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The maximum entropy principle is applied to a conducting band with energy wave vector dispersion of
general form and to an arbitrary number of generalized kinetic fields. By considering a linear expansion around
a local Maxwellian, within a total average energy scheme, we obtain a closed system of hydrodynamic
equations for a full band model in which all the unknown constitutive functions are completely determined.
With this approach, under spatially homogeneous conditions we present a systematic study of the small-signal
analysis for the most important response functions of the electron system in the general framework of the
moments theory. The case ofrd nn™ nonhomogeneous structure is also considered. Numerical hydrody-
namic calculations are validated by a comparison with Monte Carlo simulations performed for the case of
n-type Si at 300 K.

[. INTRODUCTION straints in the variational procedure. Both assumptions are
dictated by the complexity of the analytical formulation.

The field of hydrodynamidHD) models was pioneered The aim of this paper is to provide a general formulation
by Blotekjaer in 1970.Since then, more or less refined HD of the MEP thus making it possible to overcome the two
approaches have been developed to describe the propertieshsfsic limitations adressed above. To this purpose, the theory
hot carrier transport both in semiconductor materials and iris reformulated within a total-energy scheme described by a
submicron device$.’ The popularity of the HD models local and isotropic Maxwellian distribution in terms of an
stems from the computational efficiency and the practicabrbitrary number of generalized kinetic fields. In this context,
flexibility of this approach that can be applied to differentit is further possible to reformulate, in more general terms
operation conditions and also to computer aided desigthe theory for small-signal analysis under spatial homoge-
simulators. However, it should be stressed that, in order tmeous conditions. As a matter of fact, by introducing a gen-
obtain a self-contained system of HD equations a variety ogralized relaxation matrix and generalized chord and differ-
simplifying assumptions must be introduced. These assumpential mobilities for each moment of interest, we have
tions leave a certain degree of freedom both inftiven of  succeeded in calculating the most relevant response func-
the equations and in the determination of thesurefor the  tions of the electron system, thus extending previous
usual HD system of equatioituxes and collisional produc- result$®?* where the time dependencies of the response
tions). functions were analyzed using the usual coupled HD equa-

Recently the maximum entropy principleMEP) has tions for velocity and energy. The theory so developed is
emerged as a powerful method to develop HD models starfurther applied to submicron™nn* structures and validated
ing from the moments of the Boltzmann transport equatiorby comparison with full-band Monte CarlgMC) simula-
(BTE)®'* and it has led to a renewed interest in tt@n-  tions.
structionof self-consistent closure relations for semiconduc- The layout of the paper is as follows. In Sec. Il we intro-
tor transport equations with higher-moment teftigd® The  duce a brief kinetic description of the problem. Correspond-
MEP allows one to derive the macroequivalent distributioning microscopic and macroscopic quantities are defined in
function under conditions very far from thermodynamic the general framework of the moment theory using an energy
equilibrium, and to determine the microstate correspondinglispersion of general forrffull-band approach In Sec. Ill
to the given macroscopic data. With this approach, the detewe discuss the various concepts of thermodynamic equilib-
mination of the single-particle distribution function is ob- rium and, by taking an arbitrary number of macroscopic mo-
tained from the solution of the variational problem consistingments, the MEP is developed within a total average energy
in maximizing thefunctional entropyof the system under the scheme. In Sec. IV, we start from a linear expansion around
constraint*'°=22 that the macroscopic state could be de-the local Maxwellian to obtain a closed system of extended
scribed by a fixed number ahoments of the distribution balance equations in which all the unknown constitutive
function The basic limitations of existing MPE theories as functions are completely determined. In Sec.V, by introduc-
applied to solid state physics are (i) the use of parabolic ing an iterative procedure, we obtain the standard HD mod-
energy dispersion for the single carrier afiid the use of a  els with a general constitutive relation for the energy flux. In
few number of macroscopimomentsto be taken as con- Sec. VI the general theory is applied to the case of electrons
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in Si. Here, for the case of the bulk material, the linear re-where\ is the number of moments used, aag, Rai, Pa
sponse analysis for stationary conditions is developed anihdicate, respectively, the fluxes, the external field produc-
the closure condition for the energy flux is verified via MC tions, and the collisional productions defined as:
simulations. For the case of submicnefinn™ structures the

spatial profiles of different kinetic moments are calculated . L.

and compared with MC simulations. Major conclusions are FAk:f gakuFk,r,Hdk, ®)
finally given in Sec. VILI.

oK) .
Il. THE BTE AND MOMENT'S METHOD RAi:f S Fkrdk (7)
i
Let us consider the BTE for the single carrier distribution
function F(k,r,t) under nondegenerate conditions: - -
tort) 9 Pa | unka(Pdk ®

IF IF e _oF

E‘l‘uia_xi_%Eia_ki:Q(j:‘)v (1)

With this procedure, we obtain a system of partial differ-
ential equations of finite order to be coupled with the Poisson
equation. The flux of each equation of $6f becomes the
field variable (the moment of the succesive equation. The
structure of this system of equations shows that there are
Vv some unknown constitutive functiond p={F ax,Rai,Pa}
Q(F) = _3{ J' dk’S(k,k")F(K',r,t) that must be determined, in a self-consistent way, in terms of

(27) the variables-, . By following information theory, the MEP
is introduced in terms of the generalized kinetic field given
—]-‘(lZ,F,t)f dIZ’S(IZ’,IZ)], (2) by Eq.(3). Accordingly, the unknown constitutive functions
can be determined systematically together with the analytic
expression for the nonequilibrium distribution function.
Once the distribution function is so calculated, all the con-
stitutive functions are determined from their kinetic expres-
sions. In this way we obtain a closed system of balance equa-

whereu; is the carrier group velocityk; the wave vectorE;
the external electric fielde the absolute value of the unit
charge the reduced Planck constant and

the collision integral, being(k, k') the total electron scat-

tering rate from stat&’ to statek, andV the crystal volume.
Given the complexity of the problem, we will neglect two-

particle inter_a}cti_onggnd assume that the p_honons remain 'fons for the expectation valués, , and each solution of this
thermal equilibriunt> Under these assumptions the BTE is set will be namedhermodynamic proce¥for the hot car-

linear and, neglecting the generation and regomblnatlon P"%ers. The explicit HD expressions obtained from E5).will
cesses, we shall have only one conservation (&w the

numerical density moreover the collisional invariants can be explained in details in the following sections, where nu-
e merical results will be displayed with the purpose of validat-
be classified and aH-theoremproved?®?’ To pass from the play purp

kinetic level of the BTE to the HD level of the balance equa—Ing this approach.
tions in the general framework of the moment theory, the

following generalized kinetic fields must be considered: 1. ENTROPY MAXIMIZATION WITHIN
A TOTAL-ENERGY SCHEME
) — f.M . m m T . . .
gak)={em e, MU Ul g () The MEP is based on the assumption that the least biased

