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Quantum-wire exciton dispersion in a multiband real-space scheme
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Numerical multiband calculations of quantum-wire excitons including valence-4ogncoupling and going
beyond the idealization of a circular or rectangular wire cross section are presented. These are based on a
real-space formulation. For a specific GaAs®& _,As V-groove quantum wire, results are shown for the
exciton dispersion, the kinetic exciton mass, the dependence of the exciton wave function on the center-of-
mass momentum, and the polarization anisotropy of the excitonic absorption.

I. QUANTUM-WIRE EXCITONS there is, of course, no unique definition of a “mass.” There
is, thus, some uncertainty about what mass parameter should
For semiconductor quantum wellQW) and quantum actually be used for different processes like exciton forma-
wires (QWR), it has been well known for a long time that tion and thermalizatioR, exciton localizatiorf? and the
excitons dominate the optical properties near the fundamerexciton-photon interactiofpolaritong.*
tal band edge at low temperatures and remain important even This paper presents the first accurate results on the exci-
at room temperature. Not surprisingly, a steady stream ofon dispersion in a realistic QWR, including both the degen-
papers calculating QW excitons at vanishing center-of-maserate valence-band structure and the Coulomb correlation.
(COM) momentumQ=0, with improving accuracy and in- The exciton Schrdinger equation was solved in real space,
sight was seen over the past fifteen years. Much less has bewtith the Hamiltonian
done regarding QW excitons at finite momentafrand even
less for QWR excitons. For QWR, all published work on
optical spectrdi) used drastically simplified models for the H=Hg+H yt VAV +Weou (6N
underlying single-particle bands® (ii) considered highly
idealized geometriebor (iii) treated the Coulomb interac-
tion only approximately 2 The first group typically ignored ~appropriately discretized as outlined in our earlier wdfk.
the multiband character of the valence-band maximum. Thél ¢ is the Luttinger Hamiltoniaf? for the valence bands
last group either ignored the Coulomb interactiondescribing thek-p coupling of heavy and light holes; the
completely'®'*added it as a rigid shift of all states at a final conduction-band electron is described by a simple parabolic
stage'>*®approximated it by a one-dimensional fofror, in  effective-mass expressidt,; the Coulomb potentiaWc,
the best case, used a Hartree approximafidfin the latter,  is discretized according to Glutsch, Chemla, and Bechétedt.
each constituent of the exciton reacts to the charge distribuFhe QWR geometry determines the confining potentigl
tion of the other one, but correlations between both particlefor electrons and holes. The eigenfunctions of the Hamil-
are neglected. For QWR, again, work has been focused d@nian (1) have four components corresponding to the hole
properties of the exciton at resp=0. angular momentaJ= 3/2m;= +3/2,+ 1/2,—1/2,— 3/2); the
The internal structure of the ground-state exciton, i.e., theelectron spin can, without loss of generality, be taken as
relative motion of electron and hole, determines, among oth+ 1/23
ers, the binding energy and the polarization dependence of We study as an example so-called V-groove QWRs,
its absorption. Aspects of the COM motion enter the exci-which are particular promising for device applications. They
ton’s localization properties, its energy relaxation, and, viaresult from self-regulated growth with metal-organic chemi-
the exciton dispersiory(Q), the exciton density of states cal vapor depositiofMOCVD) or molecular-beam epitaxy
and their occupation. These, in turn, determine the behavioiMBE) on a substrate into which V-shaped grooves were
of possible QWR-based optoelectronic devices. Indeed, thetched. Alternating deposition of GaAs and,®Bb, _,As
absence of an energy shift with increasing excitation densityRefs. 25 and 26or In,Ga, _,As and InP(Refs. 27 and 28
has been attributed to direct involvement of excitons inleads to stacks of V-shaped wells and barriers. Due to differ-
QWR lasing'®'” However, early expectations that QWR de- ent growth rates and lateral transport, crescent-shaped thicker
vices would profit from the diverging one-dimensional den-well regions develop at the bottom, which act as QWR. The
sity of states had to be revised due to excitonic correlationgvell regions on the side walls will be henceforth referred to
reducing the spectral density consideralfiy®~?°Neverthe-  as side quantum wellS-QW). The stack of V-groove QWR
less, understanding excitons in a QWR remains a challengés found to be connected by a central region of increased Ga
and remarkable effects have been predicted such as an excencentration, which will be referred to as vertical quantum
ton crystal in finite-length QWR* well (V-QW). The V-groove QWR geometry is well known
A particularly important aspect of the exciton dispersionfrom cross-sectional TEM. We use data of Kapon and co-
is the kinetic COM mass. For the typically strongly nonpa-workers for a GaAs/AlGa, _,As V-groove QWR with 6.3
rabolic exciton dispersions in low-dimensional structures,nm central thickness grown on a Ga@91) surface with the
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TABLE I. Overview of the used material parameters; following
Ref. 13.
QWR barrier V-QW
(2) (b) Al content X 0 0.33 0.21
Band gap Eq(ev) 1.519 1.931 1.781
z Luttinger Y1 6.790 5.800 6.160
parameters Vs 1.924 1.695 1.778
Y3 2.681 2.257 2.411
) o {2 Electron mass mJm,  0.0665  0.0941  0.0840
= \ Dielectric const. € 12 12 12
(c) (d) Offset ratio VIV, 68/32 68/32 68/32

