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A density-functional theory for many-body lattice models is considered in which the single-particle density
matrix y;; is the basic variable. Eigenvalue equations are derived for solving Levy’s constrained search of the
interaction energy functiona[ v;;]. W[ v;;] is expressed as the sum of Hartree-Fock en&igy v;; ] and the
correlation energ¥c[ y;;]. Exact results are obtained f&i-(y,,) of the Hubbard model on various periodic
lattices, wherey;; = y,, for all nearest neighboiisandj. The functional dependence BE(y1) is analyzed by
varying the number of siteld,, band fillingN,, and lattice structure. The infinite one-dimensional chain and
one-, two-, or three-dimensional finite clusters with periodic boundary conditions are considered. The proper-
ties of Ec(y,p) are discussed in the limits of wealy{,~ «/22) and strong {,,=y7,) electronic correlations,
and in the crossover regiony[,<y;,< 722). Using an appropriate scaling we observe tlaai(g:,)
=E¢/Eye has a pseudo-universal behavior as a functiog,ef (y1,— yfz)/(y‘l)z— v12). The fact that c(g10)
depends weakly oN,, N, and lattice structure suggests that the correlation energy of extended systems
could be obtained quite accurately from finite-cluster calculations. Finally, the behavideg(gf,) for
repulsive (U>0) and attractive y <0) interactions are contrasted.

I. INTRODUCTION of view, namely, by considering exactly solvable many-body
lattice models.

Density-functional theoryDFT) has been the subject of Despite the remarkable success of the local-spin-density
remarkable developments since its original formulation byapproximation, present DFT fails systematically in account-
Hohenberg and Kohh? After formal improvements, exten- ing for phenomena where strong electron correlations play a
sions, and an uncountable number of applications to a wideentral role, for example, in heavy-fermion materials or
variety of physical problems, this theoretical approach hasigh-T, superconductors. These systems are usually de-
become the most efficient, albeit not infallible, method ofscribed by simplifying the low-energy electron dynamics us-
determining the electronic properties of matter from firsting parametrized lattice models such as Pariser-Parr-Pople,
principles®* The most important innovation of DFT, which Hubbard® or Andersofl models and related HamiltoniaH.
is actually at the origin of its breakthrough, is to replace theBeing in principle an exact theory, the limitations of the DF
wave function by the electronic densin(F) as the funda- approach have to be ascribed to the approximations used for
mental variable of the many-body problem. In practice,exchange and correlation and not to the underlying
density-functionalDF) calculations are largely based on the Hohenberg-Kohn-ShaitHKS) formalism. It would be there-
Kohn-Sham (KS) scheme that reduces the many-bodyfore very interesting to extend the range of applicability of
N-particle problem to the solution of a set of self-consistentDFT to strongly correlated systems and to characterize the
single-particle equatiorfs Although this transformation is PropertiesExc in the limit of strong correlations. Studies of
formally exact, the implementations always require approxithe XC functional on simple models should provide useful
mations, since the KS equations involve functional derivainsights for future extensions to realistic Hamiltonians.
tives of the unknown interaction energW[p(F)], usually Moreover, taking into account the demonstrated power of the

expressed in terms of the exchange and correld¥@) en- DF approach imab initio calculations, one may also expect

- . . that a DFT with an appropriatEyc could become an effi-
ergy Exclp(r)]. Therefore, understanding the functional de- go i 40 for studyingpr%ar?y-boé(; models, a subject of the-

pendence ofEyc[p(r)] and improving its approximations gretical interest on its own.

