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Impurity cyclotron resonance lines of barrier donor electrons in quantum wells

David M. Larsen and Herbert L. Fox
Physics Department, University of Massachusetts, Lowell, Massachusetts 01854

~Received 12 October 1999!

We have investigated by numerical simulation the zero-temperature line broadening of the cyclotron reso-
nance transitions of a dilute system of randomly situated barrier donors, with centers consisting of positive
donor ions fixed in the barrier region of a quantum well to which are bound electrons in the adjacent well.
Inhomogeneous line shapes due to interdonor Coulomb interactions are obtained. Discussion is restricted to the
case in which magnetic fields are sufficiently high that the electrons can be treated semiclassically~exchange
can be neglected!. The simulations indicate that a monolayer of donor ions produces a single highly asymmet-
ric and relatively broad line, with the excitation induced by each absorbed photon being shared among a
number of donors. However, if the same donor ions are distributed among several monolayers the absorption
predicted is a finely spaced comb of well-resolved relatively narrow transition lines, each line deriving from a
different monolayer. In this case the excitation induced by an individual absorbed photon is more localized.
Parameters chosen for the simulation are realistic for GaAs-AlxGa12xAs quantum wells.
d
s
n-
te
io
er
o
ic
ja
n
a

e
m

io
io

ed
oc
et
x-
ity
e
ec
er
on
ub
th
he
n
pl
n

d

o
n

nd
n,
ion
do-

im-
is
rs,
via
e
that

are
ab-

nor
ell
be

e

nic
iso-
at

v-

ic
rs
nit
s

ell
I. INTRODUCTION

Although considerable magnetospectroscopic data on
lute systems of localized electrons in quantum wells exist
the literature, the problem of determining from first pri
ciples the spectral line shapes to be expected in such sys
has been largely neglected. As an initial step in this direct
we have investigated the intrinsic line broadening at z
temperature and high magnetic fields of a dilute tw
dimensional system of quantum well electrons each of wh
is bound to a positively charged donor ion in a barrier ad
cent to the well. These ions, equal in number to the electro
are assumed to reside at random positions in planes loc
at discrete offset distancesd from the center of the quantum
well. When values ofd are sufficiently small compared to th
mean interelectron spacing, individual electrons can beco
bound to individual ions. At zero temperature each donor
captures an electron, confining its wave function to a reg
of the plane of the quantum well~taken to be parallel to the
x-y plane! near to that particular donor ion. These confin
states are known as ‘‘barrier donors.’’ Spectral lines ass
ated with barrier donors have been studied in magn
optical experiments.1–3 Barrier donors would seem to be e
cellent candidates for an initial theoretical study of impur
magneto-optical line shapes in quantum wells becaus
high magnetic fields and narrow quantum wells their el
tronic wave functions are so simple, consisting to a v
good approximation simply of a product of a free-electr
wave function in a magnetic field and the ground-state s
band wave function. Moreover, because the energy of
strong transition line of a barrier donor is sensitive to t
offset of the donor ion from the quantum well, measureme
of line shapes of barrier donors present in physical sam
could in principle be used to study the variation of conce
tration of the donor ions along thez direction. Success in
such an endeavor would depend upon a theoretical un
standing of the line shapes.

Unlike shallow donors in bulk semiconductors, barrier d
nors have both permanent dipole and quadrupole mome
PRB 610163-1829/2000/61~24!/16720~10!/$15.00
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These give rise to spatially fluctuating electric fields a
electric-field gradients in the quantum well, which, in tur
perturb the donors, creating fluctuations in donor transit
energies and therefore inhomogeneous broadening of the
nor line. A second, and, for monolayers, a much more
portant source of line broadening at low impurity densities
the resonant van der Waals interaction between dono4

whereby an excited donor can transfer its excitation,
electron-electron interaction, to a donor initially in th
ground state. This process produces excited eigenstates
consist of clusters of excited donors with energies that
shifted by varying amounts from the unperturbed donor
sorption energy.

To focus on the essentials of the interacting barrier do
problem we assume that there is only one quantum w
present, which is sufficiently narrow that the electrons can
considered to be confined to a plane, taken as thex-y plane.
We define the ‘‘donor center’’ of a barrier donor to be th
projection of the donor ion on thex-y plane.~The ‘‘donor
center’’ of a barrier donor is so called because the electro
charge distribution associated with each eigenstate of an
lated barrier donor is cylindrically symmetric about th
point.!

The high magnetic field behavior of this model is go
erned by the interplay of the following lengths:~a! the cy-
clotron radiusr c , which determines the size of the electron
wave function,~b! the separation of nearby donor cente
r sep, which increases as the number of donor ions per u
arean decreases, and~c! the offset distances of the plane
occupied by the donor ions from thex-y plane, designateddi
~or justd for monolayers!. The lengthsr c andr separe defined
in this paper by

r c5~\/mvc!
1/2, ~1!

wherem is the band mass of the electron in the quantum w
and vc is its cyclotron frequency defined byvc5eB/mc,
whereB is the applied magnetic field, and

r sep5n21/2. ~2!
16 720 ©2000 The American Physical Society
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In our simulations the donor ions occupy either a sin
monolayer or, alternatively, a number of adjacent monol
ers separated by 0.28 nm and contained within a slab
thickness much smaller thanr sep. ~The donor centers, on th
other hand, are permitted to occupy any position within
confines of the circular boundary delimiting the donor s
tem under consideration.! The separation chosen is one-ha
of a lattice constant in GaAs.

