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Density-matrix functional theory of the Hubbard model: An exact numerical study
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A density-functional theory for many-body lattice models is considered in which the single-particle density
matrix g i j is the basic variable. Eigenvalue equations are derived for solving Levy’s constrained search of the
interaction energy functionalW@g i j #. W@g i j # is expressed as the sum of Hartree-Fock energyEHF@g i j # and the
correlation energyEC@g i j #. Exact results are obtained forEC(g12) of the Hubbard model on various periodic
lattices, whereg i j 5g12 for all nearest neighborsi andj. The functional dependence ofEC(g12) is analyzed by
varying the number of sitesNa , band fillingNe , and lattice structure. The infinite one-dimensional chain and
one-, two-, or three-dimensional finite clusters with periodic boundary conditions are considered. The proper-
ties of EC(g12) are discussed in the limits of weak (g12.g12

0 ) and strong (g12.g12
` ) electronic correlations,

and in the crossover region (g12
` <g12<g12

0 ). Using an appropriate scaling we observe that«C(g12)
5EC /EHF has a pseudo-universal behavior as a function ofg125(g122g12

` )/(g12
0 2g12

` ). The fact that«C(g12)
depends weakly onNa , Ne , and lattice structure suggests that the correlation energy of extended systems
could be obtained quite accurately from finite-cluster calculations. Finally, the behaviors ofEC(g12) for
repulsive (U.0) and attractive (U,0) interactions are contrasted.
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I. INTRODUCTION

Density-functional theory~DFT! has been the subject o
remarkable developments since its original formulation
Hohenberg and Kohn.1,2 After formal improvements, exten
sions, and an uncountable number of applications to a w
variety of physical problems, this theoretical approach
become the most efficient, albeit not infallible, method
determining the electronic properties of matter from fi
principles.3,4 The most important innovation of DFT, whic
is actually at the origin of its breakthrough, is to replace
wave function by the electronic densityr(rW) as the funda-
mental variable of the many-body problem. In practic
density-functional~DF! calculations are largely based on th
Kohn-Sham ~KS! scheme that reduces the many-bo
N-particle problem to the solution of a set of self-consist
single-particle equations.2 Although this transformation is
formally exact, the implementations always require appro
mations, since the KS equations involve functional deri
tives of the unknown interaction energyW@r(rW)#, usually
expressed in terms of the exchange and correlation~XC! en-
ergyEXC@r(rW)#. Therefore, understanding the functional d
pendence ofEXC@r(rW)# and improving its approximation
are central to the development of DF methods. The curre
most widespreadAnsätze for EXC@r(rW)#—the local-density
approximation2 with spin-polarized5 and gradient-corrected
extensions6—were originally derived from exact results fo
the homogeneous electron gas. It is one of the purpose
this paper to investigate the properties of the interacti
energy functional from an intrinsically inhomogeneous po
PRB 610163-1829/2000/61~3!/1764~9!/$15.00
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of view, namely, by considering exactly solvable many-bo
lattice models.

Despite the remarkable success of the local-spin-den
approximation, present DFT fails systematically in accou
ing for phenomena where strong electron correlations pla
central role, for example, in heavy-fermion materials
high-Tc superconductors. These systems are usually
scribed by simplifying the low-energy electron dynamics u
ing parametrized lattice models such as Pariser-Parr-Po7

Hubbard,8 or Anderson9 models and related Hamiltonians.10

Being in principle an exact theory, the limitations of the D
approach have to be ascribed to the approximations used
exchange and correlation and not to the underly
Hohenberg-Kohn-Sham~HKS! formalism. It would be there-
fore very interesting to extend the range of applicability
DFT to strongly correlated systems and to characterize
propertiesEXC in the limit of strong correlations. Studies o
the XC functional on simple models should provide use
insights for future extensions to realistic Hamiltonian
Moreover, taking into account the demonstrated power of
DF approach inab initio calculations, one may also expe
that a DFT with an appropriateEXC could become an effi-
cient tool for studying many-body models, a subject of th
oretical interest on its own.

