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Semiclassical transport in a square billiard: Conductance oscillations as probe
of coherence length
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We provide a semiclassical interpretation of the conductance oscillations in a square billiard and outline its
relation to a commonly used picture of periodic orbits. We demonstrate that the characteristic frequencies in
the conductance arise as a result of interference of pairs of long trajectories that typically bounce in a vicinity
of the corresponding periodic orbits in the phase space. We present an unambiguous identification of the
specific pairs of trajectories causing the pronounced peaks in the observed length spectrum of the conductance.
This allows us to extract directly the phase coherence length from the frequency of the observed oscillations.

Statistical properties of the conductance fluctuations origifength of ~3—10L, L being the square siglavhich typi-
nating from the interference of electron waves in submi-cally bounce in a vicinity of the corresponding periodic or-
crometer semiconductor quantum ddedectron billiard$  bits in the phase space. The distribution of path differences
have been a lively area for both experimental and theoreticddetween these trajectories is oftgut not alway$ peaked at
studiest A second related question is attracting more attenthe lengths of the shortest periodic orbits, which explains the
tion in recent years, namely is it possible to explain/predictobserved frequencies.
the geometry-specific spectrum of the conductance oscilla- Introducing a finite coherence length ;~0.8L
tions in a billiard of a given shapesquare, circle, stadium (~2 um) which suppresses the contribution from long tra-
etc).2® One of the most common approaches is based on thiectories, we reproduce the experimental résarid thus pin-
Gutzwiller's picture of periodic orbits where the characteris-point a specific pair ofshort) trajectories that generated the
tic frequencies of the oscillations in the conductance of opemwbserved oscillations. This, to the best of our knowledge,
dots are associated with the contribution from simple closedepresents the first unambiguous identification of the specific
periodic orbits of the corresponding isolated structtffe frequency of oscillations observed in a billiard of a given
such that the density of states at the Fermi energy of thehape. Note that the different reports in current literature give
isolated dot(broadened due to a finite escape lifetidemi-  estimations of the low temperaturg (T=<0.1 K) for vari-
nates fluctuations. Although being intuitively simple andous billiard systems in a wide range of 0.5—1@@n.**~4
therefore attractive, this picture in fact brushes many imporMoreover, different models of determination lof are usu-
tant questions under the carpet. For example, the question afly based on rather indirect methods, which, even for the
how and why the closed orbi{svhich are often classically same dot, may give values differing in the order of a
decoupled from the leaylsnediate conductance is not ad- magnitudel.z In contrast, our analysis providesdirect de-
dressed at all or remains on the level of speculations. Howtermination of the phase coherence length from the charac-
ever, somehow different predictions may apparently followteristic frequencies in the length spectrum, which, in turn, are
from the semiclassical approach where the conductance @fmediately related to the specific trajectories in the billiard.
the dot arises from the contributions from the all classical Let us consider a square billiard with a pair of ideal leads
trajectories that connect the entrance and the exit 8488  attached to its opposite sides, see Fig. 1. The zero-
Each of the paths carries an amplitude and a phase. Astemperature conductance of the structure is given by the Lan-
result the oscillations are determined by a set of the trajecdauer formulaG = (2e?/h) T where the total transmission co-
tories relating the billiard leads. efficient T=2,,T,n is the sum over transmission

In this paper, we attempt to reconcile these two seeminglyoefficients from all the propagating modesin one lead to
different pictures by performing both quantum and semiclasthe modesn in the other:Tn=|tmr2.2° In the absence of a
sical calculations for the square billiard. The choice of thismagnetic field the transmission amplitutlg, is given by the
geometry is motivated by a recent experiniewhere the projection of the retarded Green function onto the transverse

observed frequency of oscillations has remained unexplaine@ave functionsg,(y) in the incoming and outgoing leatls
as it is a factor of two smaller than that expected from the

periodic  orbit theory and  quantum-mechanical
calculations® tmn(Ke) = —iﬁ\/Vanf dylf dy27 (Y1)
In this paper, we demonstrate that, regardless of the lead
positions, the several lowest characteristic frequencies in the X dm(Y2)G(Y1,Y2,.KEe), 1)

length spectrum of the conductance oscillations of the open

square formally coincides with the length of the shortest pewherev,, is the longitudinal velocity for the mode and kg
riodic orbits. However, we show that these frequencies arisess the Fermi wave vector. We perform both quantum-
as a result of interference phirs of long trajectoriegof the ~ mechanical and semiclassical calculations of the conduc-
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ao Kan ey with up to ~ 10 bounces were included in E), which is
' M - sufficient to achieve a satisfactory agreement with the
1.6 MCCMVW?" | | guantum-mechanical calculations. One of the most remark-
sC f— able observation is that the oscillation frequencies do not
1.2 WMWM | | seem to be sensitive to the lead position and the characteris-
L m B! tic lengths in the s-pef:trum.are typlcall_y clpse to the Igngths
2§0-8 L N e R | [ of the shortest periodic orbitsf; 9= 2L \i?+j?, where (,j)
| Y, . | are the positive-integer winding numbers giving the number
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FIG. 1. The length spectrum of the semiclassi¢aC) and S

