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Nonlinear response of a Kondo system: Perturbation approach to the time-dependent Anderson
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Nonlinear tunneling current through a quantum ¢t Anderson impurity systensubject to both constant
and alternating electric fields is studied in the Kondo regime. A systematic diagram technique is developed for
perturbation study of the current in physical systems out of equilibrium governed by time-dependent Hamil-
tonians of the Anderson and the Kondo models. The ensuing calculations prove to be too complicated for the
Anderson model, and hence, a mapping on an effective Kondo problem is called for. This is achieved by
constructing a time-dependent version of the Schrieffer-Wolff transformation. Perturbation expansion of the
current is then carried out up to third order in the Kondo couplingelding a set of remarkably simple
analytical expressions for the current. The zero-bias anomaly of the direct catcedifferential conductance
is shown to be suppressed by the alternating field while side peaks develop at finite source-drain voltage. Both
the direct component and the first harmonics of the time-dependent response are equally enhanced due to the
Kondo effect, while amplitudes of higher harmonics are shown to be relatively small. A “zero-alternating-bias
anomaly” is found in the alternating curreriac) differential conductance, that is, it peaks around zero
alternating bias. This peak is suppressed by the constant bias. No side peaks show up in the differential
alternating conductance but their counterpart is found in the derivative of the ac with respect to the direct bias.
The results pertaining to nonlinear response are shown to be valid also below the Kondo temperature.

I. INTRODUCTION intricate combination of electron-electron interaction and
tunneling.

An attractive research direction in contemporary con- Whereas the Kondo effect ibulk materials has been a
densed matter physics seems to be the study of nonequilithought-inspiring subject of research for more than three de-
rium many-body phenomena. A promising experimental andades(for review, see Refs. 4 and,5ts emergence iquan-
theoretical framework for investigating this topic is provided tum dot physicsppears to be relatively new. Yet, it proves
by the physics of quantum dot systems. The reason for that £ Pe equally thought inspiring. In particular, it opens a road
clear, namely, quantum dots are fabricated and their propef© explore thenonequilibriumKondo physics. Its hallmark is

ties can be elucidated by present day experimental tecti® Zero-bias anomaly, that is, an appearance of a large nar-

niques. Indeed, recent experiments on electron transport iV Peak in the differential conductance around zero bias.
guantum dots at low temperatures reveal signatures of cohe ‘ertinent experiments have bgen came_d out on crossed-wire
ngsten junction$,quenched lithographic point contaét$,

ent many-body physics, such as the emergence of zero—bié%

. 3o e metal and metallic glass break junctiohd and, recently,
anomaly in current-voltage characteristicswhich is due to quantum dots:2

the formaﬂqn of a mapy-body resonance. AF t'he same .t|r.ne, In parallel, progress has also been recorded in numerous
the underlying theoretical models are of sufficient simplicity i o ) atical workdi-24 Among other directions of research,
so that one encounters a rare occasion where one has fflerest is focused on time-dependent aspects of the Kondo
experimentally accessible nonequilibrium quantum SySte”ﬂ)hysics%7*2°‘24AIthough an actual experimental research has
that is also amenable to reliable and controllable theoreticg ot yet been carried out, measurement of alternating tunnel-
approaches. ing current in the appropriate range of frequencies proves to
So far, the main effort in the physics of quantum dots hage feasiblé®®~2° Moreover, application of an external alter-
been devoted to the study of different phenomena emergingating electric field nontrivially affects the dc, an observable
from the presence of large Coulomb interaction in the dot. Irthat can actually be measuréti®* We hope that the perti-
this context, the most familiar and simplest topic is the Counent experiments can be carried out in the near future.
lomb blockade. Its essence is simply encoded as a capaci- It is useful to briefly mention the main features of the
tance effect: every extra electron coming into the dot has t&Kondo effect in bulk systems and in quantum dots. The
overcome a charging energ?/C, whereC is the capaci- Kondo effect was first revealed in the early 1930s as an
tance of the dot. If the gate voltage is not tuned to supply thignhancement in the resistivity of certain metals with decreas-
energy, the tunneling i€Coulomb blocked. Yet, we believe ing temperature. The Kondo effect was a puzzle for 30 years
that essentially genuine many-body aspects of resonant tuand was attributed by Konddto being interaction between
neling might be better revealed in the physics that goes sulzonducting electrons and magnetic impurity atoms. Subse-
stantially beyond the simplified Coulomb blockade picture.quent investigations proved that at low temperatures a hybrid
By this we mean the Kondo effect and other facets ofstate is formed consisting of the conducting electrons as-
strongly correlated electronic systems. They result from asembled around an impurity so that at zero temperature the
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(Ref. 17 indicate that this is indeed the case. We think that
the occurrence of many separated Abrikosov-Suhl reso-
nances can be tested experimentally. It will show up as side
peaks in theotherwise monotond (V) curve displaying the
zero-bias anomaly of thdirect current. Another interesting
question is how the contributions of these peaks to the cur-
rent, which are mutually coherent, interfere. This interfer-
ence can show up only in the time-dependent curfnt.

In this work, both direct and alternating tunneling currents
are calculated within a perturbation scheme specially adapted
for systems out of equilibrium. So far, calculations of the
current through a Kondo system subject to a time-dependent
bias were carried out using various assumptions and approxi-
mations. Here we carry out straightforward nonequilibrium
perturbation expansion of the current in powers of the cou-
pling constant between the quantum dot impurity atom
and the electrons in the conduction bands. Indeed, perturba-
tion theory proved its usefulness in calculations related to the
equilibrium Kondo model in bulk systenig3*4°Recently it

has been used for quantum dots described by the Anderson
€4 model(in the Kondo regimpwith a constant voltage bid§.
Let us then briefly list the main achievements of the
present study. Our formulation starts from the time-
FIG. 1. (8 Schematic drawing of the Kondo peaks in the non- dependent Anderson model which has already been shown to
equilibrium interacting density of states of the dimhpurity). Here  adequately describe the essential physics of a quantum dot
€4 is the bare energy level of the dot, while ) are chemical (or a tunneling system based on an impurity atanvolt-
potentials in the Ief’(rlght) Iead(b) Possible formation of numer- ages and frequencies less than the level Spacing in the tun-
ous Kondo-resonance peaks in the density of states caused an%Iing region. We then develop the pertinent diagram pertur-
time-dependent field. The peaks associated with tunneling to the lef{ation technique which is able to treat nonequilibrium
qnd the r_ight leads are sch_ematically shown near the left a_lnd t nneling problems such as the time-dependent Anderson
right barriers, respectivelf) is the frequency of the external field. 5.4 kondo modelgfor the former one it employs the slave-
bosons method A key point in the derivation is provided by
magnetic moment of the impurity is completely screened. a combination of a specific approach suggested by
Within the realm of quantum dot physics, the impurity Colemar* to perform self-consistent quantum and thermo-
spin is represented by the spin of a single electron which islynamical averaging in strongly correlated systems, with the
virtually locked in a deep level of the quantum dot. The Schwinger-Keldysh nonequilibrium Green-functions formal-
formation of the hybrid statéeither in bulk systems or in ism. As it turns out, calculations pertaining to the Anderson
guantum dotsis accompanied by an appearance of a narrownodel appear to be rather cumbersome. At this stage we are
peak in the interacting density of states of the impufiy  therefore content to state the rules for calculating diagrams
dot electron close to the chemical potential of the band and to point out a specific example where the Kondo behav-
(lead electrons. This peak is termed as an “Abrikosov-Suhlior shows up. At the same time, we find it more practical to
resonance” or “Kondo resonancelsee Ref. 4, pp. 109, map the original time-dependent Anderson Hamiltonian on
127-132, and 2)0For quantum dots in staticnonequilib-  an effective time-dependent Kondo Hamiltonian. This is
rium situation, when two chemical potentials are present irachieved by introducing a time-dependent Schrieffer-Wolff
the system(one for every lead the pertinent peak in the transformation. Perturbation expansion of the current is then
interacting density of states splits, under certain conditionsgarried out within the Kondo model up to third order in the
into two peaks, one at each chemical potefitit'®1°39see  Kondo couplingJ (sixth order in the tunneling coupling be-
Fig. 1(@)]. tween conducting electrons and the )d®emarkably simple
The main object of our study in the present work is theanalytical expressions are obtained for the whole spectrum of
response of a quantum dot to the application ofteong  the tunneling currerf®=** It is shown that the zero-bias
time-dependent external electric fielor simplicity it is as- anomaly of the dc differential conductance is, in general,
sumed that the field is monochromatic, whose frequedcy suppressed by an external alternating field, while side peaks
is in the range of tens of gigahertz. The relevant physicglevelop at higher source-drain bias. The nonlinear time-
implies an interesting extension of the underlying Kondodependent current is found to be an interference sum of “di-
physics since, in a time-dependent field, every eigenstate oéctlike” contributions, each one with an effective bias de-
electrons in the leads is split®into a family of states whose termined by the number of absorbed or emitted photons. The
(quasjenergies are separated by the photon engfgyCon-  interference is shown to be rather destructive for all higher
sequently, there is a family of Fermi seas, and, correspondiarmonics except the direct and the first ones. These two
ingly, a family of chemical potentials in each lead. Thus, theharmonics(and only them are enhanced as a result of the
Kondo peak in the density of states might split into a wholeKondo effect while the other harmonics remain relatively
set of peak$see Fig. 1b)]. Numerical calculations of the dc small. In this sense the Kondo system behaves like a usual
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resistor(although the current is Kondo enhangeNamely, - . :
direct and first harmonic input voltage lead to a direct and Ha= ELER_U [€k+AL(R)(t)]ak,aak,U+§ €4,0Cd,oCd, o
first harmonic current response. This result is demonstrated o

to be remarkably different from that for a noninteracting one- 1 <

level system where all the harmonics emerge together. More- +5U E NNy + ke;R.g (Vid@y,Ca,o+ H.C.).
over, it is shown to be valid also below the Kondo tempera- T o

ture. These results have already been briefly reported by the )

authors in another pap&tIn the present paper the methods Here al ,(ay,) creates(annihilatey an electron with mo-
that are used for their derivation are presented in detail; iBhentumk and sping in the left (kel) or the right &
particular, nonequilibrium  time-dependent  diagrammatic Ry lead, ¢} ,(cq,) creates(annihilate$ an electron with
techniques for both Anderson and Kondo models are devekpin  in the dot, e, and €q., are single-particle energies in

oped and the time-dependent Schrieffer-Wolff transformathe |eads and the dot, respectively,is the Coulomb inter-
tion is elaborated. In addition, we present the spectrum of thgction energy in the dot, and,=c} ,cq,. The transfer-

tunneling current in the Kondo system versus its analog in A atrix elementsV, , between the leads and the dot are as-

noninteracting one. Furthermore, in this paper we also Calcus'umed to be small compared wit , andU. The external
late the differential alternating conductance and find thatfields are included through pote'rl{tial shi-fts of the leads
similar to its direct analog, it displays a zero-alternating-biasAL(R)(t) defined as

anomaly. Inspecting the dependence of the ac on the direct

bias reveals a non-trivial structure marked by side peaks. We AL ()= b ry+ Wi (r)COS QL+ (gy)- )

hope that these new features can provide a convenient pat-

tern for the experimenta| research on the time_dependerﬁhe first term above describes a constant potential bias,