Several properties of DFT on lattice models have be
already studied in previous works.11–13 Gunnarsson and
Schönhammer were, to our knowledge, the first to propos
DF approach on a semiconductor model in order to study
band-gap problem.11 In this case the local site occupanci
were treated as the basic variables. Some years later Sch
mayr and Godby12 provided a different formulation of DFT
1764 ©2000 The American Physical Society
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PRB 61 1765DENSITY-MATRIX FUNCTIONAL THEORY OF THE . . .
on a lattice by considering as basic variables both diago
elementsg i i and off-diagonal elementsg i j of the single-
particle density matrix~see also Refs. 14–16!. Schönhammer
et al. then derived a more general framework that unifies
two previous approaches.13 Using Levy’s constrained searc
method17 they showed that different basic variables and d
ferent W functionals can be considered depending on
type of model or perturbation under study. Site occupati
alone may be used as basic variables, if only the orb
energies are varied~i.e., if all hopping integralst i j are kept
constant foriÞ j ). However, off-diagonal elements of th
single-particle density matrix must be included explicitly
the functionalW is intended to be applied to more gene
situations involving different values oft i j , for example, the
Hubbard model on various lattice structures or for differe
interaction regimes, i.e., differentU/t.

In this paper we investigate the properties of Levy
interaction-energy functionalW as a function ofg i j by solv-
ing the constrained search minimization problem exactly
Sec. II the basic formalism of density-matrix function
theory ~DMFT! on lattice models is recalled and the equ
tions for determiningW@g i j # are derived. Section III pre
sents and discusses exact results for the correlation en
EC of the Hubbard model, which is given by the differen
betweenW and the Hartree-Fock~HF! energyEHF. These
are obtained, either numerically for finite clusters with d
ferent lattice structures, or from the Bethe-Ansatz solut
for the one-dimensional chain. Finally, Sec. IV summariz
our conclusions and points out some relevant extensions

II. THEORY

In Sec. II A the main results of Levy’s formulation o
DMFT are presented in a form that is appropriate for
study of model Hamiltonians such as the Hubbard mod
Here the hopping integralst i j between sites~or orbitals! i
andj play the role given in conventional DFT to the extern
potential Vext(rW). Consequently, the single-particle dens
matrix g i j replaces the densityr(rW) as the basic
variable.12–16 In Sec. II B, we derive equations that allow
determine Levy’s interaction-energy functionalW@g i j # in
terms of the ground-state energy of a many-body Ham
tonian with effective hopping integralsl i j that depend im-
plicitly on g i j .

A. DMFT of lattice models

We consider the many-body Hamiltonian

H5(
i j s

t i j ĉis
† ĉ j s1

1

2 (
i jkl
ss8

Vi jkl ĉis
† ĉks8

† ĉls8ĉ j s , ~2.1!

whereĉis
† ( ĉis) is the usual creation~annihilation! operator

for an electron with spins at site ~or orbital! i. H can be
regarded as the second quantization of Schro¨dinger’s equa-
tion on a basis.18 However, in the present paper, the hoppi
integrals t i j and the interaction matrix elementsVi jkl are
taken as parameters to be varied independently. The m
t i j defines the lattice~e.g., one-dimensional chains, square
triangular two-dimensional lattices! and the range of single
al
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particle interactions~e.g., up to first or second neighbors!.
From theab initio perspectivet i j is given by the externa
potential and by the choice of the basis.18 Vi jkl defines the
type of many-body interactions which may be repulsi
~Coulomb like! or attractive~in order to simulate electronic
pairing! and which are usually approximated as short rang
~e.g., intra-atomic!. Equation~2.1! is mainly used in this sec
tion to derive general results which can then be applied
various specific models by simplifying the interactions.
particularly relevant example, to be considered in some
tail in Sec. III, is the single-band Hubbard model wi
nearest-neighbor~NN! hoppings,8 which can be obtained
from Eq. ~2.1! by setting t i j 52t for i and j NN’s, t i j 50
otherwise, andVi jkl 5Ud i j dkld ik .7,10

In order to apply DMFT to model Hamiltonians of form
~2.1! we follow Levy’s constrained search procedure17 as
proposed by Schindlmayr and Godby.12 The ground-state en
ergy is determined by minimizing the functional

E@g i j #5EK@g i j #1W@g i j # ~2.2!

with respect to the single-particle density matrixg i j . E@g i j #
is physically defined for all density matrices that can be w
ten as

g i j 5(
s

g i j s5(
s

^Cucis
† cj suC& ~2.3!

for all i and j, where uC& is an N-particle state. In other
words,g i j must derive from a physical state. It is then said
be pure-stateN representable.19,20 The first term in Eq.~2.2!
is given by

EK5(
i j

t i j g i j . ~2.4!

It includes all single-particle contributions and is usually r
garded as the kinetic energy associated with the electr
motion in the lattice. Notice that Eq.~2.4! yields the exact
kinetic energy for a giveng i j . There are no corrections o
EK to be included in other parts of the functional as in t
KS approach. The second term in Eq.~2.2! is the interaction-
energy functional given by17

W@g i j #

5minF1

2 (
nmkl
ss8

Vnmkl̂ C@g i j #uĉns
† ĉks8

† ĉls8ĉmsuC@g i j #&G .