are central to the development of DF methods. The currently seyeral properties of DFT on lattice models have been
most widespread\nsdze for EXC[p(F)]—the local-density already studied in previous work&*® Gunnarsson and
approximatioA with spin-polarized and gradient-corrected Schahammer were, to our knowledge, the first to propose a
extension$—were originally derived from exact results for DF approach on a semiconductor model in order to study the
the homogeneous electron gas. It is one of the purposes band-gap problertt In this case the local site occupancies
this paper to investigate the properties of the interactionwere treated as the basic variables. Some years later Schindl-
energy functional from an intrinsically inhomogeneous pointmayr and Godb¥ provided a different formulation of DFT
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on a lattice by considering as basic variables both diagongarticle interactionge.g., up to first or second neighbprs
elementsy; and off-diagonal elementy;; of the single- From theab initio perspectivet;; is given by the external
particle density matrixsee also Refs. 14—16Schmhammer potential and by the choice of the bag?s\/ijk, defines the
et al. then derived a more general framework that unifies theaype of many-body interactions which may be repulsive
two previous approaché3 Using Levy’s constrained search (Coulomb like or attractive(in order to simulate electronic
method’ they showed that different basic variables and dif-pairing and which are usually approximated as short ranged
ferent W functionals can be considered depending on thee.g., intra-atomic Equation(2.1) is mainly used in this sec-
type of model or perturbation under study. Site occupationsion to derive general results which can then be applied to
alone may be used as basic variables, if only the orbitalarious specific models by simplifying the interactions. A
energies are varied.e., if all hopping integralg;; are kept particularly relevant example, to be considered in some de-
constant fori#j). However, off-diagonal elements of the tail in Sec. lll, is the single-band Hubbard model with
single-particle density matrix must be included explicitly if nearest-neighbotNN) hoppings$ which can be obtained
the functionalW is intended to be applied to more general from Eq. (2.1) by settingt;;=—t for i andj NN's, t;=0
situations involving different values df; , for example, the otherwise, and/;jy = U &; 8 Sik . "°
Hubbard model on various lattice structures or for different In order to apply DMFT to model Hamiltonians of form
interaction regimes, i.e., differeft/t. (2.1) we follow Levy's constrained search procediras

In this paper we investigate the properties of Levy’sproposed by Schindimayr and GodlfyThe ground-state en-
interaction-energy functional as a function ofy;; by solv-  ergy is determined by minimizing the functional
ing the constrained search minimization problem exactly. In
Sec. Il the basic formalism of density-matrix functional ELyij]=Exl i1+ WLy 22

tions for determiningW[ v;;] are derived. Section Il pre- s physically defined for all density matrices that can be writ-
sents and discusses exact results for the correlation energyy, as

E. of the Hubbard model, which is given by the difference

betweenW and the Hartree-FockHF) energyEr. These T

are obtained, either numerically for finite clusters with dif- Vijzg 7ijv:; (Wlei,cio W) 23
ferent lattice structures, or from the Bethe-Ansatz solution . . ) )

for the one-dimensional chain. Finally, Sec. IV summarizedor all i andj, where|¥) is an N-particle state. In other

our conclusions and points out some relevant extensions. Words,y;; must derive from a physical state. It is then said to
be pure-statd\ representabl&’?° The first term in Eq(2.2)

IIl. THEORY Is given by
In Sec. Il A the main results of Levy’s formulation of EK:E tiyii - (2.4)

DMFT are presented in a form that is appropriate for the TR

study of model Hamiltonians such as the Hubbard model

gne(;? tge Ph%pfcl)?g 'gfgg?'ig r?ve;\;lvt?c?r?alsgel:?{oot?:zlftelrnaI garded as the kinetic energy associated with the electronic
| play 9 motion in the lattice. Notice that Eq2.4) yields the exact

potential Vex(r). Consequently, the single-particle density yinetic energy for a giveny,; . There are no corrections on
matrix vy;; replaces the densityp(r) as the basic Ey to be included in other parts of the functional as in the
variable™® *In Sec. Il B, we derive equations that allow to KS approach. The second term in E2.2) is the interaction-
determine Levy's interaction-energy function@l[ y;;] in energy functional given by

terms of the ground-state energy of a many-body Hamil-

tonian with effective hopping integrals;; that depend im- WL vij]

plicitly on 1;; .

It includes all single-particle contributions and is usually re-

— 1 E E V qf - AT AT - A ’\Ij -
=min 2 nmkI< [7|J]|Cn(rckgrcla’cma| [7|J]> .
A. DMFT of lattice models nmifl

ago

We consider the many-body Hamiltonian (2.5

1 The minimization in Eq.(2.5 implies a search over all
.y fnt A _ :
H:iz tijcfvcj(ﬁz % ViikClhChy ClorCip, (2D N-particles  states  [W[y;]) | tha'f satisfy
7 " (V[ yij11Z4C €6l WL ¥ 1) =1y for all i andj. Therefore,
W[ v;;] represents the minimum value of the interaction en-
wherec!  (c;,) is the usual creatiofannihilatior) operator ~ €rgy compatible with a given density matrjx; . W is usu-

lo
for an electron with spirs at site (or orbita) i. H can be ally expressed in terms of the Hartree-Fock energy
regarded as the second quantization of Sdimger’'s equa-
tion on a basig® However, in the present paper, the hopping
integralst;; and the interaction matrix elements;,, are
taken as parameters to be varied independently. The matrix oo
tj; defines the latticge.g., one-dimensional chains, square or

triangular two-dimensional latticesind the range of single- and the correlation enerdyc[ v;;] as

oo

1
Enel Vij]: 2 % Vijk|(7ij07k|a'_ 500’7i|tr')’kja)

(2.9
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WL ¥i; 1= Epnel %i 1+ Ecl ;1. (2.7 In this case the interaction energy functional reads