Kondo effect. while the second one is due to an alternating field, which, for
The rest of the paper is organized as follows. In Sec. lisimplicity, is assumed to be monochromatic. We note that

diagrammatic rules for the nonequilibrium perturbation ex-the chemical potentials in the leads are shifted by the same

pansion of the time-dependent Anderson model in the slaveamountA, gy (t) as the single-particle energies, hence the

boson representation are formulated. The diagrams are dravi@pulation of energy levels in the leads remains intact.

up to sixth order in the tunneling coupling between the leads As far as the value of the parameters is concerned, our

and the dot¥,) and some formal analytical expressions for atter!tion herehis focusgd on the Kondo regime which is de-
the current are obtained. Further elaboration of the perturb4€rmined by the conditions
tion expansion in this model meets computational problems

) ; >
which today look severe. In Sec. IH time-dependent ver- €a0<0, €, tU>0 [eqol €as+U>T0, (3
sion of the Schrieffer-Wolff transformation is developed in where FUZZWEkeL,R|vkd|25(6d,U_ €) are the widths of

order to transform the time-dependent Anderson model intgne energy levels in the dot. Furthermore, it is assumed that

a Kondo-type model. In Sec. IV perturbation expansion ofyhe external fields are not strong enough to draw the system
the current(in the time-dependent Kondo mogé$ carried out of this regime, so that

out in powers of the coupling strengtfi,{,). An analytical
expression for the current is obtained and the results arising | L) <|€dol €d.0TU (43
from that expression are discussed. The paper is concluded
with a summary which, in particular, includes some pros-2"
pects for further research directions. In view of the inherent
complexity of the pertinent formulation, we try to present it
in a pedagogical style. It should be stressed, however, that these conditions do not
imply a linear-response regime. The latter is defined by the
conditions| ¢ g, W (ry<T while T<|eq,|,€4,+U. The
Il. PERTURBATION EXPANSION OF THE CURRENT IN Kondo regime is, on one hand, interesting due to appearance
THE TIME-DEPENDENT ANDERSON MODEL of the famous Kondo effect. On the other hand, perturbation
expansion out of this regime, namely, in the mixed-valance
or empty-orbital regimes, is more complicated since careful
In this section we first introduce the time-dependentdetermination of the initial density matrix is requireske the
Anderson Hamiltonian and specify the range of parameterdiscussion in the beginning of Sec. I).QMoreover, this is
appropriate for the pertinent physical problem. Then we rethe only regime where mapping on the Kondo mogxc.
call the slave-boson approach to the Anderson model andl) is valued.
combine it with the Schwinger-Keldysh nonequilibrium At this point it is convenient to apply a canonical
Green function formalism in order to get an equation for thetransformatiof®*® on the Anderson modell) whose pur-
tunneling current. Then we develop a perturbation expansiopose is to transfer the dependence on time into that part
of the current in powers of the tunneling strengﬁl&) upto  Which contains a small parameter. The transformation is de-
sixth order in which the Kondo physics above the Kondofined as follows:
temperaturgor in a strong enough external fig¢lés unrav-
eled.
The time-dependent Anderson Hamiltonian takes the form

Q!WLIWR<|€d,0'|v€d,0'+U' (4b)

A. Bare Hamiltonian and parameter specification

_ Jd
HA=Z/I’1HAU—iZ/l’1EZ/{, (5)
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it must be equal to unity. The operatQp commutes with the
Z/{(t)=exp[%J dta[ A (t)NL+AR(t)NR] Hamiltonian (9) so that the “charge”Q, is not changed
- during the evolution of the system. Therefore the require-
WhereNL(R)EEo,keL(R)al,g(t)ak,a(t)- The HamiltoniarH, ~ mMentQ,=1 doe; not really constra}ir} _the dynamics of the
resulting from this transformation reads system. Rather, it assures that the initial state does not con-
tain a doubly occupied state as a component. In order to
enforce the conditionQ,=1 Colemaf’ introduced a

HA:kegR;U €@ Bk, 0F EU: €4.0C4,0Cd.r Lagrange multipliefchemical potential—\ and considered
the HamiltoniartHsg+AQp . The calculations are to be done

1 with finite A and then, at the end,—oo. If the tunneling part
+5U > nd,frnd,<r’+keLZR;” of Hgg+AQ, is chosen as perturbation the remaining “un-

!
o,0 Fo

perturbed” Hamiltonian is now quadratic in the creation and
X[de(t)a;gcd,;r H.c.] (6) annihilation operators. The Wick’s theorem can then be ap-
plied and diagrammatic expansion is feasible. We notice that
the unperturbed part has become a simple time-independent
B it free-particle Hamiltonian while the perturbatidtunneling
vkd(t):vkdexp[%f dtlAL(R)(tl)]- (7)  parh contains both interaction and time-dependence.

where

Usually, in tunneling systems the barriers have low transpar-
ency. Therefore it is convenient to consider the tunneling
part of the Hamiltonian, i.e., Sy i ol Via(t)al ,Ca.o The tunneling current from the lefright) lead into the
+H.c], as a perturbatiofY. It is well known, however, that central region is defined as the product of electron charge
if the interaction%UEGYU,;&,,nd,(,ndYU, is kept in the “unper-  (—€) and the rate of change in the number of electrons in
turbed” Hamiltonian the Wick’s theorem cannot be applied.that lead. The latter is obtained by commuting the number-
In order to circumvent this problem we assume that the enef-electrons (Heisenbery operatorNL(R) with the Hamil-
ergies associated with the direct and alternating voltages asnian(9). This yields

well as the pertinent frequencies are smaller than the Cou-

lomb interaction energyJ in the dot. In other words, the

B. The tunneling current

assumptiord — o0 should be an excellent approximation. We dNL ()

then apply the method of slav@uxiliary) boson8!#248:49 I ()=—¢ —tR

using a certain version of it which is due to Colenfamc- dt

cordingly, the ordinary electron operators in the dgt,, ie

¢l »» which transform a singly occupied state into an empty =— > de(t)TrF’;{PFf(O)aE,a(t)bT(t)

one and vise versa, are factored into a boson operator and a k<L)

fermion operatof® xf,(t)}+c.c., (11)
Cd,rr: berrv (8)

wherepF/lx(O) is the density matrix of the system at a certain

Cg,«r:bf;' fixed time which is taken here a&=0. Generally, it should
The slave-boson operatds’ (b) creates(annihilatey an  include all the changes that the system has undergone since
empty state, while the slave-fermion operatgr(f:r,) anni-  the tu'nnel_lng was syvltched 3ﬂ.We recall that the above
equation is written in the Heisenberg representation. The
angle brackets on the left hand side mean, of course, quan-
tum average over the physical Hilbert space. At infitité
‘ . is only a subspacE/ of the full Hilbert space for the slave-
HSBZKEER-J Ekak,aak,a+§ol €d,ofofo boson Hamiltoniar{9) which is determined by the condition
o Qa=1. It is explicitly manifested on the right-hand side of
E bt the above expression by the subscf—i@twhich restricts the
T A e VDbt H.C. 9 trace to the physical subspaBé . In the following we cal-
culate directly the currentl1) without prior elaboration on
The Coulomb interaction does not appear in the Hamiltonianhe dot Green functions as it was done in Refs. 11, 13, 14,
any more. Indeed, wheld is infinite it completely eliminates 16-18 and 20. Unlike the equation for the ¢Ref. 51),
the possibility of double occupancy of the dot. This projec-which expresses it in terms of the interacting density of
tion is accomplished by including the annihilation operdtor states in the dot, an expression for the ac in terms of the dot

in Egs. (8), which prevents creation of the doubly occupied Green function¥ ¥ involves two Green functions~ and
state, and the constraint that the total number of slave bosorts") and integration over real time. We find it easier to es-

hilates(create$a singly occupied state. In this representation
the Hamiltonian(6) becomes,

and slave fermions, tablish a perturbation expansion for the current it¢edfher
than for the Green functignTo this end we rewrite Eq11)
Qu= b‘rb+2 ff,, (10) in the interaction representation using the “grand-
s 7 canonical” HamiltonianHgg+A Q4. The result is
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I constraint on traces in the subspfcfe. In order to get rid of
- ?t >_\ 1 it we apply the Coleman meth&dwhich is feasible here
. N J - since the Eq(13) appears as an ordinary statistical average

of the operatorO,=T,[a] ,(t.)b'(t-)f,(t_)S,] in the
FIG. 2. Choice of points on the closed i th for the ext IsubspaceFﬁ\. Let us choose the initial distribution of the
- £- Lhoice ot paints on the closed time path for the ex ernasystem(before the tunneling was switched )oim the full
operators in Eq(13). f I .
Hilbert space to be an equilibrium origrand-canonical en-

) semble with the “chemical potential*-\). Then the initial
ie
He®==7 2 VidOTrea{pea(0) density matrix is
h o Kel(R) 1
p(—x)=e AlHot /7 (), (14)

o,

X S(—o,+oo)T[al (t+0)bT(t)f, ()

' whereHy=Hgg—H7 is the unperturbed part of the Hamil-
X§(+»,—x)]}+c.c., (120 tonian (9) and Zg(\)=Tr{e AHo™ QWY s the grand-
~ . ) ) canonical partition function. Now let us consider the expec-
where T is the usual time-ordering operatd(+,~*)  (ation values of the operator®,Q, and Q, in the full
=Te '/-=H1 s the usualS - matrix and S(—=,+*)  Hilbert space
=S'(+w,~), while Hr=Zy g, Via()aib'f,

+H.c.] is the tunneling part of the Hamiltoniddgg+AQa (OAQA)=Tr{p(0)OQn},
which is chosen as a perturbation. The operam}lg(t
+0), b(t), andf(t) in the above equation now appear in (QA)=Tr{p(0)Qa},

the interaction representatidthis is self-evident as indicated ) _ _ _

by the presence of th® matrix). We notice that it does not Where p(0) is the density matrix of the system in the full
really matter whether one defines the interaction representddilbert space at the zeroth instant of time. When the tunnel-
tion using the Hamiltonia g+ AQ, or Hgg becauseQ, N is siwnched on the density matrix evolves in time, so that
commutes with all parts dfisg. The factorS(—c,+) in  p(0) differs fromp(—<). However, due to the fact that the
Eq. (12) prevents derivation of Wick’s theorem and subse-OPeratorQ, commutes with the Hamiltonian it can still be
quent development of the Feynman diagrams technique. Irfactorized into separate blocks for each subspagewith
deed, the derivation of Wick’s theorem is based on commudifferent numbeiQ,. Thus

tation of operators which produces pairings, namely,

“contractions” (see Ref. 51 Commutation of two operators - N

cannot be worked out if one of them is subject to the time- <OAQA>:QE:0 Tng{PFg(O)OA}QAe AqulZ6(M),
ordering operator while the other one is not. The idea of a A (15)
closed time path was introduc®d®°%in order to treat the

troublesome factoB(—o0,+ ) in nonequilibrium systems. w

The normal time branch is continued and turned back so that (Qa)= >, Qae Pz, 1Z5(N),

this operator becomes a factor within the scope of the time- Qa=0 A

ordering operator Tp) on the closed time-path. Equation

(12), then, can be expressed as WherepFé(O) is the density matrix for the subspaﬁé at

the zeroth instant of time, WhiIeZQAETr,:g{e"BHO}. It is
ie 2 hat in the limk—c the ratio of the two ex-
1T (t)=—— V(1) TT 0)T easy to see tha .
LR fi u,kezL(R) a(t) F?{p':i\( )Te pressions written above becomes the expectation value of the

operatorO, in the physical subspade, :
x[al (LB )T ()G ree. (13 oA TePY Pat

_ o if Hrdt ; ; . (O0AQ
Here S,=e™"/p"%, wheret, is the variable on the closed (O pA=Treal ppa(0)Opl = | {Oa A>. (16)
time path andf, means integration over it. The subscript 1 17 e (Qa)
“ —" on t signifies that the instant of time is considered on
the normal(forward) time branch, while the subscript+" It is clear that the operatd, has zero expectation value in

is used for the backward oriented time brar{sbe Fig. 2  the subspacE, because there are neither slave fermions nor
The choice of the subscripts and— for the time arguments slave bosons there. Thé&p, can be dropped out of the nu-
of the operatoral,g(u), b'(t_), andf(t_) is consistentin merator in Eq.(16). This results in our final expression for

order to assure that their ordering by the operdigiis the the current,
same as in Eq(11). The procedure of transformation from ,
the Heisenberg representatifffq. (11)] to the closed time- 1T ()= — e D
path representatiofEq. (13)] is quite familiar’®>"°® we L(R) h o kSL(R)
note, however, that it has usually been employed in the defi- R
nition of nonequilibrium Green functions while here it is ) (Tp[al,(,(hr)b*(t_)fg(t_)Sp])
applied for the current operator. lim (Qn)

Yet, perturbation expansion of an expression for the cur- Mo
rent in the form(13) cannot be carried out because of the (17

Via(t)
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In this equation the averages are taken in the full Hilbert a)
space. It is amenable for standard field-theoretical calculation W >
techniques. ' !