. . ) distribution function assigned to a physical system is that
where &(k) is the single-particle band energym  \hich maximizes the entropy under the constraints imposed
=01,...N, ands=12,... M with arbitrary values for p the availablénformation Therefore, we assume that the
the integersN andM. Equation(3) is the key formula since it jnformation expressed by a certafixed number A of mo-
generalizes the kinetic fields to energy dispersions of generghents s sufficient to describe satisfactorily the thermody-
form. With this approach, if we consider the expectation val-n5mic state of hot carriers, and we look for the correspond-
ues ing distribution function. Accordingly, the entropy is

maximized under the constraints that the expectation values
Fa= f Pa(K)FK,r t)dk, (4) ofthe moments-, are exp_ressed by Eq&l). The metho_d _of
Lagrange multiplier§"1"19-?2proves to be the most efficient
then forN=M =1 we find the usual physical quantities such téchnique to include the constraints and solve this variational

locity flux density), and ;Senergy flux densityBy contrast, N

for N,M>1 we obtain macroscopic additional variables, . _

which in some cases correspond to fluxes pandS; . F=exp(—1I), H_AZI Yala. ©
The set of HD equations that are formally obtained within

this scheme afé1"18 The Lagrange multipliers\ , can be obtained analytically,
- by considering a series expansiof“*’of F around a suit-
oFa Ak_ & . _ able equilibrium configuration defined by a local Maxwellian

i Xy 7 RaBiTPa, with A=1,... N, Fw and by requiring that the expression #f satisfies the
(5>  moment constraints. The choice of a local Maxwellian is



PRB 61 MAXIMUM ENTROPY PRINCIPLE WITHIN A TOTAL ... 16 669

justified by the observation that, for most M
semiconductor§?32428.2%he time scale of energy relaxation N=(N+1)| D, (2i+1)
is much longer than that of any other moment relaxation. The =0
presence of different scales of relaxation time implies thatmean quantities correspond to

during the process leading to termal equilibrium, there exists

an intermediate state in which carriers are characterized by a  Fa={F (5).F(p)ji.Fp)ltiyipy - - - Foltiy - igs -+ -}
specificlocal equilibrium The usual way to define the local (12
Maxwellian consists in introducing an equation of state that ith p=0.1, ... N ands=0,1, ... M.

enables one to separate the drift from the heating effect? All th | - b ted into a local
associated with the average total energy of a single carrier € scalar moments ;) can be Separated Into a loca

~ equilibrium part and a nonequilibrium part with ;) =F
W=w/n. Thus, a local electron-temperature conéépt ~Fyle through the relationship
T(r,t) can be defined.

Now we differ from this way of introducing a local tem- (2p+1)! [W)\P
perature, typical for a parabolic band shape, by keeping the F(p):”T(_) +A(p)
total average electron enerdfy,which is a well-defined

quantity for any band shap8.To be consistent with this With A)=A(;=0. N
choice, the moments of the distribution functibp cannot The distribution function in Eq9) takes the explicit form
be separated into their convective and nonconvective parts M N

and the local distribution function should be defined in terms Fe J—'Mex% -3 mZO AE'T)- A ~is>k2mk<i1' : 'kis>> (14)

(13

of the total average energy of the single carrier /&g <0

=7exp{—,88(IZ)] being y=y(n,W) a normalization factor

and B~ 1=pB"1(W/n) an appropriate average energy. By

considering an explicit energy wave-vector relat.iqﬁ), the

quantities{y, 8}, can be determined by means of the local 72 3 \% 3 &(K)

equilibrium relationships ]f]E:}‘M:n(—~ _~) ex;{ - — ) (15)
mm* (W) 4W 2 W

with A , the nonequilibrium part of the Lagrange multipliers
and

n(F,t)IJ Fudk, W(F,I)ZJ e(K)Fydk. (100 Under thermodynamic equilibrium conditions it =W,
=(3/2)KgTo and F, becomes the Maxwellian distribution
Within this approach, the case of the parabolic band is reat the lattice temperaturg,. By expanding both the distri-

covered when bution functionF and the constitutive functiond , around
5 3/ the MaxwellianF,,, these can be expressed as polynomials
y:n(ﬁ_ § ﬂ) _ § n in the  nonequilibrium  variables {Ag,F i - -,
am* 4 W/ 7 2 W’ Foli,.-iy. -}, whose coefficients depend on the local
1 S
m* being a constant effective mass. equilibrium quantitien(r,t),W(r,t)}. In the next sections

For a general energy disperstor{y,3} can be deter- we formally assume that the effective mass is a function of
mined by solving numerically Eqg10). A fruitful way o the total energy, i.em* =m* (W), also when, to simplify the
introduce the total-energy scheme, is to consider a band €N tation. we omit the explicit dependence @h
ergy represented in terms of an effective mass that depends '

on the average energy of the single carmér(W). Accord- |y, pa| ANCE EQUATIONS AND CLOSURE RELATIONS
ingly, the energy and group-velocity relations can be written

as Let us consider an arbitraty number of momehjs, de-
fined by Eq.(12). The corresponding set of balance equa-
R h2k? h tions can be written in compact form
S(k):T, Ui=——=—Kj. (11
m* (W) m* (W) IF (o)|(iyin iy S d [ 2

As a consequence, the effective mass becomes a new consti- at 2s+1 dx; WF(pH)\((il- “is-)
tutive function that should be independently determined from ®
the fitting of experiments and/or MC calculations of the bulk '?F(p)\<i1~ ik
material'® All other constitutive functions are implicitely de- .
termined by means of the MEP. We note that in this way the k
macroscopic dynamical properties of carriers are described e [2(p+s)+1
by the same set of balance equations and of constitutive :_epF(p—l)l(il-uiSkEk_Ws Tost1
functions for both the paraboligvith m* constantand full-
band casefwith m* =m* (W)]. Additionally, by using Eq. XFmiy iy pEig TPy iy
(11), as generalized independent kinetic fields we have the
unique  quantities 1,//A(I2)={sp,spuil,spu<ilui2>, . p=01,...N; s=01,... M (16)

ePug Ui, Uiy, ...} (Whereug ui,---uj , is the traceless where fors=0 we have the scalar momerfeg,), for s=1
part of the tensouiluizmuis) to which the the vectorial moments )i, and so on for the other
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tensorial quantities. These equations contain unknown corthe intervalley deformation potential,,, the phonon angular
stitutive functions such as the collisional productionsfrequency,N, the phonon distribution, with the- options

