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Nonlinear response of a Kondo system: Perturbation approach to the time-dependent Anderson
impurity model

Y. Goldin and Y. Avishai*
Physics Department, Ben Gurion University of the Negev, Beer Sheva, Israel

~Received 6 December 1999!

Nonlinear tunneling current through a quantum dot~an Anderson impurity system! subject to both constant
and alternating electric fields is studied in the Kondo regime. A systematic diagram technique is developed for
perturbation study of the current in physical systems out of equilibrium governed by time-dependent Hamil-
tonians of the Anderson and the Kondo models. The ensuing calculations prove to be too complicated for the
Anderson model, and hence, a mapping on an effective Kondo problem is called for. This is achieved by
constructing a time-dependent version of the Schrieffer-Wolff transformation. Perturbation expansion of the
current is then carried out up to third order in the Kondo couplingJ yielding a set of remarkably simple
analytical expressions for the current. The zero-bias anomaly of the direct current~dc! differential conductance
is shown to be suppressed by the alternating field while side peaks develop at finite source-drain voltage. Both
the direct component and the first harmonics of the time-dependent response are equally enhanced due to the
Kondo effect, while amplitudes of higher harmonics are shown to be relatively small. A ‘‘zero-alternating-bias
anomaly’’ is found in the alternating current~ac! differential conductance, that is, it peaks around zero
alternating bias. This peak is suppressed by the constant bias. No side peaks show up in the differential
alternating conductance but their counterpart is found in the derivative of the ac with respect to the direct bias.
The results pertaining to nonlinear response are shown to be valid also below the Kondo temperature.
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I. INTRODUCTION

An attractive research direction in contemporary co
densed matter physics seems to be the study of nonequ
rium many-body phenomena. A promising experimental a
theoretical framework for investigating this topic is provid
by the physics of quantum dot systems. The reason for th
clear, namely, quantum dots are fabricated and their pro
ties can be elucidated by present day experimental te
niques. Indeed, recent experiments on electron transpo
quantum dots at low temperatures reveal signatures of co
ent many-body physics, such as the emergence of zero
anomaly in current-voltage characteristics1–3 which is due to
the formation of a many-body resonance. At the same ti
the underlying theoretical models are of sufficient simplic
so that one encounters a rare occasion where one ha
experimentally accessible nonequilibrium quantum sys
that is also amenable to reliable and controllable theoret
approaches.

So far, the main effort in the physics of quantum dots h
been devoted to the study of different phenomena emer
from the presence of large Coulomb interaction in the dot
this context, the most familiar and simplest topic is the Co
lomb blockade. Its essence is simply encoded as a cap
tance effect: every extra electron coming into the dot ha
overcome a charging energye2/C, whereC is the capaci-
tance of the dot. If the gate voltage is not tuned to supply
energy, the tunneling is~Coulomb! blocked. Yet, we believe
that essentially genuine many-body aspects of resonant
neling might be better revealed in the physics that goes s
stantially beyond the simplified Coulomb blockade pictu
By this we mean the Kondo effect and other facets
strongly correlated electronic systems. They result from
PRB 610163-1829/2000/61~24!/16750~23!/$15.00
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intricate combination of electron-electron interaction a
tunneling.

Whereas the Kondo effect inbulk materials has been
thought-inspiring subject of research for more than three
cades~for review, see Refs. 4 and 5!, its emergence inquan-
tum dot physicsappears to be relatively new. Yet, it prove
to be equally thought inspiring. In particular, it opens a ro
to explore thenonequilibriumKondo physics. Its hallmark is
the zero-bias anomaly, that is, an appearance of a large
row peak in the differential conductance around zero b
Pertinent experiments have been carried out on crossed-
tungsten junctions,6 quenched lithographic point contacts,7,8

metal and metallic glass break junctions,9,10 and, recently,
quantum dots.1–3

In parallel, progress has also been recorded in nume
theoretical works.11–24 Among other directions of research
interest is focused on time-dependent aspects of the Ko
physics.17,20–24Although an actual experimental research h
not yet been carried out, measurement of alternating tun
ing current in the appropriate range of frequencies prove
be feasible.25–29 Moreover, application of an external alte
nating electric field nontrivially affects the dc, an observab
that can actually be measured.30–34 We hope that the perti-
nent experiments can be carried out in the near future.

It is useful to briefly mention the main features of th
Kondo effect in bulk systems and in quantum dots. T
Kondo effect was first revealed in the early 1930s as
enhancement in the resistivity of certain metals with decre
ing temperature. The Kondo effect was a puzzle for 30 ye
and was attributed by Kondo35 to being interaction between
conducting electrons and magnetic impurity atoms. Sub
quent investigations proved that at low temperatures a hy
state is formed consisting of the conducting electrons
sembled around an impurity so that at zero temperature
16 750 ©2000 The American Physical Society
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PRB 61 16 751NONLINEAR RESPONSE OF A KONDO SYSTEM: . . .
magnetic moment of the impurity is completely screened
Within the realm of quantum dot physics, the impuri

spin is represented by the spin of a single electron whic
virtually locked in a deep level of the quantum dot. T
formation of the hybrid state~either in bulk systems or in
quantum dots! is accompanied by an appearance of a narr
peak in the interacting density of states of the impurity~or
dot electron! close to the chemical potential of the ban
~lead! electrons. This peak is termed as an ‘‘Abrikosov-Su
resonance’’ or ‘‘Kondo resonance’’~see Ref. 4, pp. 109
127–132, and 210!. For quantum dots in astaticnonequilib-
rium situation, when two chemical potentials are presen
the system~one for every lead!, the pertinent peak in the
interacting density of states splits, under certain conditio
into two peaks, one at each chemical potential13,16,18,19,36@see
Fig. 1~a!#.

The main object of our study in the present work is t
response of a quantum dot to the application of astrong
time-dependent external electric field. For simplicity it is as-
sumed that the field is monochromatic, whose frequencyV
is in the range of tens of gigahertz. The relevant phys
implies an interesting extension of the underlying Kon
physics since, in a time-dependent field, every eigenstat
electrons in the leads is split37,38into a family of states whose
~quasi!energies are separated by the photon energy\V. Con-
sequently, there is a family of Fermi seas, and, correspo
ingly, a family of chemical potentials in each lead. Thus, t
Kondo peak in the density of states might split into a wh
set of peaks@see Fig. 1~b!#. Numerical calculations of the d

FIG. 1. ~a! Schematic drawing of the Kondo peaks in the no
equilibrium interacting density of states of the dot~impurity!. Here
ed is the bare energy level of the dot, whilemL(R) are chemical
potentials in the left~right! lead.~b! Possible formation of numer
ous Kondo-resonance peaks in the density of states caused
time-dependent field. The peaks associated with tunneling to the
and the right leads are schematically shown near the left and
right barriers, respectively.V is the frequency of the external field
is
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~Ref. 17! indicate that this is indeed the case. We think th
the occurrence of many separated Abrikosov-Suhl re
nances can be tested experimentally. It will show up as s
peaks in the~otherwise monotone! I (V) curve displaying the
zero-bias anomaly of thedirect current. Another interesting
question is how the contributions of these peaks to the c
rent, which are mutually coherent, interfere. This interfe
ence can show up only in the time-dependent current.29

In this work, both direct and alternating tunneling curren
are calculated within a perturbation scheme specially ada
for systems out of equilibrium. So far, calculations of t
current through a Kondo system subject to a time-depend
bias were carried out using various assumptions and appr
mations. Here we carry out straightforward nonequilibriu
perturbation expansion of the current in powers of the c
pling constant between the quantum dot~or impurity atom!
and the electrons in the conduction bands. Indeed, pertu
tion theory proved its usefulness in calculations related to
equilibrium Kondo model in bulk systems.35,39,40Recently it
has been used for quantum dots described by the Ande
model~in the Kondo regime! with a constant voltage bias.18

Let us then briefly list the main achievements of t
present study. Our formulation starts from the tim
dependent Anderson model which has already been show
adequately describe the essential physics of a quantum
~or a tunneling system based on an impurity atom! at volt-
ages and frequencies less than the level spacing in the
neling region. We then develop the pertinent diagram per
bation technique which is able to treat nonequilibriu
tunneling problems such as the time-dependent Ander
and Kondo models~for the former one it employs the slave
bosons method!. A key point in the derivation is provided by
a combination of a specific approach suggested
Coleman41 to perform self-consistent quantum and therm
dynamical averaging in strongly correlated systems, with
Schwinger-Keldysh nonequilibrium Green-functions form
ism. As it turns out, calculations pertaining to the Anders
model appear to be rather cumbersome. At this stage we
therefore content to state the rules for calculating diagra
and to point out a specific example where the Kondo beh
ior shows up. At the same time, we find it more practical
map the original time-dependent Anderson Hamiltonian
an effective time-dependent Kondo Hamiltonian. This
achieved by introducing a time-dependent Schrieffer-Wo
transformation. Perturbation expansion of the current is t
carried out within the Kondo model up to third order in th
Kondo couplingJ ~sixth order in the tunneling coupling be
tween conducting electrons and the dot!. Remarkably simple
analytical expressions are obtained for the whole spectrum
the tunneling current.42–44 It is shown that the zero-bia
anomaly of the dc differential conductance is, in gene
suppressed by an external alternating field, while side pe
develop at higher source-drain bias. The nonlinear tim
dependent current is found to be an interference sum of ‘
rectlike’’ contributions, each one with an effective bias d
termined by the number of absorbed or emitted photons.
interference is shown to be rather destructive for all hig
harmonics except the direct and the first ones. These
harmonics~and only them! are enhanced as a result of th
Kondo effect while the other harmonics remain relative
small. In this sense the Kondo system behaves like a u
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16 752 PRB 61Y. GOLDIN AND Y. AVISHAI
resistor~although the current is Kondo enhanced!. Namely,
direct and first harmonic input voltage lead to a direct a
first harmonic current response. This result is demonstra
to be remarkably different from that for a noninteracting on
level system where all the harmonics emerge together. M
over, it is shown to be valid also below the Kondo tempe
ture. These results have already been briefly reported by
authors in another paper.23 In the present paper the metho
that are used for their derivation are presented in detail
particular, nonequilibrium time-dependent diagramma
techniques for both Anderson and Kondo models are de
oped and the time-dependent Schrieffer-Wolff transform
tion is elaborated. In addition, we present the spectrum of
tunneling current in the Kondo system versus its analog
noninteracting one. Furthermore, in this paper we also ca
late the differential alternating conductance and find th
similar to its direct analog, it displays a zero-alternating-b
anomaly. Inspecting the dependence of the ac on the d
bias reveals a non-trivial structure marked by side peaks.
hope that these new features can provide a convenient
tern for the experimental research on the time-depend
Kondo effect.

The rest of the paper is organized as follows. In Sec
diagrammatic rules for the nonequilibrium perturbation e
pansion of the time-dependent Anderson model in the sla
boson representation are formulated. The diagrams are d
up to sixth order in the tunneling coupling between the le
and the dot (Ṽkd) and some formal analytical expressions f
the current are obtained. Further elaboration of the pertu
tion expansion in this model meets computational proble
which today look severe. In Sec. IIIa time-dependent ver
sion of the Schrieffer-Wolff transformation is developed
order to transform the time-dependent Anderson model
a Kondo-type model. In Sec. IV perturbation expansion
the current~in the time-dependent Kondo model! is carried
out in powers of the coupling strength (J̃k8k). An analytical
expression for the current is obtained and the results ari
from that expression are discussed. The paper is conclu
with a summary which, in particular, includes some pro
pects for further research directions. In view of the inher
complexity of the pertinent formulation, we try to present
in a pedagogical style.

II. PERTURBATION EXPANSION OF THE CURRENT IN
THE TIME-DEPENDENT ANDERSON MODEL

A. Bare Hamiltonian and parameter specification

In this section we first introduce the time-depende
Anderson Hamiltonian and specify the range of parame
appropriate for the pertinent physical problem. Then we
call the slave-boson approach to the Anderson model
combine it with the Schwinger-Keldysh nonequilibriu
Green function formalism in order to get an equation for
tunneling current. Then we develop a perturbation expans
of the current in powers of the tunneling strength (Ṽkd) up to
sixth order in which the Kondo physics above the Kon
temperature~or in a strong enough external field! is unrav-
eled.

