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Maximum entropy principle within a total energy scheme:
Application to hot-carrier transport in semiconductors

M. Trovato
Dipartimento di Matematica, Universita` di Catania, Viale A. Doria 6, 95125 Catania, Italy

L. Reggiani
Dipartimento di Ingegneria dell’ Innovazione ed Istituto Nazionale di Fisica della Materia, Universita` di Lecce,

Via Arnesano s/n, 73100 Lecce, Italy
~Received 1 November 1999!

The maximum entropy principle is applied to a conducting band with energy wave vector dispersion of
general form and to an arbitrary number of generalized kinetic fields. By considering a linear expansion around
a local Maxwellian, within a total average energy scheme, we obtain a closed system of hydrodynamic
equations for a full band model in which all the unknown constitutive functions are completely determined.
With this approach, under spatially homogeneous conditions we present a systematic study of the small-signal
analysis for the most important response functions of the electron system in the general framework of the
moments theory. The case of an1nn1 nonhomogeneous structure is also considered. Numerical hydrody-
namic calculations are validated by a comparison with Monte Carlo simulations performed for the case of
n-type Si at 300 K.
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I. INTRODUCTION

The field of hydrodynamic~HD! models was pioneere
by Blotekjaer in 1970.1 Since then, more or less refined H
approaches have been developed to describe the propert
hot carrier transport both in semiconductor materials and
submicron devices.2–7 The popularity of the HD models
stems from the computational efficiency and the pract
flexibility of this approach that can be applied to differe
operation conditions and also to computer aided des
simulators. However, it should be stressed that, in orde
obtain a self-contained system of HD equations a variety
simplifying assumptions must be introduced. These assu
tions leave a certain degree of freedom both in theform of
the equations and in the determination of theclosurefor the
usual HD system of equations~fluxes and collisional produc
tions!.

Recently the maximum entropy principle~MEP! has
emerged as a powerful method to develop HD models s
ing from the moments of the Boltzmann transport equat
~BTE!8–14 and it has led to a renewed interest in thecon-
structionof self-consistent closure relations for semicondu
tor transport equations with higher-moment terms.15–18 The
MEP allows one to derive the macroequivalent distribut
function under conditions very far from thermodynam
equilibrium, and to determine the microstate correspond
to the given macroscopic data. With this approach, the de
mination of the single-particle distribution function is o
tained from the solution of the variational problem consist
in maximizing thefunctional entropyof the system under the
constraint14,19–22 that the macroscopic state could be d
scribed by a fixed number ofmoments of the distribution
function. The basic limitations of existing MPE theories
applied to solid state physics are in~i! the use of parabolic
energy dispersion for the single carrier and~ii ! the use of a
few number of macroscopicmomentsto be taken as con
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straints in the variational procedure. Both assumptions
dictated by the complexity of the analytical formulation.

The aim of this paper is to provide a general formulati
of the MEP thus making it possible to overcome the tw
basic limitations adressed above. To this purpose, the th
is reformulated within a total-energy scheme described b
local and isotropic Maxwellian distribution in terms of a
arbitrary number of generalized kinetic fields. In this conte
it is further possible to reformulate, in more general ter
the theory for small-signal analysis under spatial homo
neous conditions. As a matter of fact, by introducing a g
eralized relaxation matrix and generalized chord and diff
ential mobilities for each moment of interest, we ha
succeeded in calculating the most relevant response f
tions of the electron system, thus extending previo
results23,24 where the time dependencies of the respo
functions were analyzed using the usual coupled HD eq
tions for velocity and energy. The theory so developed
further applied to submicronn1nn1 structures and validated
by comparison with full-band Monte Carlo~MC! simula-
tions.

The layout of the paper is as follows. In Sec. II we intr
duce a brief kinetic description of the problem. Correspon
ing microscopic and macroscopic quantities are defined
the general framework of the moment theory using an ene
dispersion of general form~full-band approach!. In Sec. III
we discuss the various concepts of thermodynamic equ
rium and, by taking an arbitrary number of macroscopic m
ments, the MEP is developed within a total average ene
scheme. In Sec. IV, we start from a linear expansion aro
the local Maxwellian to obtain a closed system of extend
balance equations in which all the unknown constitut
functions are completely determined. In Sec.V, by introdu
ing an iterative procedure, we obtain the standard HD m
els with a general constitutive relation for the energy flux.
Sec. VI the general theory is applied to the case of electr
16 667 ©2000 The American Physical Society
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16 668 PRB 61M. TROVATO AND L. REGGIANI
in Si. Here, for the case of the bulk material, the linear
sponse analysis for stationary conditions is developed
the closure condition for the energy flux is verified via M
simulations. For the case of submicronn1nn1 structures the
spatial profiles of different kinetic moments are calcula
and compared with MC simulations. Major conclusions a
finally given in Sec. VII.

