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Relativistic calculations to assess the ability of the generalized gradient approximation
to reproduce trends in cohesive properties of solids

P. H. T. Philipsen and E. J. Baerends
Theoretical Chemistry Department, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

~Received 21 May 1999!

We have performed density functional calculations on solids in four columns of the periodic table, contain-
ing the elements Ca, Sr, Ba, As, Sb, Bi, Cu, Ag, Au, Ce, and Th. In order to get a meaningful estimation of the
quality of the generalized gradient approximation~GGA! to predict trends within a column, as few other
approximations were made as possible. Most notably, the spin-orbit effect has not been neglected. In many
cases there appears to be a tendency towards underbinding on going down in a column. This is most pro-
nounced in the noble metal column Cu, Ag, Au. The overall performance of the GGA is still reasonable. The
mean absolute errors of the calculated cohesive energy, lattice parameter, and bulk modulus are 0.35 eV, 0.10
bohr, and 0.15 Mbar, respectively. Nonnegligible contributions of the spin-orbit coupling are found for the
cohesive energy and the lattice parameter of Au and in particular Bi.
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I. INTRODUCTION

The local density approximation~LDA ! in density func-
tional theory ~DFT! has been widely adopted by the sol
state physics community.1–7 This may be explained on th
one hand by its relative simplicity and on the other hand
the physicist’s familiarity with the electron gas model. T
nature of chemistry, however, makes chemists much m
demanding in a quantitative sense, and only after the in
duction of the generalized gradient approximation~GGA!,
have they recognized the useful combination of relative s
plicity and predictive power of DFT.

The effect of gradient corrections in the solid has attrac
considerable attention over the last decade. It is now w
established that, similar to the situation in the molecule, fi
the lattice is softened: the cohesive energy is reduced,
lattice parameter enlarged and the bulk modulus decrea
and, second, the tendency towards magnetism8 is increased.
The LDA usually overbinding, the softening of the lattice
in the right direction, and the success of a gradient correc
depends on the amount of change induced. One of the
neering investigations on the effect of gradient correction
the solid state by Bagnoet al.9 has shown that the straigh
forward gradient expansion approximation corrects the L
much too drastically but that the GGA can certainly comp
with the LDA. The GGA outperforms the LDA when i
comes to the cohesive energies of Al, C, and Si,10 and, unlike
the LDA, predicts correctly the ferromagnetic bcc grou
state for iron.9 The work of Körling and Häglund11 on the
lattice parameter of transition metals, shows a dramatic
provement for the 3d metals, but unfortunately the size o
the unit cell is overestimated for the 4d and in particular the
5d metals. Earlier Barbielliniet al.12 arrived at the same
conclusion, based on less systematic work. The improvem
of the lattice parameter appears to be reflected in the ca
lated cohesive energies of the 3d metals,13 as the average
error of the LDA of 1.3 eV is reduced to 0.3 eV by the GG
The structural properties of thesp-bonded solids Al, Si, Ge
are reasonably described by the GGA,14–16but the quality of
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the GGA is not much better than the LDA. Although th
cohesive properties17,18 of the lanthanides are in general im
proved by the GGA, it has been claimed that the GGA fa
to explain the peculiar transition in Ce from theg to thea
phase that both have the fcc structure. According
some19–21 the transition requires a double minimum in th
binding curve, reproduced by neither LDA nor GGA, and t
second minimum would be caused by the localization of
f electron that could only be described by self-interact
corrected functionals. This supposedly clear-cut evidence
the failure of the GGA surpasses the fact that only the f
energy has to exhibit a double minimum and it has be
pointed out22 that the entropy term stabilizes the Ce latti
most pronounced at larger volumes.