~2.5!

The minimization in Eq.~2.5! implies a search over al
N-particles states uC@g i j #& that satisfy

^C@g i j #u(sĉis
† ĉ j suC@g i j #&5g i j for all i and j. Therefore,

W@g i j # represents the minimum value of the interaction e
ergy compatible with a given density matrixg i j . W is usu-
ally expressed in terms of the Hartree-Fock energy

EHF@g i j #5
1

2 (
i jkl
ss8

Vi jkl ~g i j sgkls82dss8g i l sgk js!

~2.6!

and the correlation energyEC@g i j # as
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1766 PRB 61R. LÓPEZ-SANDOVAL AND G. M. PASTOR
W@g i j #5EHF@g i j #1EC@g i j #. ~2.7!

W and EC are universal functionals ofg i j in the sense tha
they are independent oft i j , i.e., of the system under study
They depend on the considered interactions or model, as
fined by Vi jkl , on the number of electronsNe , and on the
structure of the many-body Hilbert space, as given byNe and
the number of orbitals or sitesNa . Notice thatEC in Eq.
~2.7! does not include any exchange contributions. Giv
g i j (g i j s5g i j /2 in nonmagnetic cases! there is no need to
approximate the exchange term, which is taken into acco
exactly byEHF @Eq. ~2.6!#. Nevertheless, if useful in practice
it is of course possible to splitW in the Hartree energyEH
and the exchange and correlation energyEXC is a similar
way as in the KS approach.

The variational principle results from the relations17

Egs<(
i j

t i j g i j 1W@g i j # ~2.8!

for all pure-stateN-representableg i j ,19 and

Egs5(
i j

t i j g i j
gs1W@g i j

gs#, ~2.9!

whereEgs5^CgsuHuCgs& refers to the ground-state energ
and g i j

gs5^Cgsu(sĉis
† ĉ j suCgs& to the ground-state single

particle density matrix.
As already pointed out in previous works,12,13 W andEC

depend in general on both diagonal elementsg i i and off-
diagonal elementsg i j of the density matrix, since the hop
ping integralst i j are nonlocal in the sites. The situation
similar to the DF approach proposed by Gilbert for the stu
of non-local potentialsVext(rW,rW8) as those appearing in th
theory of pseudo-potentials.14–16A formulation of DFT on a
lattice only in terms ofg i i would be possible if one would
restrict oneself to a family of models with constantt i j for i
Þ j . However, in this case the functionalW@g i i # would de-
pend on the actual value oft i j for iÞ j .13

The functionalW@g i j #, valid for all lattice structures and
for all types of hybridizations, can be simplified at the e
pense of universality if the hopping integrals are sh
ranged. For example, if only NN hoppings are consider
the kinetic energyEK is independent of the density-matr
elements between sites that are not NN’s. Therefore, the
strained search in Eq.~2.5! may restricted to theuC@g i j #&
that satisfy ^C@g i j #u(sĉis

† ĉ j suC@g i j #&5g i j only for i 5 j
and for NNi j . In this way the number of variables inW@g i j #
is reduced significantly, rendering the interpretation of
functional dependence far simpler. While this is a great pr
tical advantage, it also implies thatW andEC lose their uni-
versal character since the dependence on the NNg i j is now
different for different lattices. In Sec. III results for one
two-, and three-dimensional lattices with NN hoppings a
compared in order to quantify this effect.

For the applications in Sec. III we shall consider t
single-band Hubbard model with NN hoppings, which in t
usual notation is given by8

H52t (
^ i , j &s

ĉis
† ĉ j s1U(

i
n̂i↓n̂i↑ . ~2.10!
e-
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In this case the interaction energy functional reads

W@g i j #5minFU(
l

^C@g i j #un̂l↑n̂l↓uC@g i j #&G , ~2.11!

where the minimization is performed with respect to
N-particle uC@g i j #&, satisfying ^C@g i j #u(sĉis

† ĉ j suC@g i j #&
5g i j for i and j NN’s. If the interactions are repulsive (U
.0) W@g i j # represents the minimum average number
double occupations which can be obtained for a given deg
of electron delocalization, i.e., for a given value ofg i j . For
attractive interactions (U,0) double occupations are fa
vored, and W@g i j # corresponds to the maximum o
( l^n̂l↑n̂l↓& for a giveng i j .

B. Exact interaction energy functional

In order to determineEC@g i j # and W@g i j #, we look for
the extremes of

F5(
i jkl
ss8

@Vi jkl ^Cuĉis
† ĉks8

† ĉlsĉ j suC&#1«~12^CuC&!