II. THE BTE AND MOMENT’S METHOD

Let us consider the BTE for the single carrier distributi
function F(kW ,rW,t) under nondegenerate conditions:

]F
]t

1ui

]F
]xi

2
e

\
Ei

]F
]ki

5Q~F!, ~1!

whereui is the carrier group velocity,ki the wave vector,Ei
the external electric field,e the absolute value of the un
charge,\ the reduced Planck constant and

Q~F!5
V

~2p!3 H E dkW8S~kW ,kW8!F~kW8,rW,t !

2F~kW ,rW,t !E dkW8S~kW8,kW !J , ~2!

the collision integral, beingS(kW , kW8) the total electron scat
tering rate from statekW8 to statekW , andV the crystal volume.
Given the complexity of the problem, we will neglect two
particle interaction and assume that the phonons remai
thermal equilibrium.25 Under these assumptions the BTE
linear and, neglecting the generation and recombination
cesses, we shall have only one conservation law~for the
numerical density!, moreover the collisional invariants ca
be classified and anH-theoremproved.26,27To pass from the
kinetic level of the BTE to the HD level of the balance equ
tions in the general framework of the moment theory,
following generalized kinetic fields must be considered:

cA~kW !5$«m,«mui 1
, . . . ,«mui 1

ui 2
•••ui s

, . . . %, ~3!

where «(kW ) is the single-particle band energy,m
50,1, . . . ,N, and s51,2, . . . ,M with arbitrary values for
the integersN andM. Equation~3! is the key formula since it
generalizes the kinetic fields to energy dispersions of gen
form. With this approach, if we consider the expectation v
ues

FA5E cA~kW !F~kW ,rW,t !dkW , ~4!

then forN5M51 we find the usual physical quantities su
as n (numerical density), W (total-energy density), nv i (ve-
locity flux density), and Si (energy flux density). By contrast,
for N,M.1 we obtain macroscopic additional variable
which in some cases correspond to fluxes ofv i andSi .

The set of HD equations that are formally obtained with
this scheme are14,17,18

]FA

]t
1

]FAk

]xk
52

e

\
RAiEi1PA , with A51, . . . ,N,

~5!
-
d

d
e

in

o-

-
e

al
-

,

whereN is the number of moments used, andFAk , RAi , PA
indicate, respectively, the fluxes, the external field prod
tions, and the collisional productions defined as:

FAk5E cA~kW !ukF~kW ,rW,t !dkW , ~6!

RAi5E ]cA~kW !

]ki
F~kW ,rW,t !dkW , ~7!

PA5E cA~kW !Q~F!dkW . ~8!

With this procedure, we obtain a system of partial diffe
ential equations of finite order to be coupled with the Poiss
equation. The flux of each equation of set~5! becomes the
field variable~the moment! of the succesive equation. Th
structure of this system of equations shows that there
some unknown constitutive functionsHA5$FAk ,RAi ,PA%
that must be determined, in a self-consistent way, in term
the variablesFA . By following information theory, the MEP
is introduced in terms of the generalized kinetic field giv
by Eq. ~3!. Accordingly, the unknown constitutive function
can be determined systematically together with the anal
expression for the nonequilibrium distribution functio
Once the distribution function is so calculated, all the co
stitutive functions are determined from their kinetic expre
sions. In this way we obtain a closed system of balance eq
tions for the expectation valuesFA , and each solution of this
set will be namedthermodynamic process14 for the hot car-
riers. The explicit HD expressions obtained from Eq.~5! will
be explained in details in the following sections, where n
merical results will be displayed with the purpose of valid
ing this approach.