The time-dependent Anderson Hamiltonian takes the fo
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H̃A5 (
kPL,R;s

@ek1DL(R)~ t !#ak,s
† ak,s1(

s
ed,scd,s

† cd,s

1
1

2
U (

s,s8Þs

nsns81 (
kPL,R;s

~Ṽkdak,s
† cd,s1H.c.!.

~1!

Here ak,s
† (ak,s) creates~annihilates! an electron with mo-

mentum k and spins in the left (kPL) or the right (k
PR) lead, cd,s

† (cd,s) creates~annihilates! an electron with
spin s in the dot,ek anded,s are single-particle energies i
the leads and the dot, respectively,U is the Coulomb inter-
action energy in the dot, andns[cd,s

† cd,s . The transfer-

matrix elementsṼkd between the leads and the dot are a
sumed to be small compared withed,s andU. The external
fields are included through potential shifts of the lea
DL(R)(t), defined as

DL(R)~ t ![fL(R)1WL(R)cos~Vt1aL(R)!. ~2!

The first term above describes a constant potential b
while the second one is due to an alternating field, which,
simplicity, is assumed to be monochromatic. We note t
the chemical potentials in the leads are shifted by the sa
amountDL(R)(t) as the single-particle energies, hence t
population of energy levels in the leads remains intact.

As far as the value of the parameters is concerned,
attention here is focused on the Kondo regime which is
termined by the conditions

ed,s,0, ed,s1U.0, ued,su,ed,s1U.Gs , ~3!

where Gs52p(kPL,RuṼkdu2d(ed,s2ek) are the widths of
the energy levels in the dot. Furthermore, it is assumed
the external fields are not strong enough to draw the sys
out of this regime, so that

ufL(R)u,ued,su,ed,s1U ~4a!

and

V,WL ,WR,ued,su,ed,s1U. ~4b!

It should be stressed, however, that these conditions do
imply a linear-response regime. The latter is defined by
conditions ufL(R)u,WL(R)!T while T!ued,su,ed,s1U. The
Kondo regime is, on one hand, interesting due to appeara
of the famous Kondo effect. On the other hand, perturbat
expansion out of this regime, namely, in the mixed-valan
or empty-orbital regimes, is more complicated since care
determination of the initial density matrix is required~see the
discussion in the beginning of Sec. II C!. Moreover, this is
the only regime where mapping on the Kondo model~Sec.
III ! is valued.

At this point it is convenient to apply a canonic
transformation45,46 on the Anderson model~1! whose pur-
pose is to transfer the dependence on time into that
which contains a small parameter. The transformation is
fined as follows:

HA5U 21H̃AU2 iU 21
]

]t
U, ~5!
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U~ t !5expH i

\E2`

t

dt1@DL~ t1!NL1DR~ t1!NR#J ,

whereN̂L(R)[(s,kPL(R)ak,s
† (t)ak,s(t). The HamiltonianHA

resulting from this transformation reads

HA5 (
kPL,R;s

ekak,s
† ak,s1(

s
ed,scd,s

† cd,s

1
1

2
U (

s,s8Þs

nd,snd,s81 (
kPL,R;s

3@Vkd~ t !ak,s
† cd,s1H.c.# ~6!

where

Vkd~ t !5ṼkdexpH i

\E2`

t

dt1DL(R)~ t1!J . ~7!

Usually, in tunneling systems the barriers have low transp
ency. Therefore it is convenient to consider the tunnel
part of the Hamiltonian, i.e.,(kPL,R;s@Vkd(t)ak,s

† cd,s

1H.c.#, as a perturbation.47 It is well known, however, that
if the interaction1

2 U(s,s8Þsnd,snd,s8 is kept in the ‘‘unper-
turbed’’ Hamiltonian the Wick’s theorem cannot be applie
In order to circumvent this problem we assume that the
ergies associated with the direct and alternating voltage
well as the pertinent frequencies are smaller than the C
lomb interaction energyU in the dot. In other words, the
assumptionU→` should be an excellent approximation. W
then apply the method of slave~auxiliary! bosons41,42,48,49

using a certain version of it which is due to Coleman.41 Ac-
cordingly, the ordinary electron operators in the dotcd,s ,
cd,s

† , which transform a singly occupied state into an em
one and vise versa, are factored into a boson operator a
fermion operator,16

cd,s5b†f s , ~8!

cd,s
† 5b fs

† .

The slave-boson operatorb† ~b! creates~annihilates! an
empty state, while the slave-fermion operatorf s ( f s

†) anni-
hilates~creates! a singly occupied state. In this representati
the Hamiltonian~6! becomes,

HSB5 (
kPL,R;s

ekak,s
† ak,s1(

s
ed,s f s

† f s

1 (
s,kPL,R

@Vkd~ t !ak,s
† b†f s1H.c.#. ~9!

The Coulomb interaction does not appear in the Hamilton
any more. Indeed, whenU is infinite it completely eliminates
the possibility of double occupancy of the dot. This proje
tion is accomplished by including the annihilation operatob
in Eqs.~8!, which prevents creation of the doubly occupi
state, and the constraint that the total number of slave bo
and slave fermions,

QA[b†b1(
s

f s
† f s , ~10!
r-
g

.
-

as
u-

y
d a

n

-

ns

must be equal to unity. The operatorQA commutes with the
Hamiltonian ~9! so that the ‘‘charge’’QA is not changed
during the evolution of the system. Therefore the requi
ment QA51 does not really constrain the dynamics of t
system. Rather, it assures that the initial state does not
tain a doubly occupied state as a component. In orde
enforce the conditionQA51 Coleman41 introduced a
Lagrange multiplier~chemical potential! 2l and considered
the HamiltonianHSB1lQA . The calculations are to be don
with finite l and then, at the end,l→`. If the tunneling part
of HSB1lQA is chosen as perturbation the remaining ‘‘u
perturbed’’ Hamiltonian is now quadratic in the creation a
annihilation operators. The Wick’s theorem can then be
plied and diagrammatic expansion is feasible. We notice
the unperturbed part has become a simple time-indepen
free-particle Hamiltonian while the perturbation~tunneling
part! contains both interaction and time-dependence.

B. The tunneling current

The tunneling current from the left~right! lead into the
central region is defined as the product of electron cha
(2e) and the rate of change in the number of electrons
that lead. The latter is obtained by commuting the numb
of-electrons~Heisenberg! operator N̂L(R) with the Hamil-
tonian ~9!. This yields

I L(R)
T ~ t !52eK dN̂L(R)~ t !

dt L
52

ie

\ (
s,kPL(R)

Vkd~ t !TrF
1
A$rF

1
A~0!ak,s

† ~ t !b†~ t !

3 f s~ t !%1c.c., ~11!

whererF
1
A(0) is the density matrix of the system at a certa

fixed time which is taken here att50. Generally, it should
include all the changes that the system has undergone s
the tunneling was switched on.50 We recall that the above
equation is written in the Heisenberg representation. T
angle brackets on the left hand side mean, of course, q
tum average over the physical Hilbert space. At infiniteU it
is only a subspaceF1

A of the full Hilbert space for the slave
boson Hamiltonian~9! which is determined by the conditio
QA51. It is explicitly manifested on the right-hand side
the above expression by the subscriptF1

A which restricts the
trace to the physical subspaceF1

A . In the following we cal-
culate directly the current~11! without prior elaboration on
the dot Green functions as it was done in Refs. 11, 13,
16–18 and 20. Unlike the equation for the dc~Ref. 51!,
which expresses it in terms of the interacting density
states in the dot, an expression for the ac in terms of the
Green functions52,53 involves two Green functions (G, and
Gr) and integration over real time. We find it easier to e
tablish a perturbation expansion for the current itself~rather
than for the Green function!. To this end we rewrite Eq.~11!
in the interaction representation using the ‘‘gran
canonical’’ HamiltonianHSB1lQA . The result is
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I L(R)
T ~ t !52

ie

\ (
s,kPL(R)

Vkd~ t !TrF
1
A$rF

1
A~0!

3S~2`,1`!T̂@ak,s
† ~ t10!b†~ t ! f s~ t !

3S~1`,2`!#%1c.c., ~12!

where T̂ is the usual time-ordering operator,S(1`,2`)

5T̂e2 i *2`
1`HTdt is the usualS - matrix and S(2`,1`)

5S†(1`,2`), while HT[(kPL,R;s@Vkd(t)ak,s
† b†f s

1H.c.# is the tunneling part of the HamiltonianHSB1lQA

which is chosen as a perturbation. The operatorsak,s
† (t

10), b†(t), and f s(t) in the above equation now appear
the interaction representation~this is self-evident as indicate
by the presence of theS matrix!. We notice that it does no
really matter whether one defines the interaction represe
tion using the HamiltonianHSB1lQA or HSB becauseQA
commutes with all parts ofHSB. The factorS(2`,1`) in
Eq. ~12! prevents derivation of Wick’s theorem and subs
quent development of the Feynman diagrams technique
deed, the derivation of Wick’s theorem is based on comm
tation of operators which produces pairings, name
‘‘contractions’’ ~see Ref. 54!. Commutation of two operator
cannot be worked out if one of them is subject to the tim
ordering operator while the other one is not. The idea o
closed time path was introduced55,56,50 in order to treat the
troublesome factorS(2`,1`) in nonequilibrium systems
The normal time branch is continued and turned back so
this operator becomes a factor within the scope of the tim
ordering operator (T̂p) on the closed time-path. Equatio
~12!, then, can be expressed as

I L(R)
T ~ t !52

ie

\ (
s,kPL(R)

Vkd~ t !TrF
1
A$rF

1
A~0!T̂p

3@ak,s
† ~ t1!b†~ t2! f s~ t2!Sp#%1c.c. ~13!

HereSp5e2 i *pHTdtp, wheretp is the variable on the close
time path and*p means integration over it. The subscri
‘‘ 2 ’’ on t signifies that the instant of time is considered
the normal~forward! time branch, while the subscript ‘‘1’’
is used for the backward oriented time branch~see Fig. 2!.
The choice of the subscripts1 and2 for the time arguments
of the operatorsak,s

† (t1), b†(t2), andf s(t2) is consistent in

order to assure that their ordering by the operatorT̂p is the
same as in Eq.~11!. The procedure of transformation from
the Heisenberg representation@Eq. ~11!# to the closed time-
path representation@Eq. ~13!# is quite familiar.50,57,58 We
note, however, that it has usually been employed in the d
nition of nonequilibrium Green functions while here it
applied for the current operator.

Yet, perturbation expansion of an expression for the c
rent in the form~13! cannot be carried out because of t

FIG. 2. Choice of points on the closed time path for the exter
operators in Eq.~13!.
ta-

-
n-
-
,

-
a

at
-

fi-

r-

constraint on traces in the subspaceF1
A . In order to get rid of

it we apply the Coleman method41 which is feasible here
since the Eq.~13! appears as an ordinary statistical avera
of the operatorOA[T̂p@ak,s

† (t1)b†(t2) f s(t2)Sp# in the
subspaceF1

A . Let us choose the initial distribution of th
system~before the tunneling was switched on! in the full
Hilbert space to be an equilibrium one~grand-canonical en-
semble with the ‘‘chemical potential’’2l). Then the initial
density matrix is

r~2`![e2b(H01lQA)/ZG~l!, ~14!

whereH0[HSB2HT is the unperturbed part of the Hami
tonian ~9! and ZG(l)[Tr$e2b(H01lQA)% is the grand-
canonical partition function. Now let us consider the expe
tation values of the operatorsOAQA and QA in the full
Hilbert space

^OAQA&[Tr$r~0!OAQA%,

^QA&[Tr$r~0!QA%,

wherer(0) is the density matrix of the system in the fu
Hilbert space at the zeroth instant of time. When the tunn
ing is switched on the density matrix evolves in time, so th
r(0) differs fromr(2`). However, due to the fact that th
operatorQA commutes with the Hamiltonian it can still b
factorized into separate blocks for each subspaceFQ

A with
different numberQA . Thus

^OAQA&5 (
QA50

`

TrF
Q
A$rF

Q
A~0!OA%QAe2blQAZQA

/ZG~l!,

~15!

