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Optical degeneracies in anisotropic layered media: Treatment of singularities
in a 434 matrix formalism
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434 matrices have been used extensively to study the propagation of light in anisotropic layered systems
whose principal optic axes have arbitrary orientation. We present a general theory for the propagation of light
in arbitrarily anisotropic layered systems that is particularly suited for treating optical degeneracies that arise
~1! when light propagates in an isotropic medium embedded within the anisotropic layers or~2! when light
propagates along one of the optic axes in an anisotropic layer. Boundary conditions are applied explicitly to the
electric and magnetic fields at each interface, and transfer matrices that relate the transmitted and reflected
fields to the optical properties of the system are developed. Criteria are given for identifying the mathematical
singularities caused by the degeneracies described above, and a method for treating the singularities in the
relevant expressions is presented.
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I. INTRODUCTION

A number of authors1–11 have used a 434-matrix formal-
ism to study the propagation of light in arbitrarily anisotro
layered systems. The mathematical singularities that aris
these studies, caused by optical degeneracies when an is
pic layer is embedded within the anisotropic layers or wh
light propagates along an optic axis of an anisotropic lay
have not been treated systematically to date. We briefly
view electromagnetic wave propagation in anisotropic m
dia, explicitly apply boundary conditions to each interface
the system, calculate the transfer matrix, and systematic
treat singularities that arise under the conditions sta
above.

II. THEORY

A. Eigenmodes

Consider an electromagnetic plane wave propagating
semi-infinite ambient medium~isotropic or anisotropic!, and
let the wave be incident on a layered anisotropic sys
whose optic axes have arbitrary orientation. The wave ve
of the incident wave isk0 , and the plane of incidence is th
x-z plane. Phase continuity at each of the interfaces gives
following equations:

kiy50, kix5k0x5vn0 sinu/c5vq0 /c, and

kiz5vqi /c, ~1!

where v is the angular frequency of the wave,n0 is the
refractive index that characterizes the incident wave, and
subscript i refers to quantities in layeri. If each layer is
homogeneous and described by the dielectric tensor (« ikm),
then Maxwell’s equations can be written as
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S m i« i112qi
2 m i« i12 m i« i131q0qi

m i« i21 m i« i222q0
22qi

2 m i« i23

m i« i311q0qi m i« i32 m i« i332q0
2
D S Eix

Eiy

Eiz

D
50, ~2!

wherem i is the magnetic permeability~assumed here to be
scalar! for layer i, andEix , Eiy , andEiz are thex,y, andz
components of the electric fields, respectively, for layeri. No
restrictions have been imposed on (« ikm). For nontrivial so-
lutions to exist,

U m i« i112qi
2 m i« i12 m i« i131q0qi

m i« i21 m i« i222q0
22qi

2 m i« i23

m i« i311q0qi m i« i32 m i« i332q0
2
U50.

~3!

The four roots of this fourth-order polynomial equation co
respond to thez components of the four possible direction
of the eigenmodes of the fields. The four values for the el
tric field eigenmodes are obtained by substituting the ro
for qi , denoted asqi j , j 51 to 4, into Eq.~2! and solving for
Ei5(Eix ,Eiy ,Eiz)

T, where the superscriptT denotes the
transpose. Expressions forEi are derived in the following
section. An equivalent expression forqi j for j 51 to 4 is
given by Schubert.10

B. Boundary conditions

The boundary conditions on the electric and magne
fields yield the following equations between mediai 21 and
i, denoted as surfacei, provided no free charge density o
surface current exists

~E~ i 21!11E~ i 22!21E~ i 21!31E~ i 21!42Ei12Ei22Ei32Ei4!

3n50, ~4!
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1

m i 21
~k~ i 21!13E~ i 21!11k~ i 21!23E~ i 21!21k~ i 21!33E~ i 21!3

1k~ i 21!43E~ i 21!4!3n

5
1

m i
~k i13Ei11k i23Ei21k i33Ei31k i43Ei4!3n, ~5!

where n is the surface normal pointing from mediumi to
medium i 21, and the subscripts 1, 2, 3, and 4 indicate
eigenmodes of fields. We assume that the fields andk vec-
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tors can be written as

Ei j 5Ei j ~g i j 1 ,g i j 2 ,g i j 3! and k i j 5~k0x,0,ki jz!,

with j 51 to 4, ~6!

whereEi j are the common factors of the three components
Ei j . By substituting the values forqi j ~j 51 to 4! into Eq.
~2!, values forg i j l ~j 51 to 4 andl 51 to 3! are found to be
given by
g i115g i225g i4252g i3151, ~7!

g i125
m i« i23~m i« i311q0qi1!2m i« i21~m i« i332q0

2!

~m i« i332q0
2!~m i« i222q0

22qi1
2 !2m i

2« i23« i32
, ~8!

g i1352
m i« i311q0qi1

m i« i332q0
2 2

m i« i32

m i« i332q0
2 g i12, ~9!

g i215
m i« i32~m i« i131q0qi2!2m i« i12~m i« i332q0

2!

