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Model for a metal-insulator transition in antidot arrays induced by an external driving field

A. Iomin and S. Fishman
Department of Physics, Technion-Israel Institute of Technology, Haifa 32000, Israel

~Received 17 June 1999; revised manuscript received 2 September 1999!

It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron
resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a
related model system in the presence of a magnetic field and an ac electric field is developed. In the limit of a
strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numeri-
cally and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of
the electric field is varied a metal-insulator transition may be found. The experimental conditions required for
this transition are discussed.
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Transport phenomena of a two-dimensional electron
embedded in a periodic potential~antidot array! has attracted
much attention in theoretical and experimental studies.1,2 In-
vestigations of magnetotransport2,3 and photoconductivity4

for GaAs heterostructures show that the electronic dynam
is essentially nonlinear with possible transition to a chao
regime.1,2 Exploration of some chaotic systems illuminates
deep connection between the electron transport phenom
and quantum and classical chaos.1,2,5 Specifically, the kicked
Harper model~KHM ! is an example of a system which
chaotic in the classical limit. It has been introduced theor
cally in the field of quantum chaos because of its interes
spectral and transport phenomena. It is defined by the Ha
tonian

H KH5LH cosp1KH cosq(
n

d~ t2n!, ~1!

where q is the coordinate,p is the conjugate momentum
while LH andKH are constants. The units of time are chos
so that kicks take place when the time is an integer. T
model is related to the Harper model2 @that is, just Eq.~1!
with (nd(t2n) replaced by unity#. The Harper model is the
standard model for electronic motion in 2D in a strong ma
netic field or for electronic motion in a one-dimensional p
tential with two incommensurate periods. The model~1! and
its variants appear naturally for the kicked harmon
oscillator.6,7 It is of specific interest since it does not follo
the KAM ~ Kolmogorov, Arnold, Moser! picture. Its dynam-
ics corresponds to kicks combined with rotations of the fo
fold symmetry. This system exhibits chaotic motion in a
gion that increases withLH andKH . The model was subjec
to extensive theoretical studies.2,6–10 For some regimes o
parameters, its spectrum of quasienergies is similar in na
to the energy spectrum of the Harper model.2,9,11,12It exhib-
its classical and quantum diffusion as well as localizat
and anomalous diffusion, and even ballistic motion.6–10 The
motivation for the explorations of the kicked Harper mod
in the field of quantum chaos has so far been mainly th
retical, because of the variety of interesting phenomena
were found. Since the system can be modeled approxima
by the kicked harmonic oscillator, it can be realiz
experimentally.13 Nevertheless, it has been shown recen
PRB 610163-1829/2000/61~3!/2085~5!/$15.00
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that this system and models associated with KHM may
realized in experiments on cyclotron resonance.14 It was pro-
posed by Iomin and Fishman that the KHM can be used
model some aspects of electronic motion in antidot arrays
this paper we show that a family of models associated w
KHM is relevant for cyclotron resonance experiments4 in
antidot arrays for some conditions.

The one particle Hamiltonian describing electrons in e
ternal fields and in a periodic potential is

H5
1

2m*
Xp2

e

c
A~r ,t !C2

1V~r !, ~2!

wherep5(px ,py) is the two-dimensional momentum of a
electron with effective massm* and chargee, A(r ,t)
5@(c/n)Ex sinnt,xB2(c/n)Ey cosnt,0# is the vector potential
in such a gauge that takes into account a constant mag
field in thez direction,B5(0,0,B), and an alternating elec
tric field E5(2Ex cosnt,Ey sinnt) with a frequencyn, while
V(r )5V(x,y) is a two-dimensional periodic potential mod
eling the antidot structure. For simplicity, the potential

V~r !5Vx cos
2px

a
1Vy cos

2py

b
, ~3!

where a,b are periods in thex and y directions, will be
considered, although it should be much sharper and con
more Fourier components for the antidot lattice.2–5 The
equations of motion for Eq.~2! are

ṗx5v* S py2v* m* x1
e

n
Ey cosnt D2

]V~x,y!