C. Diagrammatic expansion of the current

In the rest of this section we show how to work out a
perturbation expansion for the current starting from &4)
in powers of the tunneling part of the Hamiltonid®). In
principle, a careful calculation of the density matp&0) is
required for the nonequilibrium perturbation expansion. Oth-
erwise, truncation of the full set of diagrams to a finite num-
ber might lead to completely wrong results. Indeed, trunca-
tion of a perturbation set implies that the effect of the
perturbation is small, i.e., higher-order terms of the perturba-
tion series are negligible. It is not always ensured by the
small value of the perturbation parameter. Consider, for ex-
ample, an empty dot connected very weakly to a reservoir.
The smaller the tunneling between them is, the longer it
takes to fill the dot, but eventually the dot becomes full. It
means that the occupation of the dot changes by a finite
amount although the coupling is infinitesimally small. This
“long-times” perturbation problem appears in the energy
representation as an infrared divergelftEortunately, it has
been explicitly showtf that in the Kondo limifdetermined
by the conditiong3) and(4a)] the calculation of the Kondo-
type contribution to the dc up to sixth orderVhcan be done
using slave-boson and slave-fermion populations for a dis-
connected dot. In calculating the ac we also have to impose

condition (4b). For higher orders iV, or, alternatively, in

the mixed-valance and empty-orbital regimes, explicit CaICl"'in the Anderson model. Dashed lines stand for slave fermions, dash-

lation of p(0) i§ inevitable. It can be done adapting thg ideasdotted lines for slave bosons, and solid lines for lead electrons. A
of Ref. 18 to time-dependent case. In the Kondo regime cal

culation of the denominator in E@1l7) is very simple,

FIG. 3. Diagrams for the perturbation expansion of the current

quantitys; is the number of photons emitted when an electron goes
from the dot to a lead, whilg; is the number of photons absorbed
by an electron going from a lead to the dot.

A—c0

(Qu)=ny+2n; — [1+2e Blaas Mg A (18 The diagrams of forth and sixth orderVy4(t) are shown

in Fig. 3. Recall that disconnected diagrams need not be
where considered in the Schwinger-Keldysh formalism. Contribu-
tion of a disconnected diagram can be factorized into contri-
butions of the connected and disconnected parts. Summation
Np=1/exp(B\)—1] (19 over all possible disconnected parts yiekds,S,) that is
(S(—,—)) which is equal to unity. Notice, that Fig(8
is a crossed diagram. It is not included in the ever-used non-
crossing approximation. We now formulate the basic rules
ni=1/{exd B(eq ,— m+N)]+1} for drawing the diagrams and writing down the correspond-
ing analytical expressions.
are Bose and Fermi functions for the slave particles. We (1) In order to obtain a diagram of thath order inV,
assume here, for simplicity, that the number of spin degreedraw a circle(it appears as a polygon in the figuresnsist-
of freedome is equal to two. ing of m alternating slave-boson and slave-fermion lines go-
In order to study the numerator of E(.7) we start from ing in the same direction. The number has to be even
its perturbation expansion in powerstef [i.e., in powers of because every tunneling vertex contains only one slave-
Vig(t)]. Then we transform every term of the expansionboson and one slave-fermion operator. The diagram must
from the closed time path to the single time bragede Refs. include only one such circle, otherwise it would produce a
57,59-6]). That implies expression of the Green functions ascontribution to the current of first or higher order in powers
matrices in Keldysh spadsee Eqs(20)]. The next stepisa of exp(—B\) (see Ref. 41Lthat vanishes ax —. We rep-
rotation in this spacésee Refs. 59 and 58esulting in the resent the diagrams by closed circles rather than by open
so-called® “physical representation” for these matrices. Fi- lines as it is usually done since the external operatbrand
nally, time-translation invariance of the unperturbed Greerf,, in Eq. (17) are taken at the same tinte . Connect the
functions allows us to apply Fourier transform and work invertices by lead-electron lines. Remember that only the two
the energy representation. types of vertices shown in Fig. 4 are allowed.

and



, b) (3) Introduce the following tensors for every internal ver-
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! tex (represented by a closed circle in Fig. Bor the vertex
drawn in Fig. 4a),

a) \
¢ /'\ vdeS(W(k) /Q)eisa(k) 7]{? . (22)
| N For the vertex drawn in Fig.(8)

FIG. 4. Tunneling vertices in the slave-bosons representation of
the Anderson modela) Tunneling of an electron from the dot to a "Ed‘]q(v\/(k) 1Q)e 192w 77.T (23
lead is represented as the decay of a slave fermion into a slave
boson and a lead electrofb) The reverse process representing whereJs andJ, are Bessel functions. The indexK)"” re-
tunneling from a lead to the dot. minds us that, despite the fact th&tand« do not depend on
k, they depend on the lead to whighbelongs. The factors
(2) Introduce the following X2 (Keldysh matrices for — Jg, (Wy, /Q)exd +is(q)«] originate from the time depen-
every lead-electron, slave-fermion, and slave-boson lines, refence ofV,4(t). Indeed, substituting Eq2) into Eq.(7) we

spectively, find
a .
gk0(6)5< 0 gk(r(e))’ de(t)=vkdelﬁ[¢(k)t+iw<k> 19 sin@t+ agy) ~ Bgg]
Iko(€)  Gkol€) B
:vkd 2 J (Wk /Q)e(i/ﬁ)[¢(k)t+sﬂt+5a(k)—ﬁ(k)].
0 £ SE
= o, 20
o) (§L<w> g?,(w)) 20 (24
The time-dependent factors appearing in this expression will
d2(v) surface when we impose energy conservaiisee below,
d(,,)z( . . ) the phaseg(, cancel, while the rest enters Eq22) and
d'(v) d%(v) (23). The physical meaning of is the number of photons

The indicesr, a, andc denote retarded, advanced, and cor-€Mitted when an electron goes from the dot to a lead, while
relation Green functions. They are defined explicitly as fol-d iS the number of photons absorbed by an electron going

lows: from a lead to the dot. Botls and g can assume negative
values. The tenson is given by the following expressions:
T (S (2D
vo2lo 1) o2l o)
Oko(€)=[1—2f(€) 1[Gk, (€) — Tk, (€], It appears as a result of the transformation leading from time

integration to integration over the normal time axis which
requires a change of sign. The above form is consistent with

g:,(a)(w): 1 — the physical representation for the Keldysh matrices and
W= €t pu—NEiy tensors?
For the external vertexrepresented by an open circle in
£ (w)=[1—2exd — Bleq ,— 1] Fig. 3 containing the operatoaﬁvg(u), bf(t_) andf (t_)
7 7 of Eq. (17), we write the factordg(W, /Q)expise ) as for
xexp— BN ][E(w)—E(w)], the internal vertices but do not insert the tengorinstead,

we close around the product of matrices and tensors intro-

duced above by the row2/3(1,1) at the¢ matrix and the
@) ()= 1 ' vectors (142) (1) and (142)(}) at the matricegy and d,

v—AZEly respectively, as we show in the exampley. (28)] below.

The external vertex differs from the internial ones because the
N . a time variable for every external operataf (t.), b'(t_),
d(v)=[1—2exg —BN)][d"(v) —d*(»)], or f(t_) is chosen on a certaint{ or —) branch and these
wheref (&) = 1/{exd B(&— m)]+1} is the Fermi function for  time branches are different farila, b', andf,. In an inter-
lead electrons, and the factors gx{B(eq,—u)lexp(—BN) nal vertex, the time variables for all the operators are chosen
and exp(pB\) are the limiting forms of the Fermi and the on a single time branch followed by summation over the two
Bose functiong(19), respectively, at larga. We note that time branches.
different representations can be used for the matri2€s (4) Conserve spin in every vertex. As for energy, it should
(see Refs. 58—61Here we employ the so-cal@t‘physical  be conserved in every internal vertex taking into account
representation.” emission(absorption of s (q) photons and the different val-
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ues assumed by the static potential eneggy; on the left  rules that have been listed by the symRoi(n). Then the
and right lead. The energy in the external vertex is not coneurrent is given by the following equation:

served. The pertinent energy difference is equal to the fre-

qguency of the current. Therefore, we introduce for this vertex

the factor5,1,(q_s,ml_Sl+ _..y» wheren has the meaning of |[(R)(t): i Z
the total number of absorbed photons. Summation @ver Ton (il =LR
will be carried out in Eq(27) below. x{
(5) Sum over energy, momentum, and spin. Do not
specify to which lead the momenta belong. It will be taken XRE Y a(n)JcognQt — ) ), ...)
care of later on. )
(6) Sum over numbers of photowgs,qy, . .. . +IMLY A(n)IsiNnQt—agy «,, .. )} (27
(7) Multiply the result by the factor where o —(s— Q)aL+(51—Q1)a(kl)+(Sz
) —O2)ai,y* -+, while 2(ky),(kp), ... =L,R means sum-
_'e(_i)m—l(i)3m/2(_1)F(27T)—m/2, (26) mation over the leads to whidky, k,, etc. belong. There is
i(Qa) no summation overk). The electron line coming out of the

whereF is the number of closed electron-fermion loops. Theexternal vertex has momentuknbelonging only to the left
first factor in the above expression comes from E_(T), the (rlght) lead since we are CalCUlating current through the left
second one is implied by the— 1 order of the expansion of (right) barrier. The other momenta run through both leads.
the S matrix. As for the next two factors, recall that an ap-  AS an example we writEq. (28)] the expression which
plication of the Wick’s theorem results in pairings of cre- is obtained uEing the rules listed above for a diagram of the
ation and annihilation operators which are, then, expressesixth order inV,4. Expressions for the lower orders are sim-
through Green functions. The last factor simply results frompler and their evaluation is relatively easy. However, they are
the Fourier transform. less interesting since, as well known, they do not exhibit the
(8) At this stage take the limik — o, Kondo effect. Here is the expression for the diagram drawn
(9) Let us denote the expression obtained through thén Fig. 3(e):

