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Semiclassical transport in a square billiard: Conductance oscillations as probe
of coherence length

T. Blomquist and I. V. Zozoulenko
Department of Physics (IFM), Linko¨ping University, S-581 83 Linko¨ping, Sweden

~Received 16 September 1999!

We provide a semiclassical interpretation of the conductance oscillations in a square billiard and outline its
relation to a commonly used picture of periodic orbits. We demonstrate that the characteristic frequencies in
the conductance arise as a result of interference of pairs of long trajectories that typically bounce in a vicinity
of the corresponding periodic orbits in the phase space. We present an unambiguous identification of the
specific pairs of trajectories causing the pronounced peaks in the observed length spectrum of the conductance.
This allows us to extract directly the phase coherence length from the frequency of the observed oscillations.
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Statistical properties of the conductance fluctuations or
nating from the interference of electron waves in subm
crometer semiconductor quantum dots~electron billiards!
have been a lively area for both experimental and theore
studies.1 A second related question is attracting more att
tion in recent years, namely is it possible to explain/pred
the geometry-specific spectrum of the conductance osc
tions in a billiard of a given shape~square, circle, stadium
etc.!.2–8 One of the most common approaches is based on
Gutzwiller’s picture of periodic orbits where the character
tic frequencies of the oscillations in the conductance of o
dots are associated with the contribution from simple clo
periodic orbits of the corresponding isolated structure2–6

such that the density of states at the Fermi energy of
isolated dot~broadened due to a finite escape lifetime! domi-
nates fluctuations. Although being intuitively simple a
therefore attractive, this picture in fact brushes many imp
tant questions under the carpet. For example, the questio
how and why the closed orbits~which are often classically
decoupled from the leads! mediate conductance is not a
dressed at all or remains on the level of speculations. H
ever, somehow different predictions may apparently foll
from the semiclassical approach where the conductanc
the dot arises from the contributions from the all classi
trajectories that connect the entrance and the exit leads.9,7,8,10

Each of the paths carries an amplitude and a phase. A
result the oscillations are determined by a set of the tra
tories relating the billiard leads.

In this paper, we attempt to reconcile these two seemin
different pictures by performing both quantum and semicl
sical calculations for the square billiard. The choice of t
geometry is motivated by a recent experiment5 where the
observed frequency of oscillations has remained unexpla
as it is a factor of two smaller than that expected from
periodic orbit theory and quantum-mechanic
calculations.5,6

In this paper, we demonstrate that, regardless of the
positions, the several lowest characteristic frequencies in
length spectrum of the conductance oscillations of the o
square formally coincides with the length of the shortest
riodic orbits. However, we show that these frequencies a
as a result of interference ofpairs of long trajectories~of the
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length of ;3210L, L being the square side! which typi-
cally bounce in a vicinity of the corresponding periodic o
bits in the phase space. The distribution of path differen
between these trajectories is often~but not always! peaked at
the lengths of the shortest periodic orbits, which explains
observed frequencies.

Introducing a finite coherence lengthl f'0.8L
(;2 mm) which suppresses the contribution from long tr
jectories, we reproduce the experimental result5 and thus pin-
point a specific pair of~short! trajectories that generated th
observed oscillations. This, to the best of our knowled
represents the first unambiguous identification of the spec
frequency of oscillations observed in a billiard of a give
shape. Note that the different reports in current literature g
estimations of the low temperaturel f (T&0.1 K) for vari-
ous billiard systems in a wide range of 0.5–100mm.11–14

Moreover, different models of determination ofl f are usu-
ally based on rather indirect methods, which, even for
same dot, may give values differing in the order of
magnitude.12 In contrast, our analysis provides adirect de-
termination of the phase coherence length from the cha
teristic frequencies in the length spectrum, which, in turn,
immediately related to the specific trajectories in the billia

Let us consider a square billiard with a pair of ideal lea
attached to its opposite sides, see Fig. 1. The ze
temperature conductance of the structure is given by the L
dauer formulaG5(2e2/h)T where the total transmission co
efficient T5(mnTmn is the sum over transmissio
coefficients from all the propagating modesm in one lead to
the modesn in the other;Tmn5utmnu2.10 In the absence of a
magnetic field the transmission amplitudetnm is given by the
projection of the retarded Green function onto the transve
wave functionsfn(y) in the incoming and outgoing leads9

tmn~kF!52 i\AvnvmE dy1E dy2fn* ~y1!