]x
,

ẋ5
px

m*
2

e

m* n
Ex sinnt,

ṗy52
]V

]y
, ẏ5

py

m*
2v* x1

e

m* n
Ey cosnt,

~4!

where v* 5eB/m* c is the electronic cyclotron frequency
The following change of variablesy5 ỹ1y0 sinnt with y0
2085 ©2000 The American Physical Society
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2086 PRB 61A. IOMIN AND S. FISHMAN
5eEy /m*n2 is useful. The equations of motion for they com-
ponent in terms of this variable are

ẏ̃5
py

m*
2v* x, ṗy52

]V~x,y!

] ỹ
. ~5!

The fact that]/]y5]/] ỹ was used. Analogously, we mak
change of variablespx5 p̃x1(ev* /n2)Ey sinnt, leading to

ṗ̃x5v* ~py2xv* m* !2
]V~x,y!

]x
,

ẋ5
1

m*
S p̃x1

v* e

n2
Ey sinnt2

e

n
Ex sinnt D . ~6!

If the amplitudesB,Ex ,Ey satisfy

v*

n
Ey5Ex , ~7!

the equation of motion forx is particularly simple and re
duces toẋ5 p̃x /m* . The equations of motion~5!, ~6! result
from the effective Hamiltonian

H5
1

2m*
@px

21~py2v* m* x!2#1Vx cos
2px

a

1Vy cosF2p

b
~y1y0 sinnt !G

[H0~px ,py ,x!1V~x,y,t !. ~8!

The tilde is omitted in Eq.~8! and in what follows for the
sake of simplicity of notation. HereH05H0(px ,py ,x) cor-
responds to the integrable system describing the cyclo
motion, while V5V(x,y,t) is the perturbation leading to
classical chaos.

As the HamiltonianH is periodic in time with the period
T52p/n, the following quantum mechanical analysis w
be carried out in the framework of the Floquet theory. T
eigenvalue problem of the Floquet operator

F̂52 i\
]

]t
1Ĥ01V̂5F̂01V̂ ~9!

is considered. An unperturbed basis ofF̂0 is

u j ,s,u&5
n

A2p
e2 i j ntus,u&. ~10!

The wave functionus,u& in the coordinate representatio
is12,15

^x,yus,u&5
1

A2p lb
eiyu/bcsS x

l
2

ul

b D , ~11!

where l 5A\c/eB is the magnetic length, whilecs(z)

5@exp(2z2/2)/AAp2ss! #Hs(z) is a parabolic cylinder
function, andHs(z) is thesth Hermite polynomial. The ma
trix of F̂0 in this basis is diagonal,
n

e

^ j 8,s8,u8uF̂0u j ,s,u&5F\v* S s1
1

2D2\n j G
3ds,s8d j , j 8d~u2u8!. ~12!

The matrix elements ofV̂ can be found with the help of the
generating function of the Hermite polynomials and take
form

^ j 8,s8,u8uV̂u j ,s,u&

5VxPs8,s
1

~ h̃a21!cosS h̃u2
p

2
us82su D d j , j 8d~u2u8!

1
Vy

2
@Ps8,s

2
~ h̃a!Jj 2 j 8~k!d~u2u812p!

1~21!s82sPs8,s
2

~ h̃a!Jj 82 j~k!d~u2u822p!#. ~13!

whereJn(z) is the Bessel function, and

Ps8,s
6

~w!5e2pw/2A s!

s8!
~2pw! us2s8u/2Ls

us2s8u~6pw!

~14!

for s8.s, while for s8,s one should interchanges8 ands.
Here,Ln

k(z) are the associated Laguerre polynomials, wh

a5b/a and the effective Planck constant ish̃52p l 2/ab
5F0 /F. The magnetic flux quantum isF05hc/e and the
flux through a unit cell of the periodic structure isF
5abB. Because of the periodicity iny the allowed transi-
tions changeu only by integer multiples of 2p. This is also
clear from Eq.~13!. For this reason, it is convenient to ex
pressu in the formu52pn1q wheren is an integer, while
0,q,2p. During the evolutionq is constant.

