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Quantization of the conductance of a three-dimensional quantum wire
in the presence of a magnetic field

V. A. Geyler and V. A. Margulis
Institut of Physics and Chemistry, Ogarev University of Mordovia, 430000 Saransk, Russia

~Received 5 January 1999!

We study the ballistic transport in a three-dimensional quantum wire subjected to a uniform magnetic field
of an arbitrary direction. The case of an elliptic cross section of the wire is considered. The temperature
smearing of conductance quantization of the wire is analyzed.
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I. INTRODUCTION

The conductance of a three-dimensional quantum wir
a steplike function of the electron Fermi energy.1,2 The
height of each step is multiple of the conductance quan
G052e2/h. Such a quantization of the conductance tak
place for the wire with the cross section of the order of
Fermi wavelength.

The two factors have great influence on the effect of
conductance quantization, which arises from the ballis
electron transport. On the one hand, it is the temperatur
the electron gas, which smears the quantization steps~thus
the effect of conductance quantization is observed at v
low temperaturesT<1 K). On the other hand, the influenc
of the geometry of a quantum wire on the ballistic electr
transport plays a very important role.3 Especially, the finite-
ness of the length of the wire leads to the backscatterin
electron modes in the nanostructure; this gives spikes on
plot of G(«) near the thresholds of the steps.4 In addition,
the conductance quantization is very sensitive to the bou
ary conditions at junctures of the wire with the electr
reservoirs.5 As was shown,6–8 if the cross section varies with
the length then the width of each plateau varies with«.

Because the exact form of the confinement potential
real systems is not determined experimentally, differ
model potentials are employed in theoretical investigatio
Especially, the waveguide with the constant cross section9,10

the parabolic potential,11–13 and the potential of a quantum
constriction14–18 was used for this purpose. However,
shown,19 the simple parabolic potential is better inscribed
the self-consistent scheme taking into consideration the
fects of the Coulomb interaction. A uniform magnetic fieldB
applied to the wire leads to new physical phenomena. Th
exists two reasons for this. On the one hand, a quantiz
magnetic field amplifies the lateral confinement of electro
On the other hand, if the field is tilted at the axis of the wi
the hybrid bindings arise along and across the wire.20 This
leads to the strong dependence of the conductance on
orientation of the magnetic field. Note that the effect of t
field inclination on the conductance for a quantum const
tion has been studied in Refs. 21 and 22. In mentioned
pers the fieldB is parallel to a symmetry plane of the co
fining potential of the system. It should be pointed out th
the presence of one impurity charge or more leads to
reflection of electron modes. Such reflection gives spikes
the curve G(«) near the thresholds of the conductan
steps.23,24 In this paper, we study the ballistic electron tran
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port in a quantum wire with the elliptic cross section usi
the asymmetric parabolic confining potential,

V~x,y!5
m*

2
~Vx

2x21Vy
2y2!. ~1!

Here Vx ,Vy are the effective frequencies of the potent
and m* is the effective electron mass. In this model t
characteristic lengthsl j5A\/4m* V j ( j 5x,y) are equal to
the semiaxes of the elliptic cross section of the wire. T
magnetic fieldB5(Bx ,By ,Bz) is tilted at the arbitrary angle
to the wire. Effects of scattering on the impurities and t
reflection of electron modes from boundary between the w
and the electron reservoir are not considered.

II. SPECTRUM OF THE ELECTRONS IN THE WIRE
IN THE PRESENCE OF A MAGNETIC FIELD

We take the vector potentialA of the tilted magnetic field
B in the formA5(0,Bzx,Bxy2Byx). Then the one-electron
Hamiltonian is given by the formula

H5H01
1

2m* S pz2
e

c
Bxy1

e

c
ByxD 2

1V~x,y!, ~2!

where the two-dimensional Landau HamiltonianH0 has the
form

H05
1

2m* Fpx
21S py2

e

c
BzxD 2G . ~3!

We denotev j5eBj /m* c ( j 5x,y,z) and introduce the no-
tation

W5pz~xvy2vxy!

