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Optical degeneracies in anisotropic layered media: Treatment of singularities
in a 4x4 matrix formalism
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4x4 matrices have been used extensively to study the propagation of light in anisotropic layered systems
whose principal optic axes have arbitrary orientation. We present a general theory for the propagation of light
in arbitrarily anisotropic layered systems that is particularly suited for treating optical degeneracies that arise
(1) when light propagates in an isotropic medium embedded within the anisotropic lay&swenen light
propagates along one of the optic axes in an anisotropic layer. Boundary conditions are applied explicitly to the
electric and magnetic fields at each interface, and transfer matrices that relate the transmitted and reflected
fields to the optical properties of the system are developed. Criteria are given for identifying the mathematical
singularities caused by the degeneracies described above, and a method for treating the singularities in the
relevant expressions is presented.
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A number of authors** have used a4 4-matrix formal- Wigin Wigin— 02— a2 LiEins Eiy
ism to study the propagation of light in arbitrarily anisotropy 2 .
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layered systems. The mathematical singularities that arise in
these studies, caused by optical degeneracies when an isotro- =0, 2
pic layer is embedded within the anisotropic layers or when

light propagates along an optic axis of an anisotropic layerynere y; is the magnetic permeabiliassumed here to be a
have not been treated systematically to date. We briefly rescgjay for layeri, andE;,, Ei,, andE;, are thex,y, andz
view electromagnetic wave propagation in anisotropic mecomponents of the electric fields, respectively, for lay®to
dia, explicitly apply boundary conditions to each interface inrestrictions have been imposed any,). For nontrivial so-
the system, calculate the transfer matrix, and systematicallyitions to exist,

treat singularities that arise under the conditions stated

above. 5
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A. Eigenmodes ©)

Cpps!dgr an el_ectromagngtlc plalje wave propagating in #he four roots of this fourth-order polynomial equation cor-
semi-infinite ambu.ent- mediurtisotropic or am_sotropbg and respond to the components of the four possible directions
let the wave be incident on a layered anisotropic Systemy the eigenmodes of the fields. The four values for the elec-
whose optic axes have arbitrary orientation. The wave vectogic field eigenmodes are obtained by substituting the roots
of the incident wave i%,, and the plane of incidence is the fq, qi, denoted asy;, j=1 to 4, into Eq.(2) and solving for
x-z plane. Phase continuity at each of the interfaces gives the, = (g ,Eiy,Ei)T, where the superscripl denotes the
following equations: transpose. Expressions f& are derived in the following

section. An equivalent expression fqy; for j=1 to 4 is
given by Schubert®
kiy=0, ky=kp=wnysind/c=wqy/c, and

B. Boundary conditions

ki,=wq;/c, ) The boundary conditions on the electric and magnetic
fields yield the following equations between metial and
i, denoted as surfacde provided no free charge density or
where w is the angular frequency of the wavey is the  surface current exists
refractive index that characterizes the incident wave, and the
subscripti refers to quantities in layer. If each layer is . , . , Er_F
homogeneous and described by the dielectric tensgf.), (Bi-11+Bi-22F B3t Bi-na~Bu—BomEis—Eia)
then Maxwell's equations can be written as Xn=0, (4)
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1 tors can be written as
. (Ki—1)1XEi—1)1 T Ki—1)2XEi-1)2 T Kii—1)3XEi-1)3
Eij =Eij(¥ij1,Yij2, %ij3) and Ki; = (Kox,0Kij,),
+Ki-1)aXEi-14)Xn
1 with j=1 to 4, (6)
= — (K1 X Ej1 + KioX Ejp+KizX Eis+kis X Ejs) Xn, (5)

Ki whereE;; are the common factors of the three components of
wheren is the surface normal pointing from mediuitto  E;;. By substituting the values fag;; (j=1 to 4) into Eq.
mediumi—1, and the subscripts 1, 2, 3, and 4 indicate the(2), values fory;;; (j=1 to 4 and =1 to 3 are found to be
eigenmodes of fields. We assume that the fieldskanedc-  given by