^QA&5 (
QA50

`

QAe2blQAZQA
/ZG~l!,

whererF
Q
A(0) is the density matrix for the subspaceFQ

A at

the zeroth instant of time, whileZQA
[TrF

Q
A$e2bH0%. It is

easy to see that in the limitl→` the ratio of the two ex-
pressions written above becomes the expectation value o
operatorOA in the physical subspaceF1

A :

^OA&F
1
A[TrF

1
A$rF

1
A~0!OA%5 lim

l→`

^OAQA&

^QA&
. ~16!

It is clear that the operatorOA has zero expectation value i
the subspaceF0 because there are neither slave fermions
slave bosons there. ThenQA can be dropped out of the nu
merator in Eq.~16!. This results in our final expression fo
the current,

I L(R)
T ~ t !52

ie

\ (
s,kPL(R)

Vkd~ t !

3 lim
l→`

^T̂p@ak,s
† ~ t1!b†~ t2! f s~ t2!Sp#&

^QA&
1c.c.

~17!

l
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In this equation the averages are taken in the full Hilb
space. It is amenable for standard field-theoretical calcula
techniques.

C. Diagrammatic expansion of the current

In the rest of this section we show how to work out
perturbation expansion for the current starting from Eq.~17!
in powers of the tunneling part of the Hamiltonian~9!. In
principle, a careful calculation of the density matrixr(0) is
required for the nonequilibrium perturbation expansion. O
erwise, truncation of the full set of diagrams to a finite nu
ber might lead to completely wrong results. Indeed, trun
tion of a perturbation set implies that the effect of t
perturbation is small, i.e., higher-order terms of the pertur
tion series are negligible. It is not always ensured by
small value of the perturbation parameter. Consider, for
ample, an empty dot connected very weakly to a reserv
The smaller the tunneling between them is, the longe
takes to fill the dot, but eventually the dot becomes full.
means that the occupation of the dot changes by a fi
amount although the coupling is infinitesimally small. Th
‘‘long-times’’ perturbation problem appears in the ener
representation as an infrared divergence.18 Fortunately, it has
been explicitly shown18 that in the Kondo limit@determined
by the conditions~3! and~4a!# the calculation of the Kondo
type contribution to the dc up to sixth order inV can be done
using slave-boson and slave-fermion populations for a
connected dot. In calculating the ac we also have to imp
condition ~4b!. For higher orders inṼkd or, alternatively, in
the mixed-valance and empty-orbital regimes, explicit cal
lation of r(0) is inevitable. It can be done adapting the ide
of Ref. 18 to time-dependent case. In the Kondo regime
culation of the denominator in Eq.~17! is very simple,

^QA&5nb12nf →
l→`

@112e2b(ed,s2m)#e2bl, ~18!

where

nb51/@exp~bl!21# ~19!

and

nf51/$exp@b~ed,s2m1l!#11%

are Bose and Fermi functions for the slave particles.
assume here, for simplicity, that the number of spin degr
of freedoms is equal to two.

In order to study the numerator of Eq.~17! we start from
its perturbation expansion in powers ofHT @i.e., in powers of
Vkd(t)]. Then we transform every term of the expansi
from the closed time path to the single time branch~see Refs.
57,59–61!. That implies expression of the Green functions
matrices in Keldysh space@see Eqs.~20!#. The next step is a
rotation in this space~see Refs. 59 and 58! resulting in the
so-called58 ‘‘physical representation’’ for these matrices. F
nally, time-translation invariance of the unperturbed Gre
functions allows us to apply Fourier transform and work
the energy representation.
t
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The diagrams of forth and sixth order inVkd(t) are shown
in Fig. 3. Recall that disconnected diagrams need not
considered in the Schwinger-Keldysh formalism. Contrib
tion of a disconnected diagram can be factorized into con
butions of the connected and disconnected parts. Summa
over all possible disconnected parts yields^T̂pSp& that is
^S(2`,2`)& which is equal to unity. Notice, that Fig. 3~a!
is a crossed diagram. It is not included in the ever-used n
crossing approximation. We now formulate the basic ru
for drawing the diagrams and writing down the correspon
ing analytical expressions.

~1! In order to obtain a diagram of themth order inV,
draw a circle~it appears as a polygon in the figures! consist-
ing of m alternating slave-boson and slave-fermion lines g
ing in the same direction. The numberm has to be even
because every tunneling vertex contains only one sla
boson and one slave-fermion operator. The diagram m
include only one such circle, otherwise it would produce
contribution to the current of first or higher order in powe
of exp(2bl) ~see Ref. 41! that vanishes atl→`. We rep-
resent the diagrams by closed circles rather than by o
lines as it is usually done since the external operatorsb† and
f s in Eq. ~17! are taken at the same timet2 . Connect the
vertices by lead-electron lines. Remember that only the
types of vertices shown in Fig. 4 are allowed.

FIG. 3. Diagrams for the perturbation expansion of the curr
in the Anderson model. Dashed lines stand for slave fermions, d
dotted lines for slave bosons, and solid lines for lead electrons
quantitysi is the number of photons emitted when an electron g
from the dot to a lead, whileqi is the number of photons absorbe
by an electron going from a lead to the dot.
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~2! Introduce the following 232 ~Keldysh! matrices for
every lead-electron, slave-fermion, and slave-boson lines
spectively,

gks~e![S 0 gks
a ~e!

gks
r ~e! gks

c ~e!
D ,

js~v![S 0 js
a~v!

js
r ~v! js

c ~v!
D , ~20!

d~n![S 0 da~n!

dr~n! dc~n!
D .

The indicesr, a, andc denote retarded, advanced, and c
relation Green functions. They are defined explicitly as f
lows:

gks
r (a)~e!5

1

e2ek1m6 ig
, ~21!

gks
c ~e!5@122 f ~ek!#@gks

r ~e!2gks
a ~e!#,

js
r (a)~v!5

1

v2ed,s1m2l6 ig
,

js
c ~v!5@122exp@2b~ed,s2m!#

3exp~2bl!#@js
r ~v!2js

a~v!#,

dr (a)~n!5
1

n2l6 ig

dc~n!5@122exp~2bl!#@dr~n!2da~n!#,

wheref (ek)51/$exp@b(ek2m)#11% is the Fermi function for
lead electrons, and the factors exp@2b(ed,s2m)#exp(2bl)
and exp(2bl) are the limiting forms of the Fermi and th
Bose functions~19!, respectively, at largel. We note that
different representations can be used for the matrices~20!
~see Refs. 58–61!. Here we employ the so-called58 ‘‘physical
representation.’’

FIG. 4. Tunneling vertices in the slave-bosons representatio
the Anderson model.~a! Tunneling of an electron from the dot to
lead is represented as the decay of a slave fermion into a s
boson and a lead electron.~b! The reverse process representi
tunneling from a lead to the dot.
e-

-
-

~3! Introduce the following tensors for every internal ve
tex ~represented by a closed circle in Fig. 3!. For the vertex
drawn in Fig. 4~a!,

ṼkdJs~W(k) /V!eisa(k)h i j
m . ~22!

For the vertex drawn in Fig. 4~b!

Ṽkd* Jq~W(k) /V!e2 iqa(k)h i j
m , ~23!

whereJs andJq are Bessel functions. The index ‘‘(k)’’ re-
minds us that, despite the fact thatW anda do not depend on
k, they depend on the lead to whichk belongs. The factors
Js(q)(W(k) /V)exp@6is(q)a(k)# originate from the time depen
dence ofVkd(t). Indeed, substituting Eq.~2! into Eq. ~7! we
find

Vkd~ t !5Ṽkde
i
\[f(k)t1 iW(k) /V sin(Vt1a(k))2b(k)]

5Ṽkd (
s52`

`

Js~W(k) /V!e( i /\)[f(k)t1sVt1sa(k)2b(k)] .

~24!

The time-dependent factors appearing in this expression
surface when we impose energy conservation~see below!,
the phasesb (k) cancel, while the rest enters Eqs.~22! and
~23!. The physical meaning ofs is the number of photons
emitted when an electron goes from the dot to a lead, w
q is the number of photons absorbed by an electron go
from a lead to the dot. Boths and q can assume negativ
values. The tensorh is given by the following expressions

h i j
1 5

1

A2
S 1 0

0 1D , h i j
2 5

1

A2
S 0 1

1 0D . ~25!

It appears as a result of the transformation leading from t
integration to integration over the normal time axis whi
requires a change of sign. The above form is consistent w
the physical representation for the Keldysh matrices a
tensors.50

For the external vertex~represented by an open circle
Fig. 3! containing the operatorsak,s

† (t1), b†(t2) and f s(t2)
of Eq. ~17!, we write the factorJs(WL /V)exp(isaL) as for
the internal vertices but do not insert the tensorh. Instead,
we close around the product of matrices and tensors in
duced above by the row 221/2(1,1) at thej matrix and the
vectors (1/A2)( 1

21) and (1/A2)(1
1) at the matricesg and d,

respectively, as we show in the example@Eq. ~28!# below.
The external vertex differs from the internal ones because
time variable for every external operatorak,s

† (t1), b†(t2),
or f s(t2) is chosen on a certain (1 or 2) branch and these
time branches are different forak,s

† , b†, and f s . In an inter-
nal vertex, the time variables for all the operators are cho
on a single time branch followed by summation over the t
time branches.

~4! Conserve spin in every vertex. As for energy, it shou
be conserved in every internal vertex taking into acco
emission~absorption! of s (q) photons and the different val

of

ve
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ues assumed by the static potential energyf (k) on the left
and right lead. The energy in the external vertex is not c
served. The pertinent energy difference is equal to the
quency of the current. Therefore, we introduce for this ver
the factordn,(q2s1q12s11 . . . ) , wheren has the meaning o
the total number of absorbed photons. Summation oven
will be carried out in Eq.~27! below.

~5! Sum over energy, momentum, and spin. Do n
specify to which lead the momenta belong. It will be tak
care of later on.

~6! Sum over numbers of photonsq,s,q1 , . . . .
~7! Multiply the result by the factor

2 ie

\^QA&
~2 i !m21~ i !3m/2~21!F~2p!2m/2, ~26!

whereF is the number of closed electron-fermion loops. T
first factor in the above expression comes from Eq.~17!, the
second one is implied by them21 order of the expansion o
the S matrix. As for the next two factors, recall that an a
plication of the Wick’s theorem results in pairings of cr
ation and annihilation operators which are, then, expres
through Green functions. The last factor simply results fr
the Fourier transform.

~8! At this stage take the limitl→`.
~9! Let us denote the expression obtained through
ex
le

ve
ra
or

vi

n-
-

-
e-
x

t

ed

e

rules that have been listed by the symbolYA(n). Then the
current is given by the following equation:

I L(R)
T ~ t !5

1

p (
n

(
(k1),(k2), . . . 5L,R

3$

3Re@YA~n!#cos~nVt2a (k),(k1), . . . !

1Im@YA~n!#sin~nVt2a (k),(k1), . . . !%, ~27!

where a (k),(k1), . . .[(s2q)aL1(s12q1)a (k1)1(s2

2q2)a (k2)1•••, while ((k1),(k2), . . . 5L,R means sum-

mation over the leads to whichk1 , k2, etc. belong. There is
no summation over (k). The electron line coming out of the
external vertex has momentumk belonging only to the left
~right! lead since we are calculating current through the
~right! barrier. The other momenta run through both lead

As an example we write@Eq. ~28!# the expression which
is obtained using the rules listed above for a diagram of
sixth order inṼkd . Expressions for the lower orders are sim
pler and their evaluation is relatively easy. However, they
less interesting since, as well known, they do not exhibit
Kondo effect. Here is the expression for the diagram dra
in Fig. 3~e!:
YA~n!5 lim
l→`

2 ie

\^QA&

1

16

1

~2p!3 (
q,q1 ,q2 ,s,s1 ,s2

dn,(q1q11q22s2s12s2)Jq

3S WL

V D JsS WL

V D Jq1
S W(k1)

V
D Js1

S W(k1)

V
D Jq2

S W(k2)

V
D Js2

S W(k2)

V
D (

k1PL;k,k2PL,R;s,s2

3uṼkdu2uṼk1du2uṼk2du2E E E E dv1 dv2 dn1 dn2 (
i , j ,m, . . . ,i 5 , j 5 ,m5

~1, 1! ij
i i 1~v1!h i 1 j 1

m1 gk1s
j 1 j 2

3~v12n2f (k1)2q1V!dm1m2~n!h i 2 j 2

m2 j i 1i 2@v12~q12s1!V#h i 3 j 3

m3 gks
j 3 j

@v12n12fL

2~q1q11q22s12s2!V#dm3m4@n11~q22s2!V#h i 4 j 4

m4 j i 4i 5~v2!h i 5 j 5

m5 gk2s2

j 5 j 4 ~v22n12f (k2)2q2V!

