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Kondo effect in crossed Luttinger liquids

Karyn Le Hur
Theoretische Physik, ETH-Hggerberg, CH-8093 Zich, Switzerland
(Received 29 March 1999; revised manuscript received 28 July)1999

We present results for the Kondo effect in temssed_uttinger liquids by using boundary conformal field
theory. We predict two types of critical behaviors: either a two-channel Kondo fixed point with a nonuniversal
Wilson ratio or a theory with an anomalous reponse that is identical to that found by Furusaki and Nagaosa for
the Kondo effect in a single Luttinger liquid. Moreover, we discuss the relevance of perturbations like channel
anisotropy in restoring a Fermi-liquid-like Kondo fixed point, and compare our results with the Kondo effect
in a two-band Hubbard system modeled by a channel-dependent Luttinger Hamiltonian. The suppression of
backscattering off the impurity produces a model similar to the four-channel Kondo theory. Consequences are
discussed.

[. INTRODUCTION liquids and can neglect the electron-electron interaction be-
tween channels with different(i=1,2). As in Ref. 9, we
The one dimensionallD) conductors differ fundamen- consider thak measures deviations from the magnetic impu-
tally from those in three dimensions, where the low-energyity in both conducting channels. In such sense, we have only
properties can be described very well by Landau’s Fermbne coordinate left.
liquid theory. In 1D, the resulting state is often of the Lut-  The Hamiltonian
tinger liquid (LL) typel? The physics of such low-
dimensional systems has received much attention lately, H="Hy+ Hy+ Hg (1)
mainly due to advances in nanofabricafi@nd the discov-
ery of novel 1D materials such as carbon nanotdbeke  for this two-channel Kondo modgWith left (L) and right
study of magnetic impurities in 1D unconventional corre-(R) moving electrons per chanfjetonsists of the term for
lated hosts has attracted great interest in the last few yearf€ee electrons
The Kondo effect in a LL yields two possible fixed poiits
Either the system behaves rather like a Fermi lighidth a
nonuniversal Wilson ratio and &U(2),_, spin symmetry]
or it indeed has the non-Fermi-liquid properties predicted by . ) . ) )
Furusaki and Nagao§a. with vi being the Ferml_velocny ant=1,2 channel index;
In this paper, we study the Kondo effect in twoossed ~an electron-electrofe-g interaction term
Luttinger liquids® i.e., two correlated 1D metals coupled in a . +
pointlike manner via a magnetic impurity. An important Hy=VUjplp JLr = YiLRadiL(Rya )
guestion is examined: are the two fixed points cited above
stable when several conducting channels interact through with + i
pointlike Kondo coupling? The geometry of our system js/mpurity:
shown in Fig. 1. The authors of Ref. 10 have studied the _ +
Kondo effect in a two-band Hubbard chain modeled by a Hx=MediL (r)a0) Tap¥iL (r)p(0) - S
channel-dependent Luttinger Hamiltonian. On the other T . )
hand, for the most general two-band problem investigated in Fredit@a0)Tepting)p(0)-S @
Ref. 11, a prominent repulsive Hubbard interaction normallywhere o are the usual spin-1/2 matrices. For the physically
destroys the LL phase producing a metallic spin-gappedelevant case, we hawg-=\g= A\ (the usual Kondo inter-
phase with a leading d-wave order parameter. The resultingction).
Kondo problem becomes very difficult to handle. Conduction electrons of one liquid respond to a spin flip
In our case, the two Luttinger liquids are supposed to beof the impurity caused by the interactions with electrons of
noninteracting except at the impurity sifeIn particular, we
do not include an electron-electron interaction for two par-
ticles that belong to different conducting channels. Further
experiments on magnetic impurities implanted in 1D quan-
tum wires or carbon nanotubesould provide impetus for
studying this model.