The present study deals with cases for whichr c!r sep
~where exchange effects can be neglected! and donor offsets
are not much larger than 0.2r sep; for offsets greater than
about 0.5r sep our simulations show that the electron equili
rium positions start to become strongly affected by electr
electron interaction to the extent that these positions bec
only weakly correlated with the donor centers.~For offsets
greater thanr sep the electrons form a latticelike structur
largely uncorrelated with the donor center positions.!

In Sec. II we discuss pertinent properties of the grou
state and relevant excited states of isolated barrier don
We next consider absorption line broadening of a monola
of interacting barrier donors in the low-density limit. Final
we discuss line broadening of barrier donor systems at
perimentally interesting densities and high magnetic fie
for the GaAs-AlxGa12xAs quantum well both for single
monolayers~delta doping! and uniformly doped thin slabs.

II. ISOLATED BARRIER DONORS

The Hamiltonian for the electron belonging to thej th bar-
rier donor in a magnetic field can be written in the form

HBD~ j !5H0~ j !22/~r j
21dj

2!1/2, ~3!

where, in the symmetric gauge

H0~ j !52¹ j
21

g

i

]

]f j
1

1

4
g2r j

2. ~4!

Both Eqs.~3! and ~4! are written in cylindrical coordinate
and donor atomic units wherein lengths are in units of
bulk donor Bohr radiusa and energies are in units of th
bulk donor Rydberg constantR. The bulk semiconductor re
ferred to is the well semiconductor.~For GaAs,a510 nm
and R546.2 cm21.) The donor center of barrier donorj is
taken to be at the origin in these equations. The dimens
less magnetic fieldg is defined in the usual way

g5a2/r c
25\vc/2R, ~5!

anddj is the offset of the donor ionj from thex-y plane. The
coordinater j is the distance of the electron that is bound
barrier donorj from the center of that donor. Note that fo
GaAs the magnetic field in teslas,B, is related tog by

B56.56g.

For the strong magnetic fields and offsets considered h
it is permissible to approximate the donor eigenstates
free-particle Landau level wave functionscN,M , where N
andM are, respectively, the Landau level andz-angular mo-
mentum quantum number. The ground-state donor w
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function in this approximation is the most compact of t
lowest-lying free-particle Landau level wave functions (N
50, M50) and has the form

cN,M~r j !5c0,0~r j !5~g/2p!1/2exp~2gr j
2/4!. ~6!

Notice that asg→` this wave function collapses to a poin
charge located at the classical electrostatic equilibrium p
tion, the donor center. We are interested in optical transiti
from c0,0 to excited states lying above the ground state
approximately\vc ~or, in donor atomic units, 2g.! There
exists only one such free-electron state that can be rea
by a dipole transition fromc0,0, and that isc1,1, given by

c1,1~rj !5~g/2p1/2!r je
if j exp~2gr j

2/4!. ~7!

Of particular interest is the sensitivity of the donor tra
sition energy to the offset of the donor ion from thex-y
plane. The dashed line in Fig. 1 shows the difference
tween the donor and free-particle cyclotron transition en
gies for the present model~wave functionsc0,0 andc1,1 for
the ground and excited states, respectively, and the elec
confined to thex-y plane! at a particular fixed magnetic field
(g52) and varying offset distances. The solid line show
more realistic calculation in which is assumed a GaAs qu
tum well that is 10 nm~one bulk donor Bohr radius! wide
and enclosed by infinitely high barriers. The ground and
cited states are variational approximations found by rep
ing exp(2grj

2/4) in Eqs. ~6! and ~7! by trial functions
exp(2Hrj

2/4)exp@2k(rj
21d2)1/2#cos(pz), normalizing and

minimizing the expectation value of the energy in each st
with respect to the three parametersH, k, andd. As is to be
expected, the present model and the variational model
proach each other as the offset from the center of the well~or
the offset from thex-y plane in the present model! increases.

FIG. 1. Difference between the barrier donor and free-part
cyclotron resonance energies atg52 ~the barrier donor always ha
the higher energy!. The dashed line represents calculations based
the two-dimensional model of the present paper; the solid line r
resents a variational calculation for a quantum well of thickness
nm. Offset distances and energies are in donor atomic units~a and
R, respectively!.



t
o

na

e-
n
a

r
at

rt
e

in
n
is

hi
ec
y

no
e

c

io

lu

-
o

io
tro

in

ith
ome
rger.
c-

cal
d
tive
of

er
c-
rs

-

n

on

ors

that
rp-

g

ter-

t is
ix
der

16 722 PRB 61DAVID M. LARSEN AND HERBERT L. FOX
In a later discussion use will be made of the fact, apparen
Fig. 1, that for each offset the magnitude of the derivative
the model curve is always less than that of the variatio
curve.

