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Impurity cyclotron resonance lines of barrier donor electrons in quantum wells
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We have investigated by numerical simulation the zero-temperature line broadening of the cyclotron reso-
nance transitions of a dilute system of randomly situated barrier donors, with centers consisting of positive
donor ions fixed in the barrier region of a quantum well to which are bound electrons in the adjacent well.
Inhomogeneous line shapes due to interdonor Coulomb interactions are obtained. Discussion is restricted to the
case in which magnetic fields are sufficiently high that the electrons can be treated semicla@sichiyge
can be neglectgdThe simulations indicate that a monolayer of donor ions produces a single highly asymmet-
ric and relatively broad line, with the excitation induced by each absorbed photon being shared among a
number of donors. However, if the same donor ions are distributed among several monolayers the absorption
predicted is a finely spaced comb of well-resolved relatively narrow transition lines, each line deriving from a
different monolayer. In this case the excitation induced by an individual absorbed photon is more localized.
Parameters chosen for the simulation are realistic for GaA&#l ,As quantum wells.

I. INTRODUCTION These give rise to spatially fluctuating electric fields and
electric-field gradients in the quantum well, which, in turn,
Although considerable magnetospectroscopic data on dperturb the donors, creating fluctuations in donor transition
lute systems of localized electrons in quantum wells exists irenergies and therefore inhomogeneous broadening of the do-
the literature, the problem of determining from first prin- nor line. A second, and, for monolayers, a much more im-
ciples the spectral line shapes to be expected in such syster@rtant source of line broadening at low impurity densities is
has been largely neglected. As an initial step in this directiofhe resonant van der Waals interaction between ddhors,
we have investigated the intrinsic line broadening at zergvhereby an excited donor can transfer its excitation, via
temperature and high magnetic fields of a dilute two-electron-electron interaction, to a donor initially in the
dimensional system of quantum well electrons each of whict@round state. This process produces excited eigenstates that
is bound to a positively charged donor ion in a barrier adjaconsist of clusters of excited donors with energies that are
cent to the well. These ions, equal in number to the electronghifted by varying amounts from the unperturbed donor ab-
are assumed to reside at random positions in planes locat&@rption energy.
at discrete offset distancesfrom the center of the quantum To focus on the essentials of the interacting barrier donor
well. When values ofi are sufficiently small compared to the Problem we assume that there is only one quantum well
mean interelectron spacing, individual electrons can becom@resent, which is sufficiently narrow that the electrons can be
bound to individual ions. At zero temperature each donor iorfonsidered to be confined to a plane, taken asifyeplane.
captures an electron, confining its wave function to a regio¥Ve define the “donor center” of a barrier donor to be the
of the plane of the quantum wellaken to be parallel to the projection of the donor ion on the-y plane.(The “donor
X-y plan@ near to that particular donor ion. These confinedcenter” of a barrier donor is so called because the electronic
states are known as “barrier donors.” Spectral lines associcharge distribution associated with each eigenstate of an iso-
ated with barrier donors have been studied in magnetdated barrier donor is cylindrically symmetric about that
optical experiment$:3 Barrier donors would seem to be ex- point,
cellent candidates for an initial theoretical study of impurity ~ The high magnetic field behavior of this model is gov-
magneto-optical line shapes in quantum wells because ifrned by the interplay of the following length&) the cy-
high magnetic fields and narrow quantum wells their elecclotron radius ¢, which determines the size of the electronic
tronic wave functions are so simple, consisting to a verywave function,(b) the separation of nearby donor centers
good approximation simply of a product of a free-electronf sep, Which increases as the number of donor ions per unit
wave function in a magnetic field and the ground-state subarean decreases, angt) the offset distances of the planes
band wave function. Moreover, because the energy of theccupied by the donor ions from they plane, designated,
strong transition line of a barrier donor is sensitive to the(or justd for monolayers The lengths . andr g are defined
offset of the donor ion from the quantum well, measurement#n this paper by
of line shapes of barrier donors present in physical samples - 12
could in principle be used to study the variation of concen- re=(h/mac)™, @)
tration of the donor ions along thedirection. Success in heremis the band mass of the electron in the quantum well
such an endeavor would depend upon a theoretical undegnd o, is its cyclotron frequency defined by.=eB/mc,

standing of the line shapes. . _ whereB is the applied magnetic field, and
Unlike shallow donors in bulk semiconductors, barrier do-
nors have both permanent dipole and quadrupole moments. rsep:n‘l’z. 2
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In our simulations the donor ions occupy either a single 0.8
monolayer or, alternatively, a number of adjacent monolay-
ers separated by 0.28 nm and contained within a slab of
thickness much smaller thag,. (The donor centers, on the
other hand, are permitted to occupy any position within the
confines of the circular boundary delimiting the donor sys-
tem under considerationThe separation chosen is one-half
of a lattice constant in GaAs.

