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Quantum-wire exciton dispersion in a multiband real-space scheme

Anastassios Siarkos and Erich Runge
Institut für Physik, Humboldt-Universita¨t zu Berlin, Hausvogteiplatz 5-7, 10117 Berlin, Federal Republic of Germany

~Received 6 March 2000!

Numerical multiband calculations of quantum-wire excitons including valence-bandk"p coupling and going
beyond the idealization of a circular or rectangular wire cross section are presented. These are based on a
real-space formulation. For a specific GaAs/AlxGa12xAs V-groove quantum wire, results are shown for the
exciton dispersion, the kinetic exciton mass, the dependence of the exciton wave function on the center-of-
mass momentum, and the polarization anisotropy of the excitonic absorption.
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I. QUANTUM-WIRE EXCITONS

For semiconductor quantum wells~QW! and quantum
wires ~QWR!, it has been well known for a long time tha
excitons dominate the optical properties near the fundam
tal band edge at low temperatures and remain important e
at room temperature. Not surprisingly, a steady stream
papers calculating QW excitons at vanishing center-of-m
~COM! momentum,Q50, with improving accuracy and in
sight was seen over the past fifteen years. Much less has
done regarding QW excitons at finite momentum1–4 and even
less for QWR excitons. For QWR, all published work o
optical spectra~i! used drastically simplified models for th
underlying single-particle bands,5–8 ~ii ! considered highly
idealized geometries,9 or ~iii ! treated the Coulomb interac
tion only approximately.9–15The first group typically ignored
the multiband character of the valence-band maximum.
last group either ignored the Coulomb interacti
completely,10,11added it as a rigid shift of all states at a fin
stage,12,13approximated it by a one-dimensional form,9 or, in
the best case, used a Hartree approximation.14,15 In the latter,
each constituent of the exciton reacts to the charge distr
tion of the other one, but correlations between both partic
are neglected. For QWR, again, work has been focused
properties of the exciton at rest,Q50.

The internal structure of the ground-state exciton, i.e.,
relative motion of electron and hole, determines, among o
ers, the binding energy and the polarization dependenc
its absorption. Aspects of the COM motion enter the ex
ton’s localization properties, its energy relaxation, and,
the exciton dispersioneX(Q), the exciton density of state
and their occupation. These, in turn, determine the beha
of possible QWR-based optoelectronic devices. Indeed,
absence of an energy shift with increasing excitation den
has been attributed to direct involvement of excitons
QWR lasing.16,17However, early expectations that QWR d
vices would profit from the diverging one-dimensional de
sity of states had to be revised due to excitonic correlati
reducing the spectral density considerably.14,18–20Neverthe-
less, understanding excitons in a QWR remains a challe
and remarkable effects have been predicted such as an
ton crystal in finite-length QWR.21

A particularly important aspect of the exciton dispersi
is the kinetic COM mass. For the typically strongly nonp
rabolic exciton dispersions in low-dimensional structur
PRB 610163-1829/2000/61~24!/16854~8!/$15.00
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there is, of course, no unique definition of a ‘‘mass.’’ The
is, thus, some uncertainty about what mass parameter sh
actually be used for different processes like exciton form
tion and thermalization,2 exciton localization,22 and the
exciton-photon interaction~polaritons!.1

This paper presents the first accurate results on the e
ton dispersion in a realistic QWR, including both the dege
erate valence-band structure and the Coulomb correlat
The exciton Schro¨dinger equation was solved in real spac
with the Hamiltonian

H5He1HLutt1Vconf
(e) 1Vconf

(h) 1WCoul ~1!

appropriately discretized as outlined in our earlier work3,4

HLutt is the Luttinger Hamiltonian23 for the valence bands
describing thek"p coupling of heavy and light holes; th
conduction-band electron is described by a simple parab
effective-mass expressionHe ; the Coulomb potentialWCoul
is discretized according to Glutsch, Chemla, and Bechste24

The QWR geometry determines the confining potentialVconf
for electrons and holes. The eigenfunctions of the Ham
tonian ~1! have four components corresponding to the h
angular momenta (J53/2,mJ513/2,11/2,21/2,23/2); the
electron spin can, without loss of generality, be taken
11/2.3