FIG. 1. V-groove GaAs/AlGa _,As quantum wire: Some of Il. NUMERICAL IMPLEMENTATION
the lowest electron-subband stateskgt0.25 nm'l. Each panel
shows an area of 50 nrB80 nm. The shading marks the alumi-
num concentratiorx=0.33, 0.21, and 0.0 in barrigdark gray,
vertical quantum well(light gray), and side quantum well and

crescent-shaped wire regidwhite), respectively.

Numerical approaches to the exciton in QWR can be clas-
sified according to the chosen basis: The exciton wave func-
tion is usually discretized ik space, in real space, or it is
expanded into a superposition of simpler functions. The lat-
ter can be “arbitrary” orbitals with, e.g., Gaussian shajoe,
wire axis (x direction along[110].2° Thus, experimental they are derived from single-particle calculations for the sub-
details like a narrowing of the S-QW about 25 nm off the 0and states. In addition, many groups applied in the past
center and a slight left-right asymmetry are included. Thed€cade variational approaches to QWR excitons, typically
latter is specific to the particular sample of the TEM micro-USing an ansatz with only one or two parameters and consid-
graph, but should be representative for asymmetries beingfing idealized geometries. _ _
present in general. Recent TEM analysis showed that the e presented recently full multiband calculations for QW
earlier experiments overestimated the asymmetry state-ofXCiton dispersions includinkg-p coupling in real space and
the-art QWR are more symmetric than assumed in th&ompared them to calculations knspace involving a sub-
present work® The V-QW is described by a vertical slap Pand expansiod.The real-space approach to QW spectra
with Al concentrationx=0.21. A more detailed modeling is Was intended as a first step towards the QWR results of the
easily possible within our approach, but seemed not necegresent work. A finite exciton momentum destroys already in
sary. The geometry of the considered QWR is seen as graj’® QW case the in-plane rotangmal invariance. With a re-
scale background shading in Figs. 1, 2, and 8 belowSulting matrix dimensior=1.4x10" for grids fine enough to

The material parameters that were used are summarized ¥i¢!d well converged results for the exciton dispersion, that
Table I. method was clearly inferior to a subband expansiorkin

space. Such an eigenvalue problem can be attacked only if
the matrix is sparse and suitable for using efficiently vector-
ized or parallelized numerical routing>!

The advantages of k-space-based subband expansion,
which proved so much more efficient in the QW case, are

13 +3/2 lost in the QWR case for several reasons: First of all, most
technologically important QWR systems such as V-groove
QWR, T-shaped QWR?'® etched mesa structurds* and
wires grown along natural step-bunched surface stépsr
oy T etched step$ show in at least one direction onlyeakcon-

finement. This implies that many subband pairs would have
to be taken into account for sufficient accuracy. A further
problem are the Coulomb integrals, which have to be calcu-
lated and stored for each basis-state pair and ral$tance.
Coulomb integrals can be obtained more or less analytically
only for model systems with rectangular or circular cross
section and simple single-particle states. Using such basis
states for general, more complicated shapes, however, will
lead to poor convergence with basis size. Finally, and maybe
even more importantly, the Hamiltonian matrix in a subband
expansion is no longer sparse.