As a check on the validity of our use of single fre
particle Landau functions we expanded the exact grou
state eigenfunction in Landau level wave functions for
GaAs quantum well 10 nm in width with infinitely high
barriers.5 Using a fixed~and typical! offset of 15 nm between
the donor ion and the well center we estimated the squa
amplitude ofc0,0 in the exact wave function to be 0.967
g50.5, 0.993 atg51.0, and 0.999 atg52.0. A similar cal-
culation forc1,1 in the excited state yields 0.935 atg50.5,
0.984 atg51.0, and 0.997 atg52.0. These results suppo
the use of single free-electron wave functions in the rang
fields and offsets of interest.

The donors perturb each other by producing weak
plane electric fields. As a result each donor electron will fi
itself subject to a weak electric field. We shall treat th
perturbation variationally by assuming that the effect of t
field is to displace the center of symmetry of the donor el
tron wave function to a new ‘‘equilibrium’’ position awa
from the donor center.

Without loss of generality we can suppose that do
electronj is subjected to a weak uniform electric field in th
negativex directionEx . Then

H~ j !5HBD~ j !2Fx, ~8!

whereF is the dimensionless electric force in the positivex
direction, given by

F5ueExua/R.

HereEx is to be evaluated at the donor center. We introdu
the ground-state trial function

c0,0~xj ,yj ,x0!5~g/2p!1/2exp~2 igx0yj !

3exp$2g@~xj2x0!21yj
2#/2%, ~9!

which is the same wave function as in Eq.~6! but with the
center of symmetry of its associated charge distribut
shifted a distancex0 in the positivex direction. Treatingx0
as a variational parameter we minimize the expectation va
of H( j ) of Eq. ~8! in the wave function of Eq.~9!. This leads
to the equation

2F5~g/2p!E
2`

`

dyjE
2`

`

dxj exp$2g@~xj
21yj

2!#/2%

3$22~xj1x0!/@~xj1x0!21yj
21dj

2#3/2%. ~10!

The right-hand side of Eq.~10! is simply the classical elec
trostatic force exerted on the electronic charge distribution
the j th electron by donor ionj, whereasF is the force exerted
on the electron by the uniform field. Thus Eq.~10! states that
the center of symmetry of the electronic charge distribut
occupies a point where the electron is in classical elec
static equilibrium. Under circumstances in whichdj!r sepas
assumed in this paper, it is permissible to set to setF equal to
zero~see Appendix A!. In that casex0 , being proportional to
F for F small, is also zero.6
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III. LOW-DENSITY LIMIT—MONOLAYERS

In the low-density limit we are interested in those terms
the donor-donor interaction HamiltonianHc , whose effect
on the donor transition energies falls off least rapidly w
the separation between donors. Such terms must bec
dominant as the donor separations become larger and la
Let the centers of symmetry of the wave functions of ele
trons belonging to donorsi and j occupy the electrostatic
equilibrium positions that would be assumed by classi
point electrons.~In the case of low donor density considere
here, these are, to a sufficient approximation, the respec
donor centers.! We denote the displacement of the center
symmetry of the wave function of donor electroni from that
of donor electronj by si j and the separation of donor cent
i from the center of symmetry of the wave function of ele
tron j by Si j . Then the Coulomb interaction between dono
has the form

HC~ i , j !52/usi j 1ri2rj u22/~ uSi j 2rj u21di
2!1/2

22/~ uSj i 2ri u21dj
2!1/2, ~11!

whererj is the displacement of electronj from the position
of the center of symmetry of its wave function. In our low
density approximation

si j 5Si j 5Sj i . ~12!

For a monolayerdi5dj5d in Eq. ~11!.
If Eq. ~11! is expanded ford and r values very small

compared tosi j the leading terms affecting the transitio
energy turn out to beHVW( i , j ) given by

HVW~ i , j !52ri•rj /si j
3 26~si j •ri !~si j •rj !/si j

5 . ~13!

The complete two-donor Hamiltonian in this approximati
is

HBD~ i !1HBD~ j !1HVW~ i , j !. ~14!

It is instructive to investigate the effect ofHVW on the cy-
clotron transition of a two-donor system where both don
have the same offset distanced. The ground state of the
unperturbed system is

c0,0~r i !c0,0~r j !, ~15!

a state whose unperturbed energy we take to be zero and
is connected by the dipole matrix element for optical abso
tion to the state

@c1,1~r i !c0,0~r j !1c0,0~r i !c1,1~r j !#/& ~16!

with unperturbed energy equal toEunp(d). „The wave func-
tion of Eq. ~16! is one of two excited eigenstates involvin
c1,1 andc0,0 of the Hamiltonian in Eq.~14!. The other eigen-
state@c1,1(r i)c0,0(r j )2c0,0(r i)c1,1(r j )#/&, has zero oscil-
lator strength because it is antisymmetric upon the in
change i↔ j .… The perturbation, HVW( i , j ) affects the
ground-state energy only in second order, an effect tha
negligible in the low-density limit, as explained in Append
A. However, the excited state energy is affected in first or
and has a perturbed energy equal to

Eunp~d!21/gsi j
3 , ~17!
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which follows from

^c1,1~r i !c0,0~r j !uHVW~ i , j !uc0,0~r i !c1,1~r j !&521/gsi j
3 .
~18!