3dm5m~n1!S 21

1 D
j

S 1

1D
m

. ~28!
l
wn
iate
ory
oc-

g
sed
of
In the above equation the tensor product is to be
panded. Afterwards, integration over internal variab
v1 , v2 , n1, and n2 is to be carried out. Using the
MATHEMATICA program we have carried it out for the abo
equation and for the analogous one given by the diag
drawn in Fig. 3~f!. Whereas the calculation of the current f
all the diagrams could not be completed~see below! it was
possible to inspect the emergence of a Kondo beha
through the appearance of a term(pf (p)/(ek2ep) where
f (p)5 f (ep) is the Fermi function for lead electrons of qua
tum numberp. It is well known that this term is characteris
tic for the Kondo effect~above the Kondo temperature!. Ac-
-
s

m

or

cordingly, the resulting expression for diagram 3~f! does not
exhibit a Kondo-type behavior~i.e., lnT divergence in the
linear response! while the one obtained for diagram 3~e! and
represented by Eq.~28! does. The equations in their fina
form are very long and cumbersome and will not be sho
here. Moreover, expressions appearing in the intermed
stages are unusually long and often overflowing the mem
of a typical present-day workstation. We stress that this
curs only when computing the ac~calculations appropriate
for the dc are much simpler!. These manipulations pertainin
to ac appear to be especially cumbersome for the cros
diagram 3~h!. We argue that, physically, the main source
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16 758 PRB 61Y. GOLDIN AND Y. AVISHAI
complications results from the admixture of the Kondo re
nance with the usual resonant tunneling which is presen
the Anderson model. Although the latter contribution is e
ponentially small within the relevant range of paramete
governed by terms like exp@ed,s /(kT)# and may frequently be
neglected in the Kondo regime, its omission cannot be
sumed in this calculation scheme before arriving at the fi
stages. We are therefore content by having introduced
systematic calculation scheme for the general tim
dependent Anderson model, and having exposed some
grams that manifest a Kondo behavior. With rapid improv
ment of workstation capacities and analytic softwa
programs the evaluation of all diagrams of sixth order p
sented here can be completed according to the rules spec
above. With this final note we now move on to complete
calculation of the current within an effective theory whic
still captures most of the pertinent subtle physics.

III. TIME-DEPENDENT SCHRIEFFER-WOLFF
TRANSFORMATION

In this section we transform the time-dependent Ander
Hamiltonian to a time-dependent Kondo Hamiltonian. W
use a procedure similar to the one proposed by Schrieffer
Wolff 44 for the time-independent Anderson model but exte
it to time-dependent problems. The final form of the tim
dependent Kondo Hamiltonian was already introduced by
authors23 in the limit of infinite U @formula ~46!#. Here we
present the course of derivation and the final Hamiltonian
its general form, i.e., without restriction to the infinite-U
limit.

As we did in the previous section we start from the c
nonical transformation~5! of the Anderson Hamiltonian~1!
whose purpose is to transfer the dependence on time into
perturbation part. It results in the HamiltonianHA @Eq. ~6!#.
Then we further transform this Hamiltonian as

HA85eSHAe2S2 ieS
]

]t
e2S, ~29!

where the operatorS is defined according to a specific pr
scription. In the spirit of Ref. 44 we expand the right-ha
side of Eq.~29! in powers ofS. We notice thatS does not
commute with]S/]t so this manipulation should be don
with care. Then we require the operatorS to satisfy the equa-
tion,

i
]S

]t
1HT1@S,H0#50. ~30!

Here HT[(kPL,R;s@Vkd(t)ak,s
† cd,s1H.c.# is the tunneling

part of the HamiltonianHA and H0[(kPL,R;sekak,s
† ak,s

1(sed,scd,s
† cd,s1 1

2 U(s,s8Þsnd,snd,s8 is the rest of it. IfS
is proportional toV ~which is indeed the case as we show
the end of this section! then solving Eq.~30! eliminates from
the HamiltonianHA8 terms which are of first order inV, leav-
ing only terms of higher orders which are naturally small
Upon collecting terms of zero and second order inV the
HamiltonianHA8 can be written in the following form:
-
in
-
,

s-
l

he
-
ia-
-

-
ed

e

n

nd
d
-
e

n

-

he

t

.

HA85H01
1

2
@S,HT#. ~31!

Following Ref. 44 we omit terms of 3d and higher orders in
V. Our transformation differs from that of Ref. 44 due to t
presence of the term2 ieS(]/]t)e2S in Eq. ~29! and, corre-
spondingly, the termi (]S/]t) in Eq. ~30!.

Now we turn to the task of solving Eq.~30!, and look for
a solution of the form,

S5S12S1
† . ~32!

The operatorS1, then, should satisfy the equation

i
]S1

]t
1HT

out1@S1 ,H0#50, ~33!

where HT
out[(kPL,R;sVkd(t)ak,s

† cd,s is the part of the
Hamiltonian responsible for tunneling out of the dot. T
operatorS is anti-Hermitian which assures the Hermiticity o
HA8 .

We are now looking for a solution of Eq.~33! in the form

S15 (
kPL,R;s

Ak,s~ t !F nd,2s

ek2ed,s2U
1

~12nd,2s!

ek2ed,s
Gak,s

† cd,s .

~34!

The sum appearing in the square brackets is the invers
the operatorzk,s[ek2ed,s2Und,2s . Schrieffer and Wolff
found Ak,s(t)5Ṽkd , whereṼkd is, of course, time indepen
dent.

Substituting expression~34! into Eq. ~33! we find that
Ak,s(t) must satisfy the following equation:

iȦk~ t !zk,s
212Ak,s~ t !1Vkd~ t !50. ~35!

A proper solution of this equation is

Ak,s~ t !5Vkd (
s52`

`

Js~W(k) /V!

3ei (f(k)1sV)t1 isa(k)
zk,s

f (k)1sV1zk,s
, ~36!

whereVkd[Ṽkdexp@2i(W(k) /V)sina(k)#. Recall that the sym-
bol ~k! means ‘‘L ’’ or ‘‘ R’’ depending on whetherk belongs
to the left or to the right lead, whileJs(W/V) are Bessel’s
functions. The general solution of Eq.~35! contains also a
term: }e2 i zk,st, but the requirement thatAk,s(t) should be
time independent in the absence of external potentials
forces the prefactor to vanish.

Employing now Eqs.~31!, ~32!, ~34!, and~36! we obtain
the desired form of the Hamiltonian, in exact corresponde
with Ref. 44,
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HA85H01 (
k,k8PL,R;s

@Wk8k~ t !21/2Jk8k~ t !nd,2s#ak8,s
† ak,ss1

1

2 (
k,k8PL,R;s

Jk8k~ t !ak8,2s
† ak,scd,s

† cd,2s2 (
kPL,R;s

@Wkk~ t !

21/2Jkk~ t !nd,2s#cd,s
† cd,s2

1

4 (
k,k8PL,R;s

@Jk8k~ t !ak8,2s
† ak,s

† cd,scd,2s1H.c.#, ~37!

where

Jk8k~ t !5Vk8dVkd* exp@ i ~f (k8)2f (k)!t# (
s8,s52`

1`

Js8S W(k8)

V D JsS W(k)

V Dexp@ i ~s82s!Vt1 i ~s8a (k8)2sa (k)!#

3S 1

ek81f (k8)1s8V2ed,s

1
1

ek1f (k)1sV2ed,s
1

1

ek81f (k8)1s8V2ed,s2U
1

1

ek1f (k)1sV2ed,s2U D ,

Wk8k~ t !5
1

2
Vk8dVkd* exp@ i ~f (k8)2f (k)!t# (

s8,s52`

1`

Js8S W(k8)

V D JsS W(k)

V Dexp@ i ~s82s!Vt1 i ~s8a (k8)2sa (k)!#

3S 1

ek81f (k8)1s8V2ed,s

1
1

ek1f (k)1sV2ed,s
D . ~38!
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The form of this Hamiltonian is the same as that of Ref.
but the matrix elementsJk8k(t) and Wk8k(t) are evidently
distinct.

In the Kondo regime, the important subspaceF1
K of the

full Hilbert space is that one for which the dot is occupied
one electron. The last term in the Hamiltonian~37! is not
relevant for this subspace. The third term in Eq.~37! can be
absorbed into the definitions ofed,s andU. Besides, we have
nd,snd,2s50 and(snd,s51 in the subspaceF1

K , so that the
Coulomb interaction term~present inH0) vanishes and the
one-particle energy term for the dot becomes ac number.
The remaining terms represent the Kondo~also called ‘‘
s-d’’ ! Hamiltonian plus a potential scattering term,

HK5 (
kPL,R;s

ekak,s
† ak,s

1 (
k,k8PL,R;s

@Wk8k~ t !21/2Jk8k~ t !nd,2s#ak8,s
† ak,s

1
1

2 (
k,k8PL,R;s

Jk8k~ t !ak8,2s
† ak,scd,s

† cd,2s . ~39!

Two comments are in order here:~i! Any procedure toward
calculation of physical quantities should take into acco
the fact that, out of the full Hilbert space, the system
projected onto a subspaceF1

K in which the dot is occupied by
one ~and only one! electron.~ii ! At this stage one might be
tempted to express the electron creation-annihilation op
tors in the dot through spin operators, thus arriving at
familiar form4,5,44 of the Kondo Hamiltonian. But then on
would realize that the spin operators do not obey the us
commutation rules. In order to overcome this obstacle, fi
tious ~auxiliary! fermions might be introduced.42 But this
leads one back to Eq.~39!. In other words, auxiliary fermi-
ons which are sometimes regarded as artificial particles
4

t

a-
e

al
i-

n-

troduced to represent spins are real electrons in the dot~im-
purity atom! subject to the constraint specified in~i!.

Calculation of the tunneling current starting from th
Kondo Hamiltonian ~39! is possible for arbitrary field
strengths and frequency provided the inequalities~4! are sat-
isfied. Yet, inspecting a typical experimental setup1,2 one
may consider somewhat weaker external fields and lo
frequencies, so that

ufL(R)u,V,WL ,WR!ued,su,ed,s1U. ~40!

Expressions~38! for Jk8k(t) and Wk8k(t) then significantly
simplify. Indeed, at smallW/V the Bessel functionJs(W/V)
rapidly decreases with increasings. At largeW/V it decays
strongly onces exceedsW/V. Therefore we can restrictsV
to be less than or of the order of max(V,W), that is, sV
!ued,su,ed,s1U. In the formation of the Kondo resonanc
the most important states are those with energiesueku
!ued,su,ed,s1U ~see Ref. 44!. Then uzk,su'ued,su, if
nd,2s50, or uzk,su'ed,s1U, if nd,2s51 @see the definition
after Eq. ~34!, and recall thatnd,2s is discrete#. Therefore
the conditions~40! assure that

f (k)1sV!uzk,su ~41!

~recall thatf (k) refers tofL or fR). Therefore we can ne
glect the termf (k)1sV in the denominator of the expressio
~36!. Its right-hand side is greatly simplified, and now b
comes

Ak,s~ t !'Vkd~ t !, ~42!

whereVkd(t) is defined by Eq.~7!. Expressions for the ma
trix elementsJk8k and Wk8k(t) simplify as well. First, they
become time independent ifk and k8 belong to the same
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lead. Moreover, they do not depend on potential shifts
each lead separately but only on their difference,DL2DR .
For a monochromatic potential difference between the le
we then define
s
4
nc

-

th
-

e-

an

li-
o

e

f

s

DLR[DL2DR[fdc1W cos~Vt1a!. ~43!