Poliy-ig: associated with intravalley and intervalley
transitions, and the moments of higher ordeés,
={Fn+n)liy-i, 0 Fol, iyl In the fluxes and in the
external field productions, evaluated fpr=0,1,... N; s
=0,1,...M andr=1, ... M. To calculate theseonstitu-
tive relationswe consider a linear expansion of the distribu-
tion function in Eq.(14) around the MaxwelliariF, to ob-
tain the nonequilibrium part of the Lagrange multipliez»?\rgl
from the solution(see Appendix A of the linear system

M

Fa=Fale=—

N
Alm
& =5 A<|1|2,..|S>

0om

xf Ya(KE™K ki -+ -kiydk. (17)

Once the distribution function is obtained, the constitutive

functions{G,,P,} can be determined through their kinetic

corresponding to emission and absorption processes, respec-
tively. By using the linear expansion of the distribution func-
tion and inserting Eqgs(2), (21), and (22) in Eq. (8) we
obtain

N
— _ 0 0 _
P(O)—O, P(p)— - P(p)_|:22 aEﬂ)A(I) fOI’ p—l, s ,N,

(23

N
P(p)\(il---is>:_|20 aS)F“)Kil...iS) for p=0,1,... N;

s=1,2,... M, (24)

where{P{, ,a{)} are functions ofn,W} and of scattering

parameters as reported in Appendix A. In closing we note
that, thelinearizedmaximum entropy approach used in this
section is closely related to the Grad moment metHad,

expressions. As a matter of fact, by evaluating the integral§yhere the nonequilibrium distribution function is expanded

F(N+l)|<i1"'ir—1>:f 8N+1U<i1' : 'Ui“l)]:d'z,

F(p)|<i1"'iMk>: J' 8pU<i1' . ‘UiMUk>.7:d|_(),

to first order in the nonequilibrium variables

{A) Fpiy. it for theGy itis

N
(2N+3)!11 [W\N+1
R e (1)

Foven=n——wr | +|§2 XN+ Ay

(18
N
F(N+1)\<i1-.-'r,1>:|§) XErN)+1)|F(|)|<i1--.ir,1>,

for r=2,... M (19
F(p)Kil..AiMk):O, for p=O, ooN, (20)

where the coef]‘icezntsg{\,)Jrl)I are functions ofn,W} as re-
ported in Appendix A.

To evaluate the collisional productions in E§) we use
the collision rate for intravalley transitions with acoustic
modes(within the elastic and energy-equipartition approxi-
mations

TEIKGT,
AVpU?

.

S.(k,k)=2 ek —sk)], (2

and for intervalley transitions with acoustic and nonpolar

optical modes

1

1
7 — 4+
N7’+2_2

sle(k)—[e(k) £tw,]},
(22

whereE, is the acoustic deformation potential parameter,
the crystal densityl; the longitudinal sound velocityd ,

in terms of Hermite polynomials. By contrast, a higher-order
expansion of Eq(14) would clearly differ from the corre-
sponding one in Grad’s method. Nevertheless, within the
present level of approximation, it is possible to proceed us-
ing directly a quadratic expansion of entropy, with the con-
straints (4), to obtain equivalent result&see, for example,
Ref. 34.

V. TRANSITION TO STANDARD HD MODELS
AND FOURIER LAW

In this section we show that, under appropriate conditions,
the present HD approach recovers the standard nonequilib-
rium thermodynamic relations, characterized only by the first
five moments of the distribution functiofn,v; ,W} and by
the electric fieldE;. Using these variables, as observable
fields, it is possible to develop a reduction scheme in which
all higher moments can be expressed in terms of the basic
fields and their derivatives. Classical examples of reduction
schemes, widely applied in literature, are the Chapman-
Enskog expansion 3’ and the Maxwellian iteration
procedurée-’-*336:38-40A|though there is no general conver-
gence proof, here we use an iterative procedure analogous to
the Maxwellian iteration because it can be easily imple-
mented in a systematic way. As a simplified case, we start
considering Eqgs(16), (18)—(20), and (23)—(24) calculated
for N=M=1. In this way we obtain the usual balance equa-
tions for the quantitie{n,W,v;,S}, which together with
Poisson’s equation write:

an &nvk_o o5
at o ooxe (25
(9W+(9Sk_ E W—-W, 26
o nev Ej— vy( 0)s (26)
anv; 9 |2 _ neE n
Ao (3w T T i B S
(27)
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S 9 (10 n [W)\2 5 e
aax EF(F) T TR eWim S,
(28)
sAgp=e(Np—n), (29

where ¢ and Np are the electrical potential and the fixed
donor concentration, respectivell,= —ﬁ¢, the quantities

{vw,ay,By,as,Bs are average collision rates expressed as a
function of electron energy whose explicit expressions are

reported in Appendix A.
The set of Eqs(25)—(27) and(29) correspond to the stan-

dard HD model that can be closed in a self-consistent way by

determining an expression for the energy flgxas a func-
tion of the independent variablés,v; ,W,E;}. To obtain a
constitutive relation forS; we take the remaining Eq28)
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equations to which the above iterative proced{@® in Ap-
pendix B can be applied. In this way the explicit depen-
dence onE disappears in all the remaining equations and,
analogously to the previous section, in the chse1, we
obtain a system oN equations for the single-particle vari-

ablesF ()i =Fpi/n (with p=1,2, ... N)
N

(LE
asFoo

(p+3)t . Lo
Tt Wy o

_2p 2pr3lig, IW

T = (32)