The present study deals with cases for whicks<rgg,
(where exchange effects can be neglectt donor offsets
are not much larger than 0, for offsets greater than
about 0.5, our simulations show that the electron equilib-
rium positions start to become strongly affected by electron-
electron interaction to the extent that these positions becom
only weakly correlated with the donor cente(Bor offsets
greater tharrg, the electrons form a latticelike structure, 0 : : . : :
largely uncorrelated with the donor center positipns. 04 0.6 0.8 1 12 14 L6

In Sec. Il we discuss pertinent properties of the ground
state and relevant excited states of isolated barrier donors.
We next consider absorption line broadening of a monolayer FIG. 1. Difference between the barrier donor and free-particle
of interacting barrier donors in the low-density limit. Finally cyclotron resonance energiesyat 2 (the barrier donor always has
we discuss line broadening of barrier donor systems at exhe higher energy The dashed line represents calculations based on
perimentally interesting densities and high magnetic fieldghe two-dimensional model of the present paper; the solid line rep-
for the GaAs-AlGa _,As quantum well both for single resents a variational calculation for a quantum well of thickness 10

monolayers(delta doping and uniformly doped thin slabs. nm. Offset dils;ances and energies are in donor atomic (misd
R, respectively.

VARIATIONAL
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Il. ISOLATED BARRIER DONORS function in this approximation is the most compact of the

The Hamiltonian for the electron belonging to tfta bar-  lowest-lying free-particle Landau level wave functiorld (
rier donor in a magnetic field can be written in the form =0, M=0) and has the form

HBD(j):HO(j)_2/(pj2+dj2)l/21 (3) le,M(pj):lpO,O(pj):('y/Z’n-)l/zexq_7pj2/4)- (6)

Notice that asy— o this wave function collapses to a point
charge located at the classical electrostatic equilibrium posi-
tion, the donor center. We are interested in optical transitions
N _p?2 Zi E 2 2 from ¢ o to excited states lying above the ground state by
Ho(j) Vit - + —v“p?. (4) 0, . ) .
! approximatelyZ w. (or, in donor atomic units, 2) There
exists only one such free-electron state that can be reached

Both Egs.(3) and (4) are written in cylindrical coordinates by a dipole transition fromy, o, and that isy; ;, given by
and donor atomic units wherein lengths are in units of the ' ’

where, in the symmetric gauge

bulk donor Bohr radiusa and energies are in units of the lpl’l(pj):(y/Zwl’z)pjei‘ﬁi exq—ypjzm), (7)
bulk donor Rydberg constaf® The bulk semiconductor re-
ferred to is the well semiconductofFor GaAs,a=10nm Of particular interest is the sensitivity of the donor tran-

andR=46.2cm 1.) The donor center of barrier donpris  sition energy to the offset of the donor ion from they
taken to be at the origin in these equations. The dimensiorplane. The dashed line in Fig. 1 shows the difference be-

less magnetic fieldy is defined in the usual way tween the donor and free-particle cyclotron transition ener-
gies for the present modélave functionsy o and ¢, ; for
7=a2/r§=hw0/2R, (50  the ground and excited states, respectively, and the electron

confined to thex-y plane at a particular fixed magnetic field
andd; is the offset of the donor iopfrom thex-y plane. The  (y=2) and varying offset distances. The solid line shows a
coordinatep; is the distance of the electron that is bound tomore realistic calculation in which is assumed a GaAs quan-
barrier donorj from the center of that donor. Note that for tum well that is 10 nm(one bulk donor Bohr radilsvide

GaAs the magnetic field in teslaB, is related toy by and enclosed by infinitely high barriers. The ground and ex-
cited states are variational approximations found by replac-
B=6.56y. ing exp( 'ypj2/4) in Egs. (6) and (7) by trial functions

exp(—Hpf/4)exid — k(o + &)*?]cosrz), normalizing and
For the strong magnetic fields and offsets considered hemninimizing the expectation value of the energy in each state
it is permissible to approximate the donor eigenstates bwith respect to the three parametétsk, and 8. As is to be
free-particle Landau level wave functiong, \, whereN  expected, the present model and the variational model ap-
andM are, respectively, the Landau level andngular mo-  proach each other as the offset from the center of the (@ell
mentum quantum number. The ground-state donor wavthe offset from thex-y plane in the present modehcreases.
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In a later discussion use will be made of the fact, apparent in . LOW-DENSITY LIMIT—MONOLAYERS
Fig. 1, that for each offset the magnitude of the derivative of

the model curve is always less than that of the variationa{he donor-donor interaction Hamiltonia.  whose effect
- .

CurXE'a check on the validity of our use of single free- " the donor transition energies falls off least rapidly with
particle Landau functions weyexpanded the exagt groun the separation between donors. Such terms must become
: L : dominant as the donor separations become larger and larger.
state eigenfunction in Landau level wave functions for aLet the centers of symmeFt)ry of the wave funct?ons of eleg-
GaAs quantum well 10 nm in width with infinitely high : . . .