Then the matrix elementsJk8k(t) and Wk8k(t) can be ex-
pressed in quite a simple form,
Jk8k~ t !5H J̃k8kexpF i

\E2`

t

dt1DLR~ t1!G if k8PL, kPR

J̃k8k if k8,kPL or k8, kPR,

~44!

Wk8k~ t !5H W̃k8kexpF i

\E2`

t

dt1DLR~ t1!G if k8PL, kPR

W̃k8k if k8,kPL or k8, kPR,
an
ing

at
ed
ce
e
d
all
it

or
ems
dot
nant
o

el.
e
e of
an

m-
m-

del

of

the

u-
where

J̃k8k[Ṽk8dṼkd* S 1

ek2ed,s
1

1

ek82ed,s

2
1

ek2ed,s2U
2

1

ek82ed,s2U
D , ~45!

W̃k8k[
1

2
Ṽk8dṼkd* S 1

ek2ed,s
1

1

ek82ed,s
D

are time independent. The matrix elementsJk8k(t) and
Wk8k(t) for k8PR, kPL satisfy the Hermicity relations
Jkk8(t)5Jk8k

* (t) and Wkk8(t)5Wk8k
* (t). We note that at

small external fields~40! the transformation@determined by
Eqs. ~34! and ~42!# and the form of the matrix element
Jk8k(t) and Wk8k(t) are very similar to those of Ref. 4
although they are still different due to the time depende
of Vkd(t). We further note that the Hamiltonian~39! with the
coupling constants~44! can alternatively be obtained by ap
plication of the canonical transformation~5! to the usual
Kondo Hamiltonian with time dependence added only to
leads~while the coupling of conduction electrons to the im
purity ~dot! remains time independent!. This is true, how-
ever, only at small external fields~40!. At stronger fields
equations~38! must be used for computing the matrix el
mentsJk8k(t) andWk8k(t).

In order to have a more compact form of the Hamiltoni
we hereafter imply the limit of infiniteU. It is obvious from
Eqs.~44! and~45! that this choice does not lead to any qua
tative changes. Indeed, it just slightly affects the values
Jk8k . The main advantage of this choice is that atU5` the
equality, Wk8k51/2Jk8k holds, which eliminates one mor
parameter. Furthermore, in the subspaceF1

K the following
identity holds, namely, 12nd,2s5nd,s . Then HK can be
expressed as

HK5 (
kPL,R;s

ekak,s
† ak,s1

1

2 (
k,k8PL,R;s

Jk8k~ t !

3@ak8,2s
† ak,scd,s

† cd,2s1ak8,s
† ak,scd,s

† cd,s#.
e

e

f

~46!

There is only one coupling constantJk8k(t) in this expression
which is equal for both coupling terms. Equation~46! con-
stitutes our final form of the time-dependent Hamiltoni
which we use in the next section to obtain the tunnel
current.

In concluding this section we would like to point out th
the main idea of the Schrieffer-Wolff transformation is bas
on a projection of the system out of the full Hilbert spa
onto the subspaceF1

K for which the dot is occupied by on
~and only one! electron. Unoccupied and doubly occupie
subspaces are forbidden. At first glance it looks as a sm
reduction of space dimension. Yet, as we show in Sec. IV
greatly simplifies the calculation of the tunneling current f
time-dependent problems. The main physical reason se
to be the fact that by fixing the number of electrons in the
one separates the Kondo resonance from the usual reso
tunneling. The latter is exponentially small in the Kond
regime but it is formally present in the Anderson mod
Admixture of two different physical processes within th
same calculation scheme seems to be the main sourc
complication. Another advantage of the Kondo Hamiltoni
~39! @or ~46!# is readily seen from the expressions~39!, ~43!,
~44!, and ~45!. Namely, the number of independent para
eters is significantly reduced. Indeed, instead of six para
eters controlling the external fields in the Anderson mo
(fL(R) , WL(R) , V, and the phase differenceaL2aR) we are
left with only three:fdc, W, andV. Instead of three inde-
pendent internal parametersVkd , ed,s , andU there are only
two important combinationsJk8k andWk8k . Moreover, it be-
comes obvious that the limit of infiniteU does not imply any
qualitative changes in the results. It allows us to get rid
one more parameter.

IV. PERTURBATION EXPANSION OF THE CURRENT
IN THE KONDO MODEL

A. Expression for the tunneling current

In this section we define the tunneling current using
time-dependent Kondo Hamiltonian~46! and then develop a
nonequilibrium technique to expand it in powers of the co
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pling strengthJk8k . Although the details of calculation ar
substantially distinct from those used in Sec. II, the ba
algorithm is quite similar. Of course, we do not need
introduce slave particles here, because the unperturbed
is bilinear in creation-annihilation operators and there is
c

art
o

obstacle in carrying out perturbation expansion in powers
the interaction which contains a small parameterJk8k . The
starting point is, again, defining the current using commu
tion of the Hamiltonian~46! with the number-of-particles
operator. It yields, in the Heisenberg representation,
on model

ondition

eldysh

teraction

mmutes
action

ion and
ints

ing
t:
I ~ t !52
ie

\
^@HK ,NL#&5

ie

\
^@HK ,NR#&5

e

\ (
k8PL,kPR;s

Im$Jk8k~ t !TrF
1
K@rF

1
K~0!ak8,2s

†
~ t !ak,s~ t !cd,s

† ~ t !cd,2s~ t !#

1Jk8k~ t !TrF
1
K@rF

1
K~0!ak8,s

†
~ t !ak,s~ t !cd,s

† ~ t !cd,s~ t !#%, ~47!

whererF
1
K(0) is the density matrix of the system at the zeroth instant of time@compare with Eq.~11!#. As usual, the average

is taken over the physical subspaceF1
K of the full Hilbert space for the Kondo model, and the subscriptF1

K on the right-hand
side implies that operators and traces are performed within this subspace. Unlike the physical subspace for the Anders
~Sec. II! which we referred to asF1

A , the subspaceF1
K is defined by the condition thatQK51, where

QK[(
s

cd,s
† cd,s . ~48!

The definition of the physical subspace for the Anderson model, i.e., the conditionQA51 @see Eq.~10!#, fixed the total number
of slave particles to be equal to unity, thus allowing both unoccupied and single-occupied states of the dot. The c
QK51, on the other hand, enforces single occupation of the dot.

In order to get rid of the constraint to the subspaceF1
K we adapt the method proposed by Coleman41 for the analogous

problem in the Anderson model, to be used also in the Kondo model. As in Sec. II we combine it with the Schwinger-K
nonequilibrium Green-function technique. First, we introduce a grand-canonical HamiltonianHK1lQK . The limit of infinite
l is to be taken at the end of the calculation. Then we go to the interaction representation considering the exchange in
as a perturbation and the rest of the Hamiltonian, i.e.,(kPL,R;sekak,s

† ak,s1lQK as the unperturbed part. We notice thatQK

can be freely added to or subtracted from the Hamiltonian in the definition of the interaction representation since it co
with all parts ofHK , although it is important in the statistical average as we proceed to show below. Within the inter
representation, Eq.~47! for the current now reads,

I ~ t !52 lim
t8→t10

e

\ (
k8PL,kPR;s

Im„Jk8k~ t !TrF
1
K$rF

1
K~0!T̂p@ak8,2s

†
~ t1!ak,s~ t18 !cd,s

† ~ t28 !cd,2s~ t2!Sp#%

1Jk8k~ t !TrF
1
K$rF

1
K~0!T̂p@ak8,s

†
~ t1!ak,s~ t18 !cd,s

† ~ t28 !cd,s~ t2!Sp#%…,

whereSp and T̂p are, respectively, the S matrix and the time-ordering operator on the closed time-path. In this equat
hereafter, the operatorsak,s

† (t), ak,s(t), cd,s
† (t), andcd,s(t) are defined in the interaction representation. The choice of po

t1 , t2 , t18 , andt28 on the closed time path~see Fig. 5! assures proper ordering of these operators by the operatorT̂p . As in
Sec. II the initial distribution of the system in the full Hilbert space~before tunneling was switched on! is chosen to be an
equilibrium one. It corresponds to a grand-canonical ensemble with the ‘‘chemical potential’’2l. Instead of the operatorOA
we consider here the operatorOK which is defined by the equation,

OK[T̂p$@ak8,2s
†

~ t1!ak,s~ t18 !cd,s
† ~ t28 !cd,2s~ t2!1ak8,s

†
~ t1!ak,s~ t18 !cd,s

† ~ t28 !cd,s~ t2!#Sp%. ~49!

Considering expectation values of the operatorsOKQK andQK within the full Hilbert space and repeating the steps lead
from Eq.~13! to Eq.~17! @see Eqs.~15! and~16! and explanations therein# we obtain the following expression for the curren

I ~ t !52
e

\ (
k8PL,kPR;s

Im lim
t8→t10

lim
l→`

H Jk8k~ t !
^T̂p@ak8,2s

†
~ t1!ak,s~ t18 !cd,s

† ~ t28 !cd,2s~ t2!Sp#&

^QK&

1Jk8k~ t !
^T̂p@ak8,s

†
~ t1!ak,s~ t18 !cd,s

† ~ t28 !cd,s~ t2!Sp#&

^QK&
J . ~50!
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Since the averages in this equation are taken in the full
bert space it is amenable for perturbation expansion.

As in Sec. II and Ref. 18, we assume that calculation
the tunneling current to lowest order in the tunneling stren
which encodes the Kondo effect~i.e., Jk8k

3 ) can be done us
ing unperturbed populations of the energy levels. This
sumption seems more natural here because the numb
fermions in the dot is completely fixed by the constraint
the subspaceF1

K . It is not the case in the Anderson mod
where slave fermions can convert into slave bosons and
versa within the same subspaceF1

A . Moreover, two levels
with different spins have equal occupation numbers after p
forming an ensemble~thermal! averaging. Therefore, in th
Kondo model this assumption concerns only occupation
different energy levels in the reservoirs. The denominato
Eq. ~50! can therefore be easily calculated, that is,

^QK&52nd →
l→`

2e2bl, ~51!

wherend51/@exp(bl)11# is the Fermi function for the do
electrons in the grand-canonical ensemble. In fact, as fa
the dot electrons are considered in the grand-canonical
semble, they are not real particles any more. For exam
one might notice that in the physical limitl→` their Fermi
functionnd tends to zero. They might be better called ‘‘au
iliary fermions’’ or ‘‘slave fermions.’’ To avoid confusion
with slave fermions of Sec. II we prefer to refer to the
hereafter as ‘‘dot fermions.’’

B. Diagrammatic expansion of the current

In the following we formulate a diagrammatic techniq
to expand the numerator of Eq.~50! and obtain the current
We skip the detailed derivation and present only its m
steps and then present an explicit formulation of the pertin
diagrammatic rules. The strategy is to start from perturba
expansion of Eq.~50! on the closed time path. Next, tran
formation of the resulting expression is performed, first to
single-time branch and, then, to the physical representat
of the nonequilibrium Green functions. Time-translation
variance of the unperturbed Green functions allows us to
the Fourier transform~for every Green function separately!
and write integrals in the energy representation. The res
this procedure will be explained along the course of form
lation below.

Equation~50! expresses the current in terms of a pair
two-particle Green functions. Therefore, in this section
prefer to draw the diagrams in the standard form accepted
Green functions in textbooks~see Fig. 6!. Alternatively, we
could connect all the external lines in one ‘‘external verte
as we did in Sec. II, thus obtaining diagrams of a circu
shape. The difference is, of course, purely superficial. It

FIG. 5. Choice of points on the closed time path for the exter
operators in Eq.~49!.
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f
h
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r
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fluences only the rules of drawing, i.e., the first item of t
diagrammatic rules formulated below.

Here are the rules for drawing the diagrams and writ
down the corresponding analytical expressions.

~1! Draw a line corresponding to a propagator of a d
fermion. In Fig. 6 we used a dashed line for its notation. T
diagram must include only one such line, since a presenc
two or more lines of this type impliesQK>2. It would pro-
duce a contribution to the numerator of Eq.~50! of second or
higher order in powers of exp(2bl). The contribution to the
current would then be of first or higher order in powers
exp(2bl), which will vanish atl→`. Attach m21 points
to the dot-fermion line, wherem is the power ofJk8k which
the contribution of the diagram being considered is suppo
to have in the expression for the current. These points re
sent vertices. Connect them by lead-electron lines leav
two loose ends corresponding to the external operatorsak8

†

and ak in Eq. ~50!. In Fig. 6 we used solid lines to denot
propagators of lead electrons. In the present work we h
considered diagrams form52 @Fig. 6~c!# and m53 @Figs.
6~A!, 6~B!, and 6~D!#.