1(
i , j

l i j S ^Cu(
s

ĉis
† ĉ j suC&2g i j D ~2.12!

with respect touC&. Lagrange multipliers« and l i j have
been introduced to enforce the normalization ofuC& and the
conditions on the representability ofg i j . Derivation with
respect tô Cu, « andl i j yields the eigenvalue equations

(
i j s

l i j ĉis
† ĉ j suC&1(

i jkl
ss8

Vi jkl ĉis
† ĉks8

† ĉlsĉ j suC&5«uC&

~2.13!

and the auxiliary conditions ^CuC&51 and g i j

5^Cu(sĉis
† ĉ j suC&. The Lagrange multipliersl i j play the

role of hopping integrals to be chosen in order thatuC&
yields the giveng i j . The pure-state representability ofg i j
ensures that there is always a solution.19 In practice, how-
ever, one usually variesl i j in order to scan the domain o
representability ofg i j . For givenl i j , the eigenstateuC0&
corresponding to the lowest eigenvalue of Eq.~2.13! yields
the minimum W@g i j # for g i j 5^C0u(sĉis

† ĉ j suC0&. Any

other uC& satisfying g i j 5^Cu(sĉis
† ĉ j suC& would have

higher « and thus higherW. The subset ofg i j which are
representable by a ground state of Eq.~2.13! is the physically
relevant one, since it necessarily includes the absolute m
mum g i j

gs of E@g i j #. Nevertheless, it should be noted th
pure-state representableg i j may be considered that can on
be represented by excited states or by linear combination
eigenstates of Eq.~2.13!. In the later case,l i j 50; i j , and
uC0& is an eigenstate of the interaction term with lowe
eigenvalue. Examples shall be discussed in Sec. III.

For the Hubbard model Eq.~2.13! reduces to

(̂
i j &
s

l i j ĉis
† ĉ j suC&1U(

i
n̂i↑n̂i↓uC&5«uC&. ~2.14!
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This eigenvalue problem can be solved numerically for cl
ters with different lattice structures and periodic bound
conditions. In this case we expanduC@g i j #& in a complete
set of basis statesuFm& which have definite occupation num
bersn is

m at all orbitalsis (n̂isuFm&5n is
m uFm& with n is

m 50
or 1). The values ofn is

m satisfy the usual conservation of th
number of electronsNe5Ne↑1Ne↓ and of thez component
of the total spinSz5(Ne↑2Ne↓)/2, whereNes5( in is

m . For
not too large clusters, the lowest energyuC0@g i j #&—the
ground state of Eq.~2.14!—can be determined by spars
matrix diagonalization procedures, for example, by using
Lanczos iterative method.21 uC0@g i j #& is calculated in the
subspace of minimalSz , since this ensures that there are
a priori restrictions on the total spinS. In addition, spin-
projector operators may be used to study the dependenc
EC(g12) on S.

For a one-dimensional~1D! chain with NN hoppingst i j
5t, translational symmetry implies equal density-matrix
ementsg i j between NN’s. Therefore, one may setl i j 5l for
all NN’s i j , and then Eq.~2.14! has the same form as the 1
Hubbard model for which Lieb and Wu’s exact solution
available.22 In this case the lowest eigenvalue« is deter-
mined following the work by Shiba.23 The coupled Bethe-
Ansatz equations are solved as a function ofl, band-filling
n5Ne /Na , and for positive and negativeU, by means of a
simple iterative procedure.

III. RESULTS AND DISCUSSION

In this section we present and discuss exact results for
correlation energy functionalEC@g i j # of the single-band
Hubbard Hamiltonian with nearest neighbor hopping8

Given the lattice structures,Na and Ne , the model is char-
acterized by the dimensionless parameterU/t which mea-
sures the competition between kinetic and interaction e
gies @see Eq.~2.10!#. U.0 corresponds to the usual intra
atomic repulsive Coulomb interaction, while the attracti
case (U,0) simulates intra-atomic pairing of electrons.