The solution of Eq(32) enables all the vectorial moments
F(p) (starting fromS)) to be expressed as the sum of a

left-hand side of this equation. Then we get the first iteratederm (which is linear inv;) through relationships that for-
values ofS; on the right-hand side of the same equation asmga)ly resemble a generalized Fourier fA#*

el

This procedure can be generalizesge Appendix Bby tak- i i N o

ing the complete set of tensorial equatiqi$) and by ap- where the dimensionless quantitigg n) and th_e coefﬁcu_ents
plying the above iterative method. If we know the variablesX(p,n) depend on the scattering terms, the single-particle en-
{n,vi ,W,E;}, then all the remainingV—5 quantities{A,,  ergy W, and the given number of vectorial momemsin
Fayio - 'F(D)Kiliz---is)} (with 1=2,...N; r=1,... N, partl_cular, by con5|der|ng _only the energy flup_zé 1)_ we
p=0,... N, ands=2, ... M) can be expressed in terms of obtain a generalized Fourier law, where the diffusive term
basic fields and their gradients. In this way, the first iterated’@s the thermal conductivit(, ) as a coefficient. We no-
values depends om,v;, W, E;, dn/ax;, IW/dx;} while the ~ tC€ that, by using the iterative procedure previously ex-
second iterated values include terms in the second derivd@ined, the explicit dependence on the electric field is re-
tives and so on. In particular, by considering the chbe moved in all the equations. This allows one to solve the

=1, it is possible to obtain a system bF equations[Eq. problem at a lower level yvith respect to the pr.evio_us one qnd
(B11)] for the N unknown vectorial variables{F(l)“ to obtain for the vectorial moments a Fourier-like law in

101 4
9 B ix;

n
m*

5€WE ag
3 B B,

in.

% + {pnWPo;,

for p=1,2,... N,
(33

Fmi=—Ken

=S, ... Ffi» - Foupi} (see Appendix B which the transptlrt coefficients , ny ,{(p,n)} dO Not de-
pend explicitly onE.

N

S W~ a®ny (2p+3)!!

&~ Yl T @po NV 3p+1 VI. APPLICATION TO n SILICON
en/W\P 2 50 n /WPt In this section the theory of moments is applied to the

X [_*(_) Ei+s— _*( _) ] case ofn-Si. By considering the electric field applied along

m=in 3 oxi[m*in the (111) crystallographic axes we keep the axial symmetry,

and full-band effects are described by introducing an effec-
tive mass as a function of the electron total energy as re-
cently reported® Accordingly, we use the HD equations for
the first eight moments of the distribution function
{n,W,v;,S} (e.g., N=M=1) to fit the velocity-field charac-
teristic obtained from MC full-band simulations. For the col-
lisional processes, scattering with phononsf @ind g type

are considered with six possible transitionszn (
=01,02,03,f1,f2,f3). The MC simulations have been per-
formed using a full-band mod®land analytic nonparabolic-
band modef3 The MC with analytic-band model and the HD
calculations made use of the same physical scattering

. _ o _ parameter§®
An alternative method to obtain a constitutive expression

for the energy flux consists in generalizing the standard Fou-
rier equation. Accordingly, from the velocity balance equa-
tion we obtain the electric field, and after substitution into all For space homogeneous and stationary conditions the set
other tensorial Egs(16), it is possible to generate a set of of Egs.(16) consists of a system of algebrical equations for

31

with p=1,2,...N.

By solving this system, each vectorial moment(start-
ing from the energy fluxcan be expressed by a linear com-
bination of: a diffusive termiwhich depends oWW and on
ﬁn), a convective termwhich is linear inv;), and an
electric-field term(which is linear inE;), with the determi-
nation of successive approximations to all coefficéfusc-
tions of {n,W}) which depend on the given value Nf

A. Generalization of the Fourier law

A. Homogeneous and stationary conditions
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the variables of single-particiE,=F ,/n. When consider-
ing only the scalar and vectorial momeriésg.,M =1), due

to the assumed axial symmetry, it Bpyji={Fp1.0.0},

E;={E,0,0}, and the balance Eqtl6) take the form
N
peF_ 1 E+ P?p)+|122 YA y=0, for p=1,... N,
(34)
e 2p+3~
W 3 (p)E+z ap| F(|)‘1—O, for p:O, ....N,

(39

where use is made of the closure given in E48)—(20) and
(23) and(24). In general, the numerical solution of this sys-

tem allows us to determine the moments as a function of the

electric fieldE and, consequently, to define thelaxation
rates v, associated with the corresponding variatiigs For
example, by considering only the quantitiféd/,v,S} (i.e.,

N=1) the system can be solved analytically by means of the

relations
eE
v= WQ(W)'

eE W
S mr B,

— [ G(W)+1], (36)

22

—G(W) + v, (W—W,) =0,

with
Bs 5) By
By Byas— Bsaty

These relations enables us to define explicitly riaxation
rates{ v, ,v4 for the vectorial momentév,S},

G(\W) = (

1
W= —=,
Gg(W)
. G(W)
vs=PBs— asBy avg(VV)+l . (37

The balance equation fdiW,v,S}, can be rewritten in the
standard form

evE+ vy (W—Wy)=0,

e
WE'FVVU:O, (39

5. e ~
§WWE+ vsS=0.
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FIG. 1. Drift velocity v, average total-energy, and energy
flux S vs electric field for electrons in Si &,=300 K. Lines refer
to present paraboli¢P) and nonparabolidNP) HD calculations
with N=1 (dashed lines N=3 (dash-dotted linesandN=5 (solid
lines). Open circles refer to full-band MC simulations performed
along(111) crystallographic direction& Crosses refer to analytical
nonparabolic-band MC simulations performed along tHd1)
crystallographic directiofi® For the drift velocity we report also the
experimental data obtained with the microwave time-of-flight tech-
nique along thé111) crystallographic directiofi?

of the electric field, calculated by solving Eq84) and (35)

(for N=1, N=3, andN=5), both in the parabolic and full-
band case. For the velocity, energy, and energy flux we re-
port the MC values of full-band simulatioffs(open circles

and analytic nonparabolic-band simulatihécrosses for

the velocity we report also the experimental data, obtained
with the microwave time-of-flightMTOF) technique**®

By increasing the number of scalar and vectorial momentgyailable up to 130 kV/cm. We note that the HD calculations

(i.e., N>1) the system of Eqs(34) and (35) should be
solved numerically.