¢ . d ¢ d
Ho=VE ‘/fiRa'&'ﬂiRa_‘/’iLal&l/fiLo ) (2

ith U>0;* and forward and backward scatterings off the

Il. MODEL

As long as the anglE [that is depicted in Fig. ldoes not FIG. 1. Two Luttinger liquids coupled only at=0 via the
tend to zero, we can separate the two degenerate Lutting&ondo effect. The angl&' is assumed to remain finite.
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the other liquid. In this way, there is anducedinteraction The unperturbed problem organizes into a product of
between the liquids. We could also include another interacthree conformal towers labeled by the quantum numbers
tion of the form: (Q.j,is), respectively the charge, the spin, and the flavor of

; : the system. Starting with an even number of particles the
M€l YL (RyaTap?iL(R)pT Vil (R)aTas¥ir@)plS, (B  high-temperature physics is described by the $@t0,]

. . . _ =0,fl inglet). For th ial value:
wheree;;=1 fori=1, j=2 and zero otherwise. First, we avor singlet). For the special value

neglect the term in Eq5). Ve
We subsequently study this problem by using boundary A’;:m,

conformal field theory(BCFT). The heart of the method,

pioneered by Affleck and Ludwii;'*is to replace the im-  [the unique solvable point in the isotropic region, which is

purity by a scale invariant boundary condition. It was suc-commonly identified as the fixed point of the motdgl we

cessfully applied to study the low-temperature properties of &an absorb the impurity spin by redefining the spin current as
spin-1/2 magnetic impurity coupled to a L] and to solve  that of electrons and impurity:

the Kondo effect in the particular two-band Hubbard chain of

(10

Ref. 10. J(X) = I(X) +27SS(X). (11
Below, we shall precisely discuss how the geometry of . .
Fig. 1 influences the two fixed points found in Ref. 10. For the overscreening Kondo effect, the absorption of the

impurity spin takes place in the weak-coupling limit and then
the groundstate degeneragys not exactly 1 as in the com-
pletely screened situatidfi,but it takes anonintegervalue

We first study the case of onfprward scattering off the smaller than 2the groundstate degeneracy at high tempera-
impurity, i.e. A\g=0. Let us start with dree electron gas tures. Then, some extrmonmagneticdegrees of freedom
whereU=0. occur at the impurity site.

Near the fixed point, the Hamiltonian can be written as
the fixed point Hamiltonian plus possible perturbations

Ill. ONLY FORWARD SCATTERING OFF THE IMPURITY

A. Four-channel Kondo model with free electrons

To solve this case using BCFT, it is convenient to define
right and left movers on the half-plane=0 (see Fig. 1, so H=He+ >, %0i(0). (12
that '
B We can classify all the possible perturbatio@®s in the
Yira(t.X) =il a(t, —X), ©) physical problem according to the representation theory of

with i=1,2, and to confine the system to the finite intervalth® underlying Kac-Moody algebra at the fixed point.
xe[—1,1]. Fields areleft movers only and it is useful to For the overscreening case, nontrivial boundary operators

— — _ may appear that do not occur in the bulk theory. The triplet
rename X X), o(X o(—X), a(X _ : )
. (X)X hé(nc)i lel(%(:)lpﬂx(z—(x)). Kwelgpi(ng Lmy)gi;g operatord always occurs? This selection rule describes a

(forward scattering off the impurilyin Eq. (3), it follows: new content of boundary scaling operators. The low-
temperature properties are now governed by ldeding-
He=\gJ(0)-S. (7)  correction-to-scaling boundary operat¢tCBO). This must
preserve all the symmetries &f,+ Hf . We obtain aunique
Here, J is the electron spin current densityd(x)  LCBO: J ' -®4§(x), which has the scaling dimensiokg
=3 X (X) o.pxi(x) andk=4. Note that the informa- =1+ 2/(k+2) for a left-handed theory. Then, adding
tion about the number of channels is contained in the com-

mutation rules satisfied by these currefitsndicating that SH=v,J71-®(0), (13
J3(x) form anSU(2), Kac-Moody algebra. o ) o
Generally, we must also introduce, to the total Hamiltonian, the leading contribution to low-
temperature thermodynamics is second ordery4n For k

k =4, we havé®
J<x>=§1 x&(x)xia(x),JA(x):”Ea X OO TH X o(X),

8
A As pointed out by Fabrizio and Gogolin, the same conclusion
whereT; are the generators of tf&U(k) group. Thus, the  holds at a particular anisotropic Kondo limit, namely the
free Hamiltoniarf{, can be rewritten in a suitable Sugawara so-called Toulouse poirf,

form,

Cimp~ T+ Ximp~T B+...T—0. (19

B. Role of repulsive interactions in each channel

VE J(X)JI(x)  IX)Ix)  JAX)IAX)
“or | Xk T a2 T k2 @ WhenU #0, the bulk Hamiltoniar#{r_ can also be writ-
ten on a Sugawara form, using the redefinitfons
This allows one to formulate the problem entirely in terms of _
the electron spin currend(x). It leads to an effective four- J'L(R)(x)= coshn:wiTL(R)a(x)wiL(R)a(x):
channel(left-handed Kondo theory** Briefly, we summa- _ :
rize the arguments below. + sinh7: gy (X) Pir)a(X): (15