It is fair to conclude that although the GGA is certain
not a uniform improvement over the LDA, it is better o
average. At this point in time there does not appear to b
feasible better approximation at our disposal to calcul
bulk properties than the GGA. The aforementioned work
Körling and Häglund, however, indicates a systematic te
dency of this approximation to increased underbinding go
down in a column of transition metals. They have done c
culations only at the pseudopotential level, and have the
fore only indirectly included relativity. Relativity gaining
importance with nuclear charge one might speculate on
impact of this approximation on their results. The question
such systematic errors occur in columns of the Perio
Table makes a proper treatment of relativistic kinemat
mandatory. Semirelativistic and scalar-relativistic calcu
tions on bulk systems are common,23–26but fully relativistic
calculations are not, particularly in combination with th
GGA. Fully relativistic LDA calculations on the lattice con
stant and bulk modulus have been carried out for Pd, Ir,
and Au,27 but they were not compared to scalar-relativis
calculations. The spin-orbit effect on the bulk energy h
been reported for U and Pu,28 but without the important
atomic corrections. Electron localization has be
addressed29 for the actinides by fully relativistic LDA calcu-
lations but from the properties under consideration only
1773 ©2000 The American Physical Society
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TABLE I. The basis is a mixture of numerical atomic orbitals and Slater type orbitals. The numerical atomic orbitals as well as th
core orbitals depend on the electronic configuration used in the numerical spherical atomic program. The configuration is specifi
second column. The third column lists the basis functions, a numerical atomic orbital indicated as NAO and a Slater orbital by its e
Orbitals not indicated were kept frozen.

Element Configuration Basis

Ca @Ar#4s2 3s~NAO,2.40!, 4s~NAO,0.70,1.65!, 3p~NAO,1.85!, 4p~1.06!, 3d~NAO,1.00!, 4f ~1.25!
Sr @Kr#5s2 4s~NAO,2.75!, 5s~NAO,0.75,1.85!, 4p~NAO,1.75!, 5p~1.17!, 4d~NAO,1.25!, 4f ~1.25!
Ba @Xe#6s2 5s~NAO,2.70!, 6s~NAO,0.65,1.80!, 5p~NAO,1.55!, 6p~1.22!, 5d~NAO,1.25!, 4f ~1.10!
As @Zn#4p3 4s~NAO,1.50.3.30!, 4p~NAO,1.00,2.85!, 4d~1.60!, 4f ~1.60!
Sb @Cd#5p3 5s~NAO,1.50.3.40!, 5p~NAO,1.00,2.65!, 5d~1.70!, 4f ~1.50!
Bi @Hg#6p3 6s~NAO,1.55.3.55!, 6p~NAO,1.10,2.95!, 6d~1.75!, 5f ~2.50!
Cu @Ar#3d104s1 4s~NAO,0.85,2.45!, 4p~1.00,2.00!, 3d~NAO,1.28,6.90!, 4f ~1.50!
Ag @Kr#4d105s1 5s~NAO,0.90,2.55!, 5p~1.00,2.00!, 4d~NAO,1.45,4.90!, 4f ~2.00!
Au @Xe#4 f 145d106s1 6s~NAO,0.95,2.75!, 6p~1.25,2.50!, 5d~NAO,1.55,5.05!, 5f ~2.00!
Ce @Xe#4 f 15d16s2 5s~NAO,3.15!, 6s~NAO,0.95,1.65!, 5p~NAO,2.25!, 6p~0.95,1.65!, 5d~NAO,0.95,2.90!,

4 f ~NAO,1.95!, 5f ~1.00!
Th @Rn#5 f 06d27s2 6s~NAO,3.15!, 7s~NAO,1.10,1.90!, 6p~NAO,2.45!, 7p~1.00,2.00!, 6d~NAO,1.05,3.05!,

5 f ~NAO,1.90,5.70!, 6f ~1.35!
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bulk modulus was calculated, and was not compared to
theory.

We present fully relativistically calculated cohesive en
gies, lattice parameters, and bulk moduli of a variety of s
tems, ranging from the divalent metals Ca, Sr, and Ba via
pentavalent semimetals As, Sb, and Bi, through the no
metals Cu, Ag, and Au to the rare earth metals Ce and
The elements of these four groups lie in thes, p, d, and f
blocks of the periodic table respectively, and the experim
tal crystal type is constant within these groups, the only
ception being Ba, that has a bcc lattice whereas the o
members of the group are of the fcc type. Our aim is
assess the quality of the Dirac-Slater approximation, with
exchange-correlation expression taken from the nonrelat
tic GGA. In addition we present the results of scala
relativistic and nonrelativistic calculations on the same s
tems thus revealing the scalar-relativistic and the spin-o
effects, and whether or not they could, in retrospect, h
been neglected.