Figure 1 shows the HD values féo,W,S} as a function

exhibit small variationgat most within 10 % from the num-
ber of moments used. In any case the numerical results con-
verge forN=5 both in the parabolic and full-band case. The
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convergence is particularly evident for the velocity-field B. Linear analysis and response functions

curves that give values in close agreement with experimental complete the study of the stationary state, we develop

data. The energy dependence of the effective mass obtaingg, sma| signal analysis over steady state for different mo-
by fitting the velocity-field curve reproduces well the MC L ~ . . .
ents. BeingA ;)< F(p)lE, from a practical point of view,

data of energy and energy flux, thus providing a valuabl .

check of consistency of the present HD approach. he scalar moments can b_e expresseq in terms of energy pow-
Figures 2 and 3 show the HD calculations for the remains'> [see Eq.(13)]. Accordingly, we will consider only the

ing scalar {INZ E B E I and vectorial I time evolution of a small perturbation of the average energy

Ing  scalar 1" (2),F(3),F ()7 (5) @)1

_ and of the vectorial momentSi,F ) }. In this case the
F3)1.Fay)1.F(sy1} moments evaluated up t8=5 in the Sl

[ . i . corresponding balance equations take the form:
parabolic and nonparabolic case, respectively. Figure 2 re-

ports also thefi(z) vs electric field to show, as an example,

~ dw ~ o~

that the contribution of the nonequilibrium part Bf, is T —evE—v,(W—W,), (39
negligible for the evaluation of the scalar moments.

Finally, we note that while the introduction of a greater
number of moments yields small differences in the HD nu- dE e (2p+3)! - N ~

: . L)‘l:__—wa_z (LE
merical results, by contrast the nonparabolicity provokes a dt m*  gpil 2, anFmn,
strong suppression of all moments at increasing field value. =
Such a suppression is found to be more effective for higher
moments as expected. with p=0,1,... N. (40
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By assuming that at the initial time the system of carriers is Il :{5\7\,(0 su(t),83(t) 5,2(2)|1(t)

perturbed by an electric fieldE£(t) [where&(t) is an arbi-
trary function of time satifying&(t)|<1], we will calculate

the deviations from their average values of the energy and

the vectorial moments denoted, respectively vﬂﬁd(t) and
5l~:(p)‘1. After linearizing Egs(39) and(40) around the sta-
tionary state, we obtain a system M2 equations, which
can be written in the form
dI,(t)
dt

Where the vector$Il,, ,I'(®)} express the quantities

=T 61l 5(1) —eSEENTE. (41)

I'nw —eE
Tow —aff —aff
Fop= T ow —a&,’ —aéll)
Tyw —afid —aff
being
My ~ ~
Fyw=—vu— m(w_ Wo), (45
2p+3)! a(m*)~1
[‘pwz_uwp laE p +W¥
3ptl dW
(?a(l)
T A W —=Fmn (46)

with p=0,1,... N.

5'~:(p)ll(t)v s 15'~:(N)|1(t)}, (42
re_l, 1 15 1 (2p+3)!!
o ’m* 'm* 3 L] . m 3p+1 —
S 1 (2N+3)!! .
X W y . ,W —3N+1 (43)

and with the response matrlx,; given by

0
o) ol
o . —al®) (44)
o) o -l
|
t
II(t) = —eﬁEf K(s)&(t—s)ds, (48)
0

with K (s)=exp@’s)I'®) that can be determined through the
matrix

exp(I't) = ®diagexp(\qt), ..., exgAys )},

(49
where\ , are the eigenvalues &f,; and® is the matrix of
its eigenvectors.

The vector functiorK(t) determines the linear response

of the moment§W,F i} to an arbitrary perturbation of the
electric field and can be expressed in terms of its components

The relaxation of the system after the perturbation of then the form

electric field is described by thresponse matriX' 5. Thus,
introducing the standard chord mobilify,=v/E, and dif-
ferential mobility u,=dv/dE and defining themoment gen-
eralized chord mobility{u,=S/E, wuo=Fy1/E, ... mun
='I5(N)‘1/E} and themoment generalized differential mobil-
ity {u;=dSdE, ... uy=dFny:/dE, u,=dWdE} the
diagonal and off-diagonal quantities of the matri#4)
[ww.I'pw, respectively, can be expressed in the form

!
Mot Mo My~
Fyww=eE PR pw E (1) (47
Hey M

In this way, from the knowledge of the coefficient§) and
from a numerical evaluation of the quantitigs and u, all
the elements of the matrik,; can be calculated. Let us
assume that at the initial timH(0)=0. Then, Eq.(41) has
the following formal solutiof®#°

Ka(t):{Kw(t)va(t)iKS(t)yKZ(t)v e 1KN(t)}

where K,,(t),K,(t) and K4(t) are theresponse functions
respectively for the fluctuations of mean energy, velocity,
and energy flux; the remaing component¥dt) refer to the
fluctuations of other vectorial moments.

Sincel',z is a (N+2)X(N+2) not symmetric matrix,
the eigenvalues are either real or complex conjugate values.
These eigenvalues correspéhtf to the generalized relax-
ation rate —\ ,, which determines the time behavior of the
response functions. As a matter of faet\ , can be consid-
ered as the analog of the energy and vectorial-moments re-
laxation rates, respectively, even if, strictly speaking, the
correspondence between these generalized rates and the re-
spective relaxation processes exist only in the absence of
coupling among these variabl&s:°

Figure 4 reports the generalized relaxation rates obtained
using an increasing number of momefite. N=1N=3N
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FIG. 4. Rates and eigenvalues
of the relaxation matrix as a func-
tion of the electric field for elec-
trons in Si in the case of parabolic
(P) and nonparabolidNP) band
models atT;=300 K. Symbols
refer to the velocity, , energyy,,
and flux energy, relaxation rates
(for N=1) respectively. The con-
tinuous and the dashed lin@set-
ter evidenced in the insejtsefer
to the real part and the imaginary
part of the eigenvalues evaluated
for N=1, N=3, andN=5.

v(ps™)

0 40 80 120 160 200 0 40 80 120 160 200
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=5), both in the parabolic and nonparabolic case, respedeterministic character is washed out and the transport takes
tively. As a general trend, the higher the moment the larger i full chaotic character attributed to a nearly isotroffat

the relaxation rate. Velocity and energy relaxation rates arbeated distribution function.

