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Quantization of the conductance of a three-dimensional quantum wire
in the presence of a magnetic field
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We study the ballistic transport in a three-dimensional quantum wire subjected to a uniform magnetic field
of an arbitrary direction. The case of an elliptic cross section of the wire is considered. The temperature
smearing of conductance quantization of the wire is analyzed.

[. INTRODUCTION port in a quantum wire with the elliptic cross section using
the asymmetric parabolic confining potential,
The conductance of a three-dimensional quantum wire is m*
a steplike function of the electron Fermi enefgyThe V(X,y):_(Q§X2+QZy2)_ (1)
height of each step is multiple of the conductance quantum 2 g
Go=2€?/h. Such a quantization of the conductance take§_|

: . . ere (1,,(), are the effective frequencies of the potential
place for the wire with the cross section of the order of theand m* is the effective electron mass. In this model the

Fermi wavelength. - .
. characteristic length= yA/4m*Q; (j=x,y) are equal to
The two factors have_z great |_nfluen_ce on the effect Of_ th_ he semiaxes of the elliptic cross section of the wire. The
conductance quantization, which arises from the ballisti agnetic field=(B,,B, ,B,) is tilted at the arbitrary angle
o s X 1=z
electron transport. On the one hand, it is the temperature ;”g the wire. Effects of scattering on the impurities and the

the electron gas, which smears the quantization st#ps  |¢fiection of electron modes from boundary between the wire
the effect of conductance quantization is observed at verynq the electron reservoir are not considered.

low temperature§ <1 K). On the other hand, the influence
of the geometry of a quantum wire on the ballistic electron
transport plays a very important rolé€Especially, the finite-
ness of the length of the wire leads to the backscattering of
electron modes in the nanostructure; this gives spikes on the We take the vector potentidl of the tilted magnetic field
plot of G(¢) near the thresholds of the ste¢bk addition, B in the formA=(0,Bx,B,y—Byx). Then the one-electron
the conductance quantization is very sensitive to the bounddamiltonian is given by the formula
ary conditions at junctures of the wire with the electron 1
. 8 : : . e e

reservoirs. As was showri; 8 if the cross section varies with H=Hy+ _*( p,— —Byy+ =B,
the length then the width of each plateau varies with 2m ¢ c

Because the exact form of the confinement potential for
real systems is not determined experimentally, differen
model potentials are employed in theoretical investigations.
Especially, the waveguide with the constant cross sectin,
the parabolic potentidf~'3and the potential of a quantum
constrictiont*~*® was used for this purpose. However, as
shown?® the simple parabolic potential is better inscribed inWe denotew;=eB;/m*c (j=x,y,z) and introduce the no-
the self-consistent scheme taking into consideration the efation
fects of the Coulomb interaction. A uniform magnetic fi@d
applied to the wire leads to new physical phenomena. Therd/=Pz(Xwy— \y)
exists two reasons for this. On the one hand, a quantizing m*
magnetic field amplifies the lateral confinement of electrons.  + —-[(Q2+ w2)X*+ (Q2+ wd)y?— 2w w,Xy].  (4)
On the other hand, if the field is tilted at the axis of the wire, 2
The hybrid bindings arise along and across the Wirghis In the formula(4) we may eliminate the linear members with
eads to the strong dependence of the conductance on ”Eﬁe help of the parallel translation’ =x—a: v/ =v— b 2’
orientation of the magnetic field. Note that the effect of the=Z Whpere a bF())) is the origin of .the neV\,/ Zoor)éinat,e vs-
field inclination on the conductance for a quantum constric-_~* = "=~ 7 ,h b g db obev the i Y
tion has been studied in Refs. 21 and 22. In mentioned pat—em x Yz _)' The numbers. andb obey the linear system
pers the fieldB is parallel to a symmetry plane of the con- of equations:

Il. SPECTRUM OF THE ELECTRONS IN THE WIRE
IN THE PRESENCE OF A MAGNETIC FIELD

2
+V(xy), (@

here the two-dimensional Landau Hamiltonidg has the

2

Ho ()

_ 2 €
=5 | Px | Py~ EBZX

fining potential of the system. It should be pointed out that m* (Q2+ w2)a—m* Wb+ p,w,=0,
the presence of one impurity charge or more leads to the Y
reflection of electron modes. Such reflection gives spikes on —m* o,wa+m* (Q§+ w2)b—p,w,=0. (5)

the curve G(¢) near the thresholds of the conductance
steps>?41n this paper, we study the ballistic electron trans-From Eq.(5) we obtain the following expressions:
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0,02
a=— P (02024 202+ 0202) 1, &= X T(m.n'—mn), (15)
m 0 mm'nn’
pw
b= me x(9292+ w0+ w00 (6)  whereT(m’,n’—m,n) is the transition probability of the

corresponding mode through the wire. Since in the case of
In the coordinate systenx(,y’,z"), the Hamiltonian(2) has  the ballistic transport the quantum numbersaandn are not