II. DETAILS

The relativistic calculations were performed in the zero
order regular approximation~ZORA!.30 Details of the imple-
mentation of this method in our bandstructure code31 can be
found in an earlier work.32 In this context it suffices to say
that it is an accurate approximation to the Dirac equati
We have employed the parametrization of Vosko and
workers of the LDA correlation energy.33 The GGA employs
Becke’s correction for the exchange energy34 and Perdew’s
correction for the correlation energy.35 In the bulk calcula-
tions the GGA energy was evaluated at the LDA dens
rather than the GGA density, which has been shown to be
excellent approximation.36 We have neglected relativisti
corrections to the XC functional, which is reasonable b
cause it has been shown37 that this affects bonding energie
by 0.05 eV and bond lengths by 0.01 bohr. The calculat
of the atomic corrections was done by minimizing the ene
according to Ref. 38. The procedure is started by converg
a certain configuration. If the self-consistent solution has
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completely filled levels below the Fermi level, charge
transferred from the Fermi level to these states, and the
responding configuration is again converged. This cycle
repeated until Aufbau is reached with possibly fractional o
cupations at the Fermi level. We have done this proced
without symmetry constraints on the density. In open sh
systems both the spin-polarization and the spin-orbit effe
can be important. The inclusion of spin-polarization in sp
orbit calculations can be done39 by using the relative size o
the magnetization vector as the spin-polarization

z5umW u/r, ~1!

with the magnetization vector

mW 5Tr sW r, ~2!

where r is the 232 spin density matrix. This model ha
been used in the study of noncollinear magnetism.40,41 We
have used thez component of the magnetization vector onl
leading to

z5raa2rbb . ~3!

To obtain the equation of state for the three elements wit
hexagonal close-packed lattice~As, Sb, Bi! we have kept the
so-calledc/a-ratio at the experimental value, rather than o
timizing this ratio at each sampled lattice constant.

We now discuss more technical details. The integrat
over reciprocal space was done with the analytical quadr
method.42 The number of symmetry uniquek points in the
irreducible wedge of the Brillouin zone for the face-center
cubic, body-centered cubic, and rhombohedral crystals w
175, 84, and 316, respectively. A numerical Gaussian in
gration scheme43 was employed to evaluate matrix elemen
of the Hamiltonian, and the points were chosen such that
error of typical integrals was less than 1025. The basis sets
constructed from linear combination of atomic orbitals, a
shown in Table I. The atomic orbitals can be either nume
cal atomic orbitals~NAO’s! or Slater-type orbitals~STO’s!.
As can be seen from the table a valence orbital of an atom
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described by the corresponding NAO, that gives a pro
description of the valence function in the core region, a
for additional freedom, two STO’s with exponents such th
one of them is more contracted than the NAO and the o
is more diffuse. We have added polarization orbitals w
angular momenta up tol 53. In cases where the numeric
atom had a virtual orbital energetically close to the high
occupied orbital we have added this unoccupied NAO to
basis set, as for instance, the 3d orbital of Ca and the 5f of
Th. In general the frozen core was kept very small to rule
any significant effect of this approximation. Only in the s
ries As, Sb, Bi the core was chosen slightly larger, but s
reasonably small, because these solids have the rhomb
dral lattice structure that has two atoms per unit cell and
more expensive to calculate. The binding curve in the vic
ity of the minimum was obtained as the interpolating p
rabola in three equidistant points bracketing the minimu
with a spacing of 0.2 bohr. For the rhombohedral crystals
anglea was kept fixed at the experimental values as ta
lated in Ref. 44. The density was expanded in an auxili
basis set in order to evaluate the Coulomb potential and
gradient of the density. We have ensured enough flexib
in both the radial and angular degrees of freedom, such
the least-squares error norm of the fitted density was w
below 0.01 electrons. For Ce and Th it was important
includeh and i functions.