A. Repulsive interaction U>0

In Fig. 1 the correlation energyEC of the 1D Hubbard
model is shown for half-band filling (Ne5Na) as a function
of the density-matrix element or bond orderg12 between
NN’s. g i j 5g12 for all NN’s i and j. Results are given for
rings of finite lengthNa as well as for the infinite chain
Several general qualitative features may be identified. F
of all we observe that on bipartite latticesEC(g12)
5EC(2g12), since the sign of the NN bond order can
changed without affecting the interaction energyW(g12) by
changing the phase of the local orbitals at one of the sub
tices (cis→2cis for i PA and cj s unchanged forj PB,
whereA andB refer to the sublattices!.24,25 Let us recall that
the domain of definition ofEC(g12) is limited by the pure-
state representability ofg i j . The upper boundg12

01 and the
lower boundg12

02 for g12 (g12
0152g12

025g12
0 on bipartite

lattices! are the extreme values of the bond order betw
NN’s on a given lattice and for givenNa andNe (g i j 5g12
for all NN’s i j ). They represent the maximum degree
electron delocalization.g12

01 and g12
02 correspond to the ex

tremes of the kinetic energy EK(EK5(^ i j &t i j g i j
-
y

e

of

-

he

r-

st

t-

n

f

5zNa/2g12, wherez is the coordination number! and thus to
the ground state of the Hubbard model forU50 @g12

01 for
t.0 and g12

02 for t,0; see Eq.~2.10!#. For g125g12
0 the

underlying electronic stateuC0& is usually a single Slate
determinant, and thereforeEC(g12

0 )50. In other words, the
correlation energy vanishes as expected in the fully delo
ized limit.26 As ug12u decreasesEC decreases (EC,0), since
correlations can reduce the Coulomb energy more and m
efficiently as the electrons localize.EC is minimum in the
strongly correlated limitg125g12

` . For half-band filling this
corresponds to a fully localized electronic state (g12

` 50).
Here EC cancels out the Hartree-Fock energyEHF and the
Coulomb energyW vanishes (EC

`52EHF).
27 The ground-

state values ofg12
gs and Egs for a givenU/t result from the

competition between loweringEC by decreasingg12 and
lowering EK by increasing it (t.0). The divergence of
]EC /]g12 for g125g12

0 is a necessary condition in order th
g12

gs,g12
0 for arbitrarily smallU.0. On the other side, for

small g12, we observe that (EC1EHF)}g12
2 . This implies

that for U/t@1, g12
gs}t/U and Egs}t2/U, a well-known

result in the Heisenberg limit of the Hubbard mod
(Ne5Na).10

A more quantitative analysis ofEC(g12), and in particular
the comparison of results for differentNa , is complicated by
the size dependence ofg12

0 andEHF. It is therefore useful to
measureEC in units of the Hartree-Fock energy and to brin
the domains of representability to a common range by c
sidering«C5EC /EHF as a function ofg125g12/g12

0 . Figure
2 shows that«C(g12) has approximately the same behavi
for all consideredNa . Finite-size effects are small except fo
the very small sizes. The largest deviations from the co
mon trend are found forNa5Ne54. Here we observe a

FIG. 1. Correlation energyEC of the Hubbard model on one
dimensional rings withNa sites andNe5Na electrons as a function
of the density-matrix element or bond orderg12 between neares
neighbors~NN!. g i j 5g12 for all NN’s i j . U refers to the intra-
atomic Coulomb repulsion@U.0, see Eq.~2.10!# ~Ref. 24!.
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discontinuous drop of«C for g1251 (g12,1) which is due
to the degeneracy of the single-particle spectrum. In fac
this case two of the four electrons occupy a doubly dege
ate state in the uncorrelated limit and the minimum inter
tion energyW(g12) does not correspond to a single-Slate
determinant state even forg125g12

0 .28 As Na increases,
«C(g12) approaches the infinite-length limit with alternatio
around theNa5` curve. The strong similarity betwee
«C(g12) for smallNa and forNa5` is a remarkable result. I
suggests that good approximations forEC(g12) in extended
systems could be derived from finite cluster calculations.

Figure 3 shows the band-filling dependence ofEC(g12) in
a ten-site 1D Hubbard ring. Results are given forNe<Na ,
since for Ne>Na , EC(g i j ,Ne)5EC(2g i j ,2Na2Ne) as a
result of electron-hole symmetry.24 Although EC(g12) de-
pends strongly onNe , several qualitative properties ar
shared by all band fillings:~i! As in the half-filled band case
the domain of representability ofg12 is bound by the bond
orders in the uncorrelated limits. In fact,g12

02<g12<g12
01 ,

whereg12
01 (g12

02) corresponds to the ground state of theU
50 tight-binding model fort.0 (t,0). On bipartite lat-
tices g12

0152g12
025g12

0 . Notice thatg12
0 increases monoto

nously withNe as the single-particle band is filled up. This
an important contribution to the band-filling dependence
EC ~see Fig. 3!. ~ii ! In the delocalized limit,EC(g12

0 )50 for
all the Ne for which W(g12

0 ) derives from a single Slate
determinant.26 Moreover, the divergence of]EC /]g12 for
g125g12