FIG. 2. Probability distribution of then, components for the The difficulties involved in a QWR exciton calculation
spin-split lowest hole-subband pair lgf=0.25 nm i The energy are hlghllghtEd by the fact that the influence of the valence-
difference is E(b)—E(a)=2.5 meV. Panels cover an area of band structure on optical properties is treated in the literature
25 nmx40 nm. almost exclusively on the single-particle le¢géf,11:13:38-40

-1/2 -1/2

(b) 312
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which is conceptionally and numerically much easier than
calculations of the two-particle wave function for the exci-
ton. These publications focus mainly on intersubband ab-
sorption and polarization properties, which are considered to
be a good test for the one-dimensional character of the in-
volved stateg334

Numerically very important for calculations at larger mo-
mentum along the wire is the choice of the COM coordinate
R= BXo+ (1— B)xp.*+13The parametep relates the par-
ticle momenta to the COM momentughand the momentum
of the relative motiork via

ke=k+pBQ, ky=k—(1-p)Q. )

The better the choice @ is, the less of the oscillating plane- i

wave factor exp{iQR)) is present in the calculated wave o1 00 o1
function, and the better is the convergence of the numerical Q(nm™")
solution. A complete separation of COM motion and relative

motion is, however, possible only for parabolic bands and FIG. 3. Dispersion of the lowest exciton states in a V-groove
the conventional choicgd8=m./(m.+my). In Ref. 3, we QWR (diamonds. For the lowest ground-state branch, results are

showed how to optimize for general, nonparabolic bands. shown for the denser mesh as open circles. The exciton continuum
edges for the HKC, pairs (gray, dashedand the HHC,; pairs

(dark-gray, dash-dottedre included. Inset: The spin-split ground-
lll. SINGLE-PARTICLE SUBBANDS state dispersion with parabolic fits on an enlarged scale. Note the
The electron, described by an effective mass that variegmall linear contribution and the small minimum shifts.
with aluminum concentration, see Table I, is the simplest
ingredient of our QWR exciton model. Figure 1 presents astate with lower energyleft pane) penetrate further into the
selection of electron single-particle states for a momentun$-QW region; those components with positivg are in the
ke=0.25 nm!, which is representative for electrons in the ground state displaced to the left, those with negatiyere
finite-momentum excitons discussed below in Secs. IV andlisplaced to the right. Similar relative displacements of the
V. Besides “typical QWR states,” Figs.(4) and 1b), also maxima between corresponding components in Figa) 2
states are seen which are better described as states of ted 2b) are also seen in the vertical direction.
S-QW, Fig. 1c), or the V-QW, Fig. 1d). Altogether, a The slight left-right asymmetry of the wire causes a minor
smooth transition from QWR states to QW states is foundadditional shift ofall components to the right. Not surpris-
which should make electron trapping into the wire regioningly, the light-hole components;= = 1/2 penetrate further
efficient. Due to the heavier electron mass in theinto the V-QW thamim;= = 3/2 components. Only exactly at
AlL,Ga _,As barriers, effective confinement weakens withk,=0, eigenstates with strong spin polarizati¢ciose to
increasing electron momentum along the wikg, and the  *+3/2) can be found; for finitek,, the spin polarization is
electron envelopes reach deeper into the barriers. small. We will find these features for the exciton dispersion
In contrast to the electron, the hole dispersigmet and the hole densities within the exciton, too.
shown and the corresponding states exhibit some nontrivial
features. Probability distributions of the spin components
(m; along the vertical quantization ax& at finite momen-
tum are shown for the lowest two states in Fig. 2. At vanish- Results on exciton energies will be presented for the four-
ing hole momentum, the lowest state is doubly degenerateomponent wave functions on a coarser grid NaPX Ny
and the dispersion splits at small, but finite momentimm X NypX NzeX Nz X Ny=4X 172X 17?x 27~10" and a finer
early. This is equivalent to the valence-subband extrema ocgrid of 4x2¥x23¥x27~3x10" sites for a five-
curring not atk,=0, but slightly off. The spin splitting re- dimensional volume with 57 nm, 37 nm, and 120 nm in the
sults from the terms of the Luttinger Hamiltonfarwhich y,z, andx direction, respectively. With these grids, a good