~2! Introduce the following 232 ~Keldysh! matrices for
every lead electron and dot-fermion line, respectively,

l

FIG. 6. Diagrams for the perturbation expansion of the curr
in the Kondo model. Solid lines stand for lead electrons, das
lines for dot electrons.
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gks~e![S 0 gks
a ~e!

gks
r ~e! gks

c ~e!
D , js~v![S 0 js

a~v!

js
r ~v! js

c ~v!
D .

~52!

The indicesr, a, and c denote the retarded, advanced, a
correlation Green functions which are explicitly defined
follows:

gks
r (a)~e!5

1

e2ek6 ig
, ~53!

gks
c ~e!5@122 f ~ek!#@gks

r ~e!2gks
a ~e!#,

js
r (a)~v!5

1

v2l6 ig
,

js
c ~v!5@122 exp~2bl!#@js

r ~v!2js
a~v!#,

where f (ek)51/@exp(bek)11# is Fermi function for lead
electrons, the factor exp(2bl) is the limiting case of the
dot-fermion Fermi functionnd51/@exp(bl)11# at largel.
As in Sec. II the matrices~52! emerge as a result of th
passage from the closed time path to the normal time p
before the transformation to the energy representation is
ried out. Note that the Lagrange multiplierl appears explic-
u

a-

. I

e
m
k-

e
-

or

tio
s

th
r-

itly in the definition ofj r (a) although consideration of energ
conservation shows that, in fact, it could be absorbed int
shift of v in all Green functions for the dot fermions.

~3! For every vertex, introduce the following tensor:

J̃koutkin
JsS W(koutkin)

\V
D ~21!sh i j

i 8 j 8 , ~54!

wherekin and kout are momenta of incoming and outgoin
lead electrons, respectively, andJ̃koutkin

means a matrix ele-

ment @given by Eq.~45!#. Further,Js@W(koutkin) /(\V)# are
Bessel functions in which the orders is a number of photons
absorbed in this vertex~clearly, it can be negative!, and

W(koutkin)5H W if koutPL, kinPR

2W if koutPR, kinPL

0 if kout , kinPLor kout , kinPR.
~55!

It is useful at this point to recall the origin of the appearan
of the Bessel functions, starting from the expansion of
time-dependent matrix elementsJkoutkin

(t) @see Eqs.~44! and
~43!#:
Jkoutkin
~ t !5 J̃koutkin

e( i /\)[f(koutkin)t1 iW(koutkin) /(\V)sin(Vt1a)2b(koutkin)]

5 J̃koutkin (
s52`

`

JsS W(koutkin)

\V
D ~21!se( i /\)[f(koutkin)t2sVt2sa2b(koutkin)] . ~56!
and

nt

are

ser-
o

in
t-
the

her-

t-
The symbols (koutkin) here, as throughout the present man
script, denote the leads to whichkin andkout belong, that is,
LR, RL, LL, or RR. The constant phasesb (koutkin) cancel
when Eq. ~56! is substituted into expressions for the di
grams. The tensorh is now a tensor of the fourth rank~un-
like in Sec. II! because it connects four Keldysh matrices
is written explicitly as

h i j
i 8 j 85 (

m8,n8,m,n

Ri 8m8
21 Rj 8n8

21 sm8n8
(3) dm8mdm8nRmiRn j ,

~57!

where R5(1/A2)(21 1
1 1 ), R215(1/A2)(1 1

1 21), sm8n8
(3)

5(0 21
1 0 ). The third Pauli matrixsm8n8

(3) appears here becaus
of the transition from the closed-time path to the single-ti
representation~transformation from integration on the bac
ward oriented time branch to integration over normal tim
axis requires a change of sign!. Transformation to the physi
cal representation employs the matricesR andR21.

~4! Close around the product of matrices and tens
which has been obtained by the following rows~or columns!:
221/2(21,1) for theg matrices and 221/2(1,1) for thej ma-
trices ~see examples below!. The origin of these rows is
again the transformation from the single-time representa
-

t

e

s

n

to the physical representation of the Green functions
vertices. Multiply the result by the factor,

J̃k8kJn1s11 . . . 1sm21S W(k8k)

\V D . ~58!

This factor emerges out of the matrix elementJk8k(t) in Eq.
~50! by means of the expansion~56! ~while s is replaced by
2s). Summation overn is carried out in Eq.~60! below.

~5! Conserve energy in every vertex taking into accou
absorption ofs photons and the energyfdc gained~lost! by
an electron going from left to right~from right to left!.

~6! Conservation of spin is somewhat delicate. There
two terms in the Hamiltonian~46! and, correspondingly, two
terms in the expression for the current~50!. They express
spin-flip and normal scattering processes. Therefore, con
vation of spin in every vertex should take into account tw
possibilities: ~a! if incoming spins are opposite, then, sp
flip occurs,~b! if incoming spins are equal, then, both ou
going spins are the same. It is important to stress that
same rules have to be applied to the whole diagram, ot
wise it can not contribute to the current~50!. Namely,~a! if
incoming spins (se8 ands f8 in Fig. 6! are opposite, then, the
outgoing spins have to be reversed~i.e., se5s f852se8 and
s f5se852s f8). ~b! If incoming spins are equal, then, ou
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going spins have to be the same~i.e., se5s f5se85s f8).
These rules prohibit the spin-flip diagram of type B in Fig.
Indeed, spin flip in the first vertex can happen only ifse8
52s f8 . Then,se,152s f ,152se85s f8 , and spin flip should
occur in the second vertex as well. Consequently,se

52s f5se852s f8 . This contribution is therefore forbidden
The only diagram of type B that survives is the one w
se5s f5se,15s f ,15se85s f8 . On the other hand, four dia
grams of type A are allowed. Namely, the following equa
ties se,15s f ,1 , se85s f and s f85se should hold. All the
combinations which are left are allowed, that is,se56s f
ands f ,156s f .

~7! Integrate over energy and momentum and sum o
spin. Remember that, according to Eq.~50! the current flow
starts from the left lead, i.e.,k8PL, and ends in the righ
lead, i.e.kPR. The other momenta might belong to any lea
k1 , . . . ,km22PL,R. Sum over numbers of absorbed photo
s1 , . . . ,sm21.

~8! Multiply the result by the factor

ie

\^QK&
~2 i !m21~ i !2m~21!F~2p!2(m11), ~59!

whereF is the number of closed electron-fermion loops. T
first factor in the above expression comes from Eq.~50!,
while the second one reminds us of them21 order of the
.

r

:
s

expansion of theSmatrix. Employing Wick’s theorem in the
perturbation series requires pairings of creation-annihilat
operators which are then expressed in terms of Green fu
tions. This is the origin of the next two factors. The last o
emerges following Fourier transforms.

~9! Take the limitl→`.
This completes the list of rules for drawing and calcul

ing diagrams in the time-dependent Kondo model.

C. Explicit expression for the tunneling current

Let us denote the expression obtained through the ab
rules for a certain diagram~or after summing of expression
for diagrams up to a certain order! asYK(n). The numbern
has the meaning of the total number of photons absorbe
emitted due to the tunneling process~it was introduced above
in the fourth item of the diagrammatic rules!. The time-
dependent current is then given by

I ~ t !5
1

2
I 01 (

n51

1`

uI nucos~nVt1na1argI n!, ~60!

I n[YK~n!1YK* ~2n!.

As an example, an expression that is obtained using
above diagrammatic rules for diagram A in Fig.~6! reads
nctions
YK
A~n!52

ie

\ (
s1 ,s2

Jn1s11s2S W

\V D Js1
S W(k1 ,k8)

\V
D Js2

S W(k,k1)

\V
D ~21!s11s2 (

k8PL;kPR;k1PL,R;s,s8,s1

3 J̃k8kJ̃kk1
J̃k1k8

1

4

1

~2p!4E E E E de1 dv dv8 dv1 lim
l→`

1

^QK& (
i 8, j 8,i , j ,i 18 , . . . ,j 2

~21,1! jgks8

j j 28

3~e11v82v11f (k1k)1s2\V!j
s1

i 1i 28~v1!h i 2 j 2

i 28 j 28g
k1s1

j 2 j 18 ~e1!j
s8

i 2i 8
~v8!S 1

1D
i 8

~1,1! ijs

i i 18~v!h i 1 j 1

i 18 j 18g
k8s

j 1 j 8

3~e11v2v11f (k1k8)2s1\V!S 21

1 D
j 8

. ~61!

A useful simplification can be worked out in this equation, noticing that one of the vertices connects electron Green fu
of the same lead. Indeed, ifk1PL, thenk1 andk8 belong to the same lead, while ifk1PR, thenk1 andk belong to the same
lead. Therefore, according to Eq.~55!, one hasW(koutkin)50 in this vertex. Using the identity,Js(0)5ds,0 , we can get rid of

one of the Bessel functions. Using also the relationJs(2x)5(21)sJs(x) we obtain

YK
A~n!52

ie

\ (
s

Jn1sS W

\V D JsS W

\V D (
k8PL;kPR;k1PL,R;s,s8,s1

J̃k8kJ̃kk1
J̃k1k8

3 lim
l→`

1

^QK&

1

4

1

~2p!4E E E E de1 dv dv8 dv1 (
i 8, j 8,i , j ,i 18 , . . . ,j 2

~21,1! jgks8

j j 28

3~e11v82v11f (k1k)1s2\V!j
s1

i 1i 28~v1!h i 2 j 2

i 28 j 28g
k1s1

j 2 j 18 ~e1!j
s8

i 2i 8
~v8!S 1

1D
i 8

~1,1! ijs

i i 18~v!h i 1 j 1

i 18 j 18g
k8s

j 1 j 8

3~e11v2v11f (k1k8)2s1\V!S 21

1 D
j 8

, ~62!
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wheres5s1, if k1PR, ands5s2, if k1PL.
At this stage, the use of a program for analytical calculations~e.g.,MATHEMATICA ! is indispensable. The following steps a

to be done:~1! the tensor-matrix product is to be expanded and expressions for Green functions~53! are to be substituted,~2!
due to the presence of the factor^QK& in the denominator, only terms of the first order in exp(2bl) must be kept in the
numerator~the zeroth order cancel while the terms of higher orders are to be omitted!, ~3! routine integration of the expressio
obtained through the above steps over internal variablese1 , v, v8, andv1 is to be carried out. The result is the following

YK
A~n!5

ie

2\ (
s

Jn1sS W

\V D JsS W

\V D (
k8PL;kPR;k1PL,R;s,s8,s1

J̃k8kJ̃kk1
J̃k1k8

3F f ~ek! f ~ek8!~ek2ek82fdc2sV22ig!

~ek2ek82fdc2sV2 ig!~ek2ek1
1f (kk1)2s2V2 ig!~ek82ek1

1f (k8k1)2s1V1 ig!

2
f ~ek! f ~ek1

!

~ek2ek82fdc2sV2 ig!~ek82ek1
1f (k8k1)2s1V1 ig!

1
f ~ek8! f ~ek1

!

~ek2ek82fdc2sV2 ig!~ek2ek1
1f (kk1)2s2V2 ig!

G . ~63!

We assume now thatJk8k depend only on the leads to whichk8 andk belong, independently of the values ofk8 andk ~hence
there are just three coupling-strength constants:JLL , JRR, andJLR , whereJL(R)R(L)5VL(R)VR(L)* /ued,su). Furthermore, we
assume that the densities of states in the leads@r(ek), kPL,R], are roughly constant on the energy scale offdc, V, andW
@rigorously speaking, only the combinationsr(ek8)

1/2Jk8k(t)r(ek)
1/2, wherek,k8PL,R, need to be constant#. Then the above

expression greatly simplifies since integration over one ofk, k8 or k1 can be carried out. Using also a simple relation

J̃k8kJ̃kk1
J̃k1k85uJ̃LRu2J̃(k1k1) , ~64!

we get an expression

YK
A~n!5

e

\
8puJ̃LRu2rLrR~ J̃LLrL1 J̃RRrR!(

s
Jn1sS W

\V D JsS W

\V D E E dek dek8

f ~ek! f ~ek8!

ek2ek82fdc2sV2 ig
. ~65!