—ie 1 1

Yan)=Im-—x—-—— S 3
Aln) ﬁ(QA> 16(277)3 q,ql,qgs,sl,sz n,(q+q+0,—s—s;—8,)Yq

A—00

W5 (W) Wiy ; Wiy | Wik, ; Wik,) s
Q ° Q k! Q 51 Q 92 Q S2 Q kiel;kkoeL,R;0,0,

AWl Ul Vil | [ | [ aosdontniar, | 3 0 neona ol

Jam, s ,j5,Mg

m:
I3

X (01~ V= iy~ ) A™™(v) 772 Fof oy~ (a1~ 5) Q7% G w1 =11~ b

—(QF Gyt G251~ 52) Q1A™ ™[ w1+ (A= 5) Q]9 E45(0) 78 G (@ v1— ey~ A2 )

-1\ (1
xdmsm(vl)( . ) (1) . (28

i

In the above equation the tensor product is to be exeordingly, the resulting expression for diagraifi3loes not
panded. Afterwards, integration over internal variablesexhibit a Kondo-type behaviofi.e., InT divergence in the
wq,w,, vy, and v, is to be carried out. Using the linear responsewhile the one obtained for diagrante3 and
MATHEMATICA program we have carried it out for the above represented by Eq28) does. The equations in their final
equation and for the analogous one given by the diagrarform are very long and cumbersome and will not be shown
drawn in Fig. 3f). Whereas the calculation of the current for here. Moreover, expressions appearing in the intermediate
all the diagrams could not be complet&skte belowit was  stages are unusually long and often overflowing the memaory
possible to inspect the emergence of a Kondo behavioof a typical present-day workstation. We stress that this oc-
through the appearance of a tetiyf(p)/(ex—e,) where curs only when computing the dcalculations appropriate
f(p)="T(ep) is the Fermi function for lead electrons of quan- for the dc are much simplerThese manipulations pertaining
tum numberp. It is well known that this term is characteris- to ac appear to be especially cumbersome for the crossed
tic for the Kondo effec{above the Kondo temperatirédc-  diagram 3h). We argue that, physically, the main source of
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complications results from the admixture of the Kondo reso- 1
nance with the usual resonant tunneling which is present in Ha=Ho+ > [SHrl. (39
the Anderson model. Although the latter contribution is ex-
ponentially small within the relevant range of parameters
governed by terms like ekgy ,/(kT)] and may frequently be

neglected in the Kondo regime, its omission cannot be a
sumed in this calculation scheme before arriving at the fina

L ingly, the term(9S/4t) in Eq. (30).
stages. We are therefore content by having introduced thep(,)\ln:\;vngvg turﬁ tgrtr;?((a '[Sa/Sk)0;nSO|(\1/il’Eg I)EQSO) and look for
systematic calculation scheme for the general time; '

dependent Anderson model, and having exposed some dig-SOIUtlon of the form,

grams that manifest a Kondo behavior. With rapid improve-
ment of workstation capacities and analytic software
programs the evaluation of all diagrams of sixth order pre-
sented here can be completed according to the rules specifiei.%
above. With this final note we now move on to complete the
calculation of the current within an effective theory which
still captures most of the pertinent subtle physics.

Following Ref. 44 we omit terms of@and higher orders in
V. Our transformation differs from that of Ref. 44 due to the
bresence of the termieS(d/dt)e S in Eq. (29) and, corre-

S=s,-Sl. (32)

e operatoiS;, then, should satisfy the equation

aS
=+ HYU S, Hol =0, (33
Il. TIME-DEPENDENT SCHRIEFFER-WOLFF

TRANSFORMATION where H?”tzEkeL'R;Ude(t)aE’Ucd'U is the part of the

In this section we transform the time-dependent Andersoriamiltonian responsible for tunneling out of the dot. The
Hamiltonian to a time-dependent Kondo Hamiltonian. WeoperatorSis anti-Hermitian which assures the Hermiticity of
use a procedure similar to the one proposed by Schrieffer anid 5 .

Wolff* for the time-independent Anderson model but extend We are now looking for a solution of E33) in the form

it to time-dependent problems. The final form of the time-

dependent Kondo Hamiltonian was already introduced by the

authoré® in the limit of infinite U [formula (46)]. Here we Ng o (1-ng_,)] 4
present the course of derivation and the final Hamiltonian in Sl:kggm, Ak,o(t) e—eq U eeg, |HoCdo

its general form, i.e., without restriction to the infinite- T 7 N (34)

limit.

As we did in the previous section we start from the ca-The sum appearing in the square brackets is the inverse of
nonical transformatior) of the Anderson Hamiltoniafl)  the operator, , = e,— €4 ,—UNgy . Schrieffer and Wolff

whose purpose is to transfer the dependence on time into ”}8 iy v P
. . L nd Ay ,(t)=V,q, whereV , of course, time indepen-
perturbation part. It results in the Hamiltoniaty [Eq. (6)]. deunt k(1) =Via, WhereViq is urse, time indep

Then we further transform this Hamiltonian as Substituting expressiof34) into Eq. (33 we find that
A ,(t) must satisfy the following equation:

Hy=eSH e S— ieS%e*S, (29 _
IAK) S Ak (D) + Vica(1) =0. (35

where the operato® is defined according to a specific pre- . ) o

scription. In the spirit of Ref. 44 we expand the right-handA Proper solution of this equation is

side of EQ.(29) in powers ofS. We notice thatS does not

commute withdS/adt so this manipulation should be done

with care. Then we require the operafito satisfy the equa- -
tion, ‘ P b d Ak,a(t):deS;;oc Js(Wy 1)

i i gk o

X el(¢(k)+sﬂ)t+|3a(k) —v, 36)
i(;—tS+HT+[S,HO]=O. (30) P S0 Ly
whereV, =V q4exd —i1(Wy /Q)sin ¢y, ]. Recall that the sym-
Here Hr=2 . r.o[Via(t)af ,Cq o+ H.C] is the tunneling (K nlfldeansl,(qL”%r 5 Rgl’()dep))endi(rll(g on whethek belon{gs
part of the HamiltonianH, and Ho=2y. rs€@k A0  to the left or to the right lead, whild(W/Q) are Bessel's
+3 4 €4,0Ch oCa0 T 53U 0 2N N o IS the rest of it. IS functions. The general solution of E(B5) contains also a
is proportional toV (which is indeed the case as we show atterm: e~ ¢!, but the requirement thak, ,(t) should be
the end of this sectiorthen solving Eq(30) eliminates from  time independent in the absence of external potentials en-
the HamiltoniarH , terms which are of first order i, leav-  forces the prefactor to vanish.
ing only terms of higher orders which are naturally smaller. Employing now Eqgs(31), (32), (34), and(36) we obtain
Upon collecting terms of zero and second orderVirthe  the desired form of the Hamiltonian, in exact correspondence
HamiltonianH 4 can be written in the following form: with Ref. 44,
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1
Ha=Ho+ > [Wk'k(t)_1/2Jk'k(t)nd,fg]alf,gak,ﬁ*‘z > Jk'k(t)alr,7Uak,ocg,gcd,ﬂr— > W)
k.k' eL,R;o k.k' eL,R;o kel,Rio

—1/23(t)ng _,]ct ¢ = > [edbal, al cq.cq_g+H.Cl (37)
N —olCaoCar=z 2 [Ieag 8 oCaoCo ot Hel,

where

: < W) 3 (W) i o i
Jk,k(t)=VkrdV§deX[{|(qﬁ(k,)—(l)(k))t] 2 ‘]S’ ) JS O eX[{I(S —S)QH—I(S a(kr)—Sa(k))]
S’

,S=—

1 1 1 1

X + + + ,
Ek’+¢(k’)+S,Q_6d,0’ Ek+ ¢(k)+sg_€d,0' Ekr+¢)(k/)+S,Q_€d’0—_U €k+¢(k)+sn_€d,o'_u

Vo | arficor .
T eX[I[I(S —s)Qt+i(s a(kr)—Sa(k))]

1 _ < W)
Wi (1) = Evk'dvltdexfi'((ﬁ(k')_ Dat] > I Q Js
s’ s=—x

X

(39)

1 1
+ .
Ek’+¢(k')+slﬂ_€d,a Ek+ ¢(k)+SQ_Ed,U

The form of this Hamiltonian is the same as that of Ref. 44troduced to represent spins are real electrons in théihet

but the matrix elementd, (t) and W, (t) are evidently purity atom subject to the constraint specified (in.

distinct. Calculation of the tunneling current starting from the
In the Kondo regime, the important subspdeg of the ~ Kondo Hamiltonian (39) is possible for arbitrary field

full Hilbert space is that one for which the dot is occupied bystrengths and frequency provided the inequalitgsare sat-

one electron. The last term in the Hamiltoniédw) is not  isfied. Yet, inspecting a typical experimental séttipne

relevant for this subspace. The third term in E3j7) can be may consider somewhat weaker external fields and lower

absorbed into the definitions ef; , andU. Besides, we have frequencies, so that

Ng.oNg =0 and= ,ng ,=1 in the subspacEf, so that the

Coulomt? interaction terngpresent inHy) vanishes and the | byl QWL Wr<|€g o], €g.0+U. (40)

one-particle energy term for the dot becomes aumber.

The remaining terms represent the Kon@dso called “

s-d”) Hamiltonian plus a potential scattering term, Expressions38) for Ji(t) and Wy (t) then significantly

simplify. Indeed, at smalV/() the Bessel functiods(W/Q)
rapidly decreases with increasisgAt large W/() it decays

H.— z + strongly onces exceeddN/ ). Therefore we can restrisk)

K ethio €k, 08,0 to be less than or of the order of m&x(W), that is, sQ

<|€q,4|, €4, U. In the formation of the Kondo resonance

1 the most important states are those with enerdig$

+kk,§ W= M2 DN o Jae 3o <legol ea,+U (see Ref. 4% Then |fcol~|eqo) If
o Ng,—¢=0, Or|{y |~ €4, U, if ng _,=1[see the definition

< t + after Eq.(34), and recall thany _,, is discretd. Therefore
+2k k,g o I D8y ;8,0C,0Ca, o B9 the conditiong(40) assure that
Two comments are in order her@) Any procedure toward D+ SQ<| Lk ol (41

calculation of physical quantities should take into account

the.fact that, out of the fgll Hil-bert space, the system iS(recall thate, refers tog, or ¢g). Therefore we can ne-
projected onto a subspaBé in which the dot is occupied by  glect the termp,,, +sQ in the denominator of the expression

one (and only ong electron.(ii) At this stage one might be (3). Its right-hand side is greatly simplified, and now be-
tempted to express the electron creation-annihilation opergomes

tors in the dot through spin operators, thus arriving at the

familiar form*>4* of the Kondo Hamiltonian. But then one

would realize that the spin operators do not obey the usual A, o(1)=Viq(1), (42)
commutation rules. In order to overcome this obstacle, ficti-

tious (auxiliary) fermions might be introducetf. But this  whereV,(t) is defined by Eq(7). Expressions for the ma-
leads one back to Eq39). In other words, auxiliary fermi- trix elementsd,, and W, (t) simplify as well. First, they
ons which are sometimes regarded as artificial particles inbecome time independent kf and k' belong to the same
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lead. Moreover, they do not depend on potential shifts of ALr=A_—Ar= ¢+ Wcod Qt+a). (43
each lead separately but only on their differensg;-Ag.