. : ' . trons belonging to donors and j occupy the electrostatic
e e e sy I POSonS that would b assumed by classice
amplitude ofiyg ( in the exact wave function to be 0.96% at point electrons(in the case .Of low donqr depsity considereq

—05. 0.993 %1%: 1.0, and 0.999 ay=2.0. A similar cal- here, these are, to a sufficient approximation, the respective
L N ' g donor center$.We denote the displacement of the center of

guglgt‘ilogtfo:r 9/1/101 izrfg eoz)g:;tzd jt(zal tg )'/Iiﬁle(zjsseorg;?ltzit? .5'ort symmetry of the wave function of donor electrofrom that
X Y= ) y=2.0. bp f donor electror by s; and the separation of donor center

the use of single free-electron wave functions in the range of .
. . I from the center of symmetry of the wave function of elec-
fields and offsets of interest.

The donors perturb each other by producing weak in_tronj by S; . Then the Coulomb interaction between donors

plane electric fields. As a result each donor electron will findhas the form

In the low-density limit we are interested in those terms in

itself subject to a weak electric field. We shall treat this Ho(i i) =205 + p— 0| — 2/(1S  — p: |2+ d2) 12
perturbation variationally by assuming that the effect of this o) =208+ pi=py| =21]S; ~pil"+dD)
field is to displace the center of symmetry of the donor elec- —2/(|Sji —pi|2+ djz)l’z, (11

tron wave function to a new “equilibrium” position away _ . . .
from the donor center wherep; is the displacement of electrgrfrom the position

Without loss of generality we can suppose that donorOf the center of symmetry of its wave function. In our low-

electronj is subjected to a weak uniform electric field in the density approximation
negativex directionE,. Then §,=S;=S; (12)

H(j)=Hgp(j)—FX, (8) For a monolayed;=d;=d in Eq. (11).
) ] ] ] ] - If Eq. (11) is expanded ford and p values very small
whereF is the dimensionless electric force in the positive compared tos;; the leading terms affecting the transition

direction, given by energy turn out to bélyy(i,j) given by
F=[eBa/R. Hyw(i.))=2p1- py /5]~ 6(s; - p) (S /s (13)
HereE, is to be evaluated at the donor center. We introducéThe complete two-donor Hamiltonian in this approximation
the ground-state trial function is
Yo dX; Y Xo) = (vI2m) 2exp( —iyXoy;) Hep(i)+Hep(j) +Hyw(i.]). (14)

X exp{ — y[(xj—x0)2+yj2]/2}, (9) It is instructi\_/(_a to investigate the effect &f,,y, on the cy-
clotron transition of a two-donor system where both donors
which is the same wave function as in E) but with the  have the same offset distance The ground state of the
center of symmetry of its associated charge distributiorunperturbed system is
shifted a distance, in the positivex direction. Treatinggg

as a variational parameter we minimize the expectation value odpi) Yodpj)s (15
of H(j) of Eq.(8) in the wave function of Eq(9). This leads 5 state whose unperturbed energy we take to be zero and that
to the equation is connected by the dipole matrix element for optical absorp-
. . tion to the state
—F=(yl2 J d f dx; exp{— y[(F+y?)]/2
(vizm) | 4% ] 9% expt= A0 +y)) 12 [P bodp) + dodp)tnippIVE (16

><{—2(xj+xo)/[(x,~+x0)2+yj2+dj2]3’2}. (10) v_vith unperturbe_d energy equal Ez_mp(d)._ (The wave func_-
tion of Eq. (16) is one of two excited eigenstates involving

The right-hand side of Eq10) is simply the classical elec- ¥, ; andyq o of the Hamiltonian in Eq(14). The other eigen-
trostatic force exerted on the electronic charge distribution ostate] /1 1(pi) ¥o.o(p;) — ¥o,o i) ¥1.1(p;) 1/V2, has zero oscil-
the jth electron by donor ion wheread- is the force exerted lator strength because it is antisymmetric upon the inter-
on the electron by the uniform field. Thus EG0) states that change i< j.) The perturbation,Hy(i,j) affects the
the center of symmetry of the electronic charge distributionground-state energy only in second order, an effect that is
occupies a point where the electron is in classical electronegligible in the low-density limit, as explained in Appendix
static equilibrium. Under circumstances in whidfi<rg,as  A. However, the excited state energy is affected in first order
assumed in this paper, it is permissible to set tdFseqqual to  and has a perturbed energy equal to
zero(see Appendix A In that caseg, being proportional to
F for F small, is also zer§. Eundd)—1/ys), 17
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set for excited states reached from the ground state by ab]
sorption of a single photon in a dipole transition. These have = 0.04]
the form

which follows from 0.13
(1P Yo d P [HwW(i Do i) ¥1.4(py)) = — L1ysj. 0.2
9 !
o _ ) 0.1 }
The generalization of this argument to the calculation of b
the spectrum of anN-donor system in a monolayer is 0.1 s
straightforward. TheN-donor ground-staté® g is 000 $
.09 < :Q
Pos=11 vodp)). a9 g i
. . . 2 00 i
This state is unaffected to lowest order by, (i,j) (see g b
Appendix A). States for which only one donor is excited &  0.06 i
form a particularly simpleN-dimensional orthonormal basis 5 0.05 o3
N :
L4