Table II provides information on the accuracy of our c
culational procedure for which we have performed additio
test calculations at the scalar-relativistic level on a subse
the systems considered in this article. The test set inclu
Sr, Sb, Ag, Ce, thus covering the four columns with o
representative element, and was completed with Ba bec
it is the only studied element with a bcc lattice. For these fi
elements we have examined the influence of the four m
important calculational approximations being thek-space
sampling, the finite basis set, the binding curve descript
and the numerical integration. To check the appropriaten
of the employedk-space sampling we have repeated the c
culations with a better sampling such that for all lattice typ
— fcc, bcc, and hcp — the number of sampling points w
more than doubled. The quality of the basis sets was e
mated by comparing the results to the outcomes with lar
basis sets. The larger basis sets were constructed from
original basis sets by adding one STO to the atomic s
descriptions of the valence and polarization levels, keep
the core orbitals and the NAOs fixed. In atomic shell desc
tions comprising one STO this orbital was replaced by t

TABLE II. Maximum absolute error, due to several approxim
tions, in E ~eV!, a ~bohr!, andB ~Mbar! for scalar-relativistic cal-
culations on the test set Sr, Ba, Sb, Ag, and Ce. Details on the
calculations are given in the text. The last row gives an estima
of the overall accuracy, assuming independent errors.

Approximation DE Da DB

k-space sampling 0.02 0.04 0.03
Finite basis set 0.02 0.02 0.07
Binding curve description 0.00 0.00 0.01
Numerical integration 0.00 0.01 0.01
Overall accuracy 0.03 0.05 0.08
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orbitals of this type, one 10% more contracted and the ot
10% more diffuse than the original STO. In case of tw
STOs these two orbitals were replaced by one STO that
10% more contracted than the most contracted original S
a second STO 10% more diffuse than the most diffuse or
nal STO and a third STO with its expectation value of t
radius in between. Counting the NAOs, valence electr
were thus described at a ‘‘quadruple-z ’’ level. The correct-
ness of our procedure to obtain the binding curve near
minimum as the interpolating parabola in three calcula
points spaced 0.2 bohr, was checked with an alterna
method to fit the parabola to five equidistant points spa
0.1 bohr. Finally the numerical integration mesh was sub
tuted by one with typically 60% more points, integratin
characteristic integrals one order of magnitude better. Fr
the table we see that two largest approximations are
k-space sampling and the basis set. If we assume that
approximations are uncorrelated, the energy has an accu
of about 0.03 eV, the lattice constant has an uncertainty
;0.05 bohr and the bulk modulus is reliable up
;0.08 Mbar.

III. RESULTS

The calculated cohesive energies, lattice parameters,
bulk moduli are shown in Table III, Table IV, and Table V
respectively. In these three tables nonrelativistic, sca
relativistic, and fully relativistic numbers are shown. We w
first look at the FR outcomes to judge the quality of t
GGA, then discuss the roles played by the scalar-relativi
and spin-orbit effects, subsequently take a closer look at
atomic corrections, and finally summarize the main conc
sions.

A. Performance of the GGA

The fully relativistic cohesive energies from Table I
match in most cases reasonably with experiment. The 0
eV mean absolute error of the GGA is only slightly wor
than the 0.3 eV error for the 3d transition metals.13 In all
cases the cohesive energy is underestimated. The erro

st
n

TABLE III. Cohesive energies according to the three theoreti
models, with the atomic corrections as specified in Table VI. T
last line contains the mean absolute error~MAE!.

Element NR SR FR Expt.

Ca 1.71 1.67 1.67 1.84
Sr 1.52 1.37 1.37 1.72
Ba 2.07 1.65 1.66 1.90
As 2.66 2.65 2.63 2.96
Sb 2.52 2.47 2.42 2.75
Bi 2.35 2.32 1.81 2.18
Cu 3.12 3.30 3.30 3.49
Ag 2.12 2.36 2.37 2.95
Au 2.11 2.84 2.99 3.81
Ce 3.22 4.21 4.16 4.32
Th 5.09 6.05 5.93 6.20