Ho
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JiL(R)(X):3lﬂiTL(R)a(X)O'aﬁlﬁiL(R)ﬁ(X)i, On the o;her h_and, the I_ow-t_emp_erature thermodynamics
_ , due to the impurity screening is still the same as the one
where the currentd,(x) and Jy(x) (wherei=1,2 andp  found in the noninteracting case, because the impurity spin
=L,R) satisfy theU(1) and(level-1) SU(2),; Kac-Moody  couples only tandividual electrons.
algebras, respectively and

tanh2p=U/(ve+U). (16) IV. BACKSCATTERING EFFECTS

They generate the critical Luttinger bulk Hamiltonian Let us now include\g=\g+#0. First, to confirm that the
presence of backward scattering off the impurity leads to a

Pove i VE i newfixed point, we start withJ =0. With no e-e interaction,
HyL= fodxgﬂp(xﬂp(x): + 5903001 (17 it is convenient to use the so-called Weyl b&&is

Note thatHy, is invariant under the chiral symmetry LoO=Td () =ds (—x)1V2. 21
={U(1), X U(1)gXSU(2); XSU(2)1x}2. The model Vo0 =TPL 0% di o (—X0VN2 (0
yields separation of spin and charge and the velocity fofrhen ¢4 +%,) transforms into a four-channel Kondo

charge zero sound modes is given by theory, but with the impurity coupled to the electrons in only
... . 2
Vo=V TF20Me = veK L, (18 the two positive parity channels, namely. and ¢ . Thus,

we obtain an effective two-chanfi&l(left-handed Kondo

The parameteK =e~27 can be identified as the usual Lut- Hamiltonian™®
tinger exponent. At high temperatures, the spin quasiparti- Here, it is well-known that the forward Kondo scattering
cles, from the S(P), level-1 Wess-Zumino-Witten confor- term breaks th&sU(2),Xx SU(2), subgroup ofH, down to
mal field theory, are the usual spin-1/2 doublets namely5U(2),X Z,, where Z, is a critical theory with a central
spinons[which bring fractional spirls charge G=1/2 equivalent to arising model>’ The model

By analytic continuation, the theory in E(L7) is equiva- ~ renormalizes to a marginal non-Fermi liquid wihgarith-
lent to a chiral(left-handedl theory on[ —1,I]. As the four ~ miccorrections. It can be simply obtained by takipgas the
currents are coupled vi&, the forward Kondo exchange unique LCBO (note thatAg=3/2 for k=2). The low-
breaks{SU(2),, X SU(2)1,L}2 of G down to the diagonal temperature thermodynamics at the impurity site is given
level-4 subalgebr&U(2),. For conformal theories with an ¢
SU(2), symmetry, the free energy is proportional to the
“central charge” defined d$

=}
<

Tk Tk
CimpxTInl — |+ Ximp* IN| = | +---T—=0. (22
T P T

3k

=i 5 (19 . S . _

k+2 WhenU #0, the e-e interaction mixes left- and right-moving

Thus, we can decompose ax&U(2), Sugawara Hamil- fields, and hence becomes highignlocalin the Wey!—baS|s.
tonian (with C=4) onto anSU(2), one (with C=2) and a Although efforts have been made to handle consistently the

remainder describing the flavor sectbere, arSU(2), criti- non-IocaI' t'erms appearing from' the mteract?éry,n our.
cal theory withC=2, as well. This analysis can be routed problem l|t is 2very dl_fflcult to describe the Kondo fixed point
via the so-callectosetconstructio®. Then, since only the N the (4,47 ) basis. _

spin sectolSU(2), is coupled to the impurity, we predictthe ~ However, demanding that any associated LCBO must cor-
sameuniqueLCBO as for the case without electron-electron "€Ctly reproduce the noninteracting limit &s—0, the pos-
interaction[a boundary operator coming from the charge secSiPI€ critical theories can be deduced: o
tor or the flavor onelonly) is characterized by a coupling (@ From the spin sector only LCBO with the scaling di-
constant which goes to zero when the ultraviolet cutoff goe§N€NSionAs=3/2 can occur. The only contribution from the
to infinity]. Using the general formula of Ref. 7, we obtain a SU(2), sector is then the identity and its descendalitss