Yi11= Yi22= Yia2= ~ Yiz1= 1, (7)
.  wigizd wigiant Qo) — pigiza Kigiza G5) ®
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Yio1= — 2 2 , (10)
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Mi€izit dodiz Mi€iz2
Yis=— . 7 YialT T 2 (13)
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Yis2= — — 77 7 , (12
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Yiar= — 2 — 2 , (14)
(migizz—dg) (migi11—Uig) — (Hi€i13T dolia) (4i€i31+ oCia)
Mi€iz1t Jolis Mi€i2
gm0 T 15)
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Here, we have used the convention thatandq;, represent ties must be removed. Using linear algebra, it can be proved
forward traveling modes, amgj; andq;, represent backward that when all roots in Eq(3) are different, the rank of the
traveling modes. matrix of Eq.(2) is two. Two equations can always be cho-

It should be noted that eacl; is unique only up to a sen from Eq.(2) to solve fory;; , giving Egs.(7)—(15) or
constant factor, since the three equations represented by Eeguivalent expressions obtained by Cramer’s rule, and no
(2) are homogeneous. However, this factor can be absorbegingularities arise. When repeated roots occur, however,
by E;; . Therefore, this uncertainty has no effect on the latetthere are only two cases to consider. For the first case, if the
discussion. materials are losslesw if they can be represented by diag-

In the method above, we assumed that two of the equasnal dielectric tensors relative to the laboratory coordinate
tions from Eq.(2) are independent. However, this assump-system, the rank of the>X33 matrix in Eq.(2) becomes one,
tion may not be valid when the eigenfields are degenerateand singularities occur. For the second case, if the materials
These degeneracies may lead to zero denominators in tlage absorptivandthe dielectric tensor contains off-diagonal
expressions fow;; (j=1to 4,I=1 to 3, thus giving rise to  elements, no generalizations can be made at this time, and
singularities. To give a systematic, comprehensive treatmersingularities must be determined by examining individual
of the singularities, two problems must be considered. Firsty;;;’s. In all situations where singularities occur, however,
the singularities must be identified, and second, the singularenly one of the three equations represented by @).is
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independent, the solution of which consists of two indepen-  Similarly, if gi3=q;,, then the values of;; in Egs.(8)—
dent vectors, corresponding to two eigenmodes of the fieldg15) can be replaced by the following expressions 4Gy
In what follows, we demonstrate how to deal with these sin{j=3,4;1=1,2,3):

gularities.

In general, the diagonal entries are not zero, and they are

the dominant terms in the dielectric tensor. Usually;s;

—g35#0, and we would choose the third equation from Eq.

(2) as the independent equation from which to develop new

expressions fow;;; . If g;;=0;,, then the values obtained for
iji in Egs.(8)—(15) can be replaced by the following values
for v (j=1,2;1=1,2,3), which are two independent vec-

tors of the solution of Eq(2):

Yir= Yizo= 1, (16)
Yi12= ¥i21= 0, (17)
Mi€iz1t Joli1
Yisgm — ——————, (18
Mi€i33— g
Mi€i32
Yizs= — % (19
Mi€izz— g

Yiz1= ~ Yiao= — 1, (20)
Yi32= ¥i41= 0, (21)
Mi€iz1t Jodis
')’isazll—_zlv (22)
Mi€i33— g
Mi€i32
= — 2 (23
Yias Mi€i33— qé

Equations(16)—(23) are the replacements for EqS)—(15)
regardless of whether the singularities arise from the first
case or from the second case.

Using the expressions foy;; , Egs.(4) and (5) can be
rewritten in matrix form as

Any other two independent vectors that are the linear com-

bination of the above two vectors are equally valid.

Yi11 Yi21

Yi12 Yi22
1

Ai=| —(di1Yi1x—doYi1a)
Mi

1 1
P Qdi1Yi12 P Qi2Yi22

and
Ei=(Ei1.Ei2.Eis,Ein)".
Equation(24) can be written as
Ei-1=LiE;, (25
where
Li=A LA . (26)

Since the boundary conditions are independént,is not
singular. Its inverse exists, and is well defined.