MAE 0.57 0.32 0.35
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the ‘‘s column’’ Ca, Sr, Ba are20.17, 20.35, and
20.24, thus not perfectly reproducing the trend in the
perimental numbers. The LDA error for Ca is 0.4 eV45

larger than the GGA error for this element. In the ‘‘p col-
umn’’ with the elements As, Sb, and Bi the errors are m
constant:20.33, 20.33, and20.37, and the experimenta
trend is well preserved. The results are the worst for
noble metals. In the ‘‘d column’’ Cu, Ag, Au the errors are
20.19, 20.58, and20.82. The 0.8 eV underestimation fo
Au leads to the largest error in the total set, and the ca
lated E0 of Au is 0.3 eV smaller than theE0 of Cu, at
variance with the empirical fact that it should be 0.3 e
larger. It is known25 that the LDA predicts the cohesive en
ergy of Au accurately, but the LDA probably spoils the tre
even more because according to the semirelativistic calc
tions of Ref. 25 the LDAE0 of Au is 0.9 eV less than the
one for Cu. In the series of the dimers of the three no
metals the calculated30 FR atomization energies are in muc
better accord with experiment. Nevertheless in the err
0.14, 0.05,20.05, the same propensity towards underbin

TABLE V. The bulk modulus~Mbar! as calculated with the
three theoretical models. The last line contains the mean abs
error.

Element NR SR FR Expt.

Ca 0.17 0.17 0.17 0.15
Sr 0.12 0.11 0.11 0.12
Ba 0.09 0.08 0.08 0.10
As 0.76 0.76 0.76 0.39
Sb 0.50 0.50 0.55 0.38
Bi 0.38 0.45 0.44 0.32
Cu 1.37 1.26 1.26 1.37
Ag 0.62 0.80 0.80 1.01
Au 0.71 1.32 1.30 1.73
Ce 0.59 0.33 0.32 0.35a

Th 1.07 0.67 0.66 0.54

MAE 0.25 0.14 0.15

aReference 47.

TABLE IV. The lattice constant~bohr! as calculated with the
three theoretical models. The last line contains the mean abs
error.

Element NR SR FR Expt.

Ca 10.39 10.39 10.39 10.54
Sr 11.33 11.30 11.30 11.49
Ba 9.36 9.44 9.44 9.49
As 7.72 7.72 7.72 7.80
Sb 8.57 8.56 8.56 8.52
Bi 9.13 9.02 9.12 8.98
Cu 6.95 6.88 6.88 6.82
Ag 8.07 7.88 7.88 7.73
Au 8.41 7.91 7.88 7.71
Ce 8.52 9.00 9.02 9.03
Th 8.70 9.58 9.59 9.60

MAE 0.30 0.09 0.10
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ing on going down in a column is visible, albeit muc
smaller. The GGA performs remarkably well for the ‘‘f col-
umn’’ Ce and Th, the errors20.16, and20.27 being small
compared to the large formation energies of these eleme
In all four columns the underbinding of the heaviest elem
is larger than the underbinding of the lightest element.

The mean absolute error of the GGA for the lattice p
rameter, see Table IV, is 0.1 bohr. The lattice parameter
the series Ca, Sr, Ba are all underestimated, the errors b
20.15, 20.19, 20.05. In the series As, Sb, Bi the calcu
lated lattice parameter changes gradually from too smal
too large as can be seen from the errors20.08, 0.04, 0.14.
For the noble metals the lattice constant of Cu is alrea
overestimated by 0.06 bohr and the overestimation increa
via 0.15 bohr for Ag to 0.17 bohr for Au. Again the error fo
Au is the largest in the total set. The LDA underestimates
lattice constant of Au by 0.06 bohr.27 In the corresponding
dimer series as calculated in Ref. 30 the interatomic dista
has the errors20.02, 0.06, 0.08, exhibiting a similar trend a
in the bulk. The lattice parameters of Ce and Th are predic
within the accuracy of the calculations. In two of the fo
columns there is a growing tendency to overestimate the
tice constant. In the column with Ca this is true if the fir
and the last row are compared.