ABSORPTION LINE

0.03 - (N=800) \

N
Vi=vapo]] dode). 1sksN (20 0,02
and have a common unperturbed eneBgy,(d). This de- 0.014
generacy is broken b (i,j) leading toN excited eigen- 0 . : [

statesd,, with various excitation energies. Each eigenstate S0 40 30 20 -10 0 10 20 30
has a probability of excitation .from7the ground state via a ENERGY (dohor density units)
dipole transition that is proportional to
N 2 FIG. 2. Comparison of predicted absorption line shape for a
< 2 v, q)|> (21) monc_)lgyer in the extreme low-density I_imit with the unweighted
k=1 transition energy density spectrum, this latter calculated Nor
=400 (diamond symbolsand N=800 (dashed interpolated line
We have constructed a computer realization of this modethe zero of energy is the transition energy of an isolated barrier
by placingN donor ions at random positions within a disk donor.
that is parallel to thex-y plane and that resides inside the
barrier at offsetd from that plane. Using Eq(18) we con-  for this system calculated usifg=800. Clearly evident is
struct the matrixH;; according to the remarkable effect of the weighting by oscillator strength.
3 . The fact that the off-diagonal matrix elements Id8f; are,
Hij=—1ysj (i#]) andH;=Eudd). (22 fom Eq. (18), negative results in suppression of the
All eigenvalues ofH;; and their corresponding eigenvectors positive-energy part of the density of trqnsition epergies line
are calculated. An unweighted histogram of energies is plotand enhancement of the low-energy tail of that line.
ted to find the density of transition energies. A second histo- The eigenstates é1;; are linear combinations of the basis
gram of energies is constructed for the line-shape simulatioftatesx defined in Eq(20). Physically this means that the
but for this histogram each energy is weighted according té¢Xcitation created by the absorption of a photon is not local-
the square of the transition dipole mom¢hy. (21)] of its  1zed on a single donor but is shared among the donors. Of
corresponding eigenfunction. The process is then repeatégPnsiderable interest is the extent to which such an excitation
until sufficiently smooth histograms are generated. Plots thaf SPread out in space. We have examined this problem by
are independent of all parameters in the probland, andy) ~ defining, for each eigenvectdr; of our Hamiltonian matrix,
are obtained by setting the unperturbed transition energf’€ Position of the “center” of the excitation associated with
Eung(d) equal to zero, measuring distanagsin Eq. (22) in @; and the “radius” of that excitation. We expard} in our
units ofrs;pand energies in donor density units, i.e., units oféxcited basis functions according to

(na?)%R/y.

All histograms are normalized to unit area for the energy
range from—o to . We seek to approximate the line shape
and density of transition energies for an effectively infinite then define the “center” of the excitation by
number of donors by using samples with valuesNoho

N
(I)i:kgl Cikq,k! (23)

greater than 800. N
The sharply peaked lines in Fig. 2 represent the results for r(C) = E FlCin 2 (24)
the density of transition energies fidr=400 (diamond sym- ' k=1 '

bols) and N=800 (dashed ling Also shown in Fig. 2 for
comparison(solid line) is a predicted absorption line shape and its “radius” by



16 724 DAVID M. LARSEN AND HERBERT L. FOX PRB 61

3.5

- | | )

0l gl 1 ‘
L “‘ NM “ ‘N ‘““"‘“r'"""' i ”’J\“
L

0.15

0.1+

2.5+

-0.05 4 V

FRACTIONAL DEVIATION

-0.1+

-0.15 . 1.5

T
-50 -45 -40 -35 -30 =25 -20 -15 -10 -8 0 5

ENERGY (donor density units)

MEAN CLUSTER RADIUS (n-1/2)

FIG. 3. Fractional deviation of the monolayer absorption histo-
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the center of the disk containing all of the donors. ENERGY ( donor density units)

Eigenvectors with energies close to zero turn out to have
a relatively high probability of representing large-radius ex- FIG. 4. Variation of_ mean cluster radi_us with transition energy
citations. A certain(smal) percentage of these excitations N @ monolayer of barrl.er.donors. All barrier donors have the same
can have radii that are comparable to the radius of the dondiffset. Dasheo! and solid line curves represent results of calculations
sample even for samples as large as the largest considered @ Systems withN=400 andN =800, respectively.
this paper N=800). Energies and oscillator strengths calcu-
lated for such excitations should be relatively strongly af-curve in Fig. 3. Small deviations between the line-shape
fected by the sample boundary. As a result we do not finurves are apparent between energies-@0 and+5. The
very good convergence of the line shape nEar0 with histogram in Fig. 3 is calculated from 82 400 realizations for
increasingN. N=400 and 19 600 realizations fot==800. The absorption