The generalization of this argument to the calculation
the spectrum of anN-donor system in a monolayer i
straightforward. TheN-donor ground-stateFGS is

FGS5)
j 51

N

c0,0~r j !. ~19!

This state is unaffected to lowest order byHVW( i , j ) ~see
Appendix A!. States for which only one donor is excite
form a particularly simpleN-dimensional orthonormal basi
set for excited states reached from the ground state by
sorption of a single photon in a dipole transition. These h
the form

Ck5c1,1~rk!)
j Þk

N

c0,0~r j !, 1<k<N ~20!

and have a common unperturbed energyEunp(d). This de-
generacy is broken byHVW( i , j ) leading toN excited eigen-
statesF l , with various excitation energies. Each eigenst
has a probability of excitation from the ground state via
dipole transition that is proportional to7

Z K (
k51

N

CkUF l L Z2. ~21!

We have constructed a computer realization of this mo
by placingN donor ions at random positions within a dis
that is parallel to thex-y plane and that resides inside th
barrier at offsetd from that plane. Using Eq.~18! we con-
struct the matrixHi j according to

Hi j 521/gsi j
3 ~ iÞ j ! and Hii 5Eunp~d!. ~22!

All eigenvalues ofHi j and their corresponding eigenvecto
are calculated. An unweighted histogram of energies is p
ted to find the density of transition energies. A second his
gram of energies is constructed for the line-shape simula
but for this histogram each energy is weighted according
the square of the transition dipole moment@Eq. ~21!# of its
corresponding eigenfunction. The process is then repe
until sufficiently smooth histograms are generated. Plots
are independent of all parameters in the problem~n, d, andg!
are obtained by setting the unperturbed transition ene
Eunp(d) equal to zero, measuring distancessi j in Eq. ~22! in
units of r sepand energies in donor density units, i.e., units

~na2!3/2R/g.

All histograms are normalized to unit area for the ene
range from2` to `. We seek to approximate the line sha
and density of transition energies for an effectively infin
number of donors by using samples with values ofN no
greater than 800.

The sharply peaked lines in Fig. 2 represent the results
the density of transition energies forN5400 ~diamond sym-
bols! and N5800 ~dashed line!. Also shown in Fig. 2 for
comparison~solid line! is a predicted absorption line shap
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for this system calculated usingN5800. Clearly evident is
the remarkable effect of the weighting by oscillator streng
The fact that the off-diagonal matrix elements ofHi j are,
from Eq. ~18!, negative, results in suppression of th
positive-energy part of the density of transition energies l
and enhancement of the low-energy tail of that line.

The eigenstates ofHi j are linear combinations of the bas
statesCk defined in Eq.~20!. Physically this means that th
excitation created by the absorption of a photon is not loc
ized on a single donor but is shared among the donors
considerable interest is the extent to which such an excita
is spread out in space. We have examined this problem
defining, for each eigenvectorF i of our Hamiltonian matrix,
the position of the ‘‘center’’ of the excitation associated wi
F i and the ‘‘radius’’ of that excitation. We expandF i in our
excited basis functions according to

F i5 (
k51

N

cikCk , ~23!

then define the ‘‘center’’ of the excitation by

r i
~C!5 (

k51

N

r kuciku2 ~24!

and its ‘‘radius’’ by

FIG. 2. Comparison of predicted absorption line shape fo
monolayer in the extreme low-density limit with the unweight
transition energy density spectrum, this latter calculated forN
5400 ~diamond symbols! and N5800 ~dashed interpolated line!.
The zero of energy is the transition energy of an isolated bar
donor.
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Ri5F2(
k51

N

ur k2r i
~C!u2uciku2G1/2

, ~25!

wherer k is the displacement of the center of donork from
the center of the disk containing all of the donors.

Eigenvectors with energies close to zero turn out to h
a relatively high probability of representing large-radius e
citations. A certain~small! percentage of these excitation
can have radii that are comparable to the radius of the do
sample even for samples as large as the largest consider
this paper (N5800). Energies and oscillator strengths calc
lated for such excitations should be relatively strongly
fected by the sample boundary. As a result we do not fi
very good convergence of the line shape nearE50 with
increasingN.

To ameliorate this problem we have chosen not to acc
contributions to our calculated line shapes from eigenfu
tions likely to have been affected by the boundary. We
tempt to achieve this by dividing the disk that contains all
donors into two parts, a smaller concentric disk that we c
the ‘‘inner disk’’ and the remaining outer annulus. We a
cept contributions from only those wave functionsF i for
which the center of the associated excitation lies within
inner disk and for which

r i
~C!1Ri,Rdisk, ~26!

whereRdisk is the radius of the disk containing all the dono
For the calculations reported in this paper we have taken
area of the inner disk to be half that of the disk containing
the donors.