E (meV)

IV. EXCITON DISPERSION

are linear in the momentum along the wire axis, accuracy can be obtained if the COM transformati@his
© (D) 1 LZH() optimized and a ground-state-adapted discretiz&tiohthe
Hiue=h"+kph'™ + kih'= (3 Coulomb potential is usetiDue to the huge matrix size, we

are limited to the very few lowest eigenstates; for the denser
grid we are limited tahe lowest state. In Fig. 3, we show the
(1) —= (1) — = exciton dispersions for our V-groove QWR.

Nec0= %2330y, Widpri= ¥ 23720 (4 A spin splitting analogous to that discussed for the hole
They give a nonzero contribution to the energy only if inver-subbands is clearly seen. It is weak within the lowest doublet
sion symmetry is violated, e.g., by the confining potential(inset of Fig. 3 but large for the next higher doublet. For the
VeonY:2). (The spin splitting isnot related to the slight de- lowest doublet, the linear contribution to the dispersion can
viation from mirror symmetryy« —vy.) be obtained from a polynomial fit to the data, with the energy

The difference in energy goes along with a change of theninimum at Q=0.007 nm. Note that in the exciton
distribution in real space. In Fig. 2, the components of theHamiltonian terms linear i® occur beyond those of E¢4).

These mix only 3/2 components with 1/2 components:
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They result from the quadratic terrkgh(®) andH, when the
expressiong2) are inserted.

An enlightening discussion of why the lowest doublet is
split and why the split is much stronger in T-shaped QWR
than in V-groove QWR is given by Goldoet al.in Ref. 10.
They note that the HHstate of one of the two QWSs consti-
tuting a T-shaped QWR has a strong LH component from the
point of view of the second QW, and vice versa. Hence, the
respective HH subbands couple strongly, leading to a strong
avoided crossing and a large spin splitting. The argument is
formulated for single-particle states there, but applies to ex-
citons as well. We shall point out that, as the present calcu-
lation does include the vertical quantum well, one should not
be surprised to see in our QWR a feature which has been

E (meV)
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identified as characteristic for T-shaped wires. However, for
this particular QWR, the confinement in the GaAs region is

too strong for the V-QW to play a significant role for the coarser(diamond$ and the finer meskcircles with the vertically

ground-stat_e exciton. . . displaced exciton continuum edges calculated on the same grids
The dominant nonparabolicity of the ground-state disper-

ion in Eia. 3 b d back ided . (dot-dashed and dotted, respectiyelyhe fully converged con-
sion in =1g. 7fan' e Frace a_c to an avoided crossing Ne&huum edgdgdashedlis vertically displaced for comparison as well
Q~0.28 nm - with higher exciton bands that =0 have

: Y as for estimation of the numerical accuracy. Small crosses mark the
a strong light-hole componenin;= = 1/2). This is not sur-

extrapolation for the exciton dispersion; see text.
prising based on similar experience with excitons in Bulk
and QW(Refs. 1-3 as well as with single-particle hole sub-
bands in QWR.
In the QW case, a comparison of the nonparabolic excito
dispersion with theelectron-hole-pair edgeor exciton con-
tinuum edges;, , (Q), proved rather usefdllt is defined by

FIG. 4. Comparison of ground-state exciton dispersion on the

the exciton dispersion follows quite closely the exciton con-
Iliinuum edge. The exciton dispersion lies consistently below
the appropriately shifted continuum edge. This shows an in-
crease in binding energy witQ, which is almost the same
for both grids and is related to the mass increase along the
dispersior®