To ameliorate this problem we have chosen not to acceptne-shape curve in Fig. 2 represents results for 19200 real-
contributions to our calculated line shapes from eigenfuncizations. In both of these figures the width of the energy
tions likely to have been affected by the boundary. We atboxes for the histograms is 0[Irhe energy scale is in donor
tempt to achieve this by dividing the disk that contains all thedensity units; to convert into units d®, values of the ab-
donors into two parts, a smaller concentric disk that we calbcissa should be multiplied by1&?)*%y.] Small but statis-
the “inner disk” and the remaining outer annulus. We ac-tically significant differences appear in the energy range be-
cept contributions from only those wave functiods for ~ tween —10 and +5. The close agreement between tke
which the center of the associated excitation lies within the=400 andN =800 calculations suggests, but does not prove,

inner disk and for which that the absorption line shape shown in Fig. 2 may approxi-
mate well the line shape for infinitd.
ri<C>+ Ri < Ryisk: (26) On average, excited-state wave functions with energies

close to the unperturbed donor transition energy are associ-

whereR; is the radius of the disk containing all the donors. ated with relatively spread-out excitations. This is made clear
For the calculations reported in this paper we have taken thi Fig. 4, where the average excitation radii for eigenfunc-
area of the inner disk to be half that of the disk containing alltions of the Hamiltonian matrix of Eq(22) are plotted
the donors. against their associated energy eigenvalues. In that figure a

It is clear that asN goes to infinity this procedure will histogram was calculated with an energy bin width of 0.1
converge to the exact line shape. What is less clear is howand the points representing the ordinates for each bin con-
closely the line shape found &=800 approximates the nected. Calculations fdd=800 (solid line) are compared to
exact line shape. Line shapes calculatedNer 400 are so those forN=400 (dashed ling
close to those foN=2800 that it is difficult to distinguish Probability distributions for cluster radii, weighted by the
them in the statistical noise of our calculations. In Fig. 3 weoscillator strength of their associated wave function and nor-
display the difference between these line-shape histogranmalized to unit area, are shown in Fig. 5, where the abscissa
by subtracting ordinates of thié=400 histogram from those is the ratio of the cluster radius, defined by E2p), to Ryisy.
of the N=800 histogram and dividing this difference by the The histogram defined by the circle symbols represents the
ordinate of theN=2800 histogram at each energy. Adjacentoverall distribution of excitation cluster radii found in calcu-
points so obtained are connected to form the oscillatindations forN=3800. The connected diamond and square sym-
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14 treat the offset distance as a continuous random variable.
o As an example, in our model an isolated donor with an
offset of 10 nm from the GaAs quantum well will have a

12 transition energy aty=1, which is 0.01® greater than the

transition energy of a similar donor in the adjacent plane at
an offset of 10.28 nm. For a total donor surface densityf

104 o 10'%cn? this amounts to an energy equal to 10 in donor
density units. With increasing values of this separation
remains almost constant, but the linewidths of the peaks de-
crease, being proportional tg 1.

We have simulated “rectangular-doped” systems in
which N, layers are doped with the same average sheet den-
sity per layer ofn/N_ . For simplicity we have assumed that
the unperturbed transition energies form a comb of equally
spaced linegmore realistically, from Fig. 1, the lines crowd
together as the offsets of the layers incrgasehe off-
diagonal elements of the Hamiltonian matrix employed in
this simulation is the same as in EQ2), but the diagonal
elements are taken as

PROBABILITY

Hi=-CR, (27)

0 01 02 03 04 05 06 where C is the energy spacing between transition energies
originating from adjacent layers ari®} is a uniformly dis-
tributed random integer in the range Oy — 1. Note that
e - . . EQ. (27), which assumes a uniform spacing of transition en-
o e e e 1 TOIE5, IS an approximatin vald oy, s o 0 frge
) X yer. : . 4 since, as already mentioned, the spacing of the transition

cluster radius to the radius of the large disk circumscribing the . . .

nergies actually decreases as the offset distance increases.

donor system. The circles represent the distribution for the dono in th ¢ del it is cl that th LE of
system without regard to the energy of the excitation. The curve owever, in the present model 1t 1S clear that the value€.o

represent distributions for excitation energies within 0.1 donor den@PPropriate for a given offset is approximately proportional
sity units from zero. Curves fai=800 andN =400 are indicated. (O the magnitude of the derivative at that offset of the model
curve in Fig. 1. Since this derivative is less than the one
bols (for N=800 andN=400, respectively represent the Predicted from a more realistic calculation the present model
distributions of cluster radii for only those eigenvectors with@PPears to underestimate the transition energy spacings.
energy(donor density unitslying between—0.1 and+0.1. In Fig. 6 are shown the results of a simulation as de-
These latter graphs show tails corresponding to very larg&cribed above, foN, =8 andy=1 with unperturbed comb
excitations, suggesting that even Mt=800 the line-shape SPacing equal to 10 donor density energy units. Notice that
calculation may not have completely converged. Howeverthe lines are well resolved, being far sharper than the mono-
comparison of curves fdi =800 andN =400 in Fig. 5 does layer absorption line shape of Fig. 2 at the same value. of
support the supposition that excitation cluster radii tend to |f We were to attempt to explain the sharpness of the lines