W and E¢ are universal functionals of;; in the sense that o
they are independent of;, i.e., of the system under study. W[ yi;]=min UEID WLyl [y D[, (210
They depend on the considered interactions or model, as de-
f'?edtbyviﬁﬁ on the Sug"bﬁ_rlbo‘( telectrori’sle, "_"”dmcl;” thde where the minimization is performed with respect to all
structure of the many-body Hilbert space, as giverNgyan - ) e ) “ta )
the number of orbitals or siteN,. Notice thatE. in Eq. I:pér;g:rlei l;I;EjY”lyl\,l’ salt]:stfﬁ/mg <qf[7'.l]|2"c"’cl"|\yl[ 7'J]>

Yij i s. e interactions are repulsiveJ(

(2.7) does not include any exchange contributions. Given>0) W[y ] represents the minimum average number of
ij

¥ii (7ije=7ij/2 in nonmagnetic caspshere is no need to : ; . .
approximate the exchange term, which is taken into accounqOUbIe occupat|on§ Wh'Ch can be obta}lned fora given degree
of electron delocalization, i.e., for a given value gf . For

exactly byEyr [Eq.(2.6)]. Nevertheless, if useful in practice, attractive interactions {<0) double occupations are fa-

it is of course possible to spliV in the Hartree energiy )
and the exchange and correlation eneEyy- is a similar vored, and W[y;] corresponds to the maximum of

way as in the KS approach. Z(nyiny)) for a giveny;;.
The variational principle results from the relatidhs
B. Exact interaction energy functional
Egéz tij vi; + WLy (2.8 In order to determiné([ y;;] and W[ v;;], we look for
" the extremes of

for all pure-stateN-representabley; ,** and
F=2 [Vij(W[Cl,C), CioCio| W) ]+e(1—(W[W¥))

“~
Egs=i2j ti YOS+ W], (2.9 o

where Egs=<\Ifgs|I-A||\I:gS> refers to the ground-state energy + Nij (w]> cl.Ciol ¥ — 7 (2.12

and_yﬂsz(\Ifgs|2,,cfﬂ,_cj(,|\lfgs) to the ground-state single- h 7

particle density matrix. with respect to|W). Lagrange multiplierss and \;; have

- - - 13
As already pointed out in previous works;*WandEc  peen introduced to enforce the normalizatior]®f and the
depend in general on both diagonal elemeptsand off-  congitions on the representability of; . Derivation with

diagonal elementy;; of the density matrix, since the hop- regpect to |, & and\;; yields the eigenvalue equations
ping integralst;; are nonlocal in the sites. The situation is

similar to the DF approach proposed by Gilbert for the study o AR
of non-local potentiald/y(,F') as those appearing in the 2 )\ijc;racjo|‘1'>+2“ Vil Cy CloCiol V) = | W)
theory of pseudo-potentiaté~*° A formulation of DFT on a e o
lattice only in terms ofy; would be possible if one would (2.13
restrict oneself to a family of models with constdptfor i . .
£]. However, in this case the functiondl] v;,] would de-  &"d th‘fT _auxiliary  conditions <\I’|\I'_>f1 and
pend on the actual value of for i#j."? =(\P|Egcigcj_g|\1f_>. The Lagrange multipliera.;; play the

The functionaW[ ;;], valid for all lattice structures and role of hopping integrals to be chosen in order tirit)
for all types of hybridizations, can be simplified at the ex-Yields the giveny;;. The pure-state representability of;
pense of universality if the hopping integrals are shortensures that there is always a solutidrin practice, how-
ranged. For example, if only NN hoppings are consideredgver, one usually varies;; in order to scan the domain of
the kinetic energyEy is independent of the density-matrix representability ofy;;. For given\;;, the eigenstat¢W¥ o)
elements between sites that are not NN's. Therefore, the cogorresponding to the lowest eigenvalue of E2.13 yields
strained search in Eq2.5 may restricted to théW[;])  the minimum W[ y;;] for y;=(¥o|=,c/.¢;s/ o). Any
that satisfy (W[ ;1|2 ,Cl,Cjo|W[yij])=; only for i=j  other |W) satisfying y,;=(¥|2,c}.¢;,]¥) would have
and for NNij. In this way the number of variablesW[ ;] higher & and thus higheW. The subset ofy; which are
is reduced significantly, rendering the interpretation of therepresentable by a ground state of Ej13) is the physically
functional dependence far simpler. While this is a great pracrelevant one, since it necessarily includes the absolute mini-
tical advantage, it also implies the&f andE lose their uni-  mum yigjs of E[y;;]. Nevertheless, it should be noted that
versal character since the dependence on thed)Ns now  pure-state representabjg may be considered that can only
different for different lattices. In Sec. Ill results for one-, pe represented by excited states or by linear combinations of
two-, and t.hree—dimensiona_l Iatti_ces with NN hoppings aregijgenstates of Eq2.13. In the later case\;; =0Vij, and
compared in order to quantify this effect. |W,) is an eigenstate of the interaction term with lowest