For a monochromatic potential difference between the lead$hen the matrix elementd,, (t) and W, (t) can be ex-
we then define pressed in quite a simple form,

~ it
Jkrkex%%‘[ dtlALR(tl):| |f k’ S L, kE R
k()= *

T if k' ,keL ork’, keR,
: (44)
~ it
Wk/kexr{%f dtlALR(tl) |f k, S L, kE R
Wi (t) = e
Wk/k |f k,,kEL Ol’k', kER,
|
where (46)
1 1 There is only one coupling constaht (t) in this expression
Je=VieaViy + which is equal for both coupling terms. Equati6f6) con-
€&k~ €do € —€q 4 stitutes our final form of the time-dependent Hamiltonian
which we use in the next section to obtain the tunneling
3 1 B 1 45  current.
ek~ €do— U e —eg,—U/’ (45) In concluding this section we would like to point out that
7 the main idea of the Schrieffer-Wolff transformation is based
N 1. 1 1 on a projection of the system out of the full Hilbert space
Wy = Evk,dv’k*d — + ) onto the subspacléf for which the dot is occupied by one
kT Cdo €€ (and only ong electron. Unoccupied and doubly occupied

are t|me independent_ The matrix e|emen]’lsk(t) and SUbSpaceS are forbidden. At fiI’St glance it IOOkS as a Sma”

W, (1) for k' eR, kel satisfy the Hermicity relations reduction of space dimension. Yet, as we show in Sec. IV it
_ _ reatly simplifies the calculation of the tunneling current for

Jkk'(t)_‘]:'k(t) _and Wkk/(t)_wz'k(t)' We note .that at E[;ime-dyepen?jent problems. The main physical grjeason seems

small external field$40) the transformatioidetermined by o -

Egs. (34 and (42)] and the form of the matrix elements to be the fact that by fixing the number of electrons in the dot

I k(.t) and Wy (1) are very similar to those of Ref. 44 one separates the Kondo resonance from the usual resonant

although they are still different due to the time dependenC(I,r‘Lén?ggﬂg'ut-ri?eisl"jlft;?r:q;I exfggggt“?#ﬁhzng dlgrstgﬁ :;%Tjde?
of V,4(t). We further note that the HamiltonidB89) with the 9 yp ’

couping constantd) can aferavey be obtaine by ap- ACTUTE O o eent phuseal processes witi e
plication of the canonical transformatiof®) to the usual

Kondo Hamiltonian with time dependence added only to thecompllcatlon. Another advantage of the Kondo Hamiltonian

. . . . (39) [or (46)] is readily seen from the expressiaf39), (43),

leads(while the coupling of conduction electrons to the im- )
purity (dot) remains time independentThis is true, how- (44), e}nd (45).'. Namely, the number of !ndependent. param-
ever, only at small external fieldgl0). At stronger fields eters Is S|gn|f|cantly reduced. I.ndee(_j, instead of six param-
equations(38) must be used for computing the matrix ele- eters controlling the external fields in the Anderson model
mentsd,(t) and Wi (t). (¢L(R2, Wiry, O, a.nddghe phase differeneg — ag) we are

In order to have a more compact form of the HamiltonianIeft with iny three: 4™, W, and{). Instead of three inde-
we hereafter imply the limit of infinitéJ. It is obvious from pendent internal parametevgy, €g,,, andU there are only

Egs.(44) and(45) that this choice does not lead to any quali- two mpogtgnt C?r:n?'ﬂ]at';?n$t|<'kf§nfqy\t/é'|a- More(t)\_/er,llt be-
tative changes. Indeed, it just slightly affects the values of OMes obvious that the imit ot Infinite' does notimply any
Jury. The main advantage of this choice is thatlat = the qualitative changes in the results. It allows us to get rid of

equality, Wy, .= 1/2],/ holds, which eliminates one more one more parameter.
parameter. Furthermore, in the subspﬁfethe following

identity holds, namely, +ny _,=ng,. ThenHy can be IV. PERTURBATION EXPANSION OF THE CURRENT
expressed as IN THE KONDO MODEL

A. Expression for the tunneling current

He= 2 ead) a +£ > J(®
kebho © R0 2 W elR e In this section we define the tunneling current using the

+ N T + time-dependent Kondo Hamiltonig#6) and then develop a
X[&y _ 48k,0Cd,oCd,~ o T 8 48k Cd,oCd,0]- nonequilibrium technique to expand it in powers of the cou-
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pling strengthJ,.,. Although the details of calculation are obstacle in carrying out perturbation expansion in powers of
substantially distinct from those used in Sec. Il, the basidhe interaction which contains a small paramelgy,. The
algorithm is quite similar. Of course, we do not need tostarting point is, again, defining the current using commuta-
introduce slave particles here, because the unperturbed paitn of the Hamiltonian(46) with the number-of-particles

is bilinear in creation-annihilation operators and there is naperator. It yields, in the Heisenberg representation,

I(t)= h <[HK1 L= ﬁ <[HKv Rl = > Im{Jk’k(t)TrFT[PFf(O)alr]_(,(t)ak,o(t)cg,g(t)cd,—a(t)]
k'eL keR;o
+‘Jk’k(t)TrFK[pFK(0)akr (Hay, o—(t)cd D (D]} (47)

wherepFE(O) is the density matrix of the system at the zeroth instant of ficoenpare with Eq(11)]. As usual, the average

is taken over the physical subspal%:?a of the full Hilbert space for the Kondo model, and the subsd?i@ton the right-hand
side implies that operators and traces are performed within this subspace. Unlike the physical subspace for the Anderson model
(Sec. 1) which we referred to as%, the subspacéf is defined by the condition th&@y=1, where

Qk=2> ¢} ,Ca.o- (48)

The definition of the physical subspace for the Anderson model, i.e., the conQitierl [see Eq(10)], fixed the total number
of slave particles to be equal to unity, thus allowing both unoccupied and single-occupied states of the dot. The condition
Qk=1, on the other hand, enforces single occupation of the dot.

In order to get rid of the constraint to the subspﬁcfewe adapt the method proposed by Colefidar the analogous
problem in the Anderson model, to be used also in the Kondo model. As in Sec. Il we combine it with the Schwinger-Keldysh
nonequilibrium Green-function technique. First, we introduce a grand-canonical Hamiltdpian Q, . The limit of infinite
\ is to be taken at the end of the calculation. Then we go to the interaction representation considering the exchange interaction
as a perturbation and the rest of the Hamiltonian, queL'R;(,ekal’(,ak,(,Jr NQg as the unperturbed part. We notice tkat
can be freely added to or subtracted from the Hamiltonian in the definition of the interaction representation since it commutes
with all parts ofHg , although it is important in the statistical average as we proceed to show below. Within the interaction
representation, Eq47) for the current now reads,

. e A ’ ’
== lm > X ImQeOTrex{pe(0)Tolag _ (1)@ ,(th)c] o(t)cq —o(t)S,]}
t' >t+0 k' eL keR;o

+Jk’k(t)TrFK{PFK(O p[ak/ (t+)ak(r(t+)cd(r(t )Ca,0(t-)Sp1}),

whereS, andT are, respectively, the S matrix and the time-ordering operator on the closed time-path. In this equation and
hereafter, the operatoﬁ (1), a (1), cd +(1), andcy ,(t) are defined in the interaction representation. The choice of points
t.,t_,t,,andt” on the closed time patfsee Fig. 5 assures proper ordering of these operators by the opéfgttoﬁs in

Sec. Il the initial distribution of the system in the full Hilbert spabefore tunneling was switched pis chosen to be an
equilibrium one. It corresponds to a grand-canonical ensemble with the “chemical potentialTnstead of the operatd

we consider here the operatOg which is defined by the equation,

Ox=Tylla) _,(t)aw,(t})ch (1 )cq o (1) +ay, (t)ag(t))ch (1 )cq ,(t-)]S,}. (49

Considering expectation values of the operatoRx and Qx within the full Hilbert space and repeating the steps leading
from Eq.(13) to Eq.(17) [see Eqgs(15) and(16) and explanations therdimve obtain the following expression for the current:

Tolal, _(toa(theh (th)ey ot
== i tim | g Aot o0 L )S]
h k' eL,keR;o t' st+0N—® <QK>

(Tolay, ,(t)ag(th)ed (1 )cq (- )Sp]>
(Qk)

+ Jyri (1) (50



16 762 Y. GOLDIN AND Y. AVISHAI PRB 61

) I :‘ Dt A k

FIG. 5. Choice of points on the closed time path for the external
operators in Eq(49).

Since the averages in this equation are taken in the full Hil-
bert space it is amenable for perturbation expansion.

As in Sec. Il and Ref. 18, we assume that calculation of
the tunneling current to lowest order in the tunneling strengthB:
which encodes the Kondo effe(te., J‘;’,k) can be done us-
ing unperturbed populations of the energy levels. This as-
sumption seems more natural here because the number ¢
fermions in the dot is completely fixed by the constraint to
the subspac&X . It is not the case in the Anderson model
where slave fermions can convert into slave bosons and visi - - > - -
versa within the same subspaEg. Moreover, two levels o o; O:
with different spins have equal occupation numbers after per-g
forming an ensembléherma) averaging. Therefore, in the
Kondo model this assumption concerns only occupation of
different energy levels in the reservoirs. The denominator in
Eq. (50) can therefore be easily calculated, that is,

LTy Sympuy e - =
Gf s Os
k' k

o)

A—oo

(Qy=2ng — 2™, (51)

wherenyg=1/[exp(B\)+1] is the Fermi function for the dot
electrons in the grand-canonical ensemble. In fact, as far a
the dot electrons are considered in the grand-canonical en
semble, they are not real particles any more. For example
one might notice that in the physical limit— their Fermi
functionng tends to zero. They might be better called “aux- FIG. 6. Diagrams for the perturbation expansion of the current

|I|§;Ly flermlofns .Or SI?VS ferrnlons' T]? a\t/OId fonIus’lﬁn in the Kondo model. Solid lines stand for lead electrons, dashed
Wi Slave termions 0O ecC. we prefer 1o reter 1o em lines for dot electrons.

hereafter as “dot fermions.”

fluences only the rules of drawing, i.e., the first item of the
B. Diagrammatic expansion of the current diagrammatic rules formulated below.