RATIO OF CLUSTER RADIUS TOR disk

saturate at sufficiently larg. in Fig. 6 by a model in which interactions between donors
residing in different layers were neglected, we would con-
V. LOW-DENSITY LIMIT—MULTILAYERS clude that with increasindyl; the linewidths, being governed

solely by the density of donors in a given laygiN, , should

The transition energy of an electron bound to a donor iorshrink like (n/N, )*? and should all have line shapes like that
in the barrier decreases with increasing offset of the donoof the absorption line shown in Fig. 2. Simulations at various
ion from thex-y plane, as shown in Fig. 1. Substitutional values ofN, show that for largeN, the lines do shrink with
donor ions can lie only in planes in the barrier that occupy dncreasingN, but more slowly than predicted from the iso-
set of offset distances from they plane that are integer lated layer model proposed above. Further, the lines change
multiples of a fixed small distandene-half of a lattice con- shape as one progresses from the highest- to lowest-energy
stant or 0.28 nm in the case ¢f,0,0 GaAs welld. This line of the comb. It seems clear that for larye the inter-
means that the unperturbed spectrum of donors associatedtion between donors in different layers dominates the
with a number of such planes consists of an equal number ofithin-layer interactions. The decrease in linewidth of do-
infinitely sharp lines. Because these are separated by enarers associated with a given layer is a result of the decrease
gies that do not depend on the concentration of donors thiemn probability of interactions with donors in nearby layers,
energy separations, when measured in unitsnaf >R/ y, which, because they are close in excitation energy, produce
go to infinity as the density goes to zero. At low but experi-relatively large energy shifts, and an increase in probability
mentally interesting densities and offset values the energypf interactions with donors with excitation energies far from
separations of transitions arising from donors in adjacent laythat of the given layer, producing small energy shifEhe
ers may be far from negligible. Thus it is not permissible tochange in line shape of the lines, depending on their energy
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FIG. 6. Predicted absorption line shagsolid line) and un- FIG. 7. Variation of mean cluster radius with transition energy

weighted transition energy spectrufdashed ling for an eight- N the eight-layer system of Fig. 6.

layer barrier donor system in the extreme low-density limit. Each

layer has the same density of donors. Transition energies of isolated N N

barrier donors in adjacent layers are assumed separated by ten do- <q;i 2 He(iyj )’ \pi> — < Vs E He(iyj )’ ‘I’Gs> ,
nor density units. The zero of energy is the transition energy of an j=1 i=1

isolated donor in the layer with the smallest offset. (28)

position in the comb as observed in our simulations at largg,nere forj+i, He is defined by Egs(11) and (12) and

N_, is also consistent with the predominant role of interlayerHC(i i) is defined to be zero. For multilayer systems the
interactions. _ o _ . termH; from Eq.(27) is added to the diagonal element of

_ A second interesting feature of Fig. 6 is the close similargq (2g). |n this ansatz, terms representing the Stark effect of
ity of the transition energy spectrum with the line-shapeg|ecyric fields of all the other donors acting on donan-
spectrum, especially in comparison with Fig. 2, where theses, "y the corresponding electric field gradients do affect
two spectra are very different. This is connected with they,q |ine shape. In Appendix A we show that Stark effect

breakup of excitation clusters by the presence of “diagonahertrhations are negligible compared to the terms that we
disorder” associated with the occupation of many layers, arqq

effect that is also reflected in the smallness of the cluster THere are two classes of terms arising from the Taylor
radii, depicted in Fig. 7 for runs withl=200. Even near the expansion oMHc(i,j) that contribute in lowest order to ex-

line peakg the clusters are significqntly smaller than the Iarg'ression(28). These are terms of ordefdf/sﬁ- (or equiva-
est found in the monolay_er case, Fig. 4. Both_qf these effect%aently p2d?/s3) and those of orde?p2/s> , given in expres-
the coalescence of the line shape and transition energy den- | P . IR .
. . . sions(29) and(31), respectively. These expressions are
sity spectra and the shrinking of cluster size become more
pronounced adl; increases.
{3(sj-py)?Isi — pfIsi —[3(s;- pp)? (s +d7)*?
V. HIGHER DENSITIES 2 2 o L
_ S —pil(sf +d))¥ P +ie], (29
We now consider more realistic situations in whiehthe
offset values, though small comparedrtg,, are not com-
pletely negligible, andb) the cyclotron radius is compa-
rable in magnitude to the offset distances. To obtain th ;
spectrum of excitation energies we again take the grounof-’ress'On
state energy as zero but now calculate the diagonal matrix
elements correct to lowest nonvanishing order in an expan- 21 1 /3 2_ 2 2 | 42\5/2
sion in inverse powers of the donor separations. Thus we mpiLLS] + (2d} = s/ (s +di)>] (30
calculate theth diagonal matrix element for a monolayer by
evaluating to this order the term and

which represents the usual field gradient interaction between
éhe donors and contributes, after angular integration, to ex-
(28) the term
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[{0.7%7p{ + L.8(pi- pp)?}/s; — T.5((s; - p) i + 2(5 - 1) 004
X (s p)(pi- p}/sf + 10855 - ) X(s - pp) 2l (4s))]
+ie, (31
which, after angular integrations, leads to - %0
&
4.507p7ls;). 32 &
’-—
If terms given in formulag30) and(32) are inserted into the 2
expression28), and the integrations performed, one arrives g 0.02-
at diagonal terms given in donor atomic units by = .
2 L
< :n:.:
Hi=y 1> [1Us] +(2d?—s3)/(sh +d?)%? y
i % o0 ""
& ’ i
§