For the applications in Sec. Il we shall consider thegjgenvalue. Examples shall be discussed in Sec. III.
Single'band Hubbard model with NN hOppingS, which in the For the Hubbard model qu:l_a reduces to

usual notation is given By

H=—t 2 61. 6] —|—UE ﬁilﬁm_ (21() <|2]> )\”6'1‘0_6]0.|\1’>+U2 ﬁmﬁ|1|‘y>:8|‘1’> (214)
e e i o
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This eigenvalue problem can be solved numerically for clus-
ters with different lattice structures and periodic boundary
conditions. In this case we expaﬂﬂ[yij]) in a complete
set of basis statd® ,,) which have definite occupation num- 0.05 b
bers»™ at all orbitalsic (n;,|®m)=vM| P, with v =0 o
or 1). The values of\, satisfy the usual conservation of the !
number of electrondl,=Ng; +N¢, and of thez component \
of the total spinS,=(Ng; —Ng,)/2, whereN,=Z=;v7,. For Y
not too large clusters, the lowest enerb\yo[yij])—the \
ground state of Eq(2.14—can be determined by sparse-
matrix diagonalization procedures, for example, by using the
Lanczos iterative methoth. W[ y;]) is calculated in the 015
subspace of miniméab,, since this ensures that there are no \
a priori restrictions on the total spis In addition, spin- \
projector operators may be used to study the dependence of | \
Ec(y12 on S

For a one-dimensiondllD) chain with NN hoppingg;;
=t, translational symmetry implies equal density-matrix el-
ementsy;; between NN's. Therefore, one may sgt= A\ for
all NN’s ij, and then Eq(2.14) has the same form as the 1D
Hubbard model for which Lieb and Wu’'s exact solution is
available?? In this case the lowest eigenvalueis deter-

+
X p» o + |
I
i
x b o + |
zZZzZzZzZZzZZ
T

1]
= 00N

.

Il
8

EJUN,

-0.25

mined following the work by Shib& The coupled Bethe-
Ansatz equations are solved as a function\ pfoand-filling
n=N./N,, and for positive and negativg, by means of a

FIG. 1. Correlation energ¥. of the Hubbard model on one-
dimensional rings withN, sites andN.= N, electrons as a function
of the density-matrix element or bond ordef, between nearest
U refers to the intra-

neighbors(NN). ;;= vy, for all NN's ij.

imple iterative pr re.
simple iterative procedure atomic Coulomb repulsiopU>0, see Eq(2.10] (Ref. 24.

IIl. RESULTS AND DISCUSSION =zN,/2y1,, Wherez is the coordination numbgand thus to

In this section we present and discuss exact results for thée 9F0Uﬂd state of the Hubbard model fdr=0 [3’12+ for
correlation energy functionaEc[ ;] of the single-band t>0 andy{, for t<0; see Eq.(2.10]. For y;,= v}, the
Hubbard Hamiltonian with nearest neighbor hoppifigs. underlying electronic statétlf(,) is usually a single Slater
Given the lattice structuredy, andN,, the model is char- determinant, and therefoe-(y5,)=0. In other words, the
acterized by the dimensionless paramdiét which mea- correlation energy vanishes as expected in the fully delocal-
sures the competition between kinetic and interaction enetized limit.2° As |y, decrease&. decreasesH-<0), since
gies[see Eq.(2.10]. U>0 corresponds to the usual intra- correlations can reduce the Coulomb energy more and more
atomic repulsive Coulomb interaction, while the attractiveefficiently as the electrons localiz& is minimum in the
case U<0) simulates intra-atomic pairing of electrons. strongly correlated limity;,= y7,. For half-band filling this
corresponds to a fully localized electronic statg =0).
Here E cancels out the Hartree-Fock enerBy- and the
Coulomb energyW vanishes Ez=—Eg).%’ The ground-
state values ofy§; and Ey for a givenU/t result from the
competition between lowering. by decreasingy;, and