The factor 8 in this equation arises from summation over spins.
For the diagram B in Fig. 6 the above diagrammatic rules, usingJs(2x)5(21)sJs(x) andJs(0)5ds,0 , yield the following

expression:

YK
B~n!5

ie

\ (
s

Jn1sS W

\V D JsS W

\V D (
k8PL;kPR;k1PL,R;s

J̃k8kJ̃kk1
J̃k1k8 lim

l→`

1

^QK&

1

4

1

~2p!4E E E E
3de1 dv dv8 dv1 (

i 8, j 8,i , j ,i 18 , . . . ,j 2

~21,1! jgks

j j 28~e12v1v11f (k1k)1s2\V!

3~1,1! ijs

i i 28~v!h i 2 j 2

i 28 j 28g
k1s

j 2 j 18~e1!j
s

i 2i 18~v1!h i 1 j 1

i 18 j 18g
k8s

j 1 j 8
~e12v81v11f (k1k8)2s1\V!S 21

1 D
j 8

js
i 1i 8~v8!S 1

1D
i 8

.

~66!

Repeating the steps which led from Eq.~62! to Eq. ~65! we obtain,

YK
B~n!5

e

\
2puJ̃LRu2rLrR~ J̃LLrL1 J̃RRrR!(

s
Jn1sS W

\V D JsS W

\V D E E dek dek8

f ~ek! f ~ek8!

ek2ek82fdc2sV2 ig
. ~67!

We omitted in this expression some terms which cancel out when substituted into expression for the current~60!. Note that
spin-conservation rules discussed above allow only one combination of spins for this diagram, namely, all spin projec
identical. It leads to a factor 2 in the above expression instead of 8 in Eq.~65!.

For the diagram C in Fig. 6 we obtain, using the above diagrammatic rules andJs(2x)5(21)sJs(x) an expression of
second order inJ̃k8kr



16 766 PRB 61Y. GOLDIN AND Y. AVISHAI
YK
C~n!5

ie

\ (
s

Jn1sS W

\V D JsS W

\V D (
k8PL;kPR;s,s1

uJ̃k8ku2 lim
l→`

1

^QK&

1

4

1

~2p!3E E E E de8 dv dv8

3 (
i 8, j 8,i , j ,i 18 , . . . ,j 1

~21,1! jgks

j j 18~e82v1v81fdc1s\V!~1,1! ijs1

i i 18~v!h i 1 j 1

i 18 j 18g
k8s1

j 1 j 8
~e8!S 21

1 D
j 8

js
i 1i 8~v8!S 1

1D
i 8

.

~68!
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Making the same steps as above we obtain a very sim
equation:

YK
C~n!5

e

\
2puJ̃LRu2rLrR(

s
Jn1sS W

\V D JsS W

\V D
3~fdc1s\V1 i const!. ~69!

The last term~i.e., i const) cancels when substituted in
expression for the current~60!.

In order to calculate contribution of diagram~6D! it is
better to stay in the closed time-path representation. T
one can easily notice that it can be expressed through
contribution of diagram~6C! in the following manner:

YK
D~n!5YK

C~n!E
p
dtp (

k1PL,R
Jk1k1

~ t !nk1
, ~70!

where nk1
[^ak1

† ak1
&5 f (ek). The matrix elementsJk1k1

(t)

do not depend on the branch to whicht belongs, i.e., whethe
tp5t2 or tp5t2 , while nk1

does not depend on time at a
So the integrals over the normal and the backward orien
time branches cancel. The contribution of this diagram to
current simply vanishes.

Further progress employs the identities

(
s

Js~x!Js1n~x!5dn,0 ,

~71!

(
s

sJs~x!Js1n~x!5
x

2
~dn,11dn,21!.

Substituting Eq.~69! into Eq.~60! and using these equation
we obtain for the contribution of diagram~6C! to the current
@ I (2)(t)# the following simple expression:

I (2)~ t !5C2@fdc1W cos~Vt1a!#, ~72!

whereC2[(e/\)puJ̃LRu2rLrR . This is the only contribution
which is of second order inJk8k(t)r. There appear onlyDC
and the first harmonic. The higher harmonics are not ge
ated in this order.

Finally we sum contributions of all the diagrams and g
the following equations for the tunneling current:

I ~ t !5I (2)~ t !1I (3)~ t !, ~73a!
le

n
he

d
e

r-

t

I (3)~ t !5
1

2
I 01 (

n51

`

uI nucos~nVt1na1argI n!, ~73b!

I n[C3 (
s52`

1`

JsS W

\V D FJs1nS W

\V DF~fdc1sV,T,D !

~73c!

1Js2nS W

\V DF* ~fdc1sV,T,D !], ~73d!

F~f,T,D !5E
2D

1`E
2D

1`

dek dek8

f ~ek! f ~ek8!

ek2ek82f2 ig
,

~73e!

where I (2) is defined above @Eq. ~72!#, while C3

[(e/\)10puJ̃LRu2rLrR( J̃LLrL1 J̃RRrR), andrL(R) are den-
sities of states in the leads. The quantitiesI (2) and I (3) ex-
press contributions of second~diagram C! and third ~dia-
grams A and B! orders inJk8kr, respectively. The cutoffD is
equal to the energy difference between the chemical pote
and the bottom of the conduction band, whileg is an infini-
tesimally small number. Equations~73! constitute the centra
formal result of the present section. Equation~73e! is rather
convenient for further elaboration~which is our next step!
but it can be misleading if a proper care is not taken. Inde
the cutoffs for the two energy integrations are not indep
dent, and their relation is to be defined carefully. Consi
another expression forF where one of the integrals does n
require a cutoff:

F~f,T,D !52
1

2
ReE E

2D

1`

dv de

3
@ f L~v!2 f R~v!#@ f L~e!1 f R~e!#

v2e1 ig

2 ip
f

2
coth

bf

2
. ~74!

Here f L(e)[1/$exp@(e2f)/kT#11% and f R(e)[1/
(exp@e/kT#11) have the meaning of Fermi functions in th
leads~the left lead being shifted byf). Some pure imaginary
terms, linear inf, that do not contribute to the current hav
been omitted in this expression. The above integral can
written in the same form as in the dc result of Sivan a
Wingreen.18 The physical content of Eq.~73d! for I n is rather
transparent: An alternating field applied to a two-barrier s
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tem actually results in a splitting of the leads energy level37

Therefore the time-dependent current is a result of inter
ence between ‘‘dc-like’’ contributions, each one of the
having an effective biasfdc1sV weighted by the appropri
le
n
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or
m
a

f
-

ly
a

ni
o
q
n
he
in

in
ti
w

r-
ate product of Bessel functions.62 An approximate evaluation
of the double integral in the above equations is possible b
for the linear (f!T) and for the nonlinear (f@T) regimes.
It yields
Re@F~f,T,D !#5H fF ln
D

kT
10.261O~f/kT!1O~kT/D !G if f!kT,

fF ln
D

ufu
111O„~kT/f!2

…1O~f/D !G if f@kT.

~75!
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the
As is well known ~see, for instance, Ref. 4!, the linear-
response perturbation expansion for the Kondo prob
breaks down at temperatures below a certain value, defi
as the Kondo temperatureTK . In our calculation it shows as
a logarithmic divergence of the functionF and, conse-
quently, the amplitude of the current~73d! at T→0 in the
linear response. It is remarkable, however, that in the n
linear case on which we focus our attention here the func
F does not diverge with decreasing temperature. Hence,
results for the nonlinear response are valid even below
Kondo temperature. This is due to the fact that here the n
linear bias plays the role of temperature as the largest l
energy scale.

When the estimate~75! is employed in Eqs.~73! it yields
extremely simple expressions for the current. First, it tu
out to be very useful for the static nonequilibrium case (W
50), for which we find

I'fdcF C210.26C31C3ln
D

kT
if fdc!T,

C21C31C3ln
D

ufdcu
if fdc@T.

~76!

To the best of our knowledge, such a simple expression f
nonequilibrium tunneling current through a Kondo syste
has not been derived in other works. The authors have
ready reported formulas~73! and ~76! in their paper.23 We
notice that expression~76! contains the familiar pattern o
the zero-bias anomaly~i.e., a peak in the differential conduc
tance at zero bias!.

Next, considering expression~75! we notice that the large
factor lnD appears only in a term which is linear inf. Using
Eqs.~73c! and~71! we then find that this factor emerges on
in the expressions for the dc and the first harmonic of the
It means that, in fact, only the direct and the first harmo
are enhanced by the Kondo effect. As for the higher harm
ics, the interference of the contributions to the current in E
~73! with different effective biases is destructive. This co
clusion is further confirmed by numerical calculation of t
whole spectrum of the tunneling current performed us
Eqs.~73!. In Fig. 7 the spectra~amplitude of the harmonics
I n via their numbern, the value of 1/2I 0 is displayed for the
dc! are shown for both the Kondo and the noninteract
systems. Values of the parameters used for the calcula
are listed in the caption. For the noninteracting system
m
ed

n-
n
ur
e

n-
-

s

a

l-

c.
c
n-
s.
-

g

g
on
e

used the equations of Ref. 63 reduced to the case of only
resonant level present in the system. Comparison of the
and bottom parts of the figure clearly shows a signific
enhancement of dc and the first harmonic relative to the o
ers in the Kondo system. The ratio of the dc and the fi
harmonic to the higher harmonics might increase even
ther if D becomes larger. However, the choice of parame
for Fig. 7 corresponds to a real quantum dot situation.1,2 We
emphasize that the nonlinear response is different from
linear one. Namely,~i! the second and the higher harmoni

FIG. 7. ~a! Spectrum of the tunneling current for a quantum d
in the Kondo regime~amplitude of the harmonicsI n via their num-
ber n, the value of 1/2I 0 is shown for the dc!. The contribution of
the second order inJr is not shown. The current is measured
units of C3kT. W/V54, V/kT55, fdc/kT510, D/kT5200. ~b!
Spectrum of the tunneling current for a noninteracting one-le
system with the energy level between the chemical potentials of
left and the right leads. The current is measured in units ofeG/\,
whereG is the level width.W/V54, V/G55, fdc/G510, D/G
5200.
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exist although they are small,~ii ! the amplitudes of the dc
and the first harmonic are not determined any more by
ratio D/T as in the linear response, but rather by the ratio
D to the largest relevant low-energy scale as we show in
following @see Eqs.~77!, ~81!, and~82!#.

Substituting Eq.~75! into Eq.~73!, it is possible, in a few
limiting cases, to find very simple expressions for the
(I dc) and the first harmonic of the time-dependent tunnel
current (I ac). Experimentally, the nonlinear Kondo effect
usually revealed as the zero-bias anomaly. In a strong a
nating field where many-photon absorption is possible~i.e.,
W@V,T), we get for the differential conductanc
(]I dc/]fdc) an expression

]I dc

]fdc
'C21C3@ ln~D/W!11#1C3

V

2W

3 (
uqu,W/V

P~fdc/V2q,T/V! if ufdcu!W,

~77!

]I dc

]fdc
'C21C3ln~D/ufdcu! if ufdcu@W,

whereP(fdc/V2q,T/V) is the shape function for the sid
peaks atfdc5qV, q is integer. We find that

P~fdc/V2q,T/V!'
1

2
ln

V2

~fdc2qV!21T2
if ufdc/V2qu

!1anduT/Vu!1, ~78!

while

P~fdc/V2q,T/V!50 if ufdc/V2qu.1or uT/Vu.1.

In a weak alternating field (W!V), we obtain

]I dc

]fdc
'C21

C3

2
ln

D2

~fdc!21T2

1C3(
qÞ0

S W

2V D 2uqu 1

~ uqu! !2
P~fdc2qV,T,D !,

~79!

where the side-peak shape functionP is given by

P~fdc2qV,T,D !'
1

2
ln

D2

~fdc2qV!21T2
. ~80!