From Table V we see that the mean absolute error of
bulk modulus is 0.15 Mbar. In the Ca column the errors
within the accuracy of the calculation. The situation is ma
edly different in the As-headed column, the errors in the b
modulus being 0.36, 0.11, and 0.06, the elasticity of the s
ids changing gradually from much too small to more elas
values. In the Cu, Ag, Au series the errors are20.11,
20.21, 20.44: the bulk modulus is already too small for C
and the underestimation grows gradually in this column.
the corresponding dimer series the calculated vibrational
ergy also shows a growing underestimation given the er
7, 29, 217 cm21. The errors of Ce and Th are20.03 and
0.12 and in this case the trend is reversed.

B. Relativistic effects

Now we proceed with a discussion of the role played
relativity in our calculations. In thes-column Ca, Sr, Ba, the
scalar-relativistic effects on the~positive! cohesive energy
are 20.04, 20.15, and20.41 eV. The scalar-relativistic
effect reduces the cohesive energy increasingly in this
umn. The lattice parameter is unaltered by this effect exc
for the 0.14 bohr expansion of the Ba lattice, and the b
modulus is unaltered for all three elements. No signific
changes are induced by the spin-orbit coupling in this c
umn. In thep column As, Sb, Bi, the cohesive energy
remarkably insensitive to the scalar-relativistic effect. T
lattice parameter is reduced 0.16 bohr for Bi. The spin-o
effect reduces the Sb cohesive energy 0.09 eV and ha
effect on the lattice parameter of this material. The calcula
properties of the element Bi exhibit the most spectacu
contributions of the spin-orbit coupling. The cohesive ene
is reduced 0.56 eV. Note that our conclusion that the trend
the cohesive energy in thep column is well predicted by the
GGA depends critically on this large correction. The latti
parameter is expanded 0.1 bohr by this effect. The b
modulus is not changed significantly in this column by t

te
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two relativistic effects. A similar weakening of the bond
also seen in the Bi dimer because the spin-orbit coup
decreases the formation energy 0.76 eV and increases
bond length 0.06 bohr in this molecule.46 The scalar-
relativistic effect cannot be neglected throughout thed col-
umn Cu, Ag, Au. The cohesive energy of Cu is already
creased by 0.19 eV. For Ag and Au the numbers are 0.23
0.73, respectively. The effects on the lattice parameter in
column are20.06, 20.18, and20.52. Also for the bulk
modulus the scalar-relativistic effects20.11, 0.18, and 0.62
are non-negligible. The spin-orbit coupling only affects t
properties of Au, reducing the cohesive energy by 0.16
and contracting the lattice by 0.03 bohr. The spin-orbit eff
in the bulk is different from the effect in the Au dimer,46

because in the dimer the formation energy is unchanged
the spin-orbit coupling. The bond length of the dimer, ho
ever, is contracted similarly 0.01 bohr. The most drama
scalar-relativistic effects are seen in thef column. The cohe-
sive energy is increased roughly by one eV for both e
ments. The Ce lattice is expanded by 0.53 bohr and the
lattice by 0.85 bohr. The excellent performance of the GG
for these elements would not have been apparent negle
the relativistic effect. The spin-orbit coupling reduces t
cohesive energy of Ce 0.05 eV, and for Th the reduction
0.11 eV. The lattice parameter is essentially unaffected.

C. Atomic corrections

The atomic corrections, presented in Table VI, play a s
nificant role in the determination of the cohesive energy.
explained before they result from an optimization of the o
cupation numbers without symmetry constraints on the d
sity. In the FR case, only for Ce we have found the fin
solution to have two fractionally occupied orbitals~spinors!
at the Fermi level, each occupied with half an electron,
other FR atoms have integral occupation numbers.
atomic correction for the noble metals is due to the sp
polarization of thes electron. For As, Sb, and Bi the valenc
p occupation is three. In this series we see the competitio
the spin-polarization against the spin-orbit effect at wo
Nonrelativistically these atoms have three spin-parallel

TABLE VI. The nonzero atomic corrections~eV! in the three
theoretical models. The ground state energy of an atom is the
ergy of the spherical spin restricted atom in the configuration
specified in Table I minus the atomic correction.