~m i« i332q0
2!~m i« i112qi2

2 !2~m i« i131q0qi2!~m i« i311q0qi2!
, ~10!

g i2352
m i« i311q0qi2

m i« i332q0
2 g i212

m i« i32

m i« i332q0
2 , ~11!

g i325
m i« i21~m i« i332q0

2!2m i« i23~m i« i311q0qi3!

~m i« i332q0
2!~m i« i222q0

22qi3
2 !2m i

2« i23« i32
, ~12!

g i335
m i« i311q0qi3

m i« i332q0
2 1

m i« i32

m i« i332q0
2 g i32, ~13!

g i415
m i« i32~m i« i131q0qi4!2m i« i12~m i« i332q0

2!

~m i« i332q0
2!~m i« i112qi4

2 !2~m i« i131q0qi4!~m i« i311q0qi4!
, ~14!

g i4352
m i« i311q0qi4

m i« i332q0
2 g i412

m i« i32

m i« i332q0
2 . ~15!
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Here, we have used the convention thatqi1 andqi2 represent
forward traveling modes, andqi3 andqi4 represent backward
traveling modes.

It should be noted that eachg i j is unique only up to a
constant factor, since the three equations represented by
~2! are homogeneous. However, this factor can be abso
by Ei j . Therefore, this uncertainty has no effect on the la
discussion.

In the method above, we assumed that two of the eq
tions from Eq.~2! are independent. However, this assum
tion may not be valid when the eigenfields are degener
These degeneracies may lead to zero denominators in
expressions forg i j l ~j 51 to 4, l 51 to 3!, thus giving rise to
singularities. To give a systematic, comprehensive treatm
of the singularities, two problems must be considered. F
the singularities must be identified, and second, the singu
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ties must be removed. Using linear algebra, it can be pro
that when all roots in Eq.~3! are different, the rank of the
matrix of Eq.~2! is two. Two equations can always be ch
sen from Eq.~2! to solve forg i j l , giving Eqs.~7!–~15! or
equivalent expressions obtained by Cramer’s rule, and
singularities arise. When repeated roots occur, howe
there are only two cases to consider. For the first case, if
materials are losslessor if they can be represented by diag
onal dielectric tensors relative to the laboratory coordin
system, the rank of the 333 matrix in Eq.~2! becomes one,
and singularities occur. For the second case, if the mate
are absorptiveand the dielectric tensor contains off-diagon
elements, no generalizations can be made at this time,
singularities must be determined by examining individu
g i j l ’s. In all situations where singularities occur, howeve
only one of the three equations represented by Eq.~2! is
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independent, the solution of which consists of two indep
dent vectors, corresponding to two eigenmodes of the fie
In what follows, we demonstrate how to deal with these s
gularities.

In general, the diagonal entries are not zero, and they
the dominant terms in the dielectric tensor. Usuallym i« i33

2q0
2Þ0, and we would choose the third equation from E

~2! as the independent equation from which to develop n
expressions forg i j l . If qi15qi2 , then the values obtained fo
g i j l in Eqs.~8!–~15! can be replaced by the following value
for g i j l ~j 51,2; l 51,2,3!, which are two independent vec
tors of the solution of Eq.~2!:

g i115g i2251, ~16!

g i125g i2150, ~17!

g i1352
m i« i311q0qi1

m i« i332q0
2 , ~18!

g i2352
m i« i32

m i« i332q0
2 . ~19!

Any other two independent vectors that are the linear co
bination of the above two vectors are equally valid.
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-

Similarly, if qi35qi4 , then the values ofg i j l in Eqs.~8!–
~15! can be replaced by the following expressions forg i j l
~j 53,4; l 51,2,3!:

g i3152g i42521, ~20!

g i325g i4150, ~21!

g i335
m i« i311q0qi3

m i« i332q0
2 , ~22!

g i4352
m i« i32

m i« i332q0
2 . ~23!

Equations~16!–~23! are the replacements for Eqs.~7!–~15!
regardless of whether the singularities arise from the fi
case or from the second case.

Using the expressions forg i j l , Eqs. ~4! and ~5! can be
rewritten in matrix form as

Ai 21Ei 215AiEi , ~24!

where
Ai5S g i11 g i21 g i31 g i41

g i12 g i22 g i32 g i42

1

m i
~qi1g i112q0g i13!

1

m i
~qi2g i212q0g i23!

1

m i
~qi3g i312q0g i33!

1

m i
~qi4g i412q0g i43!

1

m i
qi1g i12

1

m i
qi2g i22

1

m i
qi3g i32

1

m i
qi4g i42

D
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Ei5~Ei1 ,Ei2 ,Ei3 ,Ei4!T.

Equation~24! can be written as

Ei 215LiEi , ~25!

where

Li5Ai 21
21 Ai . ~26!