0 indicates thatg12
gs,g12

0 for arbitrarily smallU.0,
as expected from perturbation theory.~iii ! Starting from
g125g12

0 , EC(g12) decreases with decreasingg12, reaching

FIG. 2. Correlation energyEC in units of the Hartree-Fock en
ergy EHF ~Ref. 27! for the Hubbard model on one-dimension
rings. Results are given as a function ofg12/g12

0 , whereg12
0 is the

NN ground-state bond order in the uncorrelated limit (U50). g i j

5g12 for all NN’s i j . Na refers to the number of sites, andNe

5Na to the number of electrons.EC(g12)5EC(2g12); see Fig. 1.
in
r-
-

-

f

its lowest possible valueEC
`52EHF for g125g12

`1 (Ne

<Na). The same behavior is of course observed forg12

,0. In particular,EC52EHF also forg125g12
`2 . As shown

in Fig. 3, EC
` decreases rapidly with increasingNe , since

EHF increases quadratically with the electron density.27 ~iv!
On bipartite latticesg12

`152g12
`25g12

` , while on nonbipar-
tite structures one generally hasug12

`1uÞug12
`2u, since the

single-particle spectrum is different for positive and negat
energies. The decrease ofEC with decreasingug12u shows
that the reduction of the Coulomb energy due to correlati
is done at the expense of kinetic energy or electron delo
ization, as already discussed forNe5Na ~Fig. 1!. ~v! g12

`

.0 for all Ne,Na (g12
` 50 for Ne5Na). g12

` represents the
largest NN bond order that can be constructed under
constraint of vanishing Coulomb repulsion energy. A low
bound forg12

` is given by the bond orderg12
FM in the fully

polarized ferromagnetic state (g12
` >g12

FM). This is obtained
by occupying the lowest single-particle states with all ele
trons of the same spin (Ne<Na). Therefore,g12

FM increases
with Ne for Ne<Na/2, and then decreases forNa/2,Ne

<Na reachingg12
FM50 at half-band filling (g12

FM.0 for Ne

,Na). In this way the nonmonotonous dependence ofg12
` on

Ne can be explained~see Fig. 3!. ~vi! The correlation energy
is constant and equal to2EHF for g12

`2<g12<g12
`1 . These

values ofg12 can never correspond to the ground state of
Hubbard model, since in this range increasingg12 always
lowers the kinetic energy (t.0) without increasing the Cou
lomb repulsion (g12

` <g12
gs<g12

0 ). For g12
`2,g12,g12

`1 , g12

cannot be represented by a ground state of Eq.~2.14!. In this
rangeg12 can be derived from a linear combination of stat
having minimal Coulomb repulsion.29

FIG. 3. Band-filling dependence of the correlation ener
EC(g12) of the one-dimensional Hubbard model forNa510 sites.
g i j 5g12 for all NN’s i j . Ne refers to the number of electrons, an
U to the intra-atomic Coulomb repulsion. On bipartite lattic
EC(g12,Ne)5EC(2g12,Ne)5EC(g12,2Na2Ne) ~Ref. 24!.
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In order to compare the functional dependences of
correlation energy for different band fillings, it is useful
scaleEC in units of the Hartree-Fock energy and to bring t
relevant domainsg12

` <g12<g12
0 of differentNe to a common

range. In Fig. 4,«C5EC /EHF is shown as a function o
g125(g122g12

` )/(g12
0 2g12

` ). We observe that the results fo
«C(g12) are remarkably similar for all band fillings. The larg
est deviations from the common trend are found forNe54.
As already discussed forNa5Ne54, this anomalous behav
ior is related to the degeneracy of the single-particle sp
trum and to the finite size of system. Figure 4 shows that
the Hubbard model the largest part of the dependence
EC(g12) on band filling comes fromEHF, g12

0 , and g12
` .

Similar conclusions are drawn from the results for the in
nite 1D chain presented in Fig. 5. For a giveng12, «C(g12)
depends weakly onNe /Na if the carrier density is low
(Ne /Na<0.4), and tends to increase as we approach h
band filling @see Fig. 5~b!#. For high carrier densities it be
comes comparatively more difficult to reduce the Coulo
energy for a given degree of delocalizationg12. The effect is
most pronounced forg12.0.8–0.9, i.e., close to the unco
related limit. As we approach the strongly correlated lim
(g12<0.4), the dependence of«C on Ne /Na is very weak
even forNe /Na'1. One concludes that«C(g12) is a useful
basis for introducing practical approximations on more co
plex systems.