C. Transfer matrix

Using the boundary conditions, we can find the transfer
matrix. For a system witm layers, in which a layer may be

1 1
E(qi27i21_ doYi23) E(Qisyiﬂ_ do7is3)

Ai_1Ei_1=AE;, (24)
where
Yi31 Yia1
Yi32 Yia2

1
E(Qm?’m— do%ia3)
1 1

i QizYiz2 " QiaYiaz

then the transfer matriX relates the field), in the ambient
to the field, 1 in the substrate by the following relation:

¢0:T¢n+1:POXP;+11‘//n+1: (29)

where P, projects the fields in the ambient to the eigen-
modes in the first layer, anE;jl projects the fields in the
substrate back to the form @f These two matrices depend
on the representation af. The following relation can be
derived using a similar procedure as that in Ref. 4:

X=LK; oKt LKy 1, (29)

which is independent of the representation/ofThe K, ma-
trix describes the transmission of the eigenfields from the top
of layerl to its bottom.

0, j £k

(Ki= exptiway;hy /c), j=k. (30

either isotropic or anisotropic, if we define a four componentThe q;;, j=1 to 4, are determined from E¢B) for layer|.

field vector as

=1, 02,93, 002) ", (27

Xis a characteristic matrix of the system. If all the dielec-
tric tensors relative to the laboratory coordinates are known,
the matrix X can be straightforwardly calculated before a
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measurement is made. On the other hand, if the dielectric Case 3 If gjj=¢;, and e;3=&,3=0. In this caseC
tensor is the quantity to be determined, a suitable formgt of =0. From Eq.(3), one obtains
can be chosen to simplifiy, and P, ; for extraction ofX

frpm experlmenftal dz_ita. In f[hls Way,_the technique we have Gi13=0, Gipa=* /—MiSizz— qS. (33)
given for removing singularities applies to any stratified an-

isotropic system and for any representation of field vectorsgne of the forward traveling fields is totally reflected, and

. ) depending on the value aof;,,, the other one may be a
D. Analysis for [;€;33—05=<0 transmitted or evanescent field.

In the discussion above, we assumed that; 33— g3+ 0 Case 4 C<O0. In this case, Sin(?@:Hf':lqu , 970, ]
and found explicit expressions fa; , since it is the usual =1 to 4. The only possibility fog;; is thatg;; <0,g;z4are a
case. It is still possible thapeis—g2=0. However, it ~Pair of conjugate, pure imaginary numbers, apg>0, be-
should be noted that the occurrence of singularities in th&ause if allg;; are real, two of them must be negative and the
expressions for the eigenfields does not depend on wheth@fher positive, making> 0. Therefore, one forward mode is
LiEisa— q§=0. In this section, we discuss this problem for evanescent while the other is regular. The same is true for the
isotropic and anisotropic media separately. For clarity, in the?ackward modes.

following, we assume the materials involved are lossless.  €asé 5C=>0.In this caseq;; may be either real or com-
plex. A complexq;; corresponds to an evanescent field.

1. Isotropic media For aniSOtrOpiC media, Whep,isigg_ quo and no de-
generacies occur, using Cramer’s rule, we choose two equa-
tions from Eq.(2) to avoid havingu;eiss—q3 appear in the

, . X denominators in the expressions fgf . When degenacies
;]Ze .gilgft Inr:]g?r_layes(r;t::iv?rl]:rlgn% trr]'g ggﬁrafac_i etﬂg;"el ds occur, e.g., in case 3 or 5, we choose the first or second
! Iy x. Sl ! ! ! ‘equation from Eq(2) to solve fory;j; .

physically the thickness of the layer does not affect the fields
coupled in the next layer. The fields in this layer need not be

Case 1 /.Li8i33_q(2):0. In this case, from Eq(3), g;
=0, j=1 to 4. The total internal reflection occurs in layer

calculated. This can also be seen from E@$) and (29): . SUMMARY
X=LK; L AL AT AT A LK We h_ave Qeveloped a geperal theory for the propagation
of light in anisotropic materials whose optic axes have an
=LKy ATEA LK g (31)  arbitrary orientation, which is particularly suited for the

treatment of degeneracies that cause singularities in matrix
Case 2 uieizg—g3<0. In this case, from Eq?3), Qi » | formalism. We have identified specific cases where singulari-
=1 to 4, are pure imaginary numbers. They correspond tdies arise in the matrix treatment, developed a general
evanescent fieldg§leaky modes in the layer. Physically, method for treating singularities, and derived mathematical
some energy may be radiated along the interface if the thickexpressions that allow for removal of the singularities to en-
ness of the layer is not too large. A more detailed discussiogure that all the matrices are invertible.
on leaky modes can be found elsewh&ré?®
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