A. Repulsive interaction U>0

In Fig. 1 the correlation energi. of the 1D Hubbard
model is shown for half-band fillingN.=N,) as a function
of the density-matrix element or bond ordeg, between _ _ Werlr _
NN’s. y;;= 1, for all NN's i andj. Results are given for lowering Ey by Increasing it (=0). The divergence of
rings of finite lengthN, as well as for the infinite chain. 3Ec/(9712 for y1,= 1, is a necessary condition in order that
Several general qualitative features may be identified. Firsy{ 5<%, for arbitrarily smallU>0. On the other side, for
of all we observe that on bipartite latticeBc(y1») small y,, we observe thatB-+ EH,:)OC'ylz This implies
=Ec(—v12), since the sign of the NN bond order can bethat for U/t>1, y{5«t/U and Egsxt 2/U, a well-known
changed without affecting the interaction eneMyyy;,) by  result in the He|senberg limit of the Hubbard model
changing the phase of the local orbitals at one of the sublagN,=N,).°
tices (cj,— —¢;j, for ieA andc;, unchanged forj e B, A more quantitative analysis &g(y,,), and in particular
whereA andB refer to the sublatt|ce)§4 Let us recall that  the comparison of results for differeNt,, is complicated by
the domain of definition oEc(y12) is limited by the pure-  the size dependence ¢f, andE. It is therefore useful to
state representablhty of;j . The Upper bouncb/ and the  measureE. in units of the Hartree-Fock energy and to bring
lower bound vy}, for y1, (¥31 =—193, =72, on bipartite  the domains of representability to a common range by con-
latticeg are the extreme values of the bond order betweenideringe .=Ec/E ¢ as a function ofy;,= 712/3/22, Figure
NN'’s on a given lattice and for giveN, andN. (v;;=7v12 2 shows thakc(g;,) has approximately the same behavior
for all NN's ij). They represent the maximum degree offor all consideredN, . Finite-size effects are small except for
electron delocal|zat|ony and ylz correspond to the ex- the very small sizes. The largest deviations from the com-
tremes of the klnetlc energy Ex(Ex=2ijtij vij mon trend are found foN,=N.,=4. Here we observe a
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FIG. 3. Band-filling dependence of the correlation energy
FIG. 2. Correlation energfc in units of the Hartree-Fock en-  E_(,.) of the one-dimensional Hubbard model fdg= 10 sites.
ergy Eye (Ref. 27 for the Hubbard model on one-dimensional . = ., for all NN's ij. N, refers to the number of electrons, and
rings. Results are given as a functionh/y9,, whereyf,isthe U to the intra-atomic Coulomb repulsion. On bipartite lattices
NN ground-state bond order in the uncorrelated linit{0). y;; Ec(712.Ne) =Ec(— ¥12.No) =Ec(712.2N,— N,) (Ref. 24.
=11, for all NN’s ij. N, refers to the number of sites, amdl

=N, to the number of electron&.(7y1,) =Ec(— vy12); see Fig. 1. its lowest possible valuEi=—Eue for yi= 70102+ (N,

discontinuous drop of¢ for gi,=1 (g;,<1) which is due =N,). The. same behavior is of course O?Pserved 15

to the degeneracy of the single-particle spectrum. In fact if~0- In particularEc= —Er also foryy,= v, . As shown

this case two of the four electrons occupy a doubly degenedl Fig. 3, EC decreases rapidly with increasiid,, since

ate state in the uncorrelated limit and the minimum interacEnr increases quadratically with the electron denitgiv)

tion energyW(y;,) does not correspond to a single-Slater-On bipartite latticesy;,” = — 7, =¥7,, while on nonbipar-

determinant state even fop;,=7%,.2% As N, increases, fite structures one generally hasy, | #|y3, |, since the

ec(g1,) approaches the infinite-length limit with alternations single-particle spectrum is different for positive and negative

around theN,=% curve. The strong similarity between energies. The decrease B with decreasindy;, shows

ec(g1,) for smallN, and forN, = is a remarkable result. It that the reduction of the Coulomb energy due to correlations

suggests that good approximations Bx(y;,) in extended is done at the expense of kinetic energy or electron delocal-

systems could be derived from finite cluster calculations. ization, as already discussed fbl,=N, (Fig. 1). (v) 1,
Figure 3 shows the band-filling dependencégf y,,) in >0 for all Ne<N, (7y7,=0 for Ne=N,). y;, represents the

a ten-site 1D Hubbard ring. Results are given Ry<N,, largest NN bond order that can be constructed under the