quantum-mechanicalQM) total transmission coefficient of a _ )

square billiard with different lead positions. The QM length spec- +E asa:,HSH:,e'kF('Sf'S’)f'(“Sf“S’) ™2 (3)
trum is inverted and curves are shifted for clarity. In the SC calcu- s,s’

lations the trajectories with up to 10 bounces are included. Here an\%here H = h:%(klz ' i)hn(kF ’02)_ The second term repre-

hereafter the size of the dotlis=0.72 um; L/w=10. The F.T. is nt ntum correction to the classical transmission d
performed in the interval L kew/7<5. Vertical lines indicate the SENts a quantum correction {o the classical transmission due

lengths of the shortest periodic orbits in the closed square, whicko interference between patbsands’. The T;5 (1) is obvi-
are schematically depicted in the figure. ously strongly peaked at thkength difference #Al=lq
—lg in the pairs of the classical trajectories connecting the

tance. In the quantum-mechanical calculations we introduckeads. Thus, identification of the characteristic frequencies of
a tight-binding Hamiltonian and calcula®(y,,y,,kg) us-  the oscillations reduces to the analysis of the path difference
ing the modified versiof? of the standard recursive Green’s- distribution in a square billiard with a given lead geometry.
function technique based on the Dyson equatbom the  For this purpose it is convenient to “unfold” a square by
semiclassical treatment we replace the quantum-mechanicadflecting it at all its sides such that each bouncing trajectory
Green function by its semiclassical linfit. For the square transforms into a straight line connecting the original en-
billiard with the hard hard-wall leads of the widtlh Eq.(1)  trance and an unfolded exit, see Figb)2 Each trajectory is
reduces to characterized by the number of collisioms,andn, with the
vertical and the horizontal walls respectively, and the law of
Pythagoras immediately gives a trajectory lendgith,. A
simple analysis shows that the length difference for many
pairs of trajectories often converges to the lengths of the
where summation is performed over all classical tra-shortest periodic orbits of the square. Indeed, consider pairs
jectoriess connecting the two leads in the square billiard of of trajectories withmsn, i.e. those where electrons are in-
the sizel, |5 being the length of the trajectory am,)  jected almost parallel to the horizontal boundary such that
being the corresponding entrance(exit) angles; they bounce in the vicinity of the periodic orkit,0) in the
as= — V2knkn/2mi/(wkelg), k, is the longitudinal wave phase space. The length difference between two consecutive
vector for nth mode, ug is the Maslov index, the factor trajectories is Al=lnion—Imn=2L[1+0O(n/m)
hn(ke,0) is related to the electron diffraction at the lead +O((d/L)(n/m))]; d being the distance from the exit to the
mouths and describes an angular distribution of the electrongpper wall. This implies that for all such pairs and regardless
injected from the lead with the angh€ [an explicit expres-  of the lead positiord, Al converges to the same vallg$,
sion forh,(kg,6) can be found in Ref. 8; see also Rel. 7 =2 provided the trajectories are sufficiently longyn

The conductance oscillations are most conveniently anas1. Similarly, all pairs of long trajectories where electrons
lyzed in terms of the length spectrum given by the Fourierare injected close to the diagonal of the squere;n [i.e., in
transform(F.T.) f(1)= [dkef(ke)e '*F'. Because of the rap- the vicinity of a periodic orbit(1,1)] amount to a length
idly varying phase factor in the exponent in E@), the difference Al~19;%=2\2L. It is worth to stress that the

spectrum oft (1) is strongly peaked at the lengths | of characteristic length difference does not always match the
the classical trajectories connecting the leéajspropriately length of a~per|0d|c orbit. For example, this is the case for
weighted according to the injection angles and the modé¢he peak inT(l) atl~4L (see Fig. 1, which is caused by

numbers. This behavior oft, ., is well understood and veri- Pairs of trajectories of the length &, 4, andly,,; m>n.

fied for a number of different model billiard&®” However, A detailed inspection of the transmission probability, Eq.
much less attention has been devoted to the analysis of té): Supports the analysis performed above. Figuréa?
total transmission coefficieri, which, in contrast td,,, is = showsT,(l) for a square dot with different lead configura-
accessible experimentally. Figure 1 shows the length spedions. Let us concentrate on the peal at2L. Figure Zc)
trum of the total transmission coefficiehbf square billiards  show the pairs of trajectories whose contribution to this peak
with different lead positions calculated both quantum me{calculated according to E¢3)] is dominant. As expected,
chanically and semiclassically. In the latter, the trajectoriesll these trajectories bounce in the vicinity of the periodic

tun(ke) = 2 adhfi(ke, 6D (ke , 63)€!els s 2, (2)
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FIG. 3. The length spectrum of the semiclassical total transmis-
sion (geometries | and llI; solid and dashed lines, respectjvely
1 where a finite coherence length is introduckgh-0.8L, 1.4L. Inset
an Tt shows the pair of trajectories in the square generating the peak at
I~1.29_. A vertical line indicates the experimentally observed fre-
quency(Ref. 5 with the corresponding lead geometry.