the form changed, then
2
H’=H(’)+W’(x’,y’)+;—|\z/|. @ T(mM',n’ —m,n)= 8 mdnrn- (16)
Here As a result, we can obtain from E¢L5)
M =m*[1+(wX/Qy)2+(wy/QX)2],
m* G(S’B)=2 DLt s) | +N+1 (17)
W (X"y") = - [(QF+ o)X 2+ (Q7+ )y "2 Go  iolw; '
—2wy0yX'y'], (8) whereN and 6 denote the integer and fractional part of the

number (2—fw;—fhw,)/2hw,, respectivelye is the en-
ergy of the particle, and the square brackets in @d) de-

note the integer part of a number. When the frequencies are
incommensurable, the conductance undergoes the jumps
with the change oN, whenN changes to one unit. The jump

and H{ is the HamiltonianH, in the coordinate system
(x",y",z"). We diagonalize the quadratic foriwv’(x’,y’)
by the rotation of the coordinate system arozhauxis at the
angle 8= (1/2)arctaf2ow, (0, —wi+0;—07)] and obtain

as a result . is equal to the quantum of the conductaligg Note thatN
L " " depends on the energy of the particle and on the magnitude
WIXTy") = T(Alx A2y, ©) and the direction of the fielB. Hence, the conductance steps
, i arise not only on the curv@&(e) but also on the curv&(B)
wherehy,\, are determined from the equation both with the change of the magnitude and the direction of
Qi+ wi—\ o, the field B. The orientation of the field with respect to the
e 02+ 02|~ (100 coordinate systemx(y,z) is determined by an azimuthal
Xy yo X angle # and polar anglep. Therefore, it is clear that the
In the changed coordinate system’(y”,z’), the Hamil- conductance steps arise both on the cuB(&) and G(¢)
tonianH’ reduces to the form [see Egs(13) and(17)]. The plot of the dependencé&X¢),
p? G(B), G(60), andG(¢) are shown in Figs. 1 and(zhe solid
H”=Hg+W"+ 2|\ZA (11)  line). To analyze in detail the effect of temperature on the

conductance, the following observation is very useful. For

Since the parallel translations and rotation we used do ndWo-dimensional gas of the oscillators with the frequencies
change thez component of the fiel®, Hj is the Landau @1,@2, the number of states(e) with the energy less or
operator in the X",y") plane with the magnetic field,k. equal toe is equal to the number of the conductance quan-

Therefore, the spectrum &f}+W" consists of the eigenval- UM G/Go [this follows from Eq.(17)]. The classical parti-
tion functionZ for this gas has the forfh

ues
mn=hwi(M+1/2)+hwy(n+1/2), (12 hw, hw,
_ _ . Z '=4sin sinh — (18)
where the hybrid frequencies; ,w, have the forrf® 2T 2T
1
w1,2=§{[9)2(+ Q§+ w? Using a formula that is similar to formuld 1) from Ref. 27,

we can express a number of state@) in terms of the
+29XQy\/1+(wX/Qy)2+(wy/QX)2]1/2¢[Q§+Q§ classical partition functiorZ,

+ 02— 20, Q1+ (w0, 1Q )+ (0, 1Q,)?]V3 12 _ifﬁix L
g Y g 13 we)=5 5| . ZDe ¢ 7 (19

(here w.=|e|B/m*c is the cyclotron frequengy
Finally, for the spectrum of, which is an invariant of
unitary transformations, we have the expression

(herea>0, {=1/T). It follows that v(¢) is determined by
simple poles of the integrand, lying on the imaginary axis,
and by a triple pole at zero. The poles on the imaginary axis
Emnp,=fiw1(M+1/2) +hwy(n+1/2)+p3/2M. (14 are multiple, ifnw,=maw, for some positiven and m, and
are simple in the opposite case. Since a real number is irra-
lIl. BALLISTIC TRANSPORT IN THE QUANTUM WIRE tional with th_e probability one, then we can regtrict this to
the case of incommensurable frequencies. Using the same
At the temperaturd =0, the conductance of the quantum contour as in Ref. 27 for the calculation(¢), we obtain
wire is described by the Landaueriker formula after some algebra
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FIG. 1. (@ The conductance as a function of the chemical po- *°; o -

tential of the gasQ,=1.8x108s™!, O, =1.1x108s™!, T=1K,
B=2 T, 6=u/6, ¢=/3. (b) The conductance as a function of FIG. 2. (a) Plot of G as a function of angle): Q,=1.8
strength of the magnetic field: Q,=1.8x108s%, Q,=11  X108¥s!, Q,=1.1x10%s, T=1K, B=2 T, u/fJQ,Q,

X10%s7t T=1K, u/fiQ,0,=3.3713,0= /6, p= /3. =6.74259,0=/6. (b) Plot of G as a function of angled: Q,
=18x108%s!,  0,=1.1x10%s!,  T=1K, B=17T,
(2.0 1 B2+ 1202 ultiQ,Q,=6.742 59,4 = /3.
= 7 82_
Go 2h*w 0, 12 the temperature dependence of the conductance. From the
N 1 i (—1)"" [ cog2mnelhwy) formula