1
m*

2
@~Vx

21vy
2!x21~Vy

21vx
2!y222vxvyxy#. ~4!

In the formula~4! we may eliminate the linear members wi
the help of the parallel translation:x85x2a; y85y2b; z8
5z, where (a,b,0) is the origin of the new coordinate sys
tem (x8,y8,z8). The numbersa andb obey the linear system
of equations:

m* ~Vx
21vy

2!a2m* vxvyb1pzvy50,

2m* vxvya1m* ~Vy
21vx

2!b2pzvx50. ~5!

From Eq.~5! we obtain the following expressions:
1716 ©2000 The American Physical Society



n

-

m

of

e

are
mps
p

tude
ps

of
e
l

he
or
ies

an-

is,
xis

irra-
to
ame

PRB 61 1717BRIEF REPORTS
a52
pzvyVy

2

m* ~Vx
2Vy

21vx
2Vx

21vy
2Vy

2!21,

b5
pzvxVx

2

m* ~Vx
2Vy

21vx
2Vx

21vy
2Vy

2!21. ~6!

In the coordinate system (x8,y8,z8), the Hamiltonian~2! has
the form

H85H081W8~x8,y8!1
pz

2

2M
. ~7!

Here

M5m* @11~vx /Vy!21~vy /Vx!
2#,

W8~x8,y8!5
m*

2
@~Vx

21vy
2!x821~Vy

21vx
2!y82

22vxvyx8y8#, ~8!

and H08 is the HamiltonianH0 in the coordinate system
(x8,y8,z8). We diagonalize the quadratic formW8(x8,y8)
by the rotation of the coordinate system aroundz8 axis at the
angle b5(1/2)arctan@2vxvy /(vy

22vx
21Vx

22Vy
2)# and obtain

as a result

W9~x9,y9!5
m*

2
~l1x921l2y92!, ~9!

wherel1 ,l2 are determined from the equation

UVx
21vy

22l 2vxvy

2vxvy Vy
21vx

22l
U50. ~10!

In the changed coordinate system (x9,y9,z8), the Hamil-
tonianH8 reduces to the form

H95H091W91
pz

2

2M
. ~11!

Since the parallel translations and rotation we used do
change thez component of the fieldB, H09 is the Landau
operator in the (x9,y9) plane with the magnetic fieldBzk.
Therefore, the spectrum ofH091W9 consists of the eigenval
ues

«mn5\v1~m11/2!1\v2~n11/2!, ~12!

where the hybrid frequenciesv1 ,v2 have the form25,26

v1,25
1

2
$@Vx

21Vy
21vc

2

12VxVyA11~vx /Vy!21~vy /Vx!
2#1/26@Vx

21Vy
2

1vc
222VxVyA11~vx /Vy!21~vy /Vx!

2#1/2%1/2

~13!

~herevc5ueuB/m* c is the cyclotron frequency!.
Finally, for the spectrum ofH, which is an invariant of

unitary transformations, we have the expression

«mnpz
5\v1~m11/2!1\v2~n11/2!1pz

2/2M . ~14!

III. BALLISTIC TRANSPORT IN THE QUANTUM WIRE

At the temperatureT50, the conductance of the quantu
wire is described by the Landauer-Bu¨ttiker formula
ot

G

G0
5 (

mm8nn8
T~m8,n8→m,n!, ~15!

where T(m8,n8→m,n) is the transition probability of the
corresponding mode through the wire. Since in the case
the ballistic transport the quantum numbersm andn are not
changed, then

T~m8,n8→m,n!5dm8mdn8n . ~16!

As a result, we can obtain from Eq.~15!

G~«,B!