since forNe=N,, Ec(7ij ,Ne)=Ec(—7i,2N,—N¢) as a  constraint of vanishing Coulomb repulsion energy. A lower

result of electron-hole symmetf. Although Ec(y,,) de-  bound fory;, is given by the bond ordeyiy in the fully

pends strongly onN,, several qualitative properties are polarized ferromagnetic statey{,=yi). This is obtained

shared by all band fillingdi) As in the half-filled band case, by occupying the lowest single-particle states with all elec-

the domain of representability of;, is bound by the bond trons of the same spifN,.<N,). Therefore,y'> increases

orders in the uncorrelated limits. In fact3, <¥1,<%3; . with N, for Ne<N_,/2, and then decreases fo,/2<N,

wherey9; (¥9;) corresponds to the ground state of the <N, reachingy;¥'=0 at half-band filling ¢£¥'>0 for N,

=0 tight-binding model fot>0 (t<0). On bipartite lat-  <N,). In this way the nonmonotonous dependencegfon

tices ¥9; = — ¥32 = ¥3,. Notice thaty?, increases monoto- N, can be explaine@see Fig. 3. (vi) The correlation energy

nously withN, as the single-particle band is filled up. This is js constant and equal te E for —ycf{s V1< 70102+ . These

an important contribution to the band-filling dependence ofa|ues ofy,, can never correspond to the ground state of the

Ec (see Fig. 3 (ii) In the delocalized limitEc(¥3,)=0 for  Hubbard model, since in this range increasipg always

all the N, for which W(3,) derives from a single Slater lowers the kinetic energyt>0) without increasing the Cou-

determinan® Moreover, the divergence ofEc/dy1, for  lomb repulsion 5,<¥$5<73). For ¥i; <y1:<715 . 712

y12= 73, indicates thaty§5< 13, for arbitrarily smallU>0,  cannot be represented by a ground state of(Ed4. In this

as expected from perturbation theorfjii) Starting from  rangey,, can be derived from a linear combination of states

V1= ygz, Ec(vy,) decreases with decreasing,, reaching having minimal Coulomb repulsicft.
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FIG. 4. Correlation energf¢ in units of the Hartree-Fock en- 1055 T +0+2 £ +0+4 e 0+6+ ' oTs T
ergy Eye (Ref. 27 for the one-dimensional Hubbard model on a 1D ' ’ ' ' ' '
ten-site ring. Results are given as a function of the degree of delo- N /N
e Ta

calizationg,= (y12— ¥12)! (Y~ ¥12), whereyd, refers to the NN
bond order in the uncorrelated ground state=0), andy;, to the
NN bond order in the strongly correlated limiU(t—«). As in
Fig. 3, different band fillingN./N, are consideredia) No<6 and
(b) No=6.

FIG. 5. Correlation energ¥. of the Hubbard model on the
infinite one-dimensional chain. Results are given feg
=Ec/Ene (Eyr is the Hartree-Fock enerys a function of(a)
912= (v12— ¥ (¥3— v5»), and (b) band filling N./N, (see the

In order to compare the functional dependences of th&aption of Fig. 4.

correlation energy for different band fillings, it is useful to . ) ) )
scaleE in units of the Hartree-Fock energy and to bring the ~ The correlation energfc is a universal functional of the
relevant domaing’,=< y;,< v, of differentN, to a common ~ cOmplete single-particle density matri; . Ecly;] and
range. In Fig. 4,cc=Ec/Eny is shown as a function of WL7ij] may depend o, andN, but are independent of ,
91o=(Y1o— ywz)/(yo — ¥%). We observe that the results for and in particular of the lattice structure. The functional
- 1 12~ Y12)- : . . L
ec(9g1o) are remarkably similar for all band fillings. The larg- Ec(r12) con3|qlered_ in this paper d.epends by de_zfmltlon on
est deviations from the common trend are foundNQr=4. th.e ty.pe of lattice, since the constraints |mpo.sed n the mini-
As already discussed fot,=N,=4, this anomalous behav- mization only apply to NN bonds. In order to investigate this

ior is related to the degeneracy of the single-particle Specplrotilem xve .havegiztzerr.r:ineﬁc(glz) for(j?DbanddSD finited_
trum and to the finite size of system. Figure 4 shows that fof USters aving\,<12 sites and periodic boundary condi-

the Hubbard model the largest part of the dependence &}ons_. In Fig. 6_W¢ compare thes_e resu!ts With those of the l.D
Ec(y1,) on band filing comes fromEye, 7(1)27 and v5,. 12-site periodic ring. As shown in the inset figure, the quali-

c . ... tative behavior is in all cases very similar. The main quanti-
Similar conclusions are drawn from the results for the infi-,__.. . . -