+4.5(ys;)]-CR;, (33

where we have included the unperturbed donor transition
energies in Eq(33) in the same way as in E§27). ° ;
The first correction to the low-density off-diagonal matrix 40 70 60 -50 40 30 -20 10 0 10 20
elements given by Eq22) is most easily calculated by per-
forming a multipole expansion of the electron-electron repul-

sion term inH¢(i,]) given in Eq.(11) and retaining the term FIG. 8. Predicted line shape of a 20-layer system of barrier

ENERGY (donor density units)

of order (5;;) "°. This term is found to be donors with equal concentration of donors in each Idgelid line).
415 Density corrections have been applied in the calculations. The
2P,(cose)|pi— pj /s, (34) dashed curve shows the line predicted if the van der Waals interac-

where P,(cosg) is the fourth-order Legendre polynomial tions between donors were neglected. The energy separation be-
and ¢ is the angle betweep.—p; and s;. The required tween transitions of isolated donors in adjacent layers is taken to be
i~ Pj ji- . . ;
matrix element is of the form given by the left-hand side ofzﬁ78 dofnor densn?l/ units, c:)rresponqln% o1 gr_md a Sma”esft
Eq. (18) with Hyw(i,j) replaced by expressiaid4), and the ° slet 3 dZO nm. The Izero N _t:]nirgy 'S t" © trafrfnsntlon energy ot an
N . ’ - . ’ . __isolated donor in the layer with the smallest offset.
required integrals are readily calculated if the wave functions Y

are rewritten in relative coordinates. We find the Correctioncm,l althouah at offsets near 10 nm this separation would
to Hj; defined in Eq(22) to be, in donor atomic units, ’ 9 P

increase to nearly 0.5 cml). Furthermore, the presence of
-9 VZSiSj ). (35) sign_ificant concent_rations of positive and nega_tive ions i.n the
barrier or well region could broaden out the lines predicted

In Fig. 8 are shown results employing E¢33), (22), and  here to the extent that the comb structure could be sup-
(35) for a twenty-layer system with smallest offset equal topressed and the main peak shifted to higher energies.
20 nm (smallestd value equal to a), areal barrier donor Only those transitions that can arise from the ground state
density of 16°donors/crd (na?=0.01), and magnetic field ©Of the donor system have been considered. There are, how-
strength of 6.56 T ¢=1). The comb structure on the curve €ver many excited levels lying near the ground state that
of predicted absorption line shagsolid line) is easily dis- could be thermally populated at low but nonzero tempera-
cerned. Particularly interesting is the comparison of this lindures. Transitions from these levels, when superimposed,
with the line shape predicted by neglecting the off-diagonafould in principle wash out the structure predicted here.
elements of the Hamiltonian matrixlashed ling These el- While our calculation cannot rule out such a possibility,
ements are often neglected in line-shape calculations. TH&ere is reason to think that broadening from thermal popu-
strong shift of the predicted absolute maximum of the apJation of such levels might be unimportant. In Appendix B
sorption peak towards low energy exhibited here may be aWe show that at high enough magnetic fiejd{*>1, transi-
important physical effect in observed experimental spectra. [ions from the low-lying levels mentioned above superim-
has nothing to do with the crowding together of transitionsPose exactly on those for the ground state so that thermal
originating from donors with large offsetahich would fur- ~ €Xcitation of these excited states produces no change in the
ther enhance the absoption strength in the low-energy part @ro temperature line shape.
the spectrum

The pred|cte_d comb structure is most pro_nounceq_for VI. CONCLUSIONS
small offsets, high magnetic fields and low doping densities.
(We have purposely chosen relatively large offsets and a This paper treats absorption line shapes for an idealized
small magnetic field in Fig. 8 to show that the comb structuresystem of dilute interacting barrier donors in a single narrow
persists even in such an “unfavorable” circumstan&a far  quantum well at zero temperature. The lowest- and next-
as we know this structure has not been observed in barrigsrder terms in the expansion of the absorption energies in
donor spectra. To observe it would require rather high resopowers of the barrier donor density are considered. It is sug-
lution (in Fig. 8 the comb peaks are separated by about 0.18ested that for densities, fields, and offsets typically utilized
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in studies of barrier donor spectra in GaAs®& _,As APPENDIX B
guantum well structures, it should be possible, in appropriate
samples, to resolve transitions arising from substitutional
barrier donors at different distances from the center of the ssd>r,,
well.