coupled by the electric field and exhibit complex values in  From Fig. 4 we note that the width of the region with
the low-field region. All rates, but energy, increase with in-complex values of the eigenvalues depends both on the in-
creasing field, the steeper and the higher the moment is. Theeasing number of moments used and on the nonparabolic-
net effect of nonparabolicity is to systematically suppress théty. Indeed, in both cases we found that the eigenvalues are
increase of all moments with field. These general behaviorsqueezed towards lower values with the consequent exten-
are understood from a microscopic point of view by scattersion of the coupling region. For the time evolution of veloc-
ing processes that increase their efficiency at increasing caity and carrier energy, the eigenvalues of the relaxation ma-
rier energy. The interesting feature of this approach is tdrix have been explicitly evaluated in analytical foffysing
provide an analytical theory able to simultaneously describé¢he MC data as input parameters. Therefore, by analyzing the
the response of all these moments under conditions very faxtention of the region where the velocity and energy relax-
from equilibrium. For the sake of comparison, in the caseations are strongly coupled, we observe that, in the nonpara-
N=1, we report also the relaxation ratps, ,v,,v¢ calcu-  bolic case, the agreement between present results and those
lated from Eqs(37) and(A10)—(A14). The results show two reported in Ref. 23 is within a factor of 2 for Nl and
distinct behaviors at increasing electric fields. A first one isimproves significantly to within 20% foN=5.

associated with small and intermediate values of the electric Figure 5 reports the time dependence of the linear-
field, in which there are a couple of complex conjugate eintesponse function, respectively, of velocit,(t), energy
genvalues due to the strong coupling between velocity an&,(t), and energy fluX4(t) for {N=1,N=>5} at increasing
energy relaxatio”>?* A complex eigenvalue indicates the electric fields. Values are calculated from E@S),(44),(47),
presence of some kind of deterministic relaxatfsfiin the  and(49) and using the HD numerical results reported in Figs.
system that can be attributed to a streaming character of the-3. As a general trend, from Fig. 5 we notice that the in-
distribution function. In the present case, the joint action ofcrease in the number of moments yields small differences in
electric field and emission of intervalley phonons is knownthe shape of the response function at any field value. By
to produce the condition aftreaming motiof>*° A second  contrast, the nonparabolicity is responsible for a significant
region, corresponds to the highest electric field, where thelecrease of the response functions at short times; such a
eigenvalues become real. At these high fields, energy thedecrease becomes more pronounced at higher values of the
malization of the carrier system becomes so efficient that anglectric field. This is particularly evident fdt,,(t) andKg(t)
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at 20 kV/cm and 40 kV/cm and is associated with the factlevelsn®=5x10'" cm 3 andn=2x10" cm™3, T,=300 K,
that, with respect to the parabolic case, the nonparabolicitgpplied voltage respectively of 0.5 V, 1V, and 1.5 V. The
decreases the values of both the inverse effective mass ag@alytical results are then compared with MC simulations
the average carrier energsee Fig. 1 folW andS), and thus ~ performed with nonparabolic modéfs>? By using the spa-
reduces the value of the response function of the correspondial profiles of{n, W, v, E} obtained from MC simulations,
ing moment. The decay with time of the response functiongor N=1 we have calculated the energy flux from E80);

is_controlled essentially by the momentum and energy relaxyhile for N>1 the energy flusg is determined by resolving
ation rates. The presence of the electric field couples the twg,o system of Eqs(31). Starting from the above relations
relaxations processes, thus provoking a nonexponenn%e energy flux can be conveniently decomposed, respec-
shape of the decay. For the response functign at the tively, in a diffusive term, a convective term, and an electric-

Sh‘?”e?’t times,_a nega_tive part is found at 20 and 40 kV/emye|4'term. To analyze the contribution due to each term, Fig.
which is associated with the above coupling between veloc6 reports their spatial profiles calculated fr=1 and N

ity and energy relaxatioff. At increasing fields, the response —5 The contribution of the diffusive term is maximum near
functionK,, clearly evidences the coupling between velocitythe cathode homojunctions, where it compensates the spike
and energy relaxation through a nonmonotonic behavior withy¢ 1o electric-field term. In the region the main contribu-
a maximum that separates the velocity from the energyjoq are due to the convective and field terms, whose values,
relaxation? Fmally, we note thali_(S decays similarly but even if they separately depend by keep their sum practi-
fgster tharK, . A similar behavior is expected for all vecto- cally constant in the-region. Near the anode homojunction,
rial moments, with the natural tende_ncy of a faster decreasg; e highest voltage considered of 1.5 V, the diffusive term
the higher the order of the moment involved. exhibits a spike that leads to overestimate the total-energy
flux. As a matter of fact, in this region the constitutive rela-
tions obtained forS give values greater than those directly
calculated by MC simulations. The total constitutive relation
As a test to validate the constitutive relations, expressedbr the energy flux is thus well verified in all points of the
through the Eqs(31) and Eq.(33), obtained in Sec. V for the structure except for the region strictly adjacent to the anode
energy flux, we apply the present theory to a onequnction where both the electric field and its gradient exhibit
dimensional 0.1-0.4-0.m n*nn* Si structure with doping very high values. Here the energy flux shows a peak that

C. Energy flux in nonhomogeneous conditions
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FIG. 6. Spatial profile of en-

ergy fluxS for an*nn* Si struc-
ture with a channel length of
0.4um, nT=5x107cm 3, n
=2x10" cm™2 and applied volt-
ages of, respectively, 0.5V, 1V,
and 1.5 V. Symbols refer to an ex-
plicit evaluation of the energy flux
making use of data obtained from
nonparabolic MC simulatiorfs.>?
Curves refer to results obtained
from the constitutive functions
(dotted lines for the convective
term, dashed lines for the diffu-
sive term, dash-dotted lines for the
field term and continuous lines for
the tota) by substituting in Eq.
(30) (for N=1) and in Eq.(31)
(for N=5) the values of
{n,W,v,E} obtained from MC
data.

be satisfactory, thus validating the constitutive relations pre-
Fig. 7(a]. We remark, that for a more rigorous approach, itsented here within the limits described above.

is necessary to implement a nonlinear theory for the consti- Finally, Fig. 7b) reports the spatial profile of the energy
tutive relations. Indeed, the present approach is based onflix for the device with the highest bias of 1.5 V, calculated
linearization of the distribution function that implies a mod- With the generalized Fourier law given in E(B3), for N
ellization of constitutive relations strictly valid only in the =1 andN=5, respectively. We have found that the agree-
limit of small gradients. From HD calculations it was ment between HD and MC results near the anode homojunc-
observed®~*® that only with a nonlinear description of the tion becomes less satisfactory when compared to similar re-
distribution function it is possible to improve significantly Sults in Fig. 7a). As a matter of fact, a very high spike is
the agreement with MC simulations even in proximity of the observed in the spatial profile &that, contrary to expecta-
critical regions adiacent to the homojunctions. Overall, thetions, further increases by increasing the number of mo-
agreement between the HD and MC results is considered tments. These unexpected results are due to the fact that, fol-