We study as an example so-called V-groove QWR
which are particular promising for device applications. Th
result from self-regulated growth with metal-organic chem
cal vapor deposition~MOCVD! or molecular-beam epitaxy
~MBE! on a substrate into which V-shaped grooves w
etched. Alternating deposition of GaAs and AlxGa12xAs
~Refs. 25 and 26! or InxGa12xAs and InP~Refs. 27 and 28!
leads to stacks of V-shaped wells and barriers. Due to dif
ent growth rates and lateral transport, crescent-shaped th
well regions develop at the bottom, which act as QWR. T
well regions on the side walls will be henceforth referred
as side quantum wells~S-QW!. The stack of V-groove QWR
is found to be connected by a central region of increased
concentration, which will be referred to as vertical quantu
well ~V-QW!. The V-groove QWR geometry is well know
from cross-sectional TEM. We use data of Kapon and
workers for a GaAs/AlxGa12xAs V-groove QWR with 6.3
nm central thickness grown on a GaAs~001! surface with the
16 854 ©2000 The American Physical Society
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PRB 61 16 855QUANTUM-WIRE EXCITON DISPERSION IN A . . .
wire axis (x direction! along @11̄0#.29 Thus, experimenta
details like a narrowing of the S-QW about 25 nm off t
center and a slight left-right asymmetry are included. T
latter is specific to the particular sample of the TEM micr
graph, but should be representative for asymmetries b
present in general. Recent TEM analysis showed that
earlier experiments overestimated the asymmetry state
the-art QWR are more symmetric than assumed in
present work.29 The V-QW is described by a vertical sla
with Al concentrationx50.21. A more detailed modeling i
easily possible within our approach, but seemed not ne
sary. The geometry of the considered QWR is seen as g
scale background shading in Figs. 1, 2, and 8 bel
The material parameters that were used are summarize
Table I.

FIG. 1. V-groove GaAs/AlxGa12xAs quantum wire: Some o
the lowest electron-subband states atke50.25 nm21. Each panel
shows an area of 50 nm380 nm. The shading marks the alum
num concentrationx50.33, 0.21, and 0.0 in barrier~dark gray!,
vertical quantum well~light gray!, and side quantum well and
crescent-shaped wire region~white!, respectively.

FIG. 2. Probability distribution of themJ components for the
spin-split lowest hole-subband pair atkh50.25 nm21. The energy
difference is E(b)2E(a)52.5 meV. Panels cover an area
25 nm340 nm.
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II. NUMERICAL IMPLEMENTATION

Numerical approaches to the exciton in QWR can be c
sified according to the chosen basis: The exciton wave fu
tion is usually discretized ink space, in real space, or it i
expanded into a superposition of simpler functions. The
ter can be ‘‘arbitrary’’ orbitals with, e.g., Gaussian shape,9 or
they are derived from single-particle calculations for the s
band states. In addition, many groups applied in the p
decade variational approaches to QWR excitons, typic
using an ansatz with only one or two parameters and con
ering idealized geometries.

We presented recently full multiband calculations for Q
exciton dispersions includingk"p coupling in real space and
compared them to calculations ink space involving a sub-
band expansion.3 The real-space approach to QW spec
was intended as a first step towards the QWR results of
present work. A finite exciton momentum destroys already
the QW case the in-plane rotational invariance. With a
sulting matrix dimension'1.43107 for grids fine enough to
yield well converged results for the exciton dispersion, th
method was clearly inferior to a subband expansion ink
space. Such an eigenvalue problem can be attacked on
the matrix is sparse and suitable for using efficiently vect
ized or parallelized numerical routines.30,31

The advantages of ak-space-based subband expansio
which proved so much more efficient in the QW case,
lost in the QWR case for several reasons: First of all, m
technologically important QWR systems such as V-groo
QWR, T-shaped QWR,32,16 etched mesa structures,33,34 and
wires grown along natural step-bunched surface steps35,36 or
etched steps37 show in at least one direction onlyweakcon-
finement. This implies that many subband pairs would ha
to be taken into account for sufficient accuracy. A furth
problem are the Coulomb integrals, which have to be cal
lated and stored for each basis-state pair and eachx distance.
Coulomb integrals can be obtained more or less analytic
only for model systems with rectangular or circular cro
section and simple single-particle states. Using such b
states for general, more complicated shapes, however,
lead to poor convergence with basis size. Finally, and ma
even more importantly, the Hamiltonian matrix in a subba
expansion is no longer sparse.