Since the boundary conditions are independent,Ai is not
singular. Its inverse exists, andLi is well defined.

C. Transfer matrix

Using the boundary conditions, we can find the trans
matrix. For a system withn layers, in which a layer may be
either isotropic or anisotropic, if we define a four compone
field vector as

c5~c1 ,c2 ,c3 ,c4!T, ~27!
r

t

then the transfer matrixT relates the fieldc0 in the ambient
to the fieldcn11 in the substrate by the following relation:

c05Tcn115P0XPn11
21 cn11 , ~28!

where P0 projects the fields in the ambient to the eige
modes in the first layer, andPn11

21 projects the fields in the
substrate back to the form ofc. These two matrices depen
on the representation ofc. The following relation can be
derived using a similar procedure as that in Ref. 4:

X5L1K1
21L2K2

21...LnKn
21Ln11 , ~29!

which is independent of the representation ofc. TheKl ma-
trix describes the transmission of the eigenfields from the
of layer l to its bottom.

~Kl ! jk5 H0, j Þk
exp~ ivql j hl /c!, j 5k. ~30!

The ql j , j 51 to 4, are determined from Eq.~3! for layer l.
X is a characteristic matrix of the system. If all the diele

tric tensors relative to the laboratory coordinates are kno
the matrix X can be straightforwardly calculated before
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measurement is made. On the other hand, if the dielec
tensor is the quantity to be determined, a suitable format oc
can be chosen to simplifyP0 and Pn11 for extraction ofX
from experimental data. In this way, the technique we ha
given for removing singularities applies to any stratified a
isotropic system and for any representation of field vecto

D. Analysis for µi« i332q0
2Ï0

In the discussion above, we assumed thatm i« i332q0
2Þ0

and found explicit expressions forg i j l , since it is the usual
case. It is still possible thatm i« i332q0

250. However, it
should be noted that the occurrence of singularities in t
expressions for the eigenfields does not depend on whe
m i« i332q0

250. In this section, we discuss this problem fo
isotropic and anisotropic media separately. For clarity, in t
following, we assume the materials involved are lossless.

1. Isotropic media

Case 1. m i« i332q0
250. In this case, from Eq.~3!, qi j

50, j 51 to 4. The total internal reflection occurs in layeri.
The fields in the layer travel along the interface andKi5I ,
the identity matrix. Since there is no decay in the field
physically the thickness of the layer does not affect the fie
coupled in the next layer. The fields in this layer need not
calculated. This can also be seen from Eqs.~26! and ~29!:

X5L1K1
21...Ai 21

21 AiI
21Ai

21Ai 11 ...LnKn
21L̇n11

5L1K1
21...Ai 21

21 Ai 11 ...LnKn
21Ln11. ~31!

Case 2. m i« i332q0
2,0. In this case, from Eq.~3!, qi j , j

51 to 4, are pure imaginary numbers. They correspond
evanescent fields~leaky modes! in the layer. Physically,
some energy may be radiated along the interface if the thi
ness of the layer is not too large. A more detailed discuss
on leaky modes can be found elsewhere.12–15

2. Anisotropic media

In the following cases, we assume thatm i« i332q0
250.

Then the constant term in Eq.~3! is

C5m i
2bm i« i12« i23« i311m i« i13« i32« i212~m i« i222q0

2!« i13« i31

2m i« i11« i23« i32c. ~32!
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Case 3. If « i j 5« j i , and «135«2350. In this case,C
50. From Eq.~3!, one obtains

qi1,350, qi2,456Am i« i222q0
2. ~33!

One of the forward traveling fields is totally reflected, a
depending on the value of« i22, the other one may be a
transmitted or evanescent field.

Case 4. C,0. In this case, sinceC5) j 51
4 qi j , qi j Þ0, j

51 to 4. The only possibility forqi j is thatqi1,0,qi2,4 are a
pair of conjugate, pure imaginary numbers, andqi3.0, be-
cause if allqi j are real, two of them must be negative and t
other positive, makingC.0. Therefore, one forward mode i
evanescent while the other is regular. The same is true for
backward modes.

Case 5. C.0. In this case,qi j may be either real or com
plex. A complexqi j corresponds to an evanescent field.

For anisotropic media, whenm i« i332q0
250 and no de-

generacies occur, using Cramer’s rule, we choose two e
tions from Eq.~2! to avoid havingm i« i332q0

2 appear in the
denominators in the expressions forg i j l . When degenacies
occur, e.g., in case 3 or 5, we choose the first or sec
equation from Eq.~2! to solve forg i j l .

III. SUMMARY

We have developed a general theory for the propaga
of light in anisotropic materials whose optic axes have
arbitrary orientation, which is particularly suited for th
treatment of degeneracies that cause singularities in ma
formalism. We have identified specific cases where singul
ties arise in the matrix treatment, developed a gene
method for treating singularities, and derived mathemat
expressions that allow for removal of the singularities to e
sure that all the matrices are invertible.
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