FIG. 4. Correlation energyEC in units of the Hartree-Fock en
ergyEHF ~Ref. 27! for the one-dimensional Hubbard model on a 1
ten-site ring. Results are given as a function of the degree of d
calizationg125(g122g12

` )/(g12
0 2g12

` ), whereg12
0 refers to the NN

bond order in the uncorrelated ground state (U50), andg12
` to the

NN bond order in the strongly correlated limit (U/t→`). As in
Fig. 3, different band fillingsNe /Na are considered:~a! Ne<6 and
~b! Ne>6.
e

c-
r
of

-

lf-

b

t

-

The correlation energyEC is a universal functional of the
complete single-particle density matrixg i j . EC@g i j # and
W@g i j # may depend onNa andNe but are independent oft i j ,
and in particular of the lattice structure. The function
EC(g12) considered in this paper depends by definition
the type of lattice, since the constraints imposed in the m
mization only apply to NN bonds. In order to investigate th
problem we have determinedEC(g12) for 2D and 3D finite
clusters havingNa<12 sites and periodic boundary cond
tions. In Fig. 6 we compare these results with those of the
12-site periodic ring. As shown in the inset figure, the qua
tative behavior is in all cases very similar. The main quan
tative differences come from the domain of representabi
of g12, i.e., from the values ofg12

01 and g12
02 (g12

02<g12

<g12
01). Once scaled as a function ofg12/g12

0 , EC depends
rather weakly on the lattice structure. Notice that the Hartr
Fock energyEHF5(U/4)Na is the same for all structures
However, for the bcc structure we obtainW(g12

0 ),EHF, i.e.,
EC(g12

0 ),0, due to degeneracies in the single-particle sp
trum of the considered finite cluster@see the inset of Fig.
6~b!#. In order to correct for this finite size effect it is her
more appropriate to consider«C5@EC(g12)2EC(g12

0 )#/
W(g12

0 ). Still, the differences in«C between bcc and fcc
structures appear to be more important than between sq

o-

FIG. 5. Correlation energyEC of the Hubbard model on the
infinite one-dimensional chain. Results are given for«C

5EC /EHF (EHF is the Hartree-Fock energy! as a function of~a!
g125(g122g12

` )/(g12
0 2g12

` ), and ~b! band filling Ne /Na ~see the
caption of Fig. 4!.
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and triangular 2D lattices. This is probably related to t
degeneracies in the spectrum of the bcc cluster, as alre
observed for rings withNe54m @Figs. 2 and 4~a!#.

The largest changes in«C for different lattice structures
are observed for intermediate degree of delocalizationg12

.0.7–0.9; see Fig. 6!. Note that there is no monotonic tren
as a function of the lattice dimension. For example, forg12

50.7–0.9,«C first increases somewhat as we go from 1D
2D lattices, but it then decreases coming close to the
curve for the 3D fcc lattice@«C(2D).«C(fcc).«C(1D)
.«C(bcc) for 0.7<g12<0.9]. Finally, it is worth noting that
in the strongly correlated limit (g12<0.3) the results for
«C(g12) are nearly the same for all considered lattice str
tures~see Fig. 6!. This should be useful in order to develo
simple general approximations toEC(g12) in this limit.

B. Attractive interaction U<0

The attractive Hubbard model describes itinerant el
trons with local intra-atomic pairing (U,0). The electronic
correlations are very different from those found in the rep
sive case discussed so far. In particular Levy’s interact
energy functionalW@g i j # now corresponds to the maximum
average number of double occupations for a giveng i j @see
Eq. ~2.11!#. Therefore, it is also very interesting to inves

FIG. 6. Correlation energyEC(g12) of the Hubbard model on
different lattice structures. Finite clusters with periodic bound
conditions are considered at half-band filling:~a! a one-dimensiona
~1D! ring (Na512), 2D square and triangular lattices (334 clus-
ters!, and~b! 3D fcc and bcc lattices~two-tetrahedron cluster with
Na58) ~Ref. 28!. U refers to the intra-atomic Coulomb repulsio
(U.0). Notice the effect of scalingg12 with the uncorrelatedg12

0

by comparing main and inset figures.
e
dy

D

-

-

-
n

gate the properties of the correlation energy functio
EC@g i j # for U,0, and to contrast them with the results
Sec. III A.