The exciton dispersion relative to the continuum edge,
i.e., the binding energy, seems to be better converged than
. - L . ._the continuum edge itself. Since the latter can be obtained
and is the minimal kinetic energy of a noninteracting it high accuracy as a combination of single-particle prop-

electron-hole pair for a given subband combinaiign, and  gries e are able to guess where a fully converged exciton
a given Q. This coincides in the independent-subband aPispersion would bécrosses in Fig. ¥

proximation with the maximal energy of bound excitons for ~ \ya \want to emphasize that, as found before in ®the
a given subband combination. As in the QW case, the exCigaqjly obtainable exciton continuum edge yields a surpris-
ton ground-state dispersion is found to follow quite closelyjqqy " reliaple guide for the numerically expensive ground-
the exciton continuum edge, from which it inherits its stronggsate exciton dispersion. Furthermore, the sign and magni-
nonpr)]arabohcny. ?mh f_Iatter(;.at higher COM momentbulm. Jude of the remaining small deviation can be guessed based
The numenca excml)ln 'fflspersmns are rea;ona yl Welbn the physical argument of an increasing ground-state exci-
converged, as the small differences between the results Oy, pinding energy for hole dispersions which become flatter
tained for the two different meshes prove. However, the abét larger momenturthole mass and reduced mass increase
zolute eﬂer%lles are far from cqnver:gel?ce..Tms IS p””f‘aﬂ'yl'he higher excitons follow their respective continuum edges
ue to the discretization error in the Kinetic energy of heygqg closely due to strong avoided crossings with other exci-
electron and, to a lesser extent, the hole. Rigid vertical shiftg, | branches(not shown. In particular, the exciton spin
of up to about 5 meV are included in Fig. 3 and Fig. 4, SUChyjiing within the lowest doublet is at largg smaller than

that the ground-state excitofnd, in Fig. 4 below, also the ,iicinated based on the difference of the respective con-
shifted continuum edgesoincide atQ=0. We stress that tinuum edges.

the exciton binding energie@lifference of exciton energy
and continuum edge at give@) calculated with the two
meshes differ only by 0.1 me{16.2 meV versus 16.3 mgV
As an aside, we remark that for a comparable QW of 6.3 nm
width with similar material parameters, a binding energy of Figure 5 shows the multicomponent character of the
10.5 meV is found. ground-state exciton wave function near the origin as well as
For an estimation of th&-dependent numerical uncer- at a COM momentum close to the avoided-crossing region.
tainties and in order to show the increase of binding energy strong admixture of light-hole statesng=*1/2) is seen
with increasing momentum, we display in Fig. 4 the ground-for the largerQ. The light-hole contribution increases further
state exciton dispersion on both grids with the vertically dis-for even larger COM momenta, as shown in Fig. 6. Note that
placed continuum edges derived from single-particle subthis is only in part due to mixing of LFHC, and HHC,
bands calculated on the same grids. We already stated thexcitons; the lowest hole subband (PHitself acquires a

Enn (Q= min {& (ko) + & (i)}, (5)

Ketkn=0Q

V. EXCITON WAVE FUNCTIONS
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FIG. 5. Ground-state exciton fdp=0.09 nm! (left) and Q
=0.28 nm! (right). Hole densities for the differen; compo-
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FIG. 7. Spatial extensiorfroot-mean-squajeof the exciton
ground-state along each dimension versus COM mome@um

Gaussian functions. For density profiles along the wire, see
the discussion of Fig. 8, below.

On the coarser mesh, higher exciton states can be ob-
tained as well. Their hole densities and relative wave func-
tion along the wire are shown in Fig. 8. For their description,
we use a notation like HFC, — s, which states, e.g., that this
particular exciton branch is =0 derived from the second
QWR hole subband which has primarily heavy-hote; €
+3/2) character and from the lowest electron subband; along
the wire axis, the dominant compongthave no nodes and

nents as well as the electron density are shown on 37 NMherefore resemble amstate

X57 nm areas.

strong contribution of “bulk light-hole states,” i.em;=

+1/2 components; see Fig. 2.
For a more detailed analysis of the internal structure othus HH,C; —s states. The next doublet, Fig(c3, has one

the exciton with increasing momentum, we display in Fig. 7node along the wire, resemblingosstate. As it has no nodes
the exciton extension along all five coordinates. For each oni the yz plane for both electron and hole coordinate, it is a
of these, the squared wave function was summed over thdH,C,—p doublet. Note its much larger extension in wire
remaining four directions and the angular momentum comslirection compared to thestates, which goes along with an
ponents. Then, the root-mean-square deviation was calcincreased size in the S-QW direction, at least in comparison
lated. The strong confinement of electron and hole along the thes state of the same subband pair, Fi¢g)8