Comparing Eq.~77! with the static expression~76!, we no-
tice that the main peak of the differential conductance~the
one atfdc50) is suppressed in a strong alternating field
the factor approximately equal to@ ln(D/W)11#/@ln(D/T)
10.26#. The side peaks in a strong field are not simple r
licas of the central one, as is the case in a weak field. As
as the temperature dependence of the zero-bias anoma
the time-independent response is concerned, we note tha
temperature dependence of the side peaks in a weak alte
ing field is governed by the factor ln(D/T). In a strong alter-
e
f
e

c
g

r-

-
ar
for
the
at-

nating field, however, it is determined by the factor ln(V/T).
Moreover, the amplitudes of the side peaks in a strong al
nating field does not decay exponentially withq. In fact, it is
roughly constant~as long asqV,W). The half-width of the
side peaks in a strong field is approximately equal to (VT)1/2

instead of (DT)1/2. The latter feature is quite favorable fo
experimental observation: since the peaks are rather na
it is not necessary to go to high frequencies in order to
solve them. On the other hand, their magnitude decrea
together with the ratioV/T. In Figs. 8 and 9 the differentia
dc conductance@calculated numerically using Eqs.~73!# is
shown versus the bias at different magnitudes of the alter
ing field. Suppression of the central peak in the zero-b
anomaly is readily manifested in both figures. Side peaks
not appear in Fig. 8 where the ratio of the frequency to
temperature is not large enough (V/T55). They are well
pronounced, however, at a tenfold lower temperature~Fig.
9!.

Although measurement of an ac with frequencies and a
plitudes in the relevant range is not an easy task, it mi
reveal new interesting features of the Kondo effect. Kon

FIG. 8. Differential dc conductance~in units of C3) versus dc
bias at various values of ac biasW ~both are measured in units o
kT). V/kT55, D/kT5200.

FIG. 9. The same as in the previous plot but at tenfold low
temperature.
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contribution to the direct tunneling current is usually r
vealed in an experiment through a special dependence o
parameters~such as lnT increase of the conductance or th
zero-bias anomaly!. It was shown above that, as far as t
spectrum of the tunneling current is concerned, only the
and the first harmonic are enhanced by the Kondo eff
This implies that such kind of parameter dependence ca
found in the first harmonic as well as in the dc but not
higher harmonics. Employing the approximate express
~75! in Eq. ~73! we obtain for the first harmonic of the time
dependent tunneling current (I ac) in a strong alternating field
(W@V),

I ac'C2W1
2

3
C3W@ ln~D/W!12# for W@ufdcu,T,

~81a!

I ac'C2W1
2

3
C3W@ ln~D/ufdcu!11/3# for W,T!ufdcu,

~81b!

I ac'C2W1C3W@ ln~D/T!11/4# for W,ufdcu!T.
~81c!

These expressions appear to be very similar to Eqs.~77! for
the dc whenufdcu and W are exchanged. Moreover, diffe
entiatingI ac with respect toW, we find a peak in the differ-
ential ac conductance at zero ac bias. The shape of the
is logarithmic at largeW, while its height is determined by
max(ufdcu,T). We infer that this feature of the ac is analogo
to the familiar zero-bias anomaly in the dc. In the same w
that the latter is suppressed by the alternating bias,
‘‘zero-alternating-bias anomaly’’ is suppressed by the dir
bias. In Fig. 10 the differential alternating conductance c
culated using Eqs.~73! is plotted versus alternating biasW at
different values of the direct biasfdc. Notice the clear simi-
larity with the zero bias anomaly shown in Fig. 8 and
suppression with alternating bias. We do not find any s
peaks in the differential ac conductance. Their traces ca
exposed, however, in the dependence of the ac on the d

FIG. 10. Differential ac conductance~in units of C3) versus ac
bias at various values of dc biasfdc ~both are measured in units o
kT). V/kT55, D/kT5200.
the

c
t.
be

n

ak

y
is
t
l-

e
be
ect

bias at low temperatures. In Fig. 11 its derivati
(dIac/dfdc) is drawn versusfdc for two temperatures. At
low temperature there appear well-pronounced dips~which
are actually peaks in its absolute value! at integer multiples
of the frequency.

In a weak alternating field (W!V) we find

I ac'C2W1C3W ln~D/ufdcu! for T,V!ufdcu,
~82a!

I ac'C2W1C3W@ ln~D/V!11# for T,ufdcu!V,
~82b!

I ac'C2W1C3W@ ln~D/T!11/4# if ufdcu,V!T.
~82c!

Inspecting Eqs.~76!, ~77!, ~81!, and~82! we notice that the
values of both direct and alternating differential condu
tances are basically determined by the logarithm of the r
of D to the largest relevant low-energy scale.

V. CONCLUSIONS

In the present work the problem of nonequilibrium tim
dependent electron tunneling through an interacting sys
was studied at some depth. The main attention was focu
on calculation of time-dependent current in the Kondo
gime beyond linear response. A tunneling system in this c
text is naturally described by the time-dependent Ander
model. Perturbation expansion of the current within th
model, specially adapted for systems out of equilibrium w
elaborated upon in Sec. II. This formalism combines the n
equilibrium Green-functions method with a specific a
proach suggested by Coleman41 to account for averaging in
restricted subspaces which is often encountered in probl
involving strongly correlated electron systems. We have
complished the formal part of perturbation expansion with
this model for the time-dependent case. The task of perfo
ing detailed calculations turns out to be too formidable. Y
with a slightly elevated capability of present day works
tions and analytic software programs it should be feasibl

FIG. 11. Derivative of the ac with respect to dc bias versus
latter ~which is given in units of\V). W/V52, D/V540. The
dashed line is plotted atV/T55, while the solid line is at the
tenfold lower temperature.
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We then suggested a way to overcome this problem
Sec. III, where we developed a time-dependent version of
Schrieffer-Wolff transformation mapping the time-depend
Anderson model onto a Kondo-type model. The latter
much easier for treatment within perturbation theory. W
maintain that it cannot be introduced phenomenologica
since proper correlation of the time dependence between
leads and the Kondo coupling constantJkk8(t) has to be
taken into account. Nonequilibrium perturbation techniq
for calculation of the tunneling current within the time
dependent Kondo model was worked out in Sec. IV. Act
calculations were performed up to the third order inJkk8
~which corresponds to sixth order in tunneling matrix e
ments for the Anderson model! yielding extremely simple
analytical expressions for the whole spectrum of the tunn
ing current @see Eqs.~73!, ~76!, ~77!, ~81! and ~82!#. The
nonlinear time-dependent current was found to be an in
ference sum of ‘‘dc-like’’ contributions, each one with a
effective bias altered by the number of absorbed or emi
photons. We stress that our results are valid for the nonlin
response both below and above the Kondo temperature
though for the linear response they are valid only above

There are three main results in the present research. F
it was found that the Kondo effect strongly affects the fi
harmonic of the alternating tunneling current, no less tha
affects the dc, while the other harmonics remain relativ
small. This result is shown to originate from the interferen
of dc-like contributions to the current@Eq. ~73!# that turn out
to be rather destructive for all the harmonics except the
and the first one. The higher harmonics are of course ge
ated but their amplitudes are relatively small. This result w
demonstrated to be remarkably different from that for a n
interacting one-level system where all the harmonics eme
together.

Second, it was found that the zero-bias anomaly in the
is suppressed by an alternating field and displays side p
at multiples of the basic frequency. This result can be ea
tested experimentally since it is concerned with measurem
of the dc in the Kondo regime, which has now been we
established in quantum-dots experiments. Expressions~77!
together with Figs. 8 and 9 provide an estimate for the p
ferred range of parameters of the system.

Third, we found a ‘‘zero-ac-bias anomaly’’ in the alte
nating current, i.e., a peak of the differential ac conducta
at zero ac bias. This phenomenon is an ac analog of
familiar zero-bias anomaly of the dc. As in the latter one, i
suppressed by the ac bias, while the former one is suppre
by the dc bias. There are no side peaks of the differentia
conductance; however, they have a well-pronounced co
terpart in the derivative of the ac with respect to the dc b
~in the form of dips!. We think that this phenomenon show
a pattern of the Kondo effect in the ac yielding a challeng
object for an experimental search. Equations~81!, ~82! and
Figs. 10 and 11 provide an estimate for the necessary ra
of parameters. Our results on the spectrum of the cur
indicate that effects like this one cannot appear at hig
harmonics of the time-dependent tunneling current~due to
the Kondo effect!. We emphasize that expressions~77!, ~81!,
and ~82!, especially the numerical coefficients, are very a
proximate. They are intended to display the basic dep
dence of the current on the parameters of the system. Q
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titative comparison with experiment may be done using
full set of Eqs.~73!.

As far as relation to previous relevant works is concern
we first notice that our analytical results for the dc are co
sistent with the numerical calculations of Ref. 17. Howev
being able to consider stronger ac fields~larger ratioW/V),
we find also an overall suppression of the zero-bias anom
beside the appearance of side peaks. As for the Fourier s
trum of the time-dependent tunneling current, we are una
to validate the assumption suggested in Ref. 17 thatall the
harmonics beside the dc one can be neglected. Rather
first harmonic is also enhanced, while the second and hig
harmonics are generated but they are indeed much sm
than the DC and the first one.64 Within a specific model,
some authors21 obtained current spectrum similar to that of
noninteracting system. We attribute the difference betw
this result and ours to a quite peculiar choice of parame
used therein. We notice that some basic formulas and res
were announced in a short paper of the authors23, e.g., Eqs.
~46!, ~73!, discussion on the spectrum and the suppressio
the zero-bias anomaly of the dc. In the present paper th
results are derived and shown in much greater details@notice
Figs. 7–10 and formulas~77!–~80!#. Moreover, it contains
prediction and detailed calculations for a new effect, name
the zero-alternating-bias anomaly.

We believe that further research on time-dependent
pects of the Kondo effect, in particular in quantum dots,
interesting and very timely. Let us mention a few possib
directions of future research. First, the methods develope
the present work can be adapted for solution of the prob
of nonlinear response of a Kondo system to a combination
alternating magnetic and electric fields. Evolution of t
zero-bias anomaly in a magnetic field, contrary to its te
perature dependence, seems to be the clea
experimentally1,8 resolved feature of the nonequilibrium
Kondo effect. Calculation of complementary effects in t
time-dependent response and carrying out pertinent exp
ments seem also to be timely. If the effect of a magnetic fi
can be solely expressed by the Zeeman splitting of the
ergy level in the dot, that is,es5615e06De/2, the tech-
nique developed in the present work can be easily modi
to incorporate it.

It might also be interesting to consider a nonmagne
~also called ‘‘orbital’’! Kondo system65,66 subject to a strong
alternating field. It is believed67,68 to be realized in some
recent experiments7,9 in the form of a two-level atomic tun-
neling system. In this model the conducting electrons inter
with an impurity atom which can tunnel between two stat
Tunneling of the atom is assisted by the interaction. At s
ficiently low temperatures, the parameters of the mo
renormalize so that it becomes equivalent to the two-chan
Kondo model.69 Besides the time-dependent shift of th
leads which is present also in the one-channel model
studied in our work, in a two-level atomic system a tim
dependent field can cause a change of the effective en
separation between the levels. One possible effect of su
change is a crossover between Fermi-liquid and non-Fe
liquid behavior~see, for instance, Ref. 68!. It is especially
appropriate to point out here that application of an ac field
rather controllable. An appropriate calculation, if followe
by an experiment, could then further test the hypothesis
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the physics of a two-channel Kondo model has been real
in some experiments,7,9 a point which has been questione
by some authors.70

Consideration of a multilevel Kondo system in an exter
alternating field looks very attractive. First, it is an approp
ate object for quantum dots experiments. Moreover, it w
argued71,72 that the Kondo temperature in such a system
be enhanced by orders of magnitude. This fact could al
an experimental investigation of the strongly correlated
gime of the Kondo system. On the other hand, application
a time-dependent field to a multilevel system leads to hig
nonlinear tunneling processes, e.g., resonant freque
multiplication.63 Examination of nonequilibrium transpo
through such a system in the Kondo regime might rev
new and interesting effects.

In closing, we believe that the physics of strongly cor
ed

l
i-
s
n
w
e-
of
ly
cy

al

-

lated particles in strong time-dependent external fields
restricted geometries looks to be an important and exci
subject for further research.
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