sinvt), (18) .
reduces to Eq(17) in the basise’ % 1", wherek=u/27 +cogq—kg) > 5( vt— g—an) . (22
=2mn+9/27 and the canonical variables ageand p= n=o
—i27h(d/dq) satisfying[p,q]=—i2h. In the absence of In the case whenc,=0, this system corresponds to the

the ac electric fieldk=0, and Eq(18) reduces to the Hamil- KHM. Numerical analysis shows that the modgl is extremely
tonian of the Harper model. For the model of this paper, th&ensitive to the parametat, in both quantum lf~1) and

semiclassical limih— 0 is the limit of strong magnetic field classical B=0) regimes. In the quantum regime we study

®—o (or B—x). The validity of Egs.(17) and (18) re-  numerically the time evolution of the variance

quires®,/d=h<1, therefore the classical limit is mean-

ingful for Eq. (18). This Hamiltonian was studied in Ref. 14. vart)=(R2(t)) = (At)2=> n2lf.(1)|2 23

It was derived there for a model opposite to the one studied ()= (n"(t) =(n(t) zn: [fa (V] @3

here, namely the tight binding model where the external d di th rturbed level trum

fields can be considered as a perturbation on the lattice p@n Energy spreading over the unperturbed Ievel spectrum as

tential a result of the evolution from the initial level occupation
The driving potentiaK cos@— « sint) [related to the po- I”(?)F'n the Tomefntum_spaced Tthe stalndatrr? tecﬁ;ﬂﬁ or;;he

tential of Eq.(18) by a trivial shifting of timg is well known ast Founer transform 15 used to evove the g P

in the literature and it has been discussed in the context 0(1:_22) of the wave function over the peno‘l’:iqw_ar which two

the description of dynamical localization in atomic momen-Kicks take placew (t+T)=UW(t), whereU is the evolu-
tum transfert®'” This effect has been observed experimen-tion ~_operator over the period and ¥(t,q)

tally following an extension of a theoretical propo$althe = (1/\27) ;- ..e*™"f (t). The initial distribution used
Hamilton equations foH, of Eq. (18) areq=—L sinp and is f,(0)= 5, 0. An essential deviation from KHM is foEnd
p=K siny(t), with ¢(t)=g— « sinst. For k>1, the forcing  aS the parametet changes. The parametefs, L, andh
resulting in change of momentum is dominated by the reso2'€ the same as in Ref. 8 and are explicitly specified in the

. . figures.
4 _
nant points* where =0, or It is found here that when the parametef is varied,

(19) localization-delocalization transition takes place, With diff_er-
ent realizations of the delocalization such as diffusion,
Expandingy(t) around the resonant poitytand integrating anomalous diffusion, and ballistic motion. Such a transition
the Hamilton equation fop, taking into account the fact that from diffusive motion forx,=0 to ballistic motion forx,
this integral accumulates most of its contribution from a nar-= g+ whereg= \/5— 1/2 is the golden mean is shown in Fig.
row region(of width | k»? sinut,|~%) around the resonance, 1. A localization-delocalization transition is found also for
one finds that the momentum transferred at each resonanceKs /L, <2 (see Fig. 2, such that for KHM ,=0) there is
dynamical localization of quasienergies, while ballistic mo-
. 2 ) L T tion is found forkg=gm. WhenK,,L,<1, a slow diffusive
Ap; = WK sin Wiz ' (20 process in momenturtreported first in Ref. Bis observed
' for KHM in the semiclassical limit. It is suppressed when the
where ¢, = ¢(t,) and the sign depends on the direction of parametel, increases from zero, as shown in Fig. 3, result-
crossing of the resonance. ing in transport motion in real space. This transition corre-
The position of the resonance dependsporiFor strong  sponds to a metal-insulator transition in thdirection of the
driving, so thatkv>L for the resonance condition it is re- sample. Note the relation between the components of the

—L sinp=q= v cosut.
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FIG. 1. The quantum occupation probabilify(t)| vs n and the
variance var() found from integration of Eq(22) for K;=L,

=5, andh=2#/7+g with k,=0 (a),(b) and ko= g (c),(d).

electric field (7) that is crucial for the preference of the

direction. It is enhanced in the limit whén=0. Numerical
iterations of the classical ma1) for small valuesk; and
L, with initial distribution taken in the vicinity of a separa-
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FIG. 3. Same as Fig. 1 fd¢,=L,= /8 andh=2m/222+g for
ko=0 (a),(b) and kg=gm (c),(d).

Eo~1 CGSE one obtaing~300 and the conditior>1 is
fulfilled. The amplitudes of the periodic potential can satisfy
the condition K=(m*ab\V,V,/2n#?)<6 for V,,V,
<4 meV, anda~b~10? nm. Reasonable values for the
parameters of Eq921) and (22) are K;=L;=5, that are

trix are presented in Figs. 4 and 5. These calculations denfPt@ined forV,=0.15 meV andVy=3 meV for a=b

onstrate that this transport in tlyedirection found for finite
values ofky and absent when it vanishé®r the same val-
ues ofK; andL,) is of pure classical origin. Therefore, it is
expected to be robust against effects of noise.