The two states of Fig.(®) which lie above the ground-
state doublefFig. 8a) with clear HH,C; —s charactef have
one node in the S-QW direction. They can be interpreted as
originating from a heavy-hole state with one node, and are

growth directionz, is clearly seen; confinement is weaker in

the S-QW directiony. The largest extension is that of the T
relative motion along the wirex(direction). With increasing 006 1 (a) A 30
COM momentum, the hole in the exciton can relax in the BI04 H (@& 20
weakly confined direction. However, the exciton contracts at 0.02 r j h‘% 10
the same time along the wire axis. The latter change is stron- 0.00 Lotz 0
ger, suggesting a slight enhancement of the exciton binding =~ 0.04 - (p) & 30 _
energy withQ, in agreement with the discussion of Figs. 3, E rh 20 E
4, and similar to the results in comparable QW. The density — «_ 0.02 ;' \; 10N
profiles in theyz plane (not shown can be fitted well by B 0.00 L .j . \LM : 0
0.02 1 (c) . 30
. 60 s gd x\q V,d b‘o 20
& 50 ¢ AT FARY A 10
g 40 o 000 k- " = 0
3 30 ad 50 25 0 25 50 -20 0 20
'~C§~> o0 | /,/ Xg=Xp, (M) y (nm)
8 P
< 10 <>—¢4"/ FIG. 8. Right: Hole densities in thez plane. Left: Density of
%0 01 o2 03 04 05 the relative wave-function componenisashed: heavy holen;=
Q (hm™ +3/2; solid: light holem;= *=1/2) along the wire for the lowest

three doublets aQ=0. From top to bottom: HKHC,—s, HH,C;

FIG. 6. Contribution of bulk light-hole statesnj= =+ 1/2) to the
exciton ground-state versus COM moment@mn

—s, HH;C;—p. Lines are hyperbolic-secant fits in pané&g and
(b), and spline fits inc) to the numerical datédiamond$.



PRB 61 QUANTUM-WIRE EXCITON DISPERSION IN A . .. 16 859

TABLE Il. Kinetic COM mass for the ground-state HE;, —s Included in Table Il are also the results of a simple ap-
exciton derived from fits of the dispersion in the ran@  proximate expression for the exciton mass which we have
<0.1 nm* and from expressioii7). In parentheses: mass from derived and tested before in Ref. 3. It gives an estimate for
extrapolated dispersion of Fig. 4. Quantum-well data are from calthe exciton’s kinetic mass in the san@ range, which is
culations based on Ref. 3. obtained from the single-particle subband dispersiqngk)
weighted with the squared Fourier transfoing _ o(k) of the

M/ mo QWR S5nm QW 10 nm QW ayciton wave function at vanishing COM momentu@
Within the factorization approximation, Ed6), only the

Q<0.1 nntt 0.27(0.33 031 0.32 , o PP dqr)1 y f

Eq. (7) 0.28 0.29 0.31 Fourier transforme,e(ky) is important, and the mass for-

mula reads

The relative motion in wire direction is determined by the Mx=me+my  with

Coulomb interaction, modified by form factors. In analogy to
two-dimensional results, a wave function shape between an L _J dk |~ (k)2 €0 n(ky) )
exponential and a Gaussian is expected and is seen in Figs. Moy £2 x| Prell Kx k2 €e,nlfx)-
8(a) and(b), indeed. The large-distance behavior is approxi- ' X
mately exponential; at small distances, the relative wav&he Luttinger parameters of Table | yield in the spherical
function does not show a cusp, because the effective Cowpproximation for the bulk heavy-hole mass,/my=(y;
lomb interaction is weakened there. For the ground state, & 4y,/5—6vy,/5) 1=0.49, thus mg+m,=0.56m,. A de-
hyperbolic-secant function fits the squared wave function alerease of the exciton mass going from GaAs bulk to
most perfectly. GaAs/AlLGa_,As QW can be understood as a result of the
This brings us to the question of how closely the excitonheavy- and light-hole separation due to confinement. For
ground-state wave function can be approximated by a facto@WR, we find a mass of 0.8%. The agreement of the