It is clear that asN goes to infinity this procedure wil
converge to the exact line shape. What is less clear is
closely the line shape found atN5800 approximates the
exact line shape. Line shapes calculated forN5400 are so
close to those forN5800 that it is difficult to distinguish
them in the statistical noise of our calculations. In Fig. 3
display the difference between these line-shape histogr
by subtracting ordinates of theN5400 histogram from those
of the N5800 histogram and dividing this difference by th
ordinate of theN5800 histogram at each energy. Adjace
points so obtained are connected to form the oscillat

FIG. 3. Fractional deviation of the monolayer absorption his
gram calculated withN5400 from that calculated withN5800.
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curve in Fig. 3. Small deviations between the line-sha
curves are apparent between energies of210 and15. The
histogram in Fig. 3 is calculated from 82 400 realizations
N5400 and 19 600 realizations forN5800. The absorption
line-shape curve in Fig. 2 represents results for 19 200 r
izations. In both of these figures the width of the ener
boxes for the histograms is 0.1.@The energy scale is in dono
density units; to convert into units ofR, values of the ab-
scissa should be multiplied by (na2)3/2/g.# Small but statis-
tically significant differences appear in the energy range
tween 210 and 15. The close agreement between theN
5400 andN5800 calculations suggests, but does not pro
that the absorption line shape shown in Fig. 2 may appro
mate well the line shape for infiniteN.

On average, excited-state wave functions with energ
close to the unperturbed donor transition energy are ass
ated with relatively spread-out excitations. This is made cl
in Fig. 4, where the average excitation radii for eigenfun
tions of the Hamiltonian matrix of Eq.~22! are plotted
against their associated energy eigenvalues. In that figu
histogram was calculated with an energy bin width of 0
and the points representing the ordinates for each bin c
nected. Calculations forN5800 ~solid line! are compared to
those forN5400 ~dashed line!.

Probability distributions for cluster radii, weighted by th
oscillator strength of their associated wave function and n
malized to unit area, are shown in Fig. 5, where the absc
is the ratio of the cluster radius, defined by Eq.~25!, to Rdisk.
The histogram defined by the circle symbols represents
overall distribution of excitation cluster radii found in calcu
lations forN5800. The connected diamond and square sy

-

FIG. 4. Variation of mean cluster radius with transition ener
in a monolayer of barrier donors. All barrier donors have the sa
offset. Dashed and solid line curves represent results of calculat
for systems withN5400 andN5800, respectively.
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bols ~for N5800 andN5400, respectively! represent the
distributions of cluster radii for only those eigenvectors w
energy~donor density units! lying between20.1 and10.1.
These latter graphs show tails corresponding to very la
excitations, suggesting that even atN5800 the line-shape
calculation may not have completely converged. Howev
comparison of curves forN5800 andN5400 in Fig. 5 does
support the supposition that excitation cluster radii tend
saturate at sufficiently largeN.

IV. LOW-DENSITY LIMIT—MULTILAYERS

The transition energy of an electron bound to a donor
in the barrier decreases with increasing offset of the do
ion from thex-y plane, as shown in Fig. 1. Substitution
donor ions can lie only in planes in the barrier that occup
set of offset distances from thex-y plane that are intege
multiples of a fixed small distance@one-half of a lattice con-
stant or 0.28 nm in the case of~1,0,0! GaAs wells#. This
means that the unperturbed spectrum of donors assoc
with a number of such planes consists of an equal numbe
infinitely sharp lines. Because these are separated by e
gies that do not depend on the concentration of donors
energy separations, when measured in units of (na2)3/2R/g,
go to infinity as the density goes to zero. At low but expe
mentally interesting densities and offset values the ene
separations of transitions arising from donors in adjacent
ers may be far from negligible. Thus it is not permissible

FIG. 5. Probability distributions for finding various cluster rad
for barrier donors in a monolayer. The abscissa is the ratio of
cluster radius to the radius of the large disk circumscribing
donor system. The circles represent the distribution for the do
system without regard to the energy of the excitation. The cur
represent distributions for excitation energies within 0.1 donor d
sity units from zero. Curves forN5800 andN5400 are indicated.
e
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treat the offset distance as a continuous random variable
As an example, in our model an isolated donor with

offset of 10 nm from the GaAs quantum well will have
transition energy atg51, which is 0.010R greater than the
transition energy of a similar donor in the adjacent plane
an offset of 10.28 nm. For a total donor surface densityn of
1010/cm2 this amounts to an energy equal to 10 in don
density units. With increasing values ofg this separation
remains almost constant, but the linewidths of the peaks
crease, being proportional tog21.

We have simulated ‘‘rectangular-doped’’ systems
which NL layers are doped with the same average sheet d
sity per layer ofn/NL . For simplicity we have assumed tha
the unperturbed transition energies form a comb of equ
spaced lines~more realistically, from Fig. 1, the lines crow
together as the offsets of the layers increase!. The off-
diagonal elements of the Hamiltonian matrix employed
this simulation is the same as in Eq.~22!, but the diagonal
elements are taken as

Hii 52CRi , ~27!

where C is the energy spacing between transition energ
originating from adjacent layers andRi is a uniformly dis-
tributed random integer in the range 0 toNL21. Note that
Eq. ~27!, which assumes a uniform spacing of transition e
ergies, is an approximation valid only ifNL is not too large
since, as already mentioned, the spacing of the transi
energies actually decreases as the offset distance incre
However, in the present model it is clear that the value oC
appropriate for a given offset is approximately proportion
to the magnitude of the derivative at that offset of the mo
curve in Fig. 1. Since this derivative is less than the o
predicted from a more realistic calculation the present mo
appears to underestimate the transition energy spacings

In Fig. 6 are shown the results of a simulation as d
scribed above, forNL58 andg51 with unperturbed comb
spacing equal to 10 donor density energy units. Notice t
the lines are well resolved, being far sharper than the mo
layer absorption line shape of Fig. 2 at the same value on.