The difficulties involved in a QWR exciton calculatio
are highlighted by the fact that the influence of the valen
band structure on optical properties is treated in the litera
almost exclusively on the single-particle level,6,10,11,13,38–40

TABLE I. Overview of the used material parameters; followin
Ref. 13.

QWR barrier V-QW

Al content x 0 0.33 0.21
Band gap Eg(eV) 1.519 1.931 1.781
Luttinger g1 6.790 5.800 6.160

parameters g2 1.924 1.695 1.778
g3 2.681 2.257 2.411

Electron mass me/m0 0.0665 0.0941 0.0840
Dielectric const. e 12 12 12
Offset ratio Vc /Vv 68/32 68/32 68/32
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16 856 PRB 61ANASTASSIOS SIARKOS AND ERICH RUNGE
which is conceptionally and numerically much easier th
calculations of the two-particle wave function for the ex
ton. These publications focus mainly on intersubband
sorption and polarization properties, which are considere
be a good test for the one-dimensional character of the
volved states.33,34

Numerically very important for calculations at larger m
mentum along the wire is the choice of the COM coordin
Rx5bxe1(12b)xh .41,1–3 The parameterb relates the par-
ticle momenta to the COM momentumQ and the momentum
of the relative motionk via

ke5k1bQ, kh5k2~12b!Q. ~2!

The better the choice ofb is, the less of the oscillating plane
wave factor exp(2iQRx) is present in the calculated wav
function, and the better is the convergence of the numer
solution. A complete separation of COM motion and relat
motion is, however, possible only for parabolic bands a
the conventional choiceb5me /(me1mh). In Ref. 3, we
showed how to optimizeb for general, nonparabolic band

III. SINGLE-PARTICLE SUBBANDS

The electron, described by an effective mass that va
with aluminum concentration, see Table I, is the simpl
ingredient of our QWR exciton model. Figure 1 present
selection of electron single-particle states for a momen
ke50.25 nm21, which is representative for electrons in th
finite-momentum excitons discussed below in Secs. IV a
V. Besides ‘‘typical QWR states,’’ Figs. 1~a! and 1~b!, also
states are seen which are better described as states o
S-QW, Fig. 1~c!, or the V-QW, Fig. 1~d!. Altogether, a
smooth transition from QWR states to QW states is fou
which should make electron trapping into the wire regi
efficient. Due to the heavier electron mass in t
Al xGa12xAs barriers, effective confinement weakens w
increasing electron momentum along the wire,ke , and the
electron envelopes reach deeper into the barriers.

In contrast to the electron, the hole dispersions~not
shown! and the corresponding states exhibit some nontri
features. Probability distributions of the spin compone
(mJ along the vertical quantization axisz) at finite momen-
tum are shown for the lowest two states in Fig. 2. At vani
ing hole momentum, the lowest state is doubly degene
and the dispersion splits at small, but finite momentumlin-
early. This is equivalent to the valence-subband extrema
curring not atkh50, but slightly off. The spin splitting re-
sults from the terms of the Luttinger Hamiltonian23 which
are linear in the momentum along the wire axis,

HLutt5h(0)1khh(1)1kh
2h(2). ~3!

These mix only 3/2 components with 1/2 components:

h63/2,61/2
(1) 572A3g3]y , h63/2,71/2

(1) 572A3g2]z . ~4!

They give a nonzero contribution to the energy only if inve
sion symmetry is violated, e.g., by the confining poten
Vconf(y,z). ~The spin splitting isnot related to the slight de
viation from mirror symmetryy↔2y.!

The difference in energy goes along with a change of
distribution in real space. In Fig. 2, the components of
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state with lower energy~left panel! penetrate further into the
S-QW region; those components with positivemJ are in the
ground state displaced to the left, those with negativemJ are
displaced to the right. Similar relative displacements of
maxima between corresponding components in Figs. 2~a!
and 2~b! are also seen in the vertical direction.