Wilson ratio implies a recombination of conformal towers in the spin sec-
tor.
XimpC (b) A LCBO including a charge or a flavor field unam-
Rw=Tc —=4(1+K), (200 biguously must be characterized by a scaling dimendign
imp

—1 asU—0 [producing no boundary correction in the non-

where,C and y are the bulk quantities. It should be noted interacting limitU—0].
that Ry, is universal only for a perfect isotropic Kondo
excrLlanglE9 and in the limitU—0: it takes the valuRy
=8.

To conclude, the presence of the electron-electron inter- To guess the precise symmetry of the Hamiltonian in the
action makes the Kondo crossover highly nonuniversal. Theritical region, we can use the following points.
impurity screening leads to a new symmetry for the bulk First, we can exploit the expectation that the full Kondo
Hamiltonian, and then to neW-body excitations in the in- interactionHy can be described asranormalizedooundary
frared limit[coming from theSU(2),X SU(2), (flavor-spin  condition (selection rul¢ on 1, analogous to the forward
sectorg. However, note that charge quasiparticles withinteraction obtained fod =0. In particular\g should scale
chargesQ= +e, are still the usual “holons” of the LL. towards thesolvablepoint A\ =vg/4 (with k=2) although

A. Two-channel Kondo physics whenU # 0
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Ag goes to strong couplings whes+#0 or K#1 [see be- the geometry of the system does not affect spin properties in
low]. Second, the full Hamiltonian must also contain an Isingthe infrared limit We can check that the Wilson ratio is

sector. universal only wherd —0; it takes the value 8/%'
As an important consequence, whgr-0 we must write
the fixed-point HamiltonianHy+HE as a G=2 critical B. Generalized tunneling process da Furusaki-Nagaosa

theory with L and R movers having arBU(2),,
X SU(2),rX Z, symmetry. The presence of backward scat-
tering off the impurity break§U(2),, X SU(2),r down to
SU(2)s,.

Let us now precisely describe the content of scalin
boundary operators. W}, and J; g [given by Eq.(15)]
satisfy the level-1 Kac-Moody algebra, then the diagonal

o 1 o [ K
currents given by (I +IR)= —=0dydei,» (I —Ip)=\/=—Ilg,
V27K 2m
IR=IwmtIim: (23 (26)

satisfy the level-2 one. Thus, we can write the Hamiltonianthe charge part of the free Hamiltonian can be identified as
as a sum of arBU(2),, X SU(2), Sugawara Hamiltonian WO independent Luttinger models. _

and an Ising model. Such procedure, for example, has been NO\_N, we must carefully treat b_ackward scattering off the
successfully applied to treat the two-leg spin laddedMmpurity. Indeed, the corresponding term in Ee) breaks
problem?? We can easily complete the “square” at the solv- the chlr_aIU(l) invariance ofHy_ . The selection rule for
able pointA\¥=vg/4 via the use of the transformation: COmbining the twoU(1) conformal towers may change.
IRy (¥)— IR (X) +27S5(X). The Kac-Moody algebras Thus, AQ; is no longer restricted to zero, and the charge

for channels L and R are no longer independent. As for thsector should make nontrivial contributions to the content of
noninteractingU-limit, AX =v¢/4 will be identified as the scaling operators leading to another possible fixed point in

true fixed point of the model. However, it should be notedthe_l_%m'%al Leg'ot?' ing t . I din th
that the recursion law fo - e backscattering terrtd) is usually expressed in the

so-called spinon basis %5

Neglecting the\,, term, for eachLL the charge eigen-
states organize into a product of twi{1) conformal towers,
labeled by the two quantum numbe3;(AQ;), the sum and
difference of net charge in the left and right channels. Intro-
gducing the usual charge variables=(1,2),