If we were to attempt to explain the sharpness of the lin
in Fig. 6 by a model in which interactions between dono
residing in different layers were neglected, we would co
clude that with increasingNL the linewidths, being governed
solely by the density of donors in a given layern/NL , should
shrink like (n/NL)3/2 and should all have line shapes like th
of the absorption line shown in Fig. 2. Simulations at vario
values ofNL show that for largeNL the lines do shrink with
increasingNL but more slowly than predicted from the iso
lated layer model proposed above. Further, the lines cha
shape as one progresses from the highest- to lowest-en
line of the comb. It seems clear that for largeNL the inter-
action between donors in different layers dominates
within-layer interactions. The decrease in linewidth of d
nors associated with a given layer is a result of the decre
in probability of interactions with donors in nearby layer
which, because they are close in excitation energy, prod
relatively large energy shifts, and an increase in probabi
of interactions with donors with excitation energies far fro
that of the given layer, producing small energy shifts.~The
change in line shape of the lines, depending on their ene
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position in the comb as observed in our simulations at la
NL, is also consistent with the predominant role of interlay
interactions.!

A second interesting feature of Fig. 6 is the close simil
ity of the transition energy spectrum with the line-sha
spectrum, especially in comparison with Fig. 2, where th
two spectra are very different. This is connected with
breakup of excitation clusters by the presence of ‘‘diago
disorder’’ associated with the occupation of many layers,
effect that is also reflected in the smallness of the clu
radii, depicted in Fig. 7 for runs withN5200. Even near the
line peaks the clusters are significantly smaller than the la
est found in the monolayer case, Fig. 4. Both of these effe
the coalescence of the line shape and transition energy
sity spectra and the shrinking of cluster size become m
pronounced asNL increases.

V. HIGHER DENSITIES

We now consider more realistic situations in which~a! the
offset values, though small compared tor sep, are not com-
pletely negligible, and~b! the cyclotron radiusr c is compa-
rable in magnitude to the offset distances. To obtain
spectrum of excitation energies we again take the grou
state energy as zero but now calculate the diagonal ma
elements correct to lowest nonvanishing order in an exp
sion in inverse powers of the donor separations. Thus
calculate thei th diagonal matrix element for a monolayer b
evaluating to this order the term

FIG. 6. Predicted absorption line shape~solid line! and un-
weighted transition energy spectrum~dashed line! for an eight-
layer barrier donor system in the extreme low-density limit. Ea
layer has the same density of donors. Transition energies of iso
barrier donors in adjacent layers are assumed separated by te
nor density units. The zero of energy is the transition energy o
isolated donor in the layer with the smallest offset.
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K C iU(
j 51

N

HC~ i , j !UC i L 2K CGSU(
j 51

N

HC~ i , j !UCGSL ,

~28!

where for j Þ i , HC is defined by Eqs.~11! and ~12! and
HC( i ,i ) is defined to be zero. For multilayer systems t
term Hii from Eq. ~27! is added to the diagonal element
Eq. ~28!. In this ansatz, terms representing the Stark effec
electric fields of all the other donors acting on donori van-
ish, but the corresponding electric field gradients do aff
the line shape. In Appendix A we show that Stark effe
perturbations are negligible compared to the terms that
keep.

There are two classes of terms arising from the Tay
expansion ofHC( i , j ) that contribute in lowest order to ex
pression~28!. These are terms of orderr i

2dj
2/si j

5 ~or equiva-
lently r j

2di
2/si j

5 ) and those of orderr i
2r j

2/si j
5 , given in expres-

sions~29! and ~31!, respectively. These expressions are

$3~si j •rj !
2/si j

5 2r j
2/si j

3 2@3~si j •rj !
2/~si j

2 1di
2!5/2

2r j
2/~si j

2 1di
2!3/2#%1 i↔ j , ~29!

which represents the usual field gradient interaction betw
the donors and contributes, after angular integration, to
pression~28! the term

pr i
2@1/si j

3 1~2dj
22si j

2 !/~si j
2 1dj

2!5/2# ~30!

and

h
ed
do-
n

FIG. 7. Variation of mean cluster radius with transition ener
in the eight-layer system of Fig. 6.



es

tio

ix
r-
u

l

o

n
io

to

e

in
na

T
ab

a
a.
n

rt

fo
ies
d
ur

rri
s
.1

uld
f

the
ted
up-

tate
ow-
hat
ra-
ed,
re.
ty,
pu-
B

m-
mal
the

zed
ow
xt-

s in
ug-
ed

rier

The
rac-

be-
o be

an

PRB 61 16 727IMPURITY CYCLOTRON RESONANCE LINES OF . . .
@$0.75r i
2r j

211.5~ri•rj !
2%/si j

5 27.5$~si j •ri !
2r j

212~si j •ri !