In the following we formulate a diagrammatic technique —Here are the rules for drawing the diagrams and writing
to expand the numerator of E¢50) and obtain the current. down the corresponding analytical expressions.
We skip the detailed derivation and present only its main (1) Draw a line corresponding to a propagator of a dot
steps and then present an explicit formulation of the pertinerf€mion. In Fig. 6 we used a dashed line for its notation. The
diagrammatic rules. The strategy is to start from perturbatiofffidgram must include only one such line, since a presence of
expansion of Eq(50) on the closed time path. Next, trans- tWO or more lines of this type implieQ=2. It would pro-
formation of the resulting expression is performed, first to gduce a contribution to the numerator of E§0) of second or
single-time branch and, then, to the physical representatiorfdgher order in powers of exp(8)). The contribution to the
of the nonequilibrium Green functions. Time-translation in-current would then be of first or higher order in powers of
variance of the unperturbed Green functions allows us to us@<P(~A\), which will vanish at\ — . Attachm—1 points
the Fourier transforntfor every Green function separatply (0 the dot-fermion line, wheren is the power ofJy which
and write integrals in the energy representation. The rest ghe contribution of the diagram being considered is supposed
this procedure will be explained along the course of formu-10 have in the expression for the current. These points repre-
lation below. sent vertices. Connect them by lead-electron lines leaving
Equation(50) expresses the current in terms of a pair oftwo loose ends corresponding to the external operaiprs
two-particle Green functions. Therefore, in this section weand a, in Eq. (50). In Fig. 6 we used solid lines to denote
prefer to draw the diagrams in the standard form accepted fqeropagators of lead electrons. In the present work we have
Green functions in textbooksee Fig. 6. Alternatively, we  considered diagrams fan=2 [Fig. 6(c)] and m=3 [Figs.
could connect all the external lines in one “external vertex” 6(A), 6(B), and D)].
as we did in Sec. Il, thus obtaining diagrams of a circular (2) Introduce the following %2 (Keldysh matrices for
shape. The difference is, of course, purely superficial. It in-every lead electron and dot-fermion line, respectively,
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0 gﬁa(f)> ( 0 gf;(w)) itly in the definition of¢'® although consideration of energy
; c , o)=L c . conservation shows that, in fact, it could be absorbed into a
Oko(€)  Oko(€) §o(w)  Eo(w) shift of w in all Green functions for the dot fermions.
(3) For every vertex, introduce the following tensor:

gko’( E)E (

The indicesr, a, andc denote the retarded, advanced, and

correlation Green functions which are explicitly defined as ~ W(koutkin) .

follows: Jioutinds| ~7q | TV (54)
grk(j‘)(e)= 1+_ , (53)  Wherek;, andk,,; are momenta of incoming and outgoing

€ a=ly lead electrons, respectively, aﬁ;;iomkin means a matrix ele-
Iio(€)=[1—2f (€ 1[Gio(€) —Tics(€)], ment[given by Eq.(45)]. Further,J[W,_ . ,/(5Q)] are
Bessel functions in which the ordeiis a number of photons

(@), 1 absorbed in this vertefclearly, it can be negatiyeand
A

W if KouteLl, ki,eR
E(w)=[1-2exgd— BN ][£(0)— &5 (w)], W sy=1 ~W if koue R, kinel

where f(e,)=1/[exp(Be)+1] is Fermi function for lead 0 if Kout,» KineLorkgy, kineR.
electrons, the factor exp(B\) is the limiting case of the (55
dot-fermion Fermi functiomy=1/[exp(B\)+1] at large\. ) ) ) o

As in Sec. Il the matriceg52) emerge as a result of the It is useful at this point to recall the origin of the appearance
passage from the closed time path to the normal time patﬁf the Bessel functions, starting from the expansion of the
before the transformation to the energy representation is cafme-dependent matrix elementg . (t) [see Eqs(44) and
ried out. Note that the Lagrange multiplierappears explic- (43)]:

k)]

out

I, g (D) :jkomkine(i/ﬁ)[¢(komkm)t+ W, ) /(BQ)SINQL+a) = B

W,
ST S g letind | g sl e, gt 3050 B o) (56)
k0u1k|n S hQ out™in out™in .

S=—0

The symbols K, ,Kki,) here, as throughout the present manu-to the physical representation of the Green functions and
script, denote the leads to whigt), andk,, belong, that is, vertices. Multiply the result by the factor,
LR, RL, LL, or RR The constant phase&(komkm) cancel

when Eq.(56) is substituted into expressions for the dia- ST Wikrky 58
grams. The tensog is now a tensor of the fourth rankn- Kkintsi+ ... 4sm a0 |- (58)
like in Sec. l) because it connects four Keldysh matrices. It

is written explicitly as This factor emerges out of the matrix elemépt(t) in Eq.

(50) by means of the expansidb6) (while s is replaced by
—s). Summation oven is carried out in Eq(60) below.
mj' = > Ri_,r]]—,],Rj_,i,O'S,)n,5mrm5mranian, (5) Conserve energy in every vertex taking into account
m’.n",mn absorption ofs photons and the energf®® gained(lost) by
(57) an electron going from left to righifrom right to lef.

(6) Conservation of spin is somewhat delicate. There are
where R=(142)(4%), R =(1N2)(; 7). crfnsr)nr two terms in the Hamiltonia46) and, correspondingly, two
=(} 9). The third Pauli matrixs'>) , appears here because terms in the expression for the curre(®0). They express
of the transition from the closed-time path to the single-timesSpin-flip and normal scattering processes. Therefore, conser-
representatiorftransformation from integration on the back- vation of spin in every vertex should take into account two
ward oriented time branch to integration over normal timepPossibilities: (@) if incoming spins are opposite, then, spin
axis requires a change of sigiransformation to the physi- flip occurs, (b) if incoming spins are equal, then, both out-
cal representation emp|0ys the matri¢éeand R_l_ going SpinS are the same. It is important to stress that the

(4) Close around the product of matrices and tensor$ame rules have to be applied to the whole diagram, other-
which has been obtained by the following ro@s columng; ~ Wise it can not contribute to the currefs0). Namely, (a) if
2-Y2(—1,1) for theg matrices and 2Y4(1,1) for theé ma-  incoming spins ¢, andoy in Fig. 6) are opposite, then, the
trices (see examples belowThe origin of these rows is outgoing spins have to be reversge., o= o= — oy and
again the transformation from the single-time representation;= o,= — 7). (b) If incoming spins are equal, then, out-
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going spins have to be the saniiee., oc.=c;=0,=0¢). expansion of th&matrix. Employing Wick’s theorem in the
These rules prohibit the spin-flip diagram of type B in Fig. 6. perturbation series requires pairings of creation-annihilation
Indeed, spin flip in the first vertex can happen onlyoff ~ operators which are then expressed in terms of Green func-
=—0{.Then,ge,=— 0 ,=—o,=o}, and spin flip should tions. This is the origin of the next two factors. The last one
occur in the second vertex as well. Consequentty, ~€merges following Fourier transforms.
=—g¢=0,=— o} . This contribution is therefore forbidden. (9) Take the limith — . ,
The only diagram of type B that survives is the one with Th.|s complgtes thg list of rules for drawing and calculat-
Te=0(=0g1= 01 1=0,=0] . On the other hand, four dia- ing diagrams in the time-dependent Kondo model.
grams of type A are allowed. Namely, the following equali-
ties 0g1=0¢ 1, 0g=0 and oy=0, should hold. All the
combinations which are left are allowed, that ig,= * o Let us denote the expression obtained through the above
ando = *oy. rules for a certain diagrarfor after summing of expressions
(7) Integrate over energy and momentum and sum ovefor diagrams up to a certain ordeasY «(n). The numben
spin. Remember that, according to E§0) the current flow has the meaning of the total number of photons absorbed or
starts from the left lead, i.ek’ eL, and ends in the right emitted due to the tunneling procdgisvas introduced above
lead, i.ek e R. The other momenta might belong to any lead:in the fourth item of the diagrammatic rulesThe time-
Ki, ... Kn_2eL,R. Sum over numbers of absorbed photonsdependent current is then given by
Siy -+ Sme1-
(8) Multiply the result by the factor

C. Explicit expression for the tunneling current

+ oo

1
'(‘)ZE'(’*”; |l J]cognQt+na+argl,), (60
o (=)™ ()P (= DF (2m) (MY, (59

f

(Qk) Y (n)+YE(—n).

whereF is the number of closed electron-fermion loops. The

first factor in the above expression comes from Ez[), As an example, an expression that is obtained using the

while the second one reminds us of time-1 order of the above diagrammatic rules for diagram A in F{§) reads

W Wik, k1) Wik k)
A . 1 1 __1\S1+s
YK(n)_ ﬁ E Jn+51+52(ﬁ9)‘]51( ) ) 52( X0 (=)™ zk’EL'keR'kéL Ric.o oy
e - 1 1
X Ji ki, Ik k’_—f f f jdeldwdw’ doq lim—= > (—1,1)19”2
1 %1% 4 (277)4 )\Hoc<QK> KR IR N Pt ko'

P o l
x<el+w'—w1+¢<klk)+szﬁn>§',3;2(wl>n,ZngLZ';( EN I (w')(l) (12" () g 1‘19L%'

-1
X(61+w—wl+¢(klk/)—slﬁﬂ)( 1 ) . (61)
J'I

A useful simplification can be worked out in this equation, noticing that one of the vertices connects electron Green functions
of the same lead. Indeed, kf e L, thenk,; andk’ belong to the same lead, whilekf € R, thenk; andk belong to the same
lead. Therefore, according to EG5), one hasN(koutkm):O in this vertex. Using the identityls(0)= 650, we can get rid of

one of the Bessel functions. Using also the relatigh—x) = (—1)%J4(x) we obtain

ie W W ~ o~ o~
YR(n)=— s ES J““(ﬁ)‘]s(m) > Jiriedki i

k' elL:ke Rikie L,R;o‘,o",a‘l

I

L2

L 1
X(ert '~ w1t o+ S 0E w1 12200 ()€ (o >( 1) (L1 () 701G,

-1
X(61+w_w1+¢(klk')_31ﬁ9)( 1 ) ) (62
jl



PRB 61 NONLINEAR RESPONSE OF A KONDO SYSTEM: ... 16 765

wheres=s, if k; eR, ands=s,, if k;eL.

At this stage, the use of a program for analytical calculatieng.,MATHEMATICA ) is indispensable. The following steps are
to be done(1) the tensor-matrix product is to be expanded and expressions for Green furibpase to be substituted?)
due to the presence of the fact@@) in the denominator, only terms of the first order in exp) must be kept in the
numerator(the zeroth order cancel while the terms of higher orders are to be omi3¢doutine integration of the expression
obtained through the above steps over internal variabless, o', andw; is to be carried out. The result is the following:

W _ o~ o~
J (—> > I, Ji kr
° hQ) k'eL;keR;kleL,R;U,U',Ul o

YAM =57 3 J(%
f(e)f(ew)(e— e — d?°—sQ—2iy)
(&= € — 4= —i7) (e €, + Pay — S22 —17) (€ — €, + ey —$1Q2+17)
f(ek)f(ekl)
(€= € — $*°—sQ—iy) (e — e+ Browy) —S12+i7)
flew)f(ex)

+ ac : — . (63)
(ex— € — P =S —iy)(ex— €, + by —S202—i7)

X

We assume now thal, depend only on the leads to whig&h andk belong, independently of the valuesldf andk (hence
there are just three coupling-strength constadys;, Jrgr, andJ g, whereJy grw)=Vi(rVrw)l€dql)- Furthermore, we
assume that the densities of states in the I¢ads,), ke L,R], are roughly constant on the energy scaledf, Q, andW

[rigorously speaking, only the combinatiopge,:) 23, (t) p(e) ¥ wherek,k’ e L,R, need to be constahtThen the above
expression greatly simplifies since integration over ong, & or k; can be carried out. Using also a simple relation

T Ik =Rl ek - (64)

we get an expression

W W fle)f(e)
i 9

Yi(n)= 3877|3LR|ZPLPR(jLLpL+jRRPR)E Jnts —.
A : e — %S0 —iy

The factor 8 in this equation arises from summation over spins.
For the diagram B in Fig. 6 the above diagrammatic rules, udifig x) = (—1)%J5(x) andJ¢(0)= &, yield the following
expression:

ie ARARY, Y e .11 1
YE(n)=g§S: J”*S(E)JS(E) > kakaliklk'“mmz(zw)JjJJ

k'EL;kER;kleL,R;U A—x

xdeydodo' do; > (~1,1;002(e1— 0+ 01+ bt Q)

KN LR RV

i’ 1
&'y

S YA sl Y ] _1
><(1,1>if';2<w>n;gjgg‘kj’;<el>§if'1<wl>n:;}ig’k%’c,(el—w'+w1+¢<k1kf>—slm>( L )
I i

(66)
Repeating the steps which led from E§2) to Eq. (65 we obtain,

w flewflex)
‘]S( Q)J f dEKdek,Ek—Ek,—(bdc—sﬂ_iy. (67)

W
hQ

e - -
YE(”):%277|JLR|ZPLPR(‘JLLPL+JRRPR)ES: Jnts

We omitted in this expression some terms which cancel out when substituted into expression for the(@Drélute that
spin-conservation rules discussed above allow only one combination of spins for this diagram, namely, all spin projections are
identical. It leads to a factor 2 in the above expression instead of 8 iG6By.