A model for transport in a two-dimensional electron gas

~10° nm, k,=300 andv=10'" s These were used in
numerical calculations of the present paper. The valués, of
andL; can be reduced and also numerical calculations for
smaller values were performed.

Two metal-insulator transitions induced by the variation

embedded in the periodic superlattice potential in the pres?f «o aré predicted. The first one is a quantum effect of
ence of external fields was studied. The motion correspond&rong delocalization irp corresponding to anomalousu-

to cyclotron resonance dynamics with possible metalpen diffusion or acceleration fop, so that((p—pg)?)~t*
insulator transitions induced by the high frequency driving. Itwith 1<u<2 for x,#0 and for any ratio betweek; and
can be realized experimentally by a 2D periodic andidot arl, while it is known that forkq=0, that corresponds to the
ray. The required conditions for experimental realization ofKHM, super diffusion takes place only fét;>L . It means

this effect can be achievédror m* ~0.1m,, a,b~10°+4
X 10 nm, B~0.07+-0.37 T, one obtains thai* ~ 10"

+5x10" s ! while h~0.08-6. For »~10" s ! and
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FIG. 2. Same as Fig. 1 but far;=4 andK,=2.

that for ko # 0 an initial wave packet spreads in the direction
of stronger modulation of the 2D super-lattice potential. So
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FIG. 4. Classical evolution of the ma@1) for K;=L,==/8
andkx,=0. Eleven trajectories are presentedahand folded to the
27X 27 torus in(b). The variances are presented(@ and (d).
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3.8 a ballistic motion at any ratid<, /L, for kg# 0, while for «g
5 o [umEEB G 36 b =0 ano.malous diffusion i takes place only Whe_l’(ll L,
&;{Z::ﬁ;f:ﬁ:::z;:‘;'::: 35 < 1. This effect can be explained by the topological recon-
a3.4f a""'n,.‘::;-:ﬁ:':',.._"f-‘:-‘_:t 034 struction of phase space due to a variatiorkgfleading to
AN A A a3 different settling of elliptic and hyperbolic points. An analo-
SRl gous phenomenon has been studied for the wel?heamal it
3 82 has been shown that there is a connection between the web
0 1000, %0 8 S 6 structure and features of diffusion in phase spddeor the
5 10* 04 first case, the quantum transition due to the nonvanisking
¢ g corresponds to delocalization in tpelirection and localiza-

A 4 L, 03 tion in g. The second transition corresponds to delocalization
“;Oa °‘Zc,02 in g and localization irp. Some caution is required when the
&2 a2 model studied here is compared to antidot lattices, where the

v . Y o potential V(r) in Eq. (2) should be replaced by a sharper

function. In this case, Eq17) and the effective Hamiltonian
% 500 1000 % 500 1000 (18) have more complicated form due to interaction between
t t x andy degrees of freedom. For a sufficiently strong mag-

FIG. 5. Same as Fig. 4 but far,= 0.8y netic field, so thaha andha~! are much smaller than unity,

andK<6, the one Landau band approximation is v&lahd

the metal-insulator transitions considered here can be ob-

far, in the one-band structure systems, both integrable lik R : : P
s . erved.[This justifies ignoring the terms with#s’ in Eq.
the Harper model and chaotic like the kicked Harper mode%ls)_] The result may be modified since the form of the equa-

(xo=0), wave packets were found to spread in the directioqion corresponding to Eq18) may be somewhat more com-
of the weaker modulation of the potential amplitudes. Re-

S Blicated because of the sharpness of the potential.
cently, such effect; have be'en stuq|ed in the many-ban It was demonstrated in detail that the kicked Harper
structure system with strong interaction between the bandﬁ]odel and its modified versiof22), which were introduced
leading fo chaos n the classu;al _“nj‘?t'lt cqrres_pon(_is 0 in this paper, are relevant for the description of electronic
electronic transport in a 2D periodic potential with different

: ) . ot motion in antidot arrays. It is expected that it also models
modulation amplitudes ix andy directions that are perpen-

dicular to th ic field. Th q . lassi Cfthel’ problems of electronic motion in strong ac fieltls.
Icular 1o the magnetc held. The second one IS a classical g research was supported in part by the Israel Science

effect taking place foK,,L;<1 in both the classicdh=0  Foundation, by the U.S.~Israel Binational Science Founda-
and semiclassical limih<1. It corresponds to the strong tion (BSF, and by the Niedersachsen Ministry of Science
delocalization in they direction with anomalous diffusion or (Germany.
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