III. ENTROPY MAXIMIZATION WITHIN
A TOTAL-ENERGY SCHEME

The MEP is based on the assumption that the least bia
distribution function assigned to a physical system is t
which maximizes the entropy under the constraints impo
by the availableinformation. Therefore, we assume that th
information expressed by a certainfixed numberN of mo-
ments is sufficient to describe satisfactorily the thermo
namic state of hot carriers, and we look for the correspo
ing distribution function. Accordingly, the entropy i
maximized under the constraints that the expectation va
of the momentsFA are expressed by Eqs.~4!. The method of
Lagrange multipliers14,17,19–22proves to be the most efficien
technique to include the constraints and solve this variatio
problem. A short calculation yields the distribution

F5exp~2P!, P5 (
A51

N
cALA . ~9!

The Lagrange multipliersLA can be obtained analytically
by considering a series expansion12,14,17of F around a suit-
able equilibrium configuration defined by a local Maxwellia
FM and by requiring that the expression ofF satisfies the
moment constraints. The choice of a local Maxwellian
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justified by the observation that, for mos
semiconductors,6,23,24,28,29the time scale of energy relaxation
is much longer than that of any other moment relaxation. T
presence of different scales of relaxation time implies th
during the process leading to termal equilibrium, there exi
an intermediate state in which carriers are characterized b
specificlocal equilibrium. The usual way to define the loca
Maxwellian consists in introducing an equation of state th
enables one to separate the drift from the heating effe
associated with the average total energy of a single car
W̃5W/n. Thus, a local electron-temperature concep17

T(rW,t) can be defined.
Now we differ from this way of introducing a local tem-

perature, typical for a parabolic band shape, by keeping
total average electron energy,18 which is a well-defined
quantity for any band shape.30 To be consistent with this
choice, the moments of the distribution functionFA cannot
be separated into their convective and nonconvective pa
and the local distribution function should be defined in term
of the total average energy of the single carrier asFM

5g exp@2b«(kW)# being g5g(n,W) a normalization factor
and b215b21(W/n) an appropriate average energy. B
considering an explicit energy wave-vector relation«(kW ), the
quantities$g,b%, can be determined by means of the loc
equilibrium relationships

n~rW,t !5E FMdkW , W~rW,t !5E «~kW !FMdkW . ~10!

Within this approach, the case of the parabolic band is
covered when

g5nS \2

pm*
3

4

n

WD 3/2

, b5
3

2

n

W
,

m* being a constant effective mass.
For a general energy dispersion31 $g,b% can be deter-

mined by solving numerically Eqs.~10!. A fruitful way to
introduce the total-energy scheme, is to consider a band
ergy represented in terms of an effective mass that depe
on the average energy of the single carrierm* (W̃). Accord-
ingly, the energy and group-velocity relations can be writt
as

«~kW !5
\2k2

2m* ~W̃!
, ui5

\

m* ~W̃!
ki . ~11!

As a consequence, the effective mass becomes a new co
tutive function that should be independently determined fro
the fitting of experiments and/or MC calculations of the bu
material.18 All other constitutive functions are implicitely de-
termined by means of the MEP. We note that in this way t
macroscopic dynamical properties of carriers are describ
by the same set of balance equations and of constitut
functions for both the parabolic~with m* constant! and full-
band cases@with m* 5m* (W̃)]. Additionally, by using Eq.
~11!, as generalized independent kinetic fields we have
unique quantities cA(kW )5$«p,«pui 1

,«pu^ i 1
ui 2& , . . . ,

«pu^ i 1
ui 2

•••ui s&
, . . . % ~whereu^ i 1

ui 2
•••ui s&

is the traceless

part of the tensorui 1
ui 2

•••ui s
) to which the
e
t,
ts

a

t
ts
er

e

rts
s

l

-

n-
ds

n

sti-

e
d
e

e

N5~N11!F(
i 50

M

~2i 11!G
mean quantities correspond to

FA5$F (p) ,F (p)u i 1
,F (p)u^ i 1i 2& , . . . ,F (p)u^ i 1••• i s&

, . . . %
~12!

with p50,1, . . . ,N ands50,1, . . . ,M .
All the scalar momentsF (p) can be separated into a loc

equilibrium part and a nonequilibrium part withD (p)5F (p)
2F (p)uE through the relationship

F (p)5n
~2p11!!!

3p S W

n D p

1D (p) ~13!

with D (0)5D (1)50.
The distribution function in Eq.~9! takes the explicit form

F5FMexpS 2(
s50

M

(
m50

N

L̂^ i 1••• i s&
(m) k2mk^ i 1

•••ki s&D ~14!

with L̂A the nonequilibrium part of the Lagrange multiplie
and

FuE5FM5nS \2

pm* ~W̃!