For the diagram C in Fig. 6 we obtain, using the above diagrammatic ruleg anck)=(—1)3J4(x) an expression of

second order il p
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W
hQ

>

|

oS o W
YK(n)_ h ES Jn+s(ﬁQ>Js<

k' e L;keR;o,0q

>

ISR

X

Making the same steps as above we obtain a very simple

equation:

W
hQ

|

The last term(i.e., i const) cancels when substituted into
expression for the curreri60).
In order to calculate contribution of diagrafBD) it is

e W
Y(K:(n):%ZWULRFPLPRES Jn+s(m)\]s(

X (p9+shQ+i consy. (69)
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(I 2 Ni t 1 1ffffd'dd'
' m-——-——-—- € w Uw
Kk }\HOO(QK>4(27T)3
Ly - g -1 o, 1
(—1,1);0) (e —w+ o'+ ¢%+shQ)(1,1)€ w)n g (&) &' (! :
) 19ko oy i1 k(rl 1 i (o 1 o
(68)

1 o]
13)(t)= Slot ngl I1,|lcognQt+ne+argl,), (73b

+ o0

1,=Csy Z_ JS(%) Js+n(%)F(¢dC+sﬂ,T,D)
(730
+Js_n<m)F*(¢d°+SQ,T,D)], (730

better to stay in the closed time-path representation. Then
one can easily notice that it can be expressed through the

contribution of diagram6C) in the following manner:

YR=vEm [ dt, 3 o, 70
p kjeLLR 1 1

where nklz(ailah):f(ek). The matrix elementsy i (t)
do not depend on the branch to whicbelongs, i.e., whether
t,=t_ ort,=t_, while n, does not depend on time at all.

So the integrals over the normal and the backward oriente
time branches cancel. The contribution of this diagram to thé&

current simply vanishes.
Further progress employs the identities

ES J(¥) s n(X)= 8o,
(71)

S 50035 n(0)= 5Byt 3, 1),

Substituting Eq(69) into Eq.(60) and using these equations
we obtain for the contribution of diagrat6C) to the current
[1$2)(t)] the following simple expression:

12)(t)=C,[ ¢+ W cog Qt+ a)], (72)
whereC,=(e/#%) w[J rl%pLpr. This is the only contribution
which is of second order idy(t) p. There appear onlipC
and the first harmonic. The higher harmonics are not gene
ated in this order.

Finally we sum contributions of all the diagrams and get

the following equations for the tunneling current:

() =1@(t)+1C)t), (739

f(e)f(ex)

e —d—iy

(73¢9
where 1) is defined above[Eq. (72)], while C,
= (e/h)10m[J rI%pLpr(ILLpL + IrROR), @Nd p (g are den-
sities of states in the leads. The quantiti€d and 1) ex-
press contributions of secondiagram G and third (dia-
grams A and Borders inJ,/p, respectively. The cutofd is
aqual to the energy difference between the chemical potential
nd the bottom of the conduction band, whjlés an infini-
tesimally small number. Equatiorig3) constitute the central
formal result of the present section. Equati@3e is rather
convenient for further elaboratiofwhich is our next step
but it can be misleading if a proper care is not taken. Indeed,
the cutoffs for the two energy integrations are not indepen-
dent, and their relation is to be defined carefully. Consider
another expression fdf where one of the integrals does not
require a cutoff:

+ oo + oo
F(¢,T.D)= LD LD dedes

F(¢,T,D)=— %Ref fj:dw de

(LTl@) = Tr(0)]lfL(e) +Tr(e)]

w—€et+iy
—i wgcothﬁ%d) . (74
Here f (e)=1/{exd(e—¢)/kT]+1} and fr(e)=1/

r(_exp[;s/k'l']Jrl) have the meaning of Fermi functions in the
leads(the left lead being shifted bg). Some pure imaginary
terms, linear ing, that do not contribute to the current have
been omitted in this expression. The above integral can be
written in the same form as in the dc result of Sivan and
Wingreen'® The physical content of Eq73d) for |, is rather
transparent: An alternating field applied to a two-barrier sys-
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tem actually results in a splitting of the leads energy levéls. ate product of Bessel functioi$An approximate evaluation
Therefore the time-dependent current is a result of interferef the double integral in the above equations is possible both
ence between “dc-like” contributions, each one of themfor the linear (p<T) and for the nonlinear>T) regimes.
having an effective biag“¢+ s weighted by the appropri- It yields

b |n%+0.26+0(¢/kT)+0(kT/D)} if  p<kT,
RgF(4,T,D)]= (79

¢

|n%+1+0((kT/¢)2)+0(¢/D)} if  ¢>kT.

As is well known (see, for instance, Ref.)4the linear- used the equations of Ref. 63 reduced to the case of only one
response perturbation expansion for the Kondo problemesonant level present in the system. Comparison of the top
breaks down at temperatures below a certain value, definemhd bottom parts of the figure clearly shows a significant
as the Kondo temperatutig . In our calculation it shows as enhancement of dc and the first harmonic relative to the oth-
a logarithmic divergence of the functioR and, conse- ers in the Kondo system. The ratio of the dc and the first
guently, the amplitude of the currefif3d at T—0 in the  harmonic to the higher harmonics might increase even fur-
linear response. It is remarkable, however, that in the nonther if D becomes larger. However, the choice of parameters
linear case on which we focus our attention here the functiofior Fig. 7 corresponds to a real quantum dot situatiokive

F does not diverge with decreasing temperature. Hence, omphasize that the nonlinear response is different from the
results for the nonlinear response are valid even below thénear one. Namely(i) the second and the higher harmonics
Kondo temperature. This is due to the fact that here the non-

linear bias plays the role of temperature as the largest low- a) I,
energy scale. 70 pre
When the estimaté75) is employed in Eqs(73) it yields 60 Fout
extremely simple expressions for the current. First, it turns
out to be very useful for the static nonequilibrium ca¥é ( 50 i
=0), for which we find 40 F
D 30 ¢
C,+0.26C5+Cyln; = if PI°<T, 20 |
dc o
I~¢ D (76) 10 E . ]
C,+C3+Cyln if p9°>T. P SR TR Y YUY YUY Y U
| %] o 1 2 3 4 5 & 7
To the best of our knowledge, such a simple expression for a 3)25111, e
nonequilibrium tunneling current through a Kondo system e
has not been derived in other works. The authors have al- 02 [
ready reported formulagZ3) and (76) in their paper® We )t B
notice that expressiofi76) contains the familiar pattern of 0.15 k
the zero-bias anomaly.e., a peak in the differential conduc- .
tance at zero bias 0.1 F
Next, considering expressidii5) we notice that the large F
factor InD appears only in a term which is linear ¢ Using 0.05 [ ?
Egs.(730 and(71) we then find that this factor emerges only . ® ]
in the expressions for the dc and the first harmonic of the ac. Py U AN S DUV U YUY VI G
It means that, in fact, only the direct and the first harmonic o 1 2 3 4 5 6 7

are enhanced by the Kondo effect. As for the higher harmon- FIG. 7. ( .

) . I . . 7. (a) Spectrum of the tunneling current for a quantum dot
ics, the interference of the contributions to the currentin Eqs; v« «ondo regimeamplitude of the harmonids, via their num-
(73) with different effective biases is destructive. This con- ber n, the value of 1/2, is shown for the dc The contribution of
clusion is further confirmed by numerical calculation of thé e second order idp is not shown. The current is measured in
whole spectrum of the tunneling current performed usingpits of C,kT. W/Q =4, Q/kT=5, ¢*/kT=10, D/KT=200. (b)
Egs.(73). In Fig. 7 the spectréamplitude of the harmonics  gpectrum of the tunneling current for a noninteracting one-level
I, via their numbem, the value of 1/P; is displayed for the  system with the energy level between the chemical potentials of the
dc) are shown for both the Kondo and the noninteractingeft and the right leads. The current is measured in unitsltfi,
systems. Values of the parameters used for the calculatiofhereT is the level width W/Q=4, Q/T =5, ¢/T'=10, D/T

are listed in the caption. For the noninteracting system we-=200.
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exist although they are smallij) the amplitudes of the dc

and the first harmonic are not determined any more by the
ratio D/T as in the linear response, but rather by the ratio of
D to the largest relevant low-energy scale as we show in the

Y. GOLDIN AND Y. AVISHAI

following [see Eqgs(77), (81), and(82)].
Substituting Eq(75) into Eq.(73), it is possible, in a few

limiting cases, to find very simple expressions for the dc
(19 and the first harmonic of the time-dependent tunneling
current (2°). Experimentally, the nonlinear Kondo effect is
usually revealed as the zero-bias anomaly. In a strong alter-

nating field where many-photon absorption is possibke,

W>Q0,T), we get for the differential conductance

(919%9¢9°) an expression

dc

Q

&(f)dc
X\q;wm P(¢9Q—q,T/Q) if | ¢ <W,
(77)
dc
&¢dc~c2+ CaIn(D/[¢%9) if |p9 =W,

whereP(49%Q —q,T/Q) is the shape function for the side

peaks atp?°=qQ), qis integer. We find that

P(¢9%Q—q T/Q)%Eln 0 if |$9Q—q|
’ 2 (¢%°—q0)*+T?
<land|T/Q|<1, (79

while
P(¢9%Q0—q,T/Q)=0 if |$%Q—q|>1or|T/Q|>1.

In a weak alternating fieldW/<()), we obtain

a19e c +c3| D?
(9¢dC~ 2 2 n(¢dC)Z+T2

S (%)qu

P(¢%-qQ,T,D),

470 (lalh?
(79
where the side-peak shape functi@ns given by
P(¢%°—qQ,T D)~1Ir‘ >* (80)
AN LTI E E

Comparing Eq(77) with the static expressio(v6), we no-
tice that the main peak of the differential conductaribe

one at$%°=0) is suppressed in a strong alternating field by

the factor approximately equal tpIn(D/W)+1])/[In(D/T)

+0.26]. The side peaks in a strong field are not simple rep-

FIG. 8. Differential dc conductandén units of C3) versus dc
bias at various values of ac bi&g (both are measured in units of
kT). Q/kT=5, D/kT=200.

nating field, however, it is determined by the factorMA().
Moreover, the amplitudes of the side peaks in a strong alter-
nating field does not decay exponentially within fact, it is
roughly constantas long a5} <W). The half-width of the
side peaks in a strong field is approximately equalQd}*?
instead of DT)Y2. The latter feature is quite favorable for
experimental observation: since the peaks are rather narrow
it is not necessary to go to high frequencies in order to re-
solve them. On the other hand, their magnitude decreases
together with the ratid)/T. In Figs. 8 and 9 the differential
dc conductancécalculated numerically using Eqé73)] is
shown versus the bias at different magnitudes of the alternat-
ing field. Suppression of the central peak in the zero-bias
anomaly is readily manifested in both figures. Side peaks do
not appear in Fig. 8 where the ratio of the frequency to the
temperature is not large enougfRAT=5). They are well
pronounced, however, at a tenfold lower temperatiig.
9).