3~si j •rj !~ri•rj !%/si j
7 1105~si j •ri !

2~si j •rj !
2/~4si j

9 !#

1 i↔ j , ~31!

which, after angular integrations, leads to

4.5r i
2r j

2/si j
5 . ~32!

If terms given in formulas~30! and~32! are inserted into the
expression~28!, and the integrations performed, one arriv
at diagonal terms given in donor atomic units by

Hii 5g21(
j

j Þ i

@1/si j
3 1~2dj

22si j
2 !/~si j

2 1dj
2!5/2

14.5/~gsi j
5 !#2CRi , ~33!

where we have included the unperturbed donor transi
energies in Eq.~33! in the same way as in Eq.~27!.

The first correction to the low-density off-diagonal matr
elements given by Eq.~22! is most easily calculated by pe
forming a multipole expansion of the electron-electron rep
sion term inHC( i , j ) given in Eq.~11! and retaining the term
of order (si j )

25. This term is found to be

2P4~cosw!uri2rj u4/si j
5 , ~34!

where P4(cosw) is the fourth-order Legendre polynomia
and w is the angle betweenri2rj and si j . The required
matrix element is of the form given by the left-hand side
Eq. ~18! with HVW( i , j ) replaced by expression~34!, and the
required integrals are readily calculated if the wave functio
are rewritten in relative coordinates. We find the correct
to Hi j defined in Eq.~22! to be, in donor atomic units,

29/~g2si j
5 !. ~35!

In Fig. 8 are shown results employing Eqs.~33!, ~22!, and
~35! for a twenty-layer system with smallest offset equal
20 nm ~smallestd value equal to 2a), areal barrier donor
density of 1010donors/cm2 (na250.01), and magnetic field
strength of 6.56 T (g51). The comb structure on the curv
of predicted absorption line shape~solid line! is easily dis-
cerned. Particularly interesting is the comparison of this l
with the line shape predicted by neglecting the off-diago
elements of the Hamiltonian matrix~dashed line!. These el-
ements are often neglected in line-shape calculations.
strong shift of the predicted absolute maximum of the
sorption peak towards low energy exhibited here may be
important physical effect in observed experimental spectr
has nothing to do with the crowding together of transitio
originating from donors with large offsets~which would fur-
ther enhance the absoption strength in the low-energy pa
the spectrum!.

The predicted comb structure is most pronounced
small offsets, high magnetic fields and low doping densit
~We have purposely chosen relatively large offsets an
small magnetic field in Fig. 8 to show that the comb struct
persists even in such an ‘‘unfavorable’’ circumstance.! So far
as we know this structure has not been observed in ba
donor spectra. To observe it would require rather high re
lution ~in Fig. 8 the comb peaks are separated by about 0
n
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cm21, although at offsets near 10 nm this separation wo
increase to nearly 0.5 cm21!. Furthermore, the presence o
significant concentrations of positive and negative ions in
barrier or well region could broaden out the lines predic
here to the extent that the comb structure could be s
pressed and the main peak shifted to higher energies.

Only those transitions that can arise from the ground s
of the donor system have been considered. There are, h
ever many excited levels lying near the ground state t
could be thermally populated at low but nonzero tempe
tures. Transitions from these levels, when superimpos
could in principle wash out the structure predicted he
While our calculation cannot rule out such a possibili
there is reason to think that broadening from thermal po
lation of such levels might be unimportant. In Appendix
we show that at high enough magnetic field,gd2@1, transi-
tions from the low-lying levels mentioned above superi
pose exactly on those for the ground state so that ther
excitation of these excited states produces no change in
zero temperature line shape.

VI. CONCLUSIONS

This paper treats absorption line shapes for an ideali
system of dilute interacting barrier donors in a single narr
quantum well at zero temperature. The lowest- and ne
order terms in the expansion of the absorption energie
powers of the barrier donor density are considered. It is s
gested that for densities, fields, and offsets typically utiliz

FIG. 8. Predicted line shape of a 20-layer system of bar
donors with equal concentration of donors in each layer~solid line!.
Density corrections have been applied in the calculations.
dashed curve shows the line predicted if the van der Waals inte
tions between donors were neglected. The energy separation
tween transitions of isolated donors in adjacent layers is taken t
2.78 donor density units, corresponding tog51 and a smallest
offset of 20 nm. The zero of energy is the transition energy of
isolated donor in the layer with the smallest offset.
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in studies of barrier donor spectra in GaAs-AlxGa12xAs
quantum well structures, it should be possible, in appropr
samples, to resolve transitions arising from substitutio
barrier donors at different distances from the center of
well.

APPENDIX A

In donor atomic units~used throughout this appendix!
terms of lowest order,g21/s3, and higher order,g21d2/s5

and g22/s5, are included in the expansion of the Coulom
potentials between two donors separated by distances. We
have assumed thatg21/2 and d are of the same order o
magnitude and one order smaller thans. As the surface bar-
rier donor densityn decreases the distancess grow in pro-
portion to n21/2. Thus, for example the leading term in th
density expansion is of orderng21/s or, equivalentlynrc

2/s,
whereas two higher-energy terms mentioned above ar
order (nrc

2)(nd2)/s and (nrc
2)2/s, respectively.