3

4W̃
D 3/2

expS 2
3

2

«~kW !

W̃
D . ~15!

Under thermodynamic equilibrium conditions it isW̃5W̃0
5(3/2)KBT0 and FM becomes the Maxwellian distributio
at the lattice temperatureT0. By expanding both the distri-
bution functionF and the constitutive functionsHA around
the MaxwellianFM , these can be expressed as polynomi
in the nonequilibrium variables $Dp ,F (p)u i 1

, . . . ,

F (p)u^ i 1••• i s&
,•••%, whose coefficients depend on the loc

equilibrium quantities$n(rW,t),W(rW,t)%. In the next sections
we formally assume that the effective mass is a function
the total energy, i.e.m* 5m* (W̃), also when, to simplify the
notation, we omit the explicit dependence onW̃.

IV. BALANCE EQUATIONS AND CLOSURE RELATIONS

Let us consider an arbitraty number of momentsFA , de-
fined by Eq.~12!. The corresponding set of balance equ
tions can be written in compact form

]F (p)u^ i 1i 2••• i s&

]t
1

s

2s11

]

]xi s&
H 2

m*
F (p11)u^^ i 1••• i s21&J

1
]F (p)u^ i 1••• i sk

]xk

52epF(p21)u^ i 1••• i sk
Ek2

e

m*
sF2~p1s!11

2s11 G
3F (p)u^^ i 1••• i s21&Ei s&

1P(p)u^ i 1••• i s&
,

p50,1, . . . ,N; s50,1, . . . ,M ~16!

where fors50 we have the scalar momentsF (p) , for s51
the vectorial momentsF (p)u i 1

, and so on for the othe
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tensorial quantities. These equations contain unknown c
stitutive functions such as the collisional productio
P(p)u^ i 1••• i s&

, associated with intravalley and intervalle

transitions, and the moments of higher orderGA
5$F (N11)u^ i 1••• i r 21& ,F (p)u^ i 1••• i Mk&% in the fluxes and in the

external field productions, evaluated forp50,1, . . . ,N; s
50,1, . . . ,M and r 51, . . . ,M . To calculate theseconstitu-
tive relationswe consider a linear expansion of the distrib
tion function in Eq.~14! around the MaxwellianFM to ob-
tain the nonequilibrium part of the Lagrange multipliersL̂A
from the solution~see Appendix A! of the linear system

FA2FAuE52(
s50

M

(
m50

N

L̂^ i 1i 2••• i s&
(m)

3E cA~k!k2mk^ i 1
ki 2

•••ki s&
dkW . ~17!

Once the distribution function is obtained, the constitut
functions$GA ,PA% can be determined through their kinet
expressions. As a matter of fact, by evaluating the integr

F (N11)u^ i 1••• i r 21&5E «N11u^ i 1
•••ui r 21&FdkW ,

F (p)u^ i 1••• i Mk&5E «pu^ i 1
•••ui M

uk&F dkW ,

to first order in the nonequilibrium variable
$D (p) ,F (p)u^ i 1••• i n&%, for theGA it is

F (N11)5n
~2N13!!!

3N11 S W

n D N11

1(
l 52

N

x (N11)l
(1) D ( l ) ,

~18!

F (N11)u^ i 1••• i r 21&5(
l 50

N

x (N11)l
(r ) F ( l )u^ i 1••• i r 21& ,

for r 52, . . . ,M ~19!

F (p)u^ i 1••• i Mk&50, for p50, . . . ,N, ~20!

where the coefficentsx (N11)l
(r ) are functions of$n,W% as re-

ported in Appendix A.
To evaluate the collisional productions in Eq.~8! we use

the collision rate for intravalley transitions with acous
modes~within the elastic and energy-equipartition appro
mations!

Sac~kW ,kW8!52
pEl

2KBT0

\VrUl
2

d@«~kW8!2«~kW !#, ~21!

and for intervalley transitions with acoustic and nonpo
optical modes

Sh~kW ,kW8!5
pDh

2

Vrvh
FNh1

1

2
6

1

2Gd$«~kW8!2@«~kW !6\vh#%,

~22!

whereEl is the acoustic deformation potential parameterr
the crystal density,Ul the longitudinal sound velocity,Dh
n-

ls

r

the intervalley deformation potential,vh the phonon angular
frequency,Nh the phonon distribution, with the6 options
corresponding to emission and absorption processes, res
tively. By using the linear expansion of the distribution fun
tion and inserting Eqs.~2!, ~21!, and ~22! in Eq. ~8! we
obtain

P(0)50, P(p)52P(p)
0 2(

l 52

N

apl
(0)D ( l ) for p51, . . . ,N,

~23!