Element NR SR FR

As 1.66 1.66 1.68
Sb 1.39 1.40 1.49
Bi 1.29 1.32 2.20
Cu 0.26 0.26 0.26
Ag 0.22 0.22 0.22
Au 0.20 0.20 0.20
Ce 3.69 1.40 1.50
Th 7.43 0.78 1.01
g
the

-
nd
is

V
t

by
-
c

-
h

ng

is

-
s
-
n-
l

ll
e
-

of
.
-

lence p electrons. Transforming the basis of spin orbita
(pxa, pxb, etc.! to a basis ofp1/2 andp3/2 spinors, this can
be shown to correspond to ap1/2 population of 1 and~of
course! a polarization charge of 3. In the FR As atom thep1/2
occupation is 1.12 and the polarization charge is 2.98. T
p1/2 population increases to 1.34 for Sb, whereas the po
ization charge decreases to 2.90 for this element. In Bi
numbers deviate further from the nonrelativistic values as
p1/2 occupation becomes 1.84 and the polarization cha
reduces to only 1.99.

The rare earths Ce and Th have complicated gro
states. Due to the near degeneracy of the valences, d, andf
orbitals, a mixing of these orbitals takes place as can be s
from the 6s1.855d0.654 f 1.5 and 7s1.916d1.825 f 0.26 configura-
tions that we have found for Ce and Th.

In the NR and SR models the ground states are simple
for Ce and Th. The SR configurations for Ce and
(6s1.925d0.514 f 1.56 and 7s1.906d1.705 f 0.41) are similar to the
FR case, but nonrelativistically thef orbital is much more
favored as is visible in the 6s1.745d0.264 f 2 and
7s1.636d0.075 f 2.3 configurations that we have found. The d
stabilization of the contractedf orbital is the main relativistic
effect which explains the huge expansion of the lattice t
the SR effect brings about for these elements.

D. Conclusions

In conclusion, from all three calculated properties the p
ture emerges that the GGA tends to underbind the crysta
going down in a column: cohesive energies are increasin
underestimated, lattice parameters overestimated, and
moduli underestimated. This effect is worst for the nob
metals Cu, Ag, Au, and this particular failure of the GG
demands the development of an improved functional. A
smaller yet qualitatively similar effect is visible in the corr
sponding dimer series, the testing of an alternative functio
might well be done initially on these, readily calculate
dimers. As opposed to the noble metals, the rare-earths
and Th are remarkably well described by the GGA. Sca
relativistic effects are largest in the Ce, Th column, and
effect can be understood by the atomic-configuration cha
due to the destabilization of the valencef orbital. Another
noticeable SR effect is seen for Au. As expected, the sp
orbit effect is largest for the element at the bottom of thep
column, Bi, affecting particularly the cohesive energy by
reduction of 0.6 eV, and expanding the lattice by 0.1 bo
Also the cohesive properties of Au are somewhat sensitiv
the spin-orbit effect, but the effect can be safely neglec
for the other materials.
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37M. Mayer, O. D. Häberlen, and N. Ro¨sch, Phys. Rev. A54, 4775

~1996!.
38F. W. Averill and G. S. Painter, Phys. Rev. B46, 2498~1992!.
39O. Gunnarsson and B. I. Lundqvist, Phys. Rev. B13, 4274

~1976!.
40L. Nordström and D. J. Singh, Phys. Rev. Lett.76, 4420~1996!.
41J. Sticht, K. H. Ho¨ck, and J. Ku¨bler, J. Phys.: Condens. Matter1,

8155 ~1989!.
42G. Wiesenekker and E. J. Baerends, J. Phys.: Condens. Matt3,

6721 ~1991!.
43G. te Velde and E. J. Baerends, J. Comput. Phys.99, 84 ~1992!.
44N. W. Ashcroft and N. D. Mermin,Solids State Physics~Saun-

ders College Publishing, Philadelphia, 1976!.
45N. A. W. Holzwarthet al., Phys. Rev. B55, 2005~1997!.
46E. van Lenthe, J. G. Snijders, and E. J. Baerends, J. Chem. P

105, 6505~1996!.
47S. Olsen, L. Gerward, J. P. Dancausse, and E. Gering, Physi

190, 92 ~1993!.