§ (107 eV cmis)

0.75 -

0.50

025

a

—-I(N=1) T

(N=5)
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0.1 0.2

0.3
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FIG. 7. Spatial profile of the energy fli&as in Fig.(6) for an applied voltage of 1.5 V. Symbols refer to an explicit evaluation of the
energy flux directly obtained from MC simulations. Curves refer to results obtained from the constitutive functions obtained u$8iy Eqgs.
(on the lefy with N=1, N=5, andN=40 and using the generalized Fourier law of E2B) (on the righj with p=1, N=1, andN=5.
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lowing the iterative procedure described in Sec. VA, theMADESS Il project of the Italian National Research Council
explicit dependence on the electric field has been removed i(CNR) is gratefully acknowledged.

the balance equation for the vectorial moments. This further

approximation allows us to solve the problem at a low level APPENDIX A

and to obtain a Fourier-like law with a diffusive term in

which the thermal conductivitynot depending explicitely By resolving the system of Egq¢l7) and defining the
from the electric fielflis overestimated in the region near elements of matriﬁﬁ through the relation

the anode homojunction. This drawback is already known in

the literature and has been recently considered in Ref. 53. [2(m+]+s)+1]!!

Here, the presence of different time scales for the velocity, (Aﬁf?) =
energy, and energy fluxes all depending on the local-field
strength, was proved to be of major importance in trying to

we obtain the general expressions for the scalef® and
generalize the thermal conductivity under hot-carrier condi-
tions. the tensonalA} ,--ig Lagrange multipliers

VIlI. CONCLUSIONS 1 h 2m 3nm*\™m N 3n
e E A(O) - A
4 W ON

AM=_ =
By means of generalized kinetic fields we have developed 2n I=2
a general formulation of the maximum entropy principle (A2)
within a total energy scheme and including the contribution
» g 1 (2s+1)! ( p )2"“5(3 nm*)m+5

: (A1)

2m+|+s+1

m*

of higher moments of the distribution function. A new sys- ~ g(m  _ _

tem of generalized hydrodynamic equations is derived with = ‘229" 2n sl m* 4 W

the full complexity of the band modeled in terms of a single

particle with an effective mass that is a function of the aver- 2 F (A3)
age total energy. From the knowledge of the effective mass, = 2 w/ - Oliaiz

which becomes a new constitutive function, and of the physi-

cal constants of the bulk materials all other constitutive func- for m=0,1,... N and s=1,2,... M.

tions are determined. Present hydrodynamic theory thus does "

not need other adjustable parameters but, for a kinetic levell he coefficentsy(y, 1) entering the constitutive relations
the knowledge of the elementary microscopic interactionsgdiven by Eqs(18) and (19) are

The set of equations so introduced is proven to be sufficient

to describe the relevant transport properties of electrons in _ () E [2(N+m+r)+1]!! Al=1) E V_V)N+1 !
the bulk material. Accordingly, stationary and small signal X(N+DI™ oN+mr+1 m- 13 n ’
kinetic coefficients are consistently obtained as a function of (A4)
the external electric field. In the context of the small signal

analysis we have introduced a generalizedponse matrix for r=1,2,... M.

and evaluated numerically the linesrsponse functionsf
the different moments in the time domain. The validity of
this approach has been confirmed by the satisfactory agre
ment with the numerical results of full-band Monte Carlo
simulations and available experimental data for the case of po . —4lZ
electrons in Sibulk andn*nn™ structure$ at To=300 K. ()
In particular, we have provided a generalization of the Fou-
rier law for the thermal conductivity of hot carriers in the
small gradient limit, indicating the possibility for a further o (2 W p1+2 -1
extension within a nonlinear expansion of the distribution P ( ) 2 A, E A(O) (E)(zxﬂ)pk

The quantities{P(,,,a'} entering the collisional produc-
gons of Egs.(23) and (24) are

2W

p+2 p-1 p x
3 F) 2,, A”g’o ( k)(zx’?)p

XN Hz 1+ (=P XN, +1)H 1], (A5)

function. We notice that, although the general closure I hl3n
scheme(with an arbitrary number of momentss obtained

using a linearized maximum entropy method, the maximum XN H e my+ 1+ (= DPTKN D H s 4]
entropy formalism can be developed also in a nonlinear con- (A6)
text using both the collision integriEgs.(21)—(22)] and the
fixed most important macroscopic variabl¢s,W,v;,S;, 2/ 2 W\ P-1+2 N
Foyint.21® We believe that the present hydrodynamic  ,&=_Z2[Z2 2 oA > A

(0)[(ij) - ¢ - pl 3 7 ml
method can be fruitfully applied to describe transport prop- nmsn 7 m=0

erties of hot carriers having the relevant advantage of pro-

n _
viding a closed analytical approach and a reduced computa- [N+ DHzmiprg+1FNyHo(me prg+1]
tional effort with respect to other competitive numerical 1/2 w\p1-1 N

methods at a kinetic level. 5(5 F) émZ:o (m+p+s+1)IAS), (A7)

ACKNOWLEDGMENTS

Dr. M. V. Fischetti, Dr. T. Gonzalez, and Dr. M. J. Martin
are thanked for providing the MC data. Partial support fromwith

for s=1,2,... M



PRB 61 MAXIMUM ENTROPY PRINCIPLE WITHIN A TOTAL ... 16 679

ni3m* n\32 A2 3 n (m*)3/2\7\/1/2 3 \3/2 A2
__ o n i 7 _> o ~ _ AV n
Ay h_§<4 - W) pw,lz’?x’?’ Xo=ghongy Ay= 53 (477) pw, pw, L7
2 * 3/2
T4 W KT 4|
ﬁ4pU T Nn ! gz( )3/2\/\/1/2 (_) .
[ hipU? \3

whereZ, is the number of equivalent valleys that are pos-
sible final states and the dimensionless quanttigs, ; are

expressed through the modified Bessel functions of second APPENDIX B
kind K; andK,. By defining Gtzxnexp(IX,?)Kz(X,?) and

+ . From the knowl f th nstitutive relati -
H; =exp(=X,)Ky(X,) we have, in general, that om the knowledge of the constitutive relatio(id)

(20), (23)—(24), and(A5)—(A7), we can separate the closed
system of field Eqs(16) in two sets. The first set represents
the usual balance equations for the variab{esW,v;}
coupled with Poisson’s equation for the electric figld

Hy ==X, H{ +G~, (A8)

Ho 1= +£2X,Hy = (r+1)!