2

ization ansatz of the form simple expressiori7) with the result of the full numerical
calculation is not as good for the QWR case as for QWs. We
WV 45~ @rel( Xe = Xn) e Ye 1Ze) ©n(Yh 1Zn) X0 (6)  attribute this to a stronger momentum dependence of the

exciton’s internal structure, probably reflecting the smaller

with suitably chosen functionge,¢p, as effective single- g hhang separations and the linear terms in the dispersions.
particle electron and hole wave functions in the confined

directions andp, for the relative motion along the wire, and
with a spatially constant four-component vecjgy. Having

the numerical exciton wave function at hand, this can be The exciton wave functions can be used for the calcula-
easily answered. At a not too large momentum @f  tjon of the polarization anisotropy of excitonic luminescence
=0.09 nm* (see left panel of Fig.)5an overlap of 94% and absorption. Results on the polarization dependence in
between the factorized ansatz H) and the numerically v-groove wires are known from experimetft$? and from
exact result can be obtained if only the,=+3/2 compo-  single-particle calculation€:*®* The average anisotropy at
nents are included with equal weighiyo=(1/v2,0,0, the onset of the electron-hole continuum in the single-
—1/\/2). This is rather high, especially in view of the fact particle approximation should be comparable to our exciton
that in Ritz's variational principle, eigenvalue errors are pro-calculations. References 12 and 13 give an average anisot-
portional to thesquareof the wave-function deviation. The ropy value of 10%, whereas Refs. 42 and 10 state 10—-20 %
inclusion of my==*=1/2 components, which is needed for for various V-groove QWR samples of different geometry.
larger Q, increases the overlap only to 95%. Finally, we For the relative absorption strength, as given by the
come back to two subjects already mentioned, the kineticsquared momentum matrix element averaged over the
COM mass and the polarization properties of excitonic lumi-ground-state doubld€torresponding to the different electron
nescence. spin statel

VIl. POLARIZATION ANISOTROPY

1 ~ + -
VI. KINETIC EXCITON MASS aj:§ 2 |<0|pj|q’é§)>|21 i=X,Y,X, (8)

The concept of a kinetic COM mass for a nonparabolic
dispersion depends on the momentum range that is consigve find the following values:
ered. In Table I, some values of a kinetic COM mass for the
ground-state exciton in the considered QWR and in QWs ay—ay a,
with 5 and 10 nm well width are compiled. The QW widths a+a 012, /=001 ©)
correspond roughly to the range of wizevidths, taking into o o
account that the lower Al concentration in the V-QW weak-This confirms what one would expect based on the single-
ens the confinement compared to GaAg/AGa ¢AS QWs.  particle results, e.g., combining the upper left corners of
Because the QW and QWR dispersions are strongly nonpd-igs. 1 and 2. Absorption with light polarized alozgn-
rabolic, average values derived from parabolic fits to the disvolves only them;= *+1/2 components, which according to
persion in aQ range of about the inverse Bohr radiu® ( Fig. 6 are weak foiQ values corresponding to photon mo-
<0.1 nm'Y) are reported. This part of the dispersion is thementa. In contrast, light polarized in thg plane is absorbed
one expected to play a dominant role in exciton localizationmainly by them;= = 3/2 components. The polarization de-
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pendence perpendicular to the growth direction is due to théhe possible application of QWR in lasers. For their model-
weak, but noticeable, extra confinement in thdirection. ing, optical transition matrix elements and the density of
The calculated absorption anisotropy is in good agreestates are needed. The exciton dispersion also enters the po-
ment with the experimental results. The fact that the singlelariton dispersiort. Exciton localization involves COM wave
particle results of Refs. 10 and 13 are so close to(Hgis  functions, which in turn can be obtained by a COM Sehro
probably due to the high overlap of the exciton wave func-dinger equation that needs the ground-state dispersion or at
tion with the factorized form Eq(6), which in turn reflects least the exciton mass as ingatfThe same is true for relax-

the strong carrier confinement in V-groove QWR. ation processes and diffusion. The quantum confined Stark
effect in QWR (Refs. 14, 43, and 44and experiments in
VIIl. SUMMARY magnetic field®* can be treated by inclusion of the appro-

] _ priate terms in the Hamiltonian.
In summary, we have shown that multiband QWR exciton

c_alculat_lons in real space are feasible. R_esul_ts for exciton ACKNOWLEDGMENTS
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