The eigenstatesul,q& of the Floquet operatorF̂ satisfying
F̂ul,q&5lul,q& are decomposed into the unperturbed ba
states

ul,q&5 (
n,s, j

cn,s
j u j ,s,n,q&. ~15!

Projecting on the statêj ,s,n,qu one finds that the coeffi-
cientscn,s

j satisfy the following equation:

@ l̃1n j #cn,s
j 5L̃(

r
Ps,r

1 ~ h̃a21!

3cosF h̃~2pn1q!2
p

2
us2r uGcn,r

j

1
K̃

2 (
r , j 8

@Ps,r
2 ~ h̃a!Jj 82 j~k!cn11,r

j 8

1~21!s2r Ps,r
2 ~ h̃a!Jj 2 j 8~k!cn21,r

j 8 #.

~16!

The following change of variables was used here:n/v*
→h̃n and h̃l̃5@l2\v* (s1 1

2 )#/@\v* #, while L̃

5A(Vx /Vy)K, and K̃5A(Vy /Vx)K. The parameterh̃K
5AVxVy/\v* is the strength of the coupling of the Landa
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bands introduced in Ref. 12 for a stationary problem of H
conductance in this system. In the case when it is not
large (K<6) the coupling between the Landau bands
weak.12 In the quantum case whenh̃a,1 andh̃a21,1, we
can neglect this interaction, i.e., the terms withsÞs8 in Eq.
~16! can be omitted. This can be seen from Eq.~14! since the
leading term ofPs8,s(w) behaves aswus82su/2. Within this
approximation, Eq.~16! reduces to

@ l̃1n j #cn
j 5L cos@ h̃~2pn1q!#cn

j

1
K

2 (
j 8

Jj 2 j 8~k!@~21! j 2 j 8cn11
j 8 1cn21

j 8 #,

~17!

where L5L̃Ps,s
1 (h̃a21)/Ps,s

2 (h̃a), K5K̃, and @ l̃

1n j #/Ps,s
2 (h̃a)→@ l̃1n j #, while the index s was sup-

pressed in the notation. The Hamiltonian

Ĥ15L cosp̂1K cos~ q̂1k sinnt !, ~18!

reduces to Eq.~17! in the basiseikqe2 i j nt, wherek5u/2p

52pn1q/2p and the canonical variables areq̂ and p̂5

2 i2ph̃(]/]q) satisfying@ p̂,q̂#52 i2ph̃. In the absence o
the ac electric fieldk50, and Eq.~18! reduces to the Hamil-
tonian of the Harper model. For the model of this paper,
semiclassical limith̃→0 is the limit of strong magnetic field
F→` ~or B→`). The validity of Eqs.~17! and ~18! re-
quires F0 /F5h̃,1, therefore the classical limit is mean
ingful for Eq. ~18!. This Hamiltonian was studied in Ref. 14
It was derived there for a model opposite to the one stud
here, namely the tight binding model where the exter
fields can be considered as a perturbation on the lattice
tential.

The driving potentialK cos(q2k sinnt) @related to the po-
tential of Eq.~18! by a trivial shifting of time# is well known
in the literature and it has been discussed in the contex
the description of dynamical localization in atomic mome
tum transfer.16,17 This effect has been observed experime
tally following an extension of a theoretical proposal.18 The
Hamilton equations forH1 of Eq. ~18! are q̇52L sinp and
ṗ5K sinc(t), with c(t)5q2k sinnt. For k@1, the forcing
resulting in change of momentum is dominated by the re
nant points,14 whereċ50, or

2L sinp5q̇5kn cosnt. ~19!

Expandingc(t) around the resonant pointt r and integrating
the Hamilton equation forp, taking into account the fact tha
this integral accumulates most of its contribution from a n
row region~of width ukn2 sinntru21/2) around the resonance
one finds that the momentum transferred at each resonan

Dpr
65A 2p

kn2usinnt r u
K sinS c r

66
p

4 D , ~20!

where c r5c(t r) and the sign depends on the direction
crossing of the resonance.