3fm~y2!G~y1 ,y2 ,kF!, ~1!

wherevn is the longitudinal velocity for the moden andkF
is the Fermi wave vector. We perform both quantu
mechanical and semiclassical calculations of the cond
1724 ©2000 The American Physical Society
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tance. In the quantum-mechanical calculations we introd
a tight-binding Hamiltonian and calculateG(y1 ,y2 ,kF) us-
ing the modified version15 of the standard recursive Green’
function technique based on the Dyson equation.10 In the
semiclassical treatment we replace the quantum-mecha
Green function by its semiclassical limit.9,2 For the square
billiard with the hard hard-wall leads of the widthw, Eq. ~1!
reduces to

tmn
sc ~kF!5(

s
ashm* ~kF ,u1

s!hn~kF ,u2
s!eikFl s2 ims p/2, ~2!

where summation is performed over all classical t
jectoriess connecting the two leads in the square billiard
the sizeL, l s being the length of the trajectory andu1(2)

s

being the corresponding entrance~exit! angles;
as52A2knkm/2p i /(wkFl s), kn is the longitudinal wave
vector for nth mode, ms is the Maslov index, the facto
hn(kF ,u) is related to the electron diffraction at the lea
mouths and describes an angular distribution of the elect
injected from the lead with the angleus @an explicit expres-
sion for hn(kF ,u) can be found in Ref. 8; see also Ref. 7#.

The conductance oscillations are most conveniently a
lyzed in terms of the length spectrum given by the Four

transform~F.T.! f̃ ( l )5*dkF f (kF)e2 ikFl . Because of the rap
idly varying phase factor in the exponent in Eq.~2!, the

spectrum oft̃ nm( l ) is strongly peaked at the lengthsl 5 l s of
the classical trajectories connecting the leads~appropriately
weighted according to the injection angles and the m

numbers!. This behavior oft̃ nm is well understood and veri
fied for a number of different model billiards.16,8,7However,
much less attention has been devoted to the analysis o
total transmission coefficientT, which, in contrast totnm , is
accessible experimentally. Figure 1 shows the length sp
trum of the total transmission coefficientT of square billiards
with different lead positions calculated both quantum m
chanically and semiclassically. In the latter, the trajector

FIG. 1. The length spectrum of the semiclassical~SC! and
quantum-mechanical~QM! total transmission coefficient of a
square billiard with different lead positions. The QM length spe
trum is inverted and curves are shifted for clarity. In the SC cal
lations the trajectories with up to 10 bounces are included. Here
hereafter the size of the dot isL50.72 mm; L/w510. The F.T. is
performed in the interval 1,kFw/p,5. Vertical lines indicate the
lengths of the shortest periodic orbits in the closed square, w
are schematically depicted in the figure.
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with up to ;10 bounces were included in Eq.~2!, which is
sufficient to achieve a satisfactory agreement with
quantum-mechanical calculations. One of the most rema
able observation is that the oscillation frequencies do
seem to be sensitive to the lead position and the charact
tic lengths in the spectrum are typically close to the leng
of the shortest periodic orbits,l ( i , j )

p.o.52LAi 21 j 2, where (i , j )
are the positive-integer winding numbers giving the num
of collision with one of vertical and one of horizonta
boundaries.2 To understand this feature let us consider t
semiclassical transmission coefficientTnm5utmnu2

Tmn
sc ~kF!5(

s
uasu2uHsu2

1(
s,s8

asas8
* HsHs8

* eikF( l s2 l s8)2 i (ms2ms8) p/2, ~3!

where Hs5hm* (kF ,u1
s)hn(kF ,u2

s). The second term repre
sents a quantum correction to the classical transmission

to interference between pathss ands8. The T̃nm
sc ( l ) is obvi-

ously strongly peaked at thelength difference l5D l[ l s
2 l s8 in the pairs of the classical trajectories connecting
leads. Thus, identification of the characteristic frequencie
the oscillations reduces to the analysis of the path differe
distribution in a square billiard with a given lead geomet
For this purpose it is convenient to ‘‘unfold’’ a square b
reflecting it at all its sides such that each bouncing traject
transforms into a straight line connecting the original e
trance and an unfolded exit, see Fig. 2~b!. Each trajectory is
characterized by the number of collisions,m andn, with the
vertical and the horizontal walls respectively, and the law
Pythagoras immediately gives a trajectory lengthl mn . A
simple analysis shows that the length difference for ma
pairs of trajectories often converges to the lengths of
shortest periodic orbits of the square. Indeed, consider p
of trajectories withm@n, i.e. those where electrons are in
jected almost parallel to the horizontal boundary such t
they bounce in the vicinity of the periodic orbit~1,0! in the
phase space. The length difference between two consec
trajectories is D l 5 l m12,n2 l m,n52L@11O(n/m)
1O„(d/L)(n/m)…#; d being the distance from the exit to th
upper wall. This implies that for all such pairs and regardle
of the lead positiond, D l converges to the same valuel (1,0)

p.o.

52L provided the trajectories are sufficiently long,m/n
@1. Similarly, all pairs of long trajectories where electro
are injected close to the diagonal of the square,m'n @i.e., in
the vicinity of a periodic orbit~1,1!# amount to a length
differenceD l' l (1,1)

p.o. 52A2L. It is worth to stress that the
characteristic length difference does not always match
length of a periodic orbit. For example, this is the case

the peak inT̃( l ) at l'4L ~see Fig. 1!, which is caused by
pairs of trajectories of the length ofl m14,n and l m,n ; m@n.