die  Af NG kA
dnL " 2ave 2nve 2 (ampe 0 20 He=)g 3, {Tr(gi0)cos\2mci(0)}-S, (27

=12

does not allow to find the precise forward Kondo exchangesnd the spin operators; SU(2);, X SU(2)1. Using
infrared value, namelyf . We can only assume that, as for simple scaling argumentsvith L=1/T)
U =0, the presence of the last term that occurs withiaus
sign should prevenX to flow to strong couplings. dg 1 NeAg
The eigenstates in theU(2),, X SU(2), sector appear dinL ~ E(l_ K)g+O '
in conformal towers labeled by the spin quantum numbers ) ) _ )
j=0,1/2,1. The corresponding primary fields are the identityVe find that prominent backscattering off the impurity sup-
1, the fundamental fieldj, and the triplet operatofa 3x 3 ports a Kondo effect for ferromagnetic as well as antiferro-
matrix) ®=3,; ;@ ;®g;. They have the scaling dimensions, magnetic Kondo exchangé$The Kondo temperature yields.
Ag=1j(j+1). Similarly, there are three primary fields in the the sar;w/(el_e(c;wer-law dependence on tgf exchange coupling
Ising sector given bys= 1,0, € with scaling dimensiond,  Tk*As as for the single LL casf_é. ' To summarize,
given by 01,1, respectively. whenK+#1 the flow of A\g# 0 goes to infinity whereas the

: . . forward Kon ring exchan I he precise in-
In respect to the noninteracting cdde- 0, the absorption orward Kondo scattering exchange scales to the precise

. . . o termediate value given by E), with k=2.
of the |mpulz|ty_ must give for forward_ sc_atterlng],_(ﬁ)_ When T<Ty, we have the formation of a bound state
=(0 or 11).”" Simply, through the examination of spin sin-

. . (with spin S=0) between any electron near the Fermi level
ElcetBSOf'romSU(Z)Z’LXSU(Z)ZR, one obtains the following 5 the impurity spin. However, a nonmagnetic extra degree

of freedom remains at the impurity site becadgeis not too

_ -1 -1 strong(let us remind that only the forward Kondo exchange
SH=y1{J " P (0) +Jr " Pr(0)}. @9 Can rgally absorb or screen %e impurity gpiRrecisely, forg
By construction®, and®g have the halved dimension 1/2. k=2, the groundstate degeneracy is exagtly/2,** and it
Thus, we can easily check thaH produces a two-channel- can be interpreted as a residual Majorana fermion at the
like Kondo fixed point with transport properties given in Eq. origin 2
(22). We like to point out the following remark. Although On the other hand, the fact thag— 4+ can be inter-
andJg are coupled through the impurity screening, the sym-preted as follows. In the infra-red region, the cosine terms of
metry SU(2),, X SU(2),x of the total Hamiltonian cannot Eq. (27) become pinned at the origin afdosy2m ¢;(0))
be broken at the fixed point because a descendantjge]ld = constant or¢g(0)= /2. Simply, it means that the
with p=L,R acts only on a primary field from thg sector. ~ charge quasiparticle§olong move completely away from
The same fixed point has been found for the overscreeneithe origin[despite the relatively weak value of the forward
Kondo effect in a two-band Hubbard chdfimeaning that Kondo exchange at the fixed pojntlue to the concrete spin-

(28)

TVE
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TABLE I. Different fixed points and physical behaviors reported in this paper, for the Kondo effect in
crossed Luttinger liquids. Notations are explained in the text *ansl from Ref. 14.

Impurity Susceptibility Specific heat Conductance/Resistivity Fixed point
Ae#0 andAg=0 TR T3 poc TH3* 4-channel-like
Ne=\g#0 1- const+T/K TAK -1 Goc T ~1 Furusaki-Nagaosa

2- InT TInT pocJT* 2-channel-like, Or
If S,\p#0 const* T pocT2* 1-channel-like

charge separation occurring in a 1D metallic wirefor1:  tations for non-interacting electrons, which are partially
only spin degrees of freedom couple to the impurity in thetransmitted through a nonmagnetic barrier. o1, we
infrared region. Finally, since a bound state between an elembtain

tron of the Fermi sea and the impurity spin acts as a strong

nonmagnetic barrier at=0 and since\g— + %, exotic tun- loc| V[, (33
neling phenomena can take placg. In the |nfrared.l|m|t, "W€nd then the linear conductance is strictly zero. This is a
must decompose the backscattering tergn(written via g simple reflection of the suppressed density of states in a LL
and g,) in the (Ising)® g basis (which has been used to P PP y ‘

absorb the impurity spin After some complicated algebra,

the result i&2 V. CONCLUSIONS AND DISCUSSIONS ON
RELEVANT PERTURBATIONS
Tr(g10) +Tr(go0) = 2Tr(go) - 0. (29 Summarizing, we have studied the low-temperature prop-