?3X,Homiy G* an  anuy

2| with r> —+ =0, B1
X n; T3] | with r=2. (A9) Ty (B1)

We note that the collisions with intravalley acoustic phonon, N
being considered as elastic processes, lead the scalar mo- W  dFqyk 0 (0)

ments to relax more slowly than other dynamical variables EJF X —nev,E|—P(1)—|=22 ai’dgy, (B2
{F®li,---iy}- In this way, in local thermodynamic equilib-

rium all collisional productions vanish except the quantities

P(p)|E= - P?p). By using Eq.(A5) it is possible to verify, INv; + 2 [2 . W] n IF 0)\(ik)
also that the productioR ) cancels out only when thermal dt 3 m* IXk
equilibrium condition is achievedi.e., A(p):':(p)\<il~~is> e N
—0 andW=3/2nKgT). == S Ei—aggnoi— 2 afi’Fyi, (B3
The average collision ratefy,,,ay,B8y,as,B8s €ntering =1
the relationg25)—(30) and (36)—(37) are
eAp=e(Np—n). (B4)

16 ~
ay== 55 2 AfT[(N,+ DHZ +N,H;]
K The second set represents the balance equations for the re-

—2[(N,+)H{ +N,H [+, (Alo)  Maining
16 o - . ) S
—3277) A —[(N,+1)H; +N,H;] (N+1)| X (2i+1) |-
2 ) ) 3 .
+ g[(Nn'i‘ 1)H5 +N,’]H5] +§§, (All) h|gher momentiAu), F(r)|| e 'F(p)|<ili2"'is>}
64 W Iy  IFpk , (2p+1)1 (WP
W T 27T W= W, ZA"X’][(N TDHI=NHLD, T 3@ n
(A12) W ﬁnvk 0-'F(l)|k
<UD ] S P
32 ~ N B n &Xk (?Xk
as=—8—127] AATLN,+1)HE +N,Hg ] (2p4 )11 WP
_ =—€ep F(pfl)|k_ —3p (F nov g Ek
—2[(N,+1)H; +N,H; 1} - 2¢, (A13)
(2p+ 1)1t (w\P1 0
32 ~ N ) P—2 |7/ Pu~Pwm
/35:—2—72” A, —[(N,+1)HE +N,Hg ] ) 1
5 2 M(_)p a(l?)_afn?)]A(l)’
+ 5L, + DH7 +N,H7 ]+ (A14) =2 n

with for p=2,... N, (B5)
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mi - 2] < (p)[{ik)
a3 axi{m* F(P*l)]+ X,
e 2p+3
—ePFp-) B pF —3FmE
N
—Zoaﬁﬁ’Fu)“, for p=1,... N (B6)
f”:(p)\<i1i2~~is>Jr s [2,
ot 2s+1 o"xis> m* (P+1)[((ig-ig_q)
+(7F(p)|<i1--~isk>
X,
e [2(pt+ts)+1
=~ ePFp-)iiy i B S T e
N
_ g
XF @iy g pEig 20 @t F()((iyipeig
for s=2,... M; p=0,...N, (B7)

where, the time derivates of the density and of the energy

have been eliminated from the scalar E@5) through the
use of Egs.(B1)—(B2), and the constitutive relation§,
=Py i Fmlyi
(18)—(20).
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for p=2,... N, (B8)
& [1] 1) (1] e 2p+3
21 F(|)|.+ap0 nvi+epFg- 1)|<|k>Ek+ —
[” g [ 2
X[Flet & @IBitg 50| e Forn)e[ =0,
for p=1,... N, (B9)
[l] e |2(pt+s)+1
2 U =
1] [1]
X F(P)K(il'“is,l}EiS}—’_ep F(P—1)|<i1-~-isk)Ek:0
for s=2,... M;p=0,... N (B10)
with F ). .i, =0 for p=0, ... N.

We note that, for fixed values of the basic fields
{n,W,v; ,E;} and of the gradientsin/ax;, dW/dx;}, the set

} is expressed by Egs. of Eqs.(B8)—(B10) is a linear system of algebrical equations

for the first iteration of the remaining variables. Analo-

We are interested in a theory characterized by the first fiv@ously, in the second iteration we substitute into the left-

moments{n,v; , W} and by the electric fieldE;. In this
case the quantitiesLA {A(D,F(r)h,F(O)K”)} (with |
=2,...N, r= ..N) present in the balance Eq®2)—

hand side of Eqs(B5)—(B7) the linear expressions for the
Ga describing the quantitiel iy, Fyjiy -+ Fp)igiy o)
by means of the first iteration. In this way, from

(B3) must be expressed in terms of the independent variablede right-hand side of Eqs(B5)—(B7), one obtains a
{n,v;,W,E;}. In order to get the constitutive relations for the system of equations for the second iterated values

guantitiesL , we take the remaining Eq&B5)—(B7) and use
a method akin to the Maxwellian

iteration {A ), F i -

[2] [2] [2]
A F o)y, |M>} With this procedure, the

proceduré.’3336:383%The first iteration is obtained by insert- values of the second iteration are more complex than those

ing the equilibrium values

[0 [o] [0]
An=Fni==F@pliiyi9g=0

and

(0]
GA: 0

in the left-hand side of Egs.(B5-(B7). In this
way, from the right-hand side of EqB5)—(B7), we obtain

a set of equations for the first
(1 [1] [1]

{Am Foliv - Foi,

3 e

(2p+ 1)1 [w\P~t (1]
ep T(F) nvg—F (p-1)k [ Ek

(2p+1)n (w\pt
TP 3p o) Po=Pmp=0.

A..iM>}Z

iterated values

of the first since the former depend on the second derivatives
of the basic fields, but here we consider only the values of
the first iteration.

When considering the scalar and vectorial moméatg.
M=1) we have only the two Eq4B8) and (B9) with the
constraintsF(p)Kil,,_is>=0 for all the tensorial moments. In
this case, by assuming that, < F(p)|E (see, for example,
the numerical results for the bylkfrom the vectorial Eq.
(B9) we obtain:

N

e 2p+3
21 i) F (o)i= —afao)nvi—WTF(pﬂEEi
109(2
“3ax |mE e[ (B1Y

where, in general, the solution of this system suffices to de-
termineexplicitly the first iteration for all the vectorial mo-
ments as functions of the basic fielfls, W,v; ,E;}.
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