P(p)u^ i 1••• i s&
52(

l 50

N

apl
(s)F ( l )u^ i 1••• i s&

for p50,1, . . . ,N;

s51,2, . . . ,M , ~24!

where$P(p)
0 ,apl

(s)% are functions of$n,W% and of scattering
parameters as reported in Appendix A. In closing we n
that, thelinearizedmaximum entropy approach used in th
section is closely related to the Grad moment method,32,33

where the nonequilibrium distribution function is expand
in terms of Hermite polynomials. By contrast, a higher-ord
expansion of Eq.~14! would clearly differ from the corre-
sponding one in Grad’s method. Nevertheless, within
present level of approximation, it is possible to proceed
ing directly a quadratic expansion of entropy, with the co
straints ~4!, to obtain equivalent results~see, for example,
Ref. 34!.

V. TRANSITION TO STANDARD HD MODELS
AND FOURIER LAW

In this section we show that, under appropriate conditio
the present HD approach recovers the standard nonequ
rium thermodynamic relations, characterized only by the fi
five moments of the distribution function$n,v i ,W% and by
the electric fieldEi . Using these variables, as observab
fields, it is possible to develop a reduction scheme in wh
all higher moments can be expressed in terms of the b
fields and their derivatives. Classical examples of reduct
schemes, widely applied in literature, are the Chapm
Enskog expansion35–37 and the Maxwellian iteration
procedure.17,33,36,38–40Although there is no general conve
gence proof, here we use an iterative procedure analogou
the Maxwellian iteration because it can be easily imp
mented in a systematic way. As a simplified case, we s
considering Eqs.~16!, ~18!–~20!, and ~23!–~24! calculated
for N5M51. In this way we obtain the usual balance equ
tions for the quantities$n,W,v i ,Si%, which together with
Poisson’s equation write:

]n

]t
1

]nvk

]xk
50, ~25!

]W

]t
1

]Sk

]xk
52nev lEl2nw~W2W0!, ~26!

]nv i

]t
1

]

]xi
H 2

3

1

m*
WJ 52

ne

m*
Ei2avnv i2bv

n

W
Si ,

~27!
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]Si

]t
1

]

]xi
H 10

9

n

m* S W

n D 2J 52
5

3

e

m*
WEi2asWv i2bsSi ,

~28!

«Df5e~ND2n!, ~29!

where f and ND are the electrical potential and the fixe
donor concentration, respectively,EW 52¹W f, the quantities
$nw ,av ,bv ,as,bs% are average collision rates expressed a
function of electron energy whose explicit expressions
reported in Appendix A.

The set of Eqs.~25!–~27! and~29! correspond to the stan
dard HD model that can be closed in a self-consistent way
determining an expression for the energy fluxSi as a func-
tion of the independent variables$n,v i ,W,Ei%. To obtain a
constitutive relation forSi we take the remaining Eq.~28!
and, in the first iteration, we calculate at equilibrium t
left-hand side of this equation. Then we get the first itera
values ofSi on the right-hand side of the same equation

Si52
10

9

1

bs

]

]xi
H n

m* S W

n D 2J 2
5

3

e

m*
W

bs
Ei2

as

bs
Wv i .

~30!

This procedure can be generalized~see Appendix B! by tak-
ing the complete set of tensorial equations~16! and by ap-
plying the above iterative method. If we know the variab
$n,v i ,W,Ei%, then all the remainingN25 quantities$D ( l ) ,
F (r )u i , . . . ,F (p)u^ i 1i 2 . . . i s&

% ~with l 52, . . . ,N; r 51, . . . ,N,

p50, . . . ,N, ands52, . . . ,M ) can be expressed in terms
basic fields and their gradients. In this way, the first itera
values depends on$n,v i , W, Ei , ]n/]xi , ]W/]xi% while the
second iterated values include terms in the second de
tives and so on. In particular, by considering the caseM
51, it is possible to obtain a system ofN equations@Eq.
~B11!# for the N unknown vectorial variables$F (1)u i
5Si , . . . ,F (r )u i , . . . ,F (N)u i% ~see Appendix B!

(
r 51

N

apr
(1)F (r )u i52ap0

(1)nv i2
~2p13!!!