In Fig. 7 the correlation energyEC(g12) of the attractive
Hubbard model is given at half-band filling for various fini
rings (Na<12) and for the infinite 1D chain (Ne5Na). The
band-filling dependence ofEC(g12) is shown in Fig. 8 for a
12-site ring (Ne<Na512). As in the repulsive case,g12

02

<g12<g12
01 , since the domain of representability ofg12 is

independent of the form or type of the interaction. Moreov
EC(g12)5EC(2g12) due to the electron-hole symmetry o
bipartite lattices.24 Starting fromg12

01 or g12
02 (g12

0152g12
02

5g12
0 on bipartite lattices!, EC(g12) decreases with decreas

ing ug12u reaching the minimumEC
` for g125g12

` and for
g125g12

`2 (g12
`152g12

`25g12
` in this case!. For Ne even,

W(g12
` )5NeU/2, and for Ne odd, W(g12

` )5(Ne21)U/2,
which correspond to the maximum number of electron pa
that can be formed. ForNe even, the minimumEC

`

5U(Ne/2)@12Ne /(2Na)# is achieved only for a complete
electron localization~i.e, g12

` 50). In contrast, for oddNe a
finite-size effect is observed. In this case, one of the electr
remains unpaired even in the limit of strong electron cor
lations and the minimum ofEC is EC

`5U@(Ne21)/2#@1
2(Ne11)/(2Na)#. Moreover, nonvanishingg12

` are ob-
tained as a result of the delocalization of the unpaired e
tron. g12

` represents the maximum bond order that can
obtained when (Ne21)/2 electron pairs are formed (g12

`

y
FIG. 7. Correlation energyEC of the attractive Hubbard mode

(U,0) on one-dimensional rings withNa sites andNe5Na elec-
trons. In~a! EC is shown as a function of the density-matrix eleme
g12 between nearest neighbors~NN!, g i j 5g12 for all NN i j . In ~b!
EC /uEC

`u is given as a function of the degree of delocalizationg12

5(g122g12
` )/(g12

0 2g12
` ). See the caption of Fig. 4.
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→0 for Na→`, Ne odd!. Notice that in all cases the groun
stateg12

gs is found in the intervalg12
` <g12

gs<g12
0 .

It is interesting to observe thatEC(g12) can be appropri-
ately scaled in a similar way as forU.0. In Fig. 8~b!,
«C(g12)5EC /uEC

`u is shown as a function of the degree
delocalizationg125(g122g12

` )/(g12
0 2g12

` ). «C(g12) presents
a pseudouniversal behavior in the sense that it depe
weakly onNa andNe . The main deviations from the com

FIG. 8. Band-filling dependence of the correlation ener
EC(g12) of the one-dimensional attractive Hubbard model (U
,0). The number of sites isNa512, and the number of electron
Ne is indicated. In~a! EC is shown as a function ofg12 and in ~b!
EC /uEC

`u is given as a function of the degree of delocalizati
g125(g122g12

` )/(g12
0 2g12

` ). Notice, EC(g12,Ne)5EC(2g12,Ne)
5EC(g12,2Na2Ne) ~Ref. 24!.
d

ds

mon trend are found forNe5Na54. As already discussed
for U.0, this is a consequence of degeneracies in
single-particle spectrum. In this case, the wave function c
responding to the minimum in Levy’s functional forg12

→g12
0 @Eq. ~2.11!# cannot be described by a single Slat

determinant, andW(g12→g12
0 ),EHF.

IV. CONCLUSION

Density-matrix functional theory has been applied to l
tice Hamiltonians taking the Hubbard model as a particula
relevant example. In this framework the basic variable is
single-particle density matrixg i j , and the key unknown is
the correlation energy functionalEC@g i j #. The challenge is
therefore to determineEC@g i j # or to provide with useful ac-
curate approximations for it. In this paper we presente
systematic study of the functional dependence ofEC(g12) on
periodic lattices, whereg12 is the density-matrix element be
tween nearest neighbors (g i j 5g12 for all NN’s i j ). Based on
finite-cluster exact diagonalizations and on the Bethe-Ans
solution of the 1D chain, we derived rigorous results f
EC(g12) of the Hubbard model as a function of the numb
of sites Na , band filling Ne /Na , and lattice structure. A
basis for applications of density-matrix functional theory
many-body lattice models is thereby provided. The obser
pseudouniversal behavior of«C(g12)5EC /EHF as a function
of g125(g122g12

` )/(g12
0 2g12

` ) encourages transferrin
«C(g12) from finite-size systems to infinite lattices or even
different lattice geometries. In fact, the exactEC(g12) of the
Hubbard dimer has been recently used to infer a simple g
eral Ansatz for EC(g12).

30 With this approximation to
EC(g12) the ground-state energies and charge-excita
gaps of 1D and 2D lattices have been determined succ
fully in the whole range ofU/t. Further investigations, for
example, by considering magnetic impurity models or mo
complex multiband Hamiltonians, are certainly worthwhile
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