) ; SO X tative differences come from the domain of representability
nite 1D chain presented in Fig. 5. For a givep, c(012)

; 0+ 0- (.0-
depends weakly orN./N, if the carrier density is low of Y12, .e., from the values ofy;, and Y12 (722 <712
(N¢/N,=0.4), and tends to increase as we approach half= ¥12). Once scaled asa function %2/712’ Ec depends
band filling [see Fig. ®)]. For high carrier densities it be- rather weakly on the lattice §tructure. Notice that the Hartree-
comes comparatively more difficult to reduce the Coulomb0CK €nergyExe=(U/4)N, is the same fog all structures.
energy for a given degree of delocalizatigpy. The effect is How%ver, for the bce structure we .ObtaW( 712)<5pr ie.,
most pronounced fog,,~0.8—0.9, i.e., close to the uncor- Ec(712)<0, due to degeneracies in the single-particle spec-
related limit. As we approach the strongly correlated limittrum of the considered finite clustgsee the inset of Fig.
(91,<0.4), the dependence ef. on N./N, is very weak 6(b)]. In order to correct for this finite size effect it is here
even forN,/N,~1. One concludes thatc(g;,) is a useful more appropriate to considetc=[Ec(y1,)~Ec(¥3)]/
basis for introducing practical approximations on more comW(¥3,). Still, the differences inec between bce and fec
plex systems. structures appear to be more important than between square
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FIG. 7. Correlation energf of the attractive Hubbard model

different lattice structures. Finite clusters with periodic boundary(y<o0) on one-dimensional rings witN, sites andN,=N, elec-

conditions are considered at half-band filliigr a one-dimensional
(D) ring (N,=12), 2D square and triangular latticesX@ clus-
terg, and(b) 3D fcc and bcc latticestwo-tetrahedron cluster with
N,=8) (Ref. 28. U refers to the intra-atomic Coulomb repulsion
(U>0). Notice the effect of scaling;, with the uncorrelated,?,
by comparing main and inset figures.

trons. In(a) E¢ is shown as a function of the density-matrix element
¥12 between nearest neighbdiSN), y;; = v, for all NN ij. In (b)
Ec/|EZ| is given as a function of the degree of delocalizatinn
=(y12— ¥12)!(¥3,— ¥7,). See the caption of Fig. 4.

gate the properties of the correlation energy functional
Eclvi;] for U<O, and to contrast them with the results of

and triangular 2D lattices. This is probably related to theSec. Il A.
degeneracies in the spectrum of the bcc cluster, as already In Fig. 7 the correlation energifc(y1,) of the attractive

observed for rings wittN.=4m [Figs. 2 and 4)].

The largest changes s for different lattice structures
are observed for intermediate degree of delocalizatmy (
=0.7-0.9; see Fig.)6 Note that there is no monotonic trend
as a function of the lattice dimension. For example, dos

Hubbard model is given at half-band filling for various finite
rings (N,=12) and for the infinite 1D chainN.=N,). The
band-filling dependence &c(y15) is shown in Fig. 8 for a
12-site rlng Ne=N,=12). As in the repulsive casegxlz

S yo= 712 , since the domain of representability gf, is

=0.7-0.9,s first increases somewhat as we go from 1D toindependent of the form or type of the interaction. Moreover,
2D lattices, but it then decreases coming close to the 10Fc(v12 =Ec(— y12) due to the electron hole symmetry of

curve for the 3D fcc lattice ec(2D)>e(fcc)>e(1D)
>egc(bcc) for 0.&<g4,<0.9]. Finally, it is worth noting that
in the strongly correlated limit¢;,<0.3) the results for

ec(gy,) are nearly the same for all considered lattice struc-Y12= Y12 (vi2 =—

tures(see Fig. 6. This should be useful in order to develop
simple general approximations Ex(7y1,) in this limit.