Although measurement of an ac with frequencies and am-
plitudes in the relevant range is not an easy task, it might
reveal new interesting features of the Kondo effect. Kondo

8
C - —-W=0
3 —W-5

7F | e W=10
i ——--W=20
i

licas of the central one, as is the case in a weak field. As far
as the temperature dependence of the zero-bias anomaly for
the time-independent response is concerned, we note that the

temperature dependence of the side peaks in a weak alternat-FIG. 9. The same as in the previous plot but at tenfold lower

ing field is governed by the factor ID(T). In a strong alter- temperature.
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FIG. 10. Differential ac conductandg@ units of C3) versus ac FIG. 11. Derivative of the ac with respect to dc bias versus the
bias at various values of dc bigs° (both are measured in units of latter (which is given in units ofi Q). W/Q =2, D/Q=40. The
kT). Q/kT=5, D/kT=200. dashed line is plotted af)/T=5, while the solid line is at the

tenfold lower temperature.
contribution to the direct tunneling current is usually re- _ _ o
vealed in an experiment through a special dependence on tlj?éaic at dc|°VY temperatures. In Fig. 11 its derivative
parametergsuch as IIT increase of the conductance or the (d1%7/d¢™) is drawn versusp™ for two temperatures. At
zero-bias anomaly It was shown above that, as far as the!OW temperature there appear well-pronounced dipisich
spectrum of the tunneling current is concerned, only the d@re actually peaks in its absolute vala integer multiples
and the first harmonic are enhanced by the Kondo effec®f the frequency. _
This implies that such kind of parameter dependence can be N @ weak alternating fieldW/<Q) we find
found in the first harmonic as well as in the dc but not in |36~ C,W+ CaWIn(D/| 699 for T, <| 4
higher harmonics. Employing the approximate expression 2 8 ' ’

(75) in Eq. (73) we obtain for the first harmonic of the time- (829
dependent tunneling currerf{) in a strong alternating field 12~ C,W+ Ca W[ IN(D/Q) +1] for T,| 9 <,

(W=Q), (82b)
2 13~ C,W+ C3W[In(D/T)+1/4] if |¢9,Q<T.

|26~ CoW+3 CaWIn(D/W)+2] for W T, AW+ CaWIIn(DIT) + /4] if |47 (820

(81a Inspecting Eqs(76), (77), (81), and(82) we notice that the
values of both direct and alternating differential conduc-
2 tances are basically determined by the logarithm of the ratio
ac__ - dc <| 4dc
I ~C2W+3C3W[In(D/|¢ )+1/3] for W, T<[¢%, of D to the largest relevant low-energy scale.
(81b

V. CONCLUSIONS
13~ C,W+ CaW[In(D/T)+ 1/4] for W,| 9| <T. o
(810 In the present work the problem of nonequilibrium time-

dependent electron tunneling through an interacting system
These expressions appear to be very similar to E¢8.for  was studied at some depth. The main attention was focused
the dc when| ¢%‘| andW are exchanged. Moreover, differ- on calculation of time-dependent current in the Kondo re-
entiatingl ¢ with respect tow, we find a peak in the differ- gime beyond linear response. A tunneling system in this con-
ential ac conductance at zero ac bias. The shape of the peg«t is naturally described by the time-dependent Anderson
is logarithmic at largaV, while its height is determined by model. Perturbation expansion of the current within this
max(¢%9,T). We infer that this feature of the ac is analogousmodel, specially adapted for systems out of equilibrium was
to the familiar zero-bias anomaly in the dc. In the same wayelaborated upon in Sec. Il. This formalism combines the non-
that the latter is suppressed by the alternating bias, thiequiliborium Green-functions method with a specific ap-
“zero-alternating-bias anomaly” is suppressed by the direciproach suggested by Colenfano account for averaging in
bias. In Fig. 10 the differential alternating conductance cal+estricted subspaces which is often encountered in problems
culated using Eqg73) is plotted versus alternating bisgat  involving strongly correlated electron systems. We have ac-
different values of the direct biag“‘. Notice the clear simi- complished the formal part of perturbation expansion within
larity with the zero bias anomaly shown in Fig. 8 and itsthis model for the time-dependent case. The task of perform-
suppression with alternating bias. We do not find any sidéng detailed calculations turns out to be too formidable. Yet,
peaks in the differential ac conductance. Their traces can beith a slightly elevated capability of present day worksta-
exposed, however, in the dependence of the ac on the diretibns and analytic software programs it should be feasible.
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We then suggested a way to overcome this problem initative comparison with experiment may be done using the
Sec. lll, where we developed a time-dependent version of th&ull set of Egs.(73).
Schrieffer-Wolff transformation mapping the time-dependent As far as relation to previous relevant works is concerned,
Anderson model onto a Kondo-type model. The latter iswe first notice that our analytical results for the dc are con-
much easier for treatment within perturbation theory. Wesistent with the numerical calculations of Ref. 17. However,
maintain that it cannot be introduced phenomenologicallybeing able to consider stronger ac fielt&rger ratiow/(}),
since proper correlation of the time dependence between thee find also an overall suppression of the zero-bias anomaly,
leads and the Kondo coupling constahi,(t) has to be beside the appearance of side peaks. As for the Fourier spec-
taken into account. Nonequilibrium perturbation techniquetrum of the time-dependent tunneling current, we are unable
for calculation of the tunneling current within the time- to validate the assumption suggested in Ref. 17 #flathe
dependent Kondo model was worked out in Sec. IV. Actualharmonics beside the dc one can be neglected. Rather, the
calculations were performed up to the third orderJig first harmonic is also enhanced, while the second and higher
(which corresponds to sixth order in tunneling matrix ele-harmonics are generated but they are indeed much smaller
ments for the Anderson modeyielding extremely simple than the DC and the first of8.Within a specific model,
analytical expressions for the whole spectrum of the tunnelsome authofs obtained current spectrum similar to that of a
ing current[see Eqs(73), (76), (77), (81) and (82)]. The  noninteracting system. We attribute the difference between
nonlinear time-dependent current was found to be an interthis result and ours to a quite peculiar choice of parameters
ference sum of “dc-like” contributions, each one with an used therein. We notice that some basic formulas and results
effective bias altered by the number of absorbed or emittesvere announced in a short paper of the autipesg., Egs.
photons. We stress that our results are valid for the nonlinea#6), (73), discussion on the spectrum and the suppression of
response both below and above the Kondo temperature ahe zero-bias anomaly of the dc. In the present paper these
though for the linear response they are valid only above it. results are derived and shown in much greater ddtadtce

There are three main results in the present research. Firgtjgs. 7—10 and formulaé77)—(80)]. Moreover, it contains
it was found that the Kondo effect strongly affects the firstprediction and detailed calculations for a new effect, namely,
harmonic of the alternating tunneling current, no less that ithe zero-alternating-bias anomaly.
affects the dc, while the other harmonics remain relatively We believe that further research on time-dependent as-
small. This result is shown to originate from the interferencepects of the Kondo effect, in particular in quantum dots, is
of dc-like contributions to the currefEq. (73)] that turn out  interesting and very timely. Let us mention a few possible
to be rather destructive for all the harmonics except the ddirections of future research. First, the methods developed in
and the first one. The higher harmonics are of course genethe present work can be adapted for solution of the problem
ated but their amplitudes are relatively small. This result wa®f nonlinear response of a Kondo system to a combination of
demonstrated to be remarkably different from that for a nonalternating magnetic and electric fields. Evolution of the
interacting one-level system where all the harmonics emergeero-bias anomaly in a magnetic field, contrary to its tem-
together. perature dependence, seems to be the clearest

Second, it was found that the zero-bias anomaly in the dexperimentally® resolved feature of the nonequilibrium
is suppressed by an alternating field and displays side peak&®ndo effect. Calculation of complementary effects in the
at multiples of the basic frequency. This result can be easilyime-dependent response and carrying out pertinent experi-
tested experimentally since it is concerned with measurememhents seem also to be timely. If the effect of a magnetic field
of the dc in the Kondo regime, which has now been well-can be solely expressed by the Zeeman splitting of the en-
established in quantum-dots experiments. Expressi@rls ergy level in the dot, that is¢,- 1= €y*=Ae/2, the tech-
together with Figs. 8 and 9 provide an estimate for the prenique developed in the present work can be easily modified
ferred range of parameters of the system. to incorporate it.

Third, we found a “zero-ac-bias anomaly” in the alter- It might also be interesting to consider a nonmagnetic
nating current, i.e., a peak of the differential ac conductancéalso called “orbital”) Kondo systerf®® subject to a strong
at zero ac bias. This phenomenon is an ac analog of thalternating field. It is believéd®® to be realized in some
familiar zero-bias anomaly of the dc. As in the latter one, it isrecent experiments in the form of a two-level atomic tun-
suppressed by the ac bias, while the former one is suppressadling system. In this model the conducting electrons interact
by the dc bias. There are no side peaks of the differential awith an impurity atom which can tunnel between two states.
conductance; however, they have a well-pronounced couriFunneling of the atom is assisted by the interaction. At suf-
terpart in the derivative of the ac with respect to the dc biadiciently low temperatures, the parameters of the model
(in the form of dip3$. We think that this phenomenon shows renormalize so that it becomes equivalent to the two-channel
a pattern of the Kondo effect in the ac yielding a challengingkondo modef® Besides the time-dependent shift of the
object for an experimental search. Equatid@$), (82) and leads which is present also in the one-channel model and
Figs. 10 and 11 provide an estimate for the necessary ranggudied in our work, in a two-level atomic system a time-
of parameters. Our results on the spectrum of the currerdependent field can cause a change of the effective energy
indicate that effects like this one cannot appear at higheseparation between the levels. One possible effect of such a
harmonics of the time-dependent tunneling currghte to  change is a crossover between Fermi-liquid and non-Fermi-
the Kondo effegt We emphasize that expressidiig), (81), liquid behavior(see, for instance, Ref. B8It is especially
and (82), especially the numerical coefficients, are very ap-appropriate to point out here that application of an ac field is
proximate. They are intended to display the basic deperrather controllable. An appropriate calculation, if followed
dence of the current on the parameters of the system. Quaby an experiment, could then further test the hypothesis that
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the physics of a two-channel Kondo model has been realizelhted particles in strong time-dependent external fields and
in some experiments? a point which has been questioned restricted geometries looks to be an important and exciting
by some author& subject for further research.

Consideration of a multilevel Kondo system in an external
alternating field looks very attractive. First, it is an appropri-
ate object for quantum dots experiments. Moreover, it was
argued!’?that the Kondo temperature in such a system can
be enhanced by orders of magnitude. This fact could allow This research was supported in part by a grant from the
an experimental investigation of the strongly correlated redsrael Science Foundation under programs “Centers of Ex-
gime of the Kondo system. On the other hand, application otellence,” and “Non-Linear Tunneling,” by an American-

a time-dependent field to a multilevel system leads to highlyisrael BSF grant “Dynamical Instabilities,” and by DIP pro-
nonlinear tunneling processes, e.g., resonant frequenayam “Quantum Electronics in Low Dimensional Systems.”
multiplication®® Examination of nonequilibrium transport We would like to thank N.S. Wingreen, A. Golub, Y. Meir,
through such a system in the Kondo regime might reveaD. Goldhaber-Gordon, L.P. Kouwenhoven, P. Coleman, L.I.
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