In the low-density ultrahigh-field limit, defined by

Hc(i,j) can be approximated by expressi@9) [expression
(31) being neglected because it is of higher order than ex-
pression(29) in the ultrahigh-field regimeand the unper-

In donor atomic units(used throughout this appenglix turbed barrier donor Hamiltonian takes the expanded form

terms of lowest ordery '/s3, and higher ordery 'd?/s® , _ 5 i3
and y~2/s°, are included in the expansion of the Coulomb Hep(i)~Ho(i) —2/d; + pi/d;}. (B1)
potentials between two donors separated by distan®e | this limit the Hamiltonian of the donor system is clearly
have assumed thag” ¥ and d are of the same order of quadratic in the electron displacements and the energy struc-
magnitude and one order smaller tr@rAs the surface bar- tre has certain simple features that can be clearly elucidated
rier donor densityn decreases the distancegrow in pro-  py introducing theA andB operators of Suzuki and Hengel.
portion ton~ Y2 Thus, for example the leading term in the These operators, in donor atomic units, are defined for an
density expansion is of ordery /s or, equivalentlynr?/s, arbitrary electrorj by

whereas two higher-energy terms mentioned above are of

APPENDIX A

order (rr?)(nd?)/s and (r2)?/s, respectively. A=[(Pjx— vYil2) —i(pjy+ yxi/21/(27) Y2
Because of our choice of ground-state basis function, (B2)
Hyw(i,j), given in Eq.(13), has no effect on the ground- By=A;T—iyM(x+iy;) /22

state energy. Notice that the ground-state wave function ChoWhere
sen consists of products of functioig o and thatH (i, ])

connects the unperturbed state)o (pi) Yo olpj) 1O 1 9 1 9
o 1(pi) ¥o-1(p;); these states have an energy difference Pix=7 = Pjy=7 -
of the form 2yY2f(yY/2d). If f(y*2d) is of order unity then I oX, I 9y

the second-order perturbed energy due to this coupling is ofhey obey the usual commutation relations for raising and
order lowering operators

(LysS) Ly P (y2d) 1= O(rSIsd) = (Nr2) 521 [ALATT=6,, [B)B'1=6« (B3)

(AD) and every A operator commutes with ever3 operator

which is of smaller order than the terms retained. At ultra-(Where byA andB operators we always mea) B, A", and
high magnetic fields ¢¥2d—x=) we find that f(yY%d) B' operators The operator; lowers both the Landau and

—2(y*2d) % and Eq.(A1) must be replaced by M quantum numbers of electrgrby one unit. On the other
hand,B; has no effect on the Landau quantum number but
1/vs3) 2/ v22f (412d) ] = 3 6 raisesM by one gnit: . .
(LhysipFily HH(y ") ]=0(d () Our Hamiltonian is quadratic in the displacements of the
=O((nr§)(nd2)3’2/rsea. electrons from their associated donor centers. Such a Hamil-

tonian when expressed #andB operators is a linear com-
(A2) bination of products of pairs of these operators. We ignore
A similar argument with similar result holds for the chosen all tet:msNtrlatt(r:]an adm|i< séatgs t()ftdlﬁ]?rept Lg;/dau qrartltum
excited state basis functions. Thus it is consistent to ignor@um ersiv 1o the unperturbed state of Intereqive negiec
such mixing because the energy gap between such levels and

Hyw(i,j) in second order. :
It is easy to show that the electric field component in thethe unperturbed level is assumed large compared to the Cou-

x-y plane at a distancefrom the barrier donor that produces lomb energies.As an ?Xamp'e’ all terms mvolvm_g the prod-
it, E(s), is of orderd?/s*. Because of our choice of basis uct of anA operator with a8 operator will be omitted.

functions these fields give zero first-order contribution to the In this approximation the Landau quantum numbis a

donor energies. For nondegenerate levels electric fields giv%OOd quantum number. The lowest-lying states of the inter-

rise to a quadratic Stark shift of the donor level. Such electricaCtIng donor system ar=0 levels and the optically ex-

fields couple, for example, the ground donor stage(p) to cited states arél=1 levels. Mathematically the eigenstates

the donor levekjo_1(p;), which lies above it by an energy are pr_oduct functions of A states” and ‘B states” and tfle
Y2 (4Y2d). The second-order energy in this case is of ordef€rgies are equal to a sum of the energy of thestate
Y ‘ and that of the B state.” We can represent the lowest levels

by wave functions of the form
E(s)2y ML (/¥0)]=0(y st =o(rdd¥s®)

—0(nr)¥And?) ey (A3) [ONZS (B4)
where|0), is the vacuum state for th& operators, the state
(assumingd andr . are comparable in sizewhich is again of  sych that for all electrons

higher order than terms retained. A similar analysis can be

applied to the excited state basis functiéns. Ai|0)4=0, (B5)
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and g is a particular eigenstate of tH& operators in the is independent of whichever initial state of the fo(Bv¥) it
Hamiltonian. The operator for optical excitation in the dipole arises from.

approximation is linear in the electronic displacements and At high magnetic fields and low temperatures only states
therefore in theA andB operators. As a result, when the light of form (B4) are low enough in energy to be thermally popu-
excites the system into a state for whish=1, the excited lated. As a consequence, if electron-phonon interactions are
state is a product of an excited\'state” with thesamestate  ignored, the line shapes should be independent of tempera-
0g as in the initial state. Thus the energy of the excited statéure in the ultrahigh field limit at low temperatures.
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