A detailed inspection of the transmission probability, E
~3!, supports the analysis performed above. Figure 2~a!

showsT̃11( l ) for a square dot with different lead configura
tions. Let us concentrate on the peak atl 52L. Figure 2~c!
show the pairs of trajectories whose contribution to this pe
@calculated according to Eq.~3!# is dominant. As expected
all these trajectories bounce in the vicinity of the period
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1726 PRB 61BRIEF REPORTS
orbit ~1,0! ~i.e. m@n). @Note that the contribution from the
trajectories injected close to the orbit~0,1!, i.e. perpendicular
to the lead, are suppressed by the angular factorHs in Eq. ~3!
which is strongly peaked atu50 for the electrons in the firs
mode.# Typically, the trajectories must be sufficiently lon
m*4 in order for their length difference to approach 2L.
However, as evident from Figs. 2~a! and 2~c!, the required
number of bounces depends on the lead position. For
stance, 5 bounces already give a good agreement with
quantum-mechanical calculations for the geometries II
III, whereas for the geometry I this number must be*8 in

FIG. 2. ~a! The length spectrum of the quantum-mechani
~QM! and the semiclassical~SC! transmission coefficientT11 for
the geometries I–III@see insets in~c! and Fig. 1#. In semiclassical
calculations the trajectories with up to 5 and 10 bounces are
cluded~dashed and dotted lines, respectively!. The peak atl 52L is
marked by the dotted line.~b! A diagram illustrating the unfolding
of bouncing trajectories in a square. An original square~shaded!
with a pair of two bouncing trajectories~solid and dashed lines!
connecting the entrance and the exit~a fat dash and an open circl
respectively!. The square is unfolded in a plane by reflecting at
its sides. In this representation each bouncing trajectory in the
~i.e. the solid and the dashed lines in the shaded square! unfolds into
a straight line connecting the entrance~an encircled fat dash in the
shaded square! with the corresponding unfolded exit. A solid lin
connecting the unfolded exits is drawn to identify this pair of t
jectories.~c! The solid lines identify thepairs of trajectories@as
described in~b!# giving a dominant contribution to the peak atl
52L in ~a!. The length difference between the trajectories in e
pair is D l'2L.
n-
he
d

order to provide the expected contribution toT̃11
sc . Similar

analysis for the other modes in the leads and other peak
the length spectrum can be performed in the same way.

Let us now apply the above analysis to the experime5

where highly periodic oscillations in a square dot at ze
field have been observed as a function ofkF with a well-
defined single frequency in the length spectrum atl'1.4L.
The experiment has been performed in a four-terminal ge
etry with the leads placed at the corners of the square~see
inset in Fig. 3!. According to the Landauer-Bu¨ttiker
formalism,10 the observed four-terminal resistance in th
case can be expressed via only two independent transmis
coefficients. These coefficients are approximately th
given by geometries I and III~Figs. 1 and 2!. As shown

above, the corresponding calculated length spectra ofT̃( l )
are dominated by the pronounced features atl 52L,2A2L,
which are due to relatively long trajectories withl s*5
27L. The absence of these frequencies in the experime
spectrum suggests that the above lengths exceed the p
coherent lengthl f . In the presence of phase-breaking eve
the probability that an electron travels the pathl s without
loosing its phase is exp(2ls/lf).13 We introduce this prob-
ability in Eq. ~3! and effectively suppress contributions fro
the long trajectories. Figure 3 shows that with a reduction
the coherence lengthl f&0.8L, only one single frequencyl
'1.24L survives in the length spectrum. The pair of th
shortest trajectories in the square~with the length difference
A5L2L'1.24L), which cause these oscillations is shown
the inset. The obtained frequency matches the experim
tally observed one within the accuracy of 12%, which
satisfactory taking into account the uncertainty in the act
dot dimension etc. It is important to stress that the amplitu
of the fluctuations is significantly reduced (!e2/h), which is
in agreement with the experimental results where the os
lations in the resistance had a typical magnitude of only s
eral V.

The above analysis sets the phase coherence length i
dot5 to l f'0.8L52 mm. This value is consistent with th
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FIG. 3. The length spectrum of the semiclassical total transm
sion ~geometries I and III; solid and dashed lines, respective!
where a finite coherence length is introduced;l f50.8L,1.4L. Inset
shows the pair of trajectories in the square generating the pea
l'1.25L. A vertical line indicates the experimentally observed fr
quency~Ref. 5! with the corresponding lead geometry.
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results11,12 but significantly lower that those for the device
studied in Refs. 13 and 14. However, it is worth to stress t
different models of determination ofl f give values that can
disagree as much as in the order of the magnitude even
the same dot.12 On the other hand, the above analysis p
.

at

or
-

vides a direct assessment ofl f through specific trajectories
of the ballistic billiard.
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