G0
5 (

n50

N Fv1

v2
~n1d!G1N11. ~17!

whereN andd denote the integer and fractional part of th
number (2«2\v12\v2)/2\v1 , respectively,« is the en-
ergy of the particle, and the square brackets in Eq.~17! de-
note the integer part of a number. When the frequencies
incommensurable, the conductance undergoes the ju
with the change ofN, whenN changes to one unit. The jum
is equal to the quantum of the conductanceG0 . Note thatN
depends on the energy of the particle and on the magni
and the direction of the fieldB. Hence, the conductance ste
arise not only on the curveG(«) but also on the curveG(B)
both with the change of the magnitude and the direction
the field B. The orientation of the field with respect to th
coordinate system (x,y,z) is determined by an azimutha
angle u and polar anglew. Therefore, it is clear that the
conductance steps arise both on the curveG(u) and G(w)
@see Eqs.~13! and~17!#. The plot of the dependencesG(«),
G(B), G(u), andG(w) are shown in Figs. 1 and 2~the solid
line!. To analyze in detail the effect of temperature on t
conductance, the following observation is very useful. F
two-dimensional gas of the oscillators with the frequenc
v1 ,v2 , the number of statesn(«) with the energy less or
equal to« is equal to the number of the conductance qu
tum G/G0 @this follows from Eq.~17!#. The classical parti-
tion functionZ for this gas has the form27

Z2154 sinhS \v1

2T D sinhS \v2

2T D . ~18!

Using a formula that is similar to formula~11! from Ref. 27,
we can express a number of statesn(«) in terms of the
classical partition functionZ,

n~«!5
1

2p i Ea2 i`

a1 i`

Z~z!e«z
dz

z
~19!

~herea.0, z51/T). It follows that n(«) is determined by
simple poles of the integrand, lying on the imaginary ax
and by a triple pole at zero. The poles on the imaginary a
are multiple, ifnv15mv2 for some positiven and m, and
are simple in the opposite case. Since a real number is
tional with the probability one, then we can restrict this
the case of incommensurable frequencies. Using the s
contour as in Ref. 27 for the calculationn(«), we obtain
after some algebra
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G~«,0!

G0
5

1

2\2v1v2
S «22

\2v1
21\2v2

2

12 D
1

1

2p (
n51

`
~21!n11

n Fcos~2pn«/\v1!

sin~pnv2 /v1!

1
cos~2pn«/\v2!

sin~pnv1 /v2! G . ~20!

The Fourier series in Eq.~20! originates from summation
of the residues corresponding to the poles on the imagin
axis. The first term in this formula originates from the co
tribution of the pole at zero.

The formula~20! is more convenient for the study of th
conductance than the starting expression~17!. The first term
in Eq. ~20!, which contributes to the monotone part ofG(«),
increases quadratically with«. The Fourier series in Eq.~20!
gives the oscillating part of the conductance. It is clear t
each Fourier series depends on the fractional part 0<d j
,1 ( j 51,2) of the expression«/\v j . Therefore, the first
Fourier series as a function of« has the period\v1 , and the
second one has the period\v2 . The conductance steps a
stipulated by the saw-toothed spikes in the oscillating par
G(«). Formula~20! is convenient for the determination o

FIG. 1. ~a! The conductance as a function of the chemical p
tential of the gas:Vx51.831013 s21, Vy51.131013 s21, T51 K,
B52 T, u5p/6, f5p/3. ~b! The conductance as a function o
strength of the magnetic fieldB: Vx51.831013 s21, Vy51.1
31013 s21, T51 K, m/\AVxVy53.3713,u5p/6, f5p/3.
ry
-

t

f

the temperature dependence of the conductance. From
formula

G~m,T!

G0
5E

0

`

G~«,0!
] f

]m
d«, ~21!

wherem is the chemical potential of the electron gas in t
wire, we obtain

G~m,T!

G0
5

1

2\2v1v2
F2T2F1S m

T D2
1

12
\2~v1

21v2
2!

3~11e2m/T!21G1pT(
n51

`

~21!n11

3F 1

\v1

cos~2pnm/\v1!

sinh~2p2nT/\v1!sin~pnv2 /v1!

1
1

\v2

cos~2pnm/\v2!

sinh~2p2nT/\v2!sin~pnv1 /v2!G . ~22!