The position of the resonance depends onp. For strong
driving, so thatkn@L for the resonance condition it is re
ll
o

s

e

d
l
o-

of
-
-

-

-

e is

f

quired that cosntr'0 or usinntru'1. Consequently, the reso
nant points arent r'6p/2 and therefore are approximate
equally spaced in time, and occur at the timesnt r

252p/2
12p l and nt r

15p/212p l ( l are integers!. The resulting
map isM5M2M1 with

M1 : H p15p1K1 sin~q1k0!

q15q2L1 sinp1

M2 : H p25p11K1 sin~q12k0!

q25q12L1 sinp2
~21!

where L15(p/n)L while K15A(2p/kn2)K and k05k
2p/4. First we note that the map is periodic ink with the
period 2p and therefore it is periodic in the magnitude of th
electric field. This map is generated by the Hamiltonian:

H25L cosp1nK1Fcos~q1k0! (
n52`

`

dS nt1
p

2
22pnD

1cos~q2k0! (
n52`

`

dS nt2
p

2
22pnD G . ~22!

In the case whenk050, this system corresponds to th
KHM. Numerical analysis shows that the model is extrem
sensitive to the parameterk0 in both quantum (h̃;1) and
classical (h̃50) regimes. In the quantum regime we stu
numerically the time evolution of the variance

var~ t !5^n̂2~ t !&2^n̂~ t !&25(
n

n2u f n~ t !u2 ~23!

and energy spreading over the unperturbed level spectru
a result of the evolution from the initial level occupatio
f n(0) in the momentum space. The standard technique of
fast Fourier transform is used to evolve the quantum m
~22! of the wave function over the periodT over which two
kicks take place:C(t1T)5ÛC(t), whereÛ is the evolu-
tion operator over the period and C(t,q)
5(1/A2p)(n52`

` e2p inqf n(t). The initial distribution used
is f n(0)5dn,0 . An essential deviation from KHM is found
as the parameterk changes. The parametersK1 , L1, and h̃
are the same as in Ref. 8 and are explicitly specified in
figures.

It is found here that when the parameterk0 is varied,
localization-delocalization transition takes place, with diffe
ent realizations of the delocalization such as diffusio
anomalous diffusion, and ballistic motion. Such a transit
from diffusive motion fork050 to ballistic motion fork0

5gp whereg5A521/2 is the golden mean is shown in Fig
1. A localization-delocalization transition is found also f
K1 /L1,2 ~see Fig. 2!, such that for KHM (k050) there is
dynamical localization of quasienergies, while ballistic m
tion is found fork05gp. WhenK1 ,L1!1, a slow diffusive
process in momentum~reported first in Ref. 8! is observed
for KHM in the semiclassical limit. It is suppressed when t
parameterk0 increases from zero, as shown in Fig. 3, resu
ing in transport motion in real space. This transition cor
sponds to a metal-insulator transition in they direction of the
sample. Note the relation between the components of
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2088 PRB 61A. IOMIN AND S. FISHMAN
electric field ~7! that is crucial for the preference of they
direction. It is enhanced in the limit whenh̃50. Numerical
iterations of the classical map~21! for small valuesK1 and
L1 with initial distribution taken in the vicinity of a separa
trix are presented in Figs. 4 and 5. These calculations d
onstrate that this transport in they direction found for finite
values ofk0 and absent when it vanishes~for the same val-
ues ofK1 andL1) is of pure classical origin. Therefore, it i
expected to be robust against effects of noise.

A model for transport in a two-dimensional electron g
embedded in the periodic superlattice potential in the p
ence of external fields was studied. The motion correspo
to cyclotron resonance dynamics with possible me
insulator transitions induced by the high frequency driving
can be realized experimentally by a 2D periodic andidot
ray. The required conditions for experimental realization
this effect can be achieved.4 For m* ;0.1me , a,b;10244
3102 nm, B;0.0740.37 T, one obtains thatv* ;1011

4531011 s21, while h̃;0.0846. For n;1011 s21 and

FIG. 1. The quantum occupation probabilityu f n(t)u vs n and the
variance var(t) found from integration of Eq.~22! for K15L1

55, andh̃52p/71g with k050 ~a!,~b! andk05pg ~c!,~d!.