Because of our choice of ground-state basis functi
HVW( i , j ), given in Eq.~13!, has no effect on the ground
state energy. Notice that the ground-state wave function c
sen consists of products of functionsc0,0 and thatHVW( i , j )
connects the unperturbed statec0,0(r i)c0,0(r j ) to
c0,21(r i)c0,21(r j ); these states have an energy differen
of the form 2g1/2f (g1/2d). If f (g1/2d) is of order unity then
the second-order perturbed energy due to this coupling i
order

~1/gsi j
3 !2/@g1/2f ~g1/2d!#5O~r c

5/si j
6 !5~nrc

2!5/2/r sep,
~A1!

which is of smaller order than the terms retained. At ult
high magnetic fields (g1/2d→`) we find that f (g1/2d)
→2(g1/2d)23 and Eq.~A1! must be replaced by

~1/gsi j
3 !2/@g1/2f ~g1/2d!#5O„d3/~gsi j

6 !…

5O„~nrc
2!~nd2!3/2/r sep….

~A2!

A similar argument with similar result holds for the chos
excited state basis functions. Thus it is consistent to ign
HVW( i , j ) in second order.

It is easy to show that the electric field component in
x-y plane at a distances from the barrier donor that produce
it, E(s), is of orderd2/s4. Because of our choice of bas
functions these fields give zero first-order contribution to
donor energies. For nondegenerate levels electric fields
rise to a quadratic Stark shift of the donor level. Such elec
fields couple, for example, the ground donor statec0,0(r i) to
the donor levelc0,21(r i), which lies above it by an energ
g1/2f (g1/2d). The second-order energy in this case is of or

E~s!2g21/@g1/2f ~g1/2d!#5O~g23/2d4/s8!5O~r c
3d4/s8!

5O„~nrc
2!3/2~nd2!2/r sep… ~A3!

~assumingd andr c are comparable in size!, which is again of
higher order than terms retained. A similar analysis can
applied to the excited state basis functions.8
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APPENDIX B

In the low-density ultrahigh-field limit, defined by

s@d@r c ,

HC( i , j ) can be approximated by expression~29! @expression
~31! being neglected because it is of higher order than
pression~29! in the ultrahigh-field regime# and the unper-
turbed barrier donor Hamiltonian takes the expanded for

HBD~ i !'H0~ i !22/di1r i
2/di

3. ~B1!

In this limit the Hamiltonian of the donor system is clear
quadratic in the electron displacements and the energy s
ture has certain simple features that can be clearly elucid
by introducing theA andB operators of Suzuki and Hensel9

These operators, in donor atomic units, are defined for
arbitrary electronj by

Aj5@~pjx2gyj /2!2 i ~pjy1gxj /2!#/~2g!1/2,
~B2!

Bj5Aj
†2 ig1/2~xj1 iy j !/2

1/2,

where

pjx5
1

i

]

]xj
, pjy5

1

i

]

]yj
.

They obey the usual commutation relations for raising a
lowering operators

@Aj ,Ak
†#5d j ,k , @Bj ,Bk

†#5d j ,k ~B3!

and every A operator commutes with everyB operator
~where byA andB operators we always meanA, B, A†, and
B† operators!. The operatorAj lowers both the Landau an
M quantum numbers of electronj by one unit. On the other
hand,Bj has no effect on the Landau quantum number
raisesM by one unit.

Our Hamiltonian is quadratic in the displacements of t
electrons from their associated donor centers. Such a Ha
tonian when expressed inA andB operators is a linear com
bination of products of pairs of these operators. We ign
all terms that can admix states of different Landau quant
numbersN to the unperturbed state of interest.~We neglect
such mixing because the energy gap between such levels
the unperturbed level is assumed large compared to the C
lomb energies.! As an example, all terms involving the prod
uct of anA operator with aB operator will be omitted.

In this approximation the Landau quantum numberN is a
good quantum number. The lowest-lying states of the in
acting donor system areN50 levels and the optically ex
cited states areN51 levels. Mathematically the eigenstate
are product functions of ‘‘A states’’ and ‘‘B states’’ and the
energies are equal to a sum of the energy of the ‘‘A state’’
and that of the ‘‘B state.’’ We can represent the lowest leve
by wave functions of the form

u0&AuB , ~B4!

whereu0&A is the vacuum state for theA operators, the state
such that for all electronsj

Aj u0&A50, ~B5!
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and uB is a particular eigenstate of theB operators in the
Hamiltonian. The operator for optical excitation in the dipo
approximation is linear in the electronic displacements a
therefore in theA andB operators. As a result, when the lig
excites the system into a state for whichN51, the excited
state is a product of an excited ‘‘A state’’ with thesamestate
uB as in the initial state. Thus the energy of the excited s
M

te

er
i

le
no
rs
ter
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te

is independent of whichever initial state of the form~B4! it
arises from.

At high magnetic fields and low temperatures only sta
of form ~B4! are low enough in energy to be thermally pop
lated. As a consequence, if electron-phonon interactions
ignored, the line shapes should be independent of temp
ture in the ultrahigh field limit at low temperatures.
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