3p11

3H en

m* S W

n D p

Ei1
2

3

]

]xi
F n

m* S W

n D p11G J ,

~31!

with p51,2, . . .N.
By solving this system, each vectorial momentum~start-

ing from the energy flux! can be expressed by a linear com
bination of: a diffusive term~which depends on¹W W and on
¹W n), a convective term~which is linear in v i), and an
electric-field term~which is linear inEi), with the determi-
nation of successive approximations to all coefficents~func-
tions of $n,W%) which depend on the given value ofN.

A. Generalization of the Fourier law

An alternative method to obtain a constitutive express
for the energy flux consists in generalizing the standard F
rier equation. Accordingly, from the velocity balance equ
tion we obtain the electric field, and after substitution into
other tensorial Eqs.~16!, it is possible to generate a set
a
e

y

d

s

d

a-

n
u-
-
l

equations to which the above iterative procedure~as in Ap-
pendix B! can be applied. In this way the explicit depe
dence onEW disappears in all the remaining equations an
analogously to the previous section, in the caseM51, we
obtain a system ofN equations for the single-particle var
ablesF̃ (p)u i 5F (p)u i /n ~with p51,2, . . . ,N)

~2p13!!!

3p11
W̃p(

r 50

N

a0r
(1)F̃ (r )u i2(

r 50

N

apr
(1)F̃ (r )u i

5
2p

m*
~2p13!!!

3p12
W̃p

]W̃

]xi
. ~32!

The solution of Eq.~32! enables all the vectorial momen
F̃ (p)u i ~starting from S̃i) to be expressed as the sum of
diffusive term~which is linear in¹W W̃) and of a convective
term ~which is linear inv i) through relationships that for
mally resemble a generalized Fourier law17,41

F̃ (p)u i52K (p,N)

]W̃

]xi
1z (p,N)W̃

pv i , for p51,2, . . . ,N,

~33!

where the dimensionless quantitiesz (p,N) and the coefficients
K (p,N) depend on the scattering terms, the single-particle
ergy W̃, and the given number of vectorial momentsN. In
particular, by considering only the energy flux (p51) we
obtain a generalized Fourier law, where the diffusive te
has the thermal conductivityK (1,N) as a coefficient. We no-
tice that, by using the iterative procedure previously e
plained, the explicit dependence on the electric field is
moved in all the equations. This allows one to solve t
problem at a lower level with respect to the previous one a
to obtain for the vectorial moments a Fourier-like law
which the transport coefficients$K (p,N) ,z (p,N)% do not de-
pend explicitly onEW .

VI. APPLICATION TO n SILICON

In this section the theory of moments is applied to t
case ofn-Si. By considering the electric field applied alon
the ^111& crystallographic axes we keep the axial symmet
and full-band effects are described by introducing an eff
tive mass as a function of the electron total energy as
cently reported.18 Accordingly, we use the HD equations fo
the first eight moments of the distribution functio
$n,W,v i ,Si% ~e.g., N5M51! to fit the velocity-field charac-
teristic obtained from MC full-band simulations. For the co
lisional processes, scattering with phonons off and g type
are considered with six possible transitions (h
5g1 ,g2 ,g3 , f 1 , f 2 , f 3). The MC simulations have been pe
formed using a full-band model42 and analytic nonparabolic
band model.43 The MC with analytic-band model and the H
calculations made use of the same physical scatte
parameters.43

A. Homogeneous and stationary conditions

For space homogeneous and stationary conditions the
of Eqs.~16! consists of a system of algebrical equations
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the variables of single-particleF̃A5FA /n. When consider-
ing only the scalar and vectorial moments~e.g.,M51), due
to the assumed axial symmetry, it isF̃ (p)u i5$F̃ (p)u1 ,0,0%,
Ei5$E,0,0%, and the balance Eqs.~16! take the form

peF̃(p21)u1E1 P̃(p)
0 1(

l 52

N

apl
(0)D̃ ( l )50, for p51, . . . ,N,

~34!

e

m*
2p13

3
F̃ (p)E1(

l 50

N

apl
(1)F̃ ( l )u150, for p50, . . . ,N,

~35!

where use is made of the closure given in Eqs.~18!–~20! and
~23! and~24!. In general, the numerical solution of this sy
tem allows us to determine the moments as a function of
electric field E and, consequently, to define therelaxation

ratesnA associated with the corresponding variablesF̃A . For
example