B. Attractive interaction U<0

blpartlte lattice$” Starting fromy%s or 42, (135 =—9%,

= ylz on bipartite lattices Ec(7y,,) decreases with decreas-
ing |1 reaching the minimung€g for y,,=y7, and for
Y12 =712 in this casg For N, even,
W(y1,) =NgU/2, and for N odd, W(y7,)=(Ne—1)U/2,
which correspond to the maximum number of electron pairs
that can be formed. FoN. even, the minimumEgg
=U(N/2)[1—N¢/(2N,)] is achieved only for a complete
electron localizatior(i.e, y;,=0). In contrast, for oddN, a

The attractive Hubbard model describes itinerant eleclinite-size effect is observed. In this case, one of the electrons

trons with local intra-atomic pairingy{<0). The electronic

remains unpaired even in the limit of strong electron corre-

correlations are very different from those found in the repul/ations and the minimum of¢ is E¢=U[(Ne—1)/2][1
sive case discussed so far. In particular Levy’s interaction (Ne+1)/(2N,)]. Moreover, nonvanishingyy, are ob-
energy functionalM y;;] now corresponds to the maximum tained as a result of the delocalization of the unpaired elec-

average number of double occupations for a giygn[see
Eq. (2.11)]. Therefore, it is also very interesting to investi-

tron. y7, represents the maximum bond order that can be

obtained when N.—1)/2 electron pairs are formedy{,
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0.00 fr—ee—e . Sr—oo—h mon trend are found foN.=N,=4. As already discussed
E}'; %i E% f;f? Ii for U>0, this is a consequence of degeneracies in the
Rt % % % N =3 < i o$ bl single-particle spectrum. In this case, the wave function cor-
© ‘}A+ 3 o x u%," g/ﬁ‘ responding to the minimum in Levy's functional foy,,
P K o o ; A/ . .
Z HESN 'y 5 x® % o+ 4] — 99, [Eq. (2.11)] cannot be described by a single Slater
D P S S determinant, andV(y;,— ¥3,) <Eyr.
~ ' At QQ% 7 8'0 ty o
Luo \.\ A+ %‘00 00 000 ;,8' . +A , /
AR s s e T IV. CONCLUSION
we )
e~ ., L Density-matrix functional theory has been applied to lat-
-0-25_0' 5 : e : 0|6 tice Hamiltonians taking the Hubbard model as a particularly
' 712 ) relevant example. In this framework the basic variable is the
0.0 ' single-particle density matriy;;, and the key unknown is
—— N/N_=3/12 U<O the correlation energy function&c[ y;;]. The challenge is
v x NJN.<4/12 therefore to determinE¢[ y;;] or to provide with useful ac-
_ ¢ 1D curate approximations for it. In this paper we presented a
LN oo NN =6/12 i systematic study of the functional dependenc&gfy,,) on
Ll =05 1 o+ NJN.=9A2 ' periodic lattices, \{vhererlz is the density—mat_r?x element be-
) £ tween nearest neighborg;( =y, for all NN'sij). Based on
L = NYN=12/12 1 finite-cluster exact diagonalizations and on the Bethe-Ansatz
(b) i solution of the 1D chain, we derived rigorous results for
. i Ec(7y10) of the Hubbard model as a function of the number
‘1'00_0' 0.5 1.0 of sitesN,, band filling N./N,, and lattice structure. A

(712_71200)/ (7120_71200)

FIG. 8. Band-filing dependence of the correlation energyof gq,=(7y1,— ¥12)/(¥2,— ¥i,) encourages transferring

Ec(y,0) of the one-dimensional attractive Hubbard modél (

basis for applications of density-matrix functional theory to
many-body lattice models is thereby provided. The observed
pseudouniversal behavior e£(g1,) =Ec/Ene as a function

ec(0g1o) from finite-size systems to infinite lattices or even to

<0). The number of sites iMl,;=12, and the number of electrons djfferent lattice geometries. In fact, the exd&gt(y,,) of the

N, is indicated. In(a) Ec is shown as a function of4, and in(b)

Hubbard dimer has been recently used to infer a simple gen-

Ec/|EG| is given as a function of the degree of delocalization org| Ansatz for Ec(y12).%° With this approximation to

912= (y12— )’Tg)/()/?z— ¥12)- Notice, Ec(v12,

=Ec(712,2N,—Ng) (Ref. 24.

Ng) =Ec(— ¥12,Ne)

Ec(y.») the ground-state energies and charge-excitation
gaps of 1D and 2D lattices have been determined success-
fully in the whole range olJ/t. Further investigations, for
example, by considering magnetic impurity models or more

—0 for N;—e, N, odd). Notice tEat in all cases the ground complex multiband Hamiltonians, are certainly worthwhile.
statey$5 is found in the intervaly;,< y{5< 7.

It is interesting to observe th&:(y,,) can be appropri-
ately scaled in a similar way as fas>0. In Fig. §b),
ec(d12) =Ec/|EE| is shown as a function of the degree of

delocalizationg;,= (12— ¥12)/ (Y32~ ¥12)- £c(912) presents
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