I T order to provide the expected contribution T§5. Similar
analysis for the other modes in the leads and other peaks in
the length spectrum can be performed in the same way.

Let us now apply the above analysis to the experithent
where highly periodic oscillations in a square dot at zero
field have been observed as a functionkef with a well-
defined single frequency in the length spectruni=at.4L .

The experiment has been performed in a four-terminal geom-

FIG. 2. (a) The length spectrum of the quantum-mechanical

(QM) and the semiclassicdSC) transmission coefficient; for etry with the leads placed at the corners of the squ

the geometries I-Il[see insets irffc) and Fig. 1. In semiclassical inset in Fig. 3. According to the Landauer-Biker

calculations the trajectories with up to 5 and 10 bounces are inf lism1® the ob d f t inal ist in thi
cluded(dashed and dotted lines, respectiyelthe peak at=2L is ormalism, € observed four-terminal resistance in tnis

marked by the dotted lingb) A diagram illustrating the unfolding case can be expressed via o_nly two mdepende_nt transmission
of bouncing trajectories in a square. An original squéskeaded cpefflments. Thes_e coeff|C|ent§ are approximately those
with a pair of two bouncing trajectoriesolid and dashed lings ~9iven by geometries | and II{Figs. 1 and 2 As shown
connecting the entrance and the dgitfat dash and an open circle above, the corresponding calculated length spectr@(bf
respectively. The square is unfolded in a plane by reflecting at allgre dominated by the pronounced feature$=a2L,2\/§L,
its sides. In this representation each bouncing trajectory in the paiyhich are due to relatively long trajectories with=5
(i.e. the solid and the dashed lines in the shaded spuafelds into _ 7| The absence of these frequencies in the experimental
a straight line cqnnecting the entrqr(m encircled féllt dash .in the spectrum suggests that the above lengths exceed the phase
shaded _squa}e/wth the corr_esp_ondlng unfo_lded exit. A So_“d line coherent lengtth, . In the presence of phase-breaking events
connecting the unfolded exits is drawn to identify this pair of tra- the probability that an electron travels the paghwithout
jectories.(c) The solid lines identify thepairs of trajectories[as R . 13 - .
described in(b)] giving a dominant contribution to the peak lat Ioo_s_lng its phase i exp(l§ll¢). We Introduce_ thl.s prob-
=2L in (8. The length difference between the trajectories in eachablllty n Eq.. (3) a.nd effectlvely Suppress CO!’]tI‘IbutIOI’]S from
pair is Al ~2L. the long trajectories. Figure 3 shows that_ with a reduction of
the coherence length,<0.8L, only one single frequencly
~1.24_ survives in the length spectrum. The pair of the
_ ) o shortest trajectories in the squdwth the length difference
orbit (1,0) (i.e. m>n). [Note that the contribution from the JBL—L~1.24.), which cause these oscillations is shown in
trajectories injected close to the ortd 1), i.e. perpendicular  ihe inset. The obtained frequency matches the experimen-
to the lead, are suppressed by the angular fadtan Eq.(3)  tally observed one within the accuracy of 12%, which is
which is strongly peaked a@= 0 for the electrons in the first  satisfactory taking into account the uncertainty in the actual
mode] Typically, the trajectories must be sufficiently long, dot dimension etc. It is important to stress that the amplitude
m=4 in order for their length difference to approach.2 of the fluctuations is significantly reduceek€?/h), which is
However, as evident from Figs(& and Zc), the required in agreement with the experimental results where the oscil-
number of bounces depends on the lead position. For inations in the resistance had a typical magnitude of only sev-
stance, 5 bounces already give a good agreement with theral ).
guantum-mechanical calculations for the geometries Il and The above analysis sets the phase coherence length in the
lll, whereas for the geometry | this number mustb8 in  dof to l,~0.8.=2 wm. This value is consistent with the
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results™*? but significantly lower that those for the devices vides a direct assessmentlgf through specific trajectories
studied in Refs. 13 and 14. However, it is worth to stress thaof the ballistic billiard.

different models of determination ¢f, give values that can We thank K.-F. Berggren, J. Martorell, K. Ensslin, and A.
disagree as much as in the order of the magnitude even f@. Sachrajda for valuable discussions. This work was sup-

the same dot? On the other hand, the above analysis pro-ported by NGSSC and NFR.
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