Here F1(m/T) is the Fermi integral. Suppose thatm@T,
then from Eq.~22! we get the estimation

-

FIG. 2. ~a! Plot of G as a function of anglef: Vx51.8
31013 s21, Vy51.131013 s21, T51 K, B52 T, m/\AVxVy

56.742 59,u5p/6. ~b! Plot of G as a function of angleu: Vx

51.831013 s21, Vy51.131013 s21, T51 K, B51.7 T,
m/\AVxVy56.742 59,f5p/3.
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G~m,T!

G0
5

1

2\2v1v2
Fm21

p2T2

3
2

1

12
\2~v1

21v2
2!G

1pT(
n51

`

~21!n11

3F 1

\v1

cos~2pnm/\v1!

sinh~2p2nT/\v1!sin~pnv2 /v1!

1
1

\v2

cos~2pnm/\v2!

sinh~2p2nT/\v2!sin~pnv1 /v2!G . ~23!

Using Eq. ~23!, it is possible to estimate the ratio of th
monotone part of the conductance to the oscillating one
TÞ0:

Gosc

Gmon;
T\~v11v2!

m2 . ~24!

The dependencesG(«), G(B), G(u), andG(w) at TÞ0 are
shown in Figs. 1 and 2~the thin lines!.

IV. DISCUSSION

As follows from the obtained results, the height of t
conductance steps for the incommensurable frequencie
always equal to the conductance quantumG0 . The width of
a conductance plateau varies with them and the frequency
ratio v1 /v2 . The number of steps on an interval of variatio
of m for fixed length of the interval depends on the positi
of the interval on them axis and on the frequency rati
v1 /v2 . The behavior of the steps on the curvesG(B),
G(u), andG(w) is similar. Hence, relatively small chang
of the geometry of the system~namely, the variation ofV j ,
B, u, or w!, which leads to the small variation of frequenci
v j , can lead to the drastic change of the plot of the cond
tanceG(m). The reason for such sensitivity of the condu
tance to the geometry of the system can be seen from exp
sion~18!. Really, in the region whereN is constant, the value
v1d/v2 varies with the variation of«, B, u, or w. This leads
to variation of the magnitude of each term in Eq.~18!. The
effect of the temperature leads to a smearing of threshold
d

at

is

c-
-
es-

on

the steps of the conductance quantization and to an incl
tion of plateaus~Figs. 1 and 2!. As pointed out earlier, the
saw-tooth spikes arise on the conductance steps, these s
are stipulated by the oscillating part of the conductan
namely, by the Fourier series in Eq.~22!. The following
circumstance stipulates such a form of the spikes. Since
amplitudes of harmonics in the series~20! decreases very
slowly asn increases~namely,;1/n), then a large numbe
of terms of this series gives the contribution to the form o
spike. On the contrary, Eq.~23! shows that atTÞ0 the con-
tribution of higher harmonics is suppressed by fact
sinh21(2p2nT/\vj). This leads to a substantial smearing
the saw-tooth spikes on the plot ofGosc even at relatively
low temperature~;10 K!. In turn, this effects the smearin
of the step thresholds and the inclination of the plateaus
the plot of G(m). In the case when the Fourier series h
infinitely many members that are arbitrarily large, the
members correspond to the indicesn such thatnv2 /v1 or
nv1 /v2 are close to an integer. Hence, the summation of
series comes across the difficulties related to ‘‘small deno
nators problem.’’ The well-known Kolmogorov-Arnold
Moser theory overcomes these difficulties by restricting
the frequenciesv1 andv2 , which satisfy the so-called Dio
phantine condition of incommensurability. The question
the convergency of the Fourier series in this case has b
discussed in Ref. 27. If the wire has a circular cross sect
Vx5Vy5V, then Eq.~13! implies that

v1,25
1

2
$@vc

212V212VAV21vc
22vz

2#1/2

6@vc
212V222VAV21vc

22vz
2#1/2%1/2. ~25!

In this case the frequenciesv j are independent of the angl
u, and hence, the dependence of the conductance on
angle disappears. Therefore, the dependence of the con
tance on the angleu is a test of the deviation of the cros
section from the circular form.
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