The lowest dimension operator withQ; 0 allowed by the erties of a spin-1/2 magnetic impurity coupled to two crossed
forward selection rule is obtained fron®(,AQ, ,j,$)=(0 conducting channels, each described by a Luttinger model.
+2.01), has the scaling dimension K2and can be written Using boundary conformal field theory, we have reached the

] _— . . important conclusion that the problem still admits two pos-
as. co 2m¢i(0). Then, pOSS|bIe_ couplings SU.(Z)Z and_ sible fixed points: either the theory remains a marginal non-
Ising towers to thedJ(1) towers yield the following candi-

Fermi liquid with logarithmic corrections in the presence of

date LCBO: electron-electron interactions, or electron correlations drive
the system to another non-Fermi liquid fixed point obtained
SH=7v,Tr(go) o 2 cos~/27r?iaci(0), (30) originally by Furusaki and Nagaosa for the Kondo effect in a

i=1,2 LL.

However, as in the case without e-e interactibthe pre-
vious marginal non-Fermi liquid is unstable in presence of a
small channel anisotropys=(\f—\Z). Adding the corre-
gponding term

and y,x1/Ag. Such term describes a collective tunneling
process of two electron®ne in each LI, which breaks the
spin singlet at the impurity site.

Since there is no Hubbard coupling between channels
and 2, a tunneling phenomenon including a renormalized
(channel-dependentL charge parameter cannot occur. This

is the main difference with the Kondo effect in a two-bandtg the Hamiltonian destabilizes the symmetric forward scat-
Hubbard chairt’ Here, physical properties exhibit an exact tering fixed point. As in the Kondo effect in a LIRef. 7) or
duality between high- and low-temperature fixed points, rethe famous two-impurity model in a three dimensional
placingK — 1/K.” We can check that such an operator with Fermi-liquid environment! the LCBOJ‘ld)p (p=L,R) is
scaling dimensiomd=3(1/K+1) [which goes to 1 a&)  gycjyded by parity conservation. We have used the notations:
goes to zerpshows the same anomalous scaling in temperag €_er. Here,e, enters as an allowed boundary operator of
ture as the one predicted by Furusaki and Nagaosa for thfcaling dimensigm,=1, producing a one-channéFermi-

Kondo effect in a LL? Thus, the impurity specific heat and liquid-like) fixed point, ruled by the new selection ru

the conductance also exhibit the same anomalous tempera; , ., There are now three irrelevant leading operators of
ture dependence with a leading tefat T—0)

dimension 2, namelyiJ', J5J%, JLIL’. To conclude, either

Fermi-liquid-like[with anSU(2),—, spin symmetryor non-

Fermi liquid a la Furusaki-Nagaosa could be still realized

which vanishes wheik —1 °>78.e., for the noninteracting experimentally in multichannel 1D quantum wires or carbon

case. The current-voltage curve associated with this tunneRanotubes satisfying the geometry presented here.

ing process obeys Note also that the suppression of backscattering off the
impurity produces a low-energy physics identical to that of

dl the four-channel Kondo model.
G(V)= d—VOC|V|(1/K)_1, (32 Finally, \,,=\r=\g#0 seems also to be a relevdhtit

not very realisti¢ perturbation. Indeed, passing to an odd-

[thermal energy has been replaced by electric efefilen  even parity basis,&,b) = 1/y2(,* ,) [whenU—0] the

K=1 alinear I-V curve is predicted, consistent with expec-impurity couples only to the fermionic channl This also

Ha=8(IL— 32+ 35— 32)S=6(e, @+ eg®R)S, (39

Gimp(T) s TWO™L, Cip o(T) e THOT, (31
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leads to a Fermi-liquid-like fixed point or to the Furusaki-

Nagaosa non-Fermi-liquid one.

A summary of various physical behaviors is given in

Table I.
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