271 n sSin(mNws,/wq) G(u,T) o of
G = G(S,O)ﬁ—ds, (21

cog 2mneltiw,) 0 0 K

. (20

B
sin(mne, /w,) where u is the chemical potential of the electron gas in the

wire, we obtain
The Fourier series in Eq20) originates from summation

of the residues corresponding to the poles on the imaginarg‘('“'T) _ 21 2T2Fl<ﬁ) _ iﬁz(w?rwg)
axis. The first term in this formula originates from the con- Gy 2h w10, T, 12
tribution of the pole at zero. w

The formula(20) is more convenient for the study of the TN -1 aant1
conductance than the starting expresgibn. The first term X(1+e M)+ WTZ& (=1
in Eq. (20), which contributes to the monotone part@(z),
increases quadratically with The Fourier series in E¢20) 1 cog2mnulfhw,)

hoy SiNN27°nT/hw,)siN(mNw,/ w;)

gives the oscillating part of the conductance. It is clear that
each Fourier series depends on the fractional pats0
<1(j=1,2) of the expressior/fw;. Therefore, the first n 1 cog2mnulfw,)

Fourier series as a function efhas the period w,, and the fhiw, SINN 27N T/hwy)SiN(mNwy/w,) |
second one has the periégdv,. The conductance steps are

stipulated by the saw-toothed spikes in the oscillating part oHere F;(w/T) is the Fermi integral. Suppose that>T,
G(g). Formula(20) is convenient for the determination of then from Eq.(22) we get the estimation

(22
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G(u,T) 1 ) T2 1 s 2. the steps of the c_onductance quantiz_ation and to an inclina-
=572 + — 5h (0]t w)) tion of plateaugFigs. 1 and 2 As pointed out earlier, the
GO Zh wW7 3 12

saw-tooth spikes arise on the conductance steps, these spikes
are stipulated by the oscillating part of the conductance,
namely, by the Fourier series in EQR2). The following

+aT > (-1
n=1
circumstance stipulates such a form of the spikes. Since the

X ! i ;:os(anM/ﬁwl) amplitudes of harmonics in the seri€20) decreases very
hwy siNN 27 nT/hw,)si(mnNw,/w;) slowly asn increasegnamely,~1/n), then a large number
1 cog2mnulhwy) of terms of this series gives the contribution to the form of a

- (23 spike. On the contrary, E¢23) shows that af # 0 the con-

tribution of higher harmonics is suppressed by factors
inh™(27°nT/fiw;). This leads to a substantial smearing of
e saw-tooth spikes on the plot G°° even at relatively
low temperaturg~10 K). In turn, this effects the smearing
G» Th(witwy) o4  Of the step thresholds and the inclination of the plateaus on
Gmon w? ' (24 the plot of G(u). In the case when the Fourier series has
infinitely many members that are arbitrarily large, these
The dependencds(s), G(B), G(0), andG(¢) atT#0are  ompars correspond to the indicesuch thatnw,/w, or
shown in Figs. 1 and Zhe thin lines. Nw,/w, are close to an integer. Hence, the summation of the
series comes across the difficulties related to “small denomi-
IV. DISCUSSION nators problem.” The well-known Kolmogorov-Arnold-
As follows from the obtained results, the height of the Moser theory overcomes these difficulties by restricting to

conductance steps for the incommensurable frequencies i€ frequencies; andw,, which satisfy the so-called Dio-
always equal to the conductance quan@g The width of phantine condition of incommensurability. The question of
a conductance plateau varies with theand the frequency the convergency of the Fourier series in this case has been
ratio w; /w,. The number of steps on an interval of variation discussed in Ref. 27. If the wire has a circular cross section,

of u for fixed length of the interval depends on the positioan:Qy:Q*lthen Eq.(13) implies that
of the interval on theu axis and on the frequency ratio w1,2=§{[w§+202+29m]1’2

wi/w,. The behavior of the steps on the curvé¢B),

G(60), andG(¢) is similar. Hence, relatively small change

of the geometry of the systetnamely, the variation of); +lwp+207-200%+ wi—w;]Y3Y2 (25

B, 6, or ¢), which leads to the small variation of frequencies In this case the frequencies; are independent of the angle
wj, can lead to the drastic change of the plot of the conducg, and hence, the dependence of the conductance on this
tanceG(u). The reason for such sensitivity of the conduc-angle disappears. Therefore, the dependence of the conduc-
tance to the geometry of the system can be seen from expreance on the angld is a test of the deviation of the cross
sion(18). Really, in the region wherl is constant, the value section from the circular form.

T frw, SN 272N Tl h wy)SiN( 7wy og)

Using Eq.(23), it is possible to estimate the ratio of the
monotone part of the conductance to the oscillating one
T+0:

w16l w, varies with the variation of, B, 6, or ¢. This leads
to variation of the magnitude of each term in E8). The
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