FIG. 2. Same as Fig. 1 but forL154 andK252.
-

s-
ds
l-
t
r-
f

E0;1 CGSE one obtainsk;300 and the conditionk@1 is
fulfilled. The amplitudes of the periodic potential can satis
the condition K5(m* abAVxVy/2p\2)<6 for Vx ,Vy
,4 meV, anda;b;102 nm. Reasonable values for th
parameters of Eqs.~21! and ~22! are K15L155, that are
obtained for Vx50.15 meV andVy53 meV for a5b
;102 nm, k05300 andn51011 s21. These were used in
numerical calculations of the present paper. The values oK1
and L1 can be reduced and also numerical calculations
smaller values were performed.

Two metal-insulator transitions induced by the variati
of k0 are predicted. The first one is a quantum effect
strong delocalization inp corresponding to anomalous~su-
per! diffusion or acceleration forp, so that^( p̂2p0)2&;tm

with 1,m<2 for k0Þ0 and for any ratio betweenK1 and
L1, while it is known that fork050, that corresponds to th
KHM, super diffusion takes place only forK1.L1. It means
that fork0Þ0 an initial wave packet spreads in the directi
of stronger modulation of the 2D super-lattice potential.

FIG. 3. Same as Fig. 1 forK15L15p/8 andh̃52p/2221g for
k050 ~a!,~b! andk05gp ~c!,~d!.

FIG. 4. Classical evolution of the map~21! for K15L15p/8
andk050. Eleven trajectories are presented in~a! and folded to the
2p32p torus in ~b!. The variances are presented in~c! and ~d!.
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PRB 61 2089MODEL FOR A METAL-INSULATOR TRANSITION IN . . .
far, in the one-band structure systems, both integrable
the Harper model and chaotic like the kicked Harper mo
(k050), wave packets were found to spread in the direct
of the weaker modulation of the potential amplitudes. R
cently, such effects have been studied in the many-b
structure system with strong interaction between the ba
leading to chaos in the classical limit.19 It corresponds to
electronic transport in a 2D periodic potential with differe
modulation amplitudes inx andy directions that are perpen
dicular to the magnetic field. The second one is a class
effect taking place forK1 ,L1,1 in both the classicalh̃50
and semiclassical limith̃!1. It corresponds to the stron
delocalization in theq direction with anomalous diffusion o

FIG. 5. Same as Fig. 4 but fork050.8gp.
os

an

v,

,

n
s

e
l

n
-
d

ds

al

ballistic motion at any ratioK1 /L1 for k0Þ0, while for k0
50 anomalous diffusion inq takes place only whenK1 /L1
,1. This effect can be explained by the topological reco
struction of phase space due to a variation ofk0 leading to
different settling of elliptic and hyperbolic points. An analo
gous phenomenon has been studied for the web map20 and it
has been shown that there is a connection between the
structure and features of diffusion in phase space.10 For the
first case, the quantum transition due to the nonvanishingk0
corresponds to delocalization in thep direction and localiza-
tion in q. The second transition corresponds to delocalizat
in q and localization inp. Some caution is required when th
model studied here is compared to antidot lattices, where
potential V(r ) in Eq. ~2! should be replaced by a sharp
function. In this case, Eq.~17! and the effective Hamiltonian
~18! have more complicated form due to interaction betwe
x and y degrees of freedom. For a sufficiently strong ma
netic field, so thath̃a andh̃a21 are much smaller than unity
andK,6, the one Landau band approximation is valid12 and
the metal-insulator transitions considered here can be
served.@This justifies ignoring the terms withsÞs8 in Eq.
~13!.# The result may be modified since the form of the equ
tion corresponding to Eq.~18! may be somewhat more com
plicated because of the sharpness of the potential.

It was demonstrated in detail that the kicked Harp
model and its modified version~22!, which were introduced
in this paper, are relevant for the description of electro
motion in antidot arrays. It is expected that it also mod
other problems of electronic motion in strong ac fields.14

This research was supported in part by the Israel Scie
Foundation, by the U.S.–Israel Binational Science Foun
tion ~BSF!, and by the Niedersachsen Ministry of Scien
~Germany!.
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