The slight left-right asymmetry of the wire causes a min
additional shift ofall components to the right. Not surpris
ingly, the light-hole componentsmJ561/2 penetrate further
into the V-QW thanmJ563/2 components. Only exactly a
kh50, eigenstates with strong spin polarization~close to
63/2! can be found; for finitekh , the spin polarization is
small. We will find these features for the exciton dispersi
and the hole densities within the exciton, too.

IV. EXCITON DISPERSION

Results on exciton energies will be presented for the fo
component wave functions on a coarser grid ofNs3Nye
3Nyh3Nze3Nzh3Nx5431723172327'107 and a finer
grid of 432323232327'33107 sites for a five-
dimensional volume with 57 nm, 37 nm, and 120 nm in t
y,z, andx direction, respectively. With these grids, a goo
accuracy can be obtained if the COM transformation~2! is
optimized and a ground-state-adapted discretization24 of the
Coulomb potential is used.3 Due to the huge matrix size, w
are limited to the very few lowest eigenstates; for the den
grid we are limited tothe lowest state. In Fig. 3, we show th
exciton dispersions for our V-groove QWR.

A spin splitting analogous to that discussed for the h
subbands is clearly seen. It is weak within the lowest doub
~inset of Fig. 3! but large for the next higher doublet. For th
lowest doublet, the linear contribution to the dispersion c
be obtained from a polynomial fit to the data, with the ener
minimum at Q50.007 nm21. Note that in the exciton
Hamiltonian terms linear inQ occur beyond those of Eq.~4!.

FIG. 3. Dispersion of the lowest exciton states in a V-groo
QWR ~diamonds!. For the lowest ground-state branch, results
shown for the denser mesh as open circles. The exciton contin
edges for the HH1C1 pairs ~gray, dashed! and the HH2C1 pairs
~dark-gray, dash-dotted! are included. Inset: The spin-split ground
state dispersion with parabolic fits on an enlarged scale. Note
small linear contribution and the small minimum shifts.
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PRB 61 16 857QUANTUM-WIRE EXCITON DISPERSION IN A . . .
They result from the quadratic termskh
2h(2) andHe when the

expressions~2! are inserted.
An enlightening discussion of why the lowest doublet

split and why the split is much stronger in T-shaped QW
than in V-groove QWR is given by Goldoniet al. in Ref. 10.
They note that the HH1 state of one of the two QWs const
tuting a T-shaped QWR has a strong LH component from
point of view of the second QW, and vice versa. Hence,
respective HH1 subbands couple strongly, leading to a stro
avoided crossing and a large spin splitting. The argumen
formulated for single-particle states there, but applies to
citons as well. We shall point out that, as the present ca
lation does include the vertical quantum well, one should
be surprised to see in our QWR a feature which has b
identified as characteristic for T-shaped wires. However,
this particular QWR, the confinement in the GaAs region
too strong for the V-QW to play a significant role for th
ground-state exciton.

The dominant nonparabolicity of the ground-state disp
sion in Fig. 3 can be traced back to an avoided crossing n
Q'0.28 nm21 with higher exciton bands that atQ50 have
a strong light-hole component (mJ561/2). This is not sur-
prising based on similar experience with excitons in bul41

and QW~Refs. 1–3! as well as with single-particle hole sub
bands in QWR.

In the QW case, a comparison of the nonparabolic exc
dispersion with theelectron-hole-pair edge, or exciton con-
tinuum edge, Enenh

(Q), proved rather useful.3 It is defined by

Enenh
~Q!5 min

ke1kh5Q
$Ene

~ke!1Enh
~kh!%, ~5!

and is the minimal kinetic energy of a noninteracti
electron-hole pair for a given subband combinationnenh and
a given Q. This coincides in the independent-subband
proximation with the maximal energy of bound excitons f
a given subband combination. As in the QW case, the e
ton ground-state dispersion is found to follow quite clos
the exciton continuum edge, from which it inherits its stro
nonparabolicity. Both flatten at higher COM momentum.

The numerical exciton dispersions are reasonably w
converged, as the small differences between the results
tained for the two different meshes prove. However, the
solute energies are far from convergence. This is prima
due to the discretization error in the kinetic energy of t
electron and, to a lesser extent, the hole. Rigid vertical sh
of up to about 5 meV are included in Fig. 3 and Fig. 4, su
that the ground-state excitons~and, in Fig. 4 below, also the
shifted continuum edges! coincide atQ50. We stress tha
the exciton binding energies~difference of exciton energy
and continuum edge at givenQ) calculated with the two
meshes differ only by 0.1 meV~16.2 meV versus 16.3 meV!.
As an aside, we remark that for a comparable QW of 6.3
width with similar material parameters, a binding energy
10.5 meV is found.3

For an estimation of theQ-dependent numerical unce
tainties and in order to show the increase of binding ene
with increasing momentum, we display in Fig. 4 the groun
state exciton dispersion on both grids with the vertically d
placed continuum edges derived from single-particle s
bands calculated on the same grids. We already stated
e
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the exciton dispersion follows quite closely the exciton co
tinuum edge. The exciton dispersion lies consistently be
the appropriately shifted continuum edge. This shows an
crease in binding energy withQ, which is almost the same
for both grids and is related to the mass increase along
dispersion.3

The exciton dispersion relative to the continuum ed
i.e., the binding energy, seems to be better converged
the continuum edge itself. Since the latter can be obtai
with high accuracy as a combination of single-particle pro
erties, we are able to guess where a fully converged exc
dispersion would be~crosses in Fig. 4!.

We want to emphasize that, as found before in QW,3 the
easily obtainable exciton continuum edge yields a surp
ingly reliable guide for the numerically expensive groun
state exciton dispersion. Furthermore, the sign and ma
tude of the remaining small deviation can be guessed ba
on the physical argument of an increasing ground-state e
ton binding energy for hole dispersions which become fla
at larger momentum~hole mass and reduced mass increas!.
The higher excitons follow their respective continuum edg
less closely due to strong avoided crossings with other e
ton branches~not shown!. In particular, the exciton spin
splitting within the lowest doublet is at largeQ smaller than
anticipated based on the difference of the respective c
tinuum edges.

V. EXCITON WAVE FUNCTIONS

Figure 5 shows the multicomponent character of
ground-state exciton wave function near the origin as wel
at a COM momentum close to the avoided-crossing reg
A strong admixture of light-hole states (mJ561/2) is seen
for the largerQ. The light-hole contribution increases furthe
for even larger COM momenta, as shown in Fig. 6. Note t
this is only in part due to mixing of LH1C1 and HH1C1
excitons; the lowest hole subband (HH1) itself acquires a

FIG. 4. Comparison of ground-state exciton dispersion on
coarser~diamonds! and the finer mesh~circles! with the vertically
displaced exciton continuum edges calculated on the same g
~dot-dashed and dotted, respectively!. The fully converged con-
tinuum edge~dashed! is vertically displaced for comparison as we
as for estimation of the numerical accuracy. Small crosses mark
extrapolation for the exciton dispersion; see text.
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16 858 PRB 61ANASTASSIOS SIARKOS AND ERICH RUNGE
strong contribution of ‘‘bulk light-hole states,’’ i.e.,mJ5
61/2 components; see Fig. 2.

For a more detailed analysis of the internal structure
the exciton with increasing momentum, we display in Fig
the exciton extension along all five coordinates. For each
of these, the squared wave function was summed over
remaining four directions and the angular momentum co
ponents. Then, the root-mean-square deviation was ca
lated. The strong confinement of electron and hole along
growth direction,z, is clearly seen; confinement is weaker
the S-QW directiony. The largest extension is that of th
relative motion along the wire (x direction!. With increasing
COM momentum, the hole in the exciton can relax in t
weakly confined direction. However, the exciton contracts
the same time along the wire axis. The latter change is st
ger, suggesting a slight enhancement of the exciton bind
energy withQ, in agreement with the discussion of Figs.
4, and similar to the results in comparable QW. The den
profiles in theyz plane ~not shown! can be fitted well by

FIG. 6. Contribution of bulk light-hole states (mJ561/2) to the
exciton ground-state versus COM momentumQ.

FIG. 5. Ground-state exciton forQ50.09 nm21 ~left! and Q
50.28 nm21 ~right!. Hole densities for the differentmJ compo-
nents as well as the electron density are shown on 37
357 nm areas.
f

e
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Gaussian functions. For density profiles along the wire,
the discussion of Fig. 8, below.

On the coarser mesh, higher exciton states can be
tained as well. Their hole densities and relative wave fu
tion along the wire are shown in Fig. 8. For their descriptio
we use a notation like HH2C12s, which states, e.g., that thi
particular exciton branch is atQ50 derived from the second
QWR hole subband which has primarily heavy-hole (mJ5
63/2) character and from the lowest electron subband; al
the wire axis, the dominant component~s! have no nodes and
therefore resemble ans state.

The two states of Fig. 8~b! which lie above the ground
state doublet@Fig. 8~a! with clear HH1C12s character# have
one node in the S-QW direction. They can be interpreted
originating from a heavy-hole state with one node, and
thus HH2C12s states. The next doublet, Fig. 8~c!, has one
node along the wire, resembling ap state. As it has no node
in the yz plane for both electron and hole coordinate, it is
HH1C12p doublet. Note its much larger extension in wi
direction compared to thes states, which goes along with a
increased size in the S-QW direction, at least in compari
to thes state of the same subband pair, Fig. 8~a!.

FIG. 7. Spatial extension~root-mean-square! of the exciton
ground-state along each dimension versus COM momentumQ.

FIG. 8. Right: Hole densities in theyz plane. Left: Density of
the relative wave-function components~dashed: heavy holemJ5
63/2; solid: light holemJ561/2) along the wire for the lowes
three doublets atQ50. From top to bottom: HH1C12s, HH2C1

2s, HH1C12p. Lines are hyperbolic-secant fits in panels~a! and
~b!, and spline fits in~c! to the numerical data~diamonds!.
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PRB 61 16 859QUANTUM-WIRE EXCITON DISPERSION IN A . . .
The relative motion in wire direction is determined by t
Coulomb interaction, modified by form factors. In analogy
two-dimensional results, a wave function shape between
exponential and a Gaussian is expected and is seen in
8~a! and~b!, indeed. The large-distance behavior is appro
mately exponential; at small distances, the relative w
function does not show a cusp, because the effective C
lomb interaction is weakened there. For the ground stat
hyperbolic-secant function fits the squared wave function
most perfectly.

This brings us to the question of how closely the excit
ground-state wave function can be approximated by a fac
ization ansatz of the form

Cgs'w rel~xe2xh!we~ye ,ze!wh~yh ,zh!x0 , ~6!

with suitably chosen functionswe ,wh as effective single-
particle electron and hole wave functions in the confin
directions andw rel for the relative motion along the wire, an
with a spatially constant four-component vectorx0. Having
the numerical exciton wave function at hand, this can
easily answered. At a not too large momentum ofQ
50.09 nm21 ~see left panel of Fig. 5! an overlap of 94%
between the factorized ansatz Eq.~6! and the numerically
exact result can be obtained if only themJ563/2 compo-
nents are included with equal weight,x05(1/A2,0,0,
21/A2). This is rather high, especially in view of the fa
that in Ritz’s variational principle, eigenvalue errors are p
portional to thesquareof the wave-function deviation. The
inclusion of mJ561/2 components, which is needed f
larger Q, increases the overlap only to 95%. Finally, w
come back to two subjects already mentioned, the kin
COM mass and the polarization properties of excitonic lum
nescence.

VI. KINETIC EXCITON MASS

The concept of a kinetic COM mass for a nonparabo
dispersion depends on the momentum range that is con
ered. In Table II, some values of a kinetic COM mass for
ground-state exciton in the considered QWR and in Q
with 5 and 10 nm well width are compiled. The QW width
correspond roughly to the range of wirez widths, taking into
account that the lower Al concentration in the V-QW wea
ens the confinement compared to GaAs/Al0.33Ga0.67As QWs.
Because the QW and QWR dispersions are strongly non
rabolic, average values derived from parabolic fits to the d
persion in aQ range of about the inverse Bohr radius (Q
,0.1 nm21) are reported. This part of the dispersion is t
one expected to play a dominant role in exciton localizati

TABLE II. Kinetic COM mass for the ground-state HH1C12s
exciton derived from fits of the dispersion in the rangeQ
,0.1 nm21 and from expression~7!. In parentheses: mass from
extrapolated dispersion of Fig. 4. Quantum-well data are from
culations based on Ref. 3.

MX/m0 QWR 5 nm QW 10 nm QW

Q,0.1 nm21 0.27 ~0.33! 0.31 0.32
Eq. ~7! 0.28 0.29 0.31
an
gs.
-
e
u-
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d

e

-

ic
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id-
e
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-
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-
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Included in Table II are also the results of a simple a
proximate expression for the exciton mass which we h
derived and tested before in Ref. 3. It gives an estimate
the exciton’s kinetic mass in the sameQ range, which is
obtained from the single-particle subband dispersionsee,h(k)
weighted with the squared Fourier transformCQ50(k) of the
exciton wave function at vanishing COM momentumQ.
Within the factorization approximation, Eq.~6!, only the
Fourier transformw̃ rel(kx) is important, and the mass for
mula reads

MX5me1mh with

1

me,h
5

1

\2E dkxuw̃ rel~kx!u2
]2

]kx
2
ee,h~kx!. ~7!

The Luttinger parameters of Table I yield in the spheric
approximation for the bulk heavy-hole massmh /m05(g1
24g2/526g3/5)2150.49, thus me1mh50.56m0. A de-
crease of the exciton mass going from GaAs bulk
GaAs/AlxGa12xAs QW can be understood as a result of t
heavy- and light-hole separation due to confinement.
QWR, we find a mass of 0.33m0. The agreement of the
simple expression~7! with the result of the full numerica
calculation is not as good for the QWR case as for QWs.
attribute this to a stronger momentum dependence of
exciton’s internal structure, probably reflecting the smal
subband separations and the linear terms in the dispersi

VII. POLARIZATION ANISOTROPY

The exciton wave functions can be used for the calcu
tion of the polarization anisotropy of excitonic luminescen
and absorption. Results on the polarization dependenc
V-groove wires are known from experiments42,12 and from
single-particle calculations.10,13 The average anisotropy a
the onset of the electron-hole continuum in the sing
particle approximation should be comparable to our exci
calculations. References 12 and 13 give an average an
ropy value of 10%, whereas Refs. 42 and 10 state 10–2
for various V-groove QWR samples of different geometry

For the relative absorption strength, as given by
squared momentum matrix element averaged over
ground-state doublet~corresponding to the different electro
spin states!,

aj5
1

2 (
6

z^0u p̂ j uCgs
(6)& z2, j 5x,y,x, ~8!

we find the following values:

ax2ay

ax1ay
50.12,

2az

ax1ay
50.01. ~9!

This confirms what one would expect based on the sing
particle results, e.g., combining the upper left corners
Figs. 1 and 2. Absorption with light polarized alongz in-
volves only themJ561/2 components, which according t
Fig. 6 are weak forQ values corresponding to photon mo
menta. In contrast, light polarized in thexy plane is absorbed
mainly by themJ563/2 components. The polarization de

l-
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pendence perpendicular to the growth direction is due to
weak, but noticeable, extra confinement in they direction.

The calculated absorption anisotropy is in good agr
ment with the experimental results. The fact that the sing
particle results of Refs. 10 and 13 are so close to Eq.~9! is
probably due to the high overlap of the exciton wave fun
tion with the factorized form Eq.~6!, which in turn reflects
the strong carrier confinement in V-groove QWR.

VIII. SUMMARY

In summary, we have shown that multiband QWR excit
calculations in real space are feasible. Results for exc
dispersion, wave-function character, and kinetic COM m
were found to be quite close to those derivable from
exciton continuum edge, a factorization ansatz, and the m
estimate of Eq.~7!, respectively. The calculated polarizatio
anisotropy agrees well with experimental data.

As an outlook, we would like to list some physical pro
erties that can be obtained from similar calculations of
ground-state exciton or the lowest exciton doublet at fin
COM momentum: We already mentioned in the Introduct
e

. B

-

-

.

.J
e

e

-
-

-

n
n
s
e
ss

e
e

the possible application of QWR in lasers. For their mod
ing, optical transition matrix elements and the density
states are needed. The exciton dispersion also enters th
lariton dispersion.1 Exciton localization involves COM wave
functions, which in turn can be obtained by a COM Sch¨-
dinger equation that needs the ground-state dispersion o
least the exciton mass as input.22 The same is true for relax
ation processes and diffusion. The quantum confined S
effect in QWR ~Refs. 14, 43, and 44! and experiments in
magnetic fields45,46 can be treated by inclusion of the appr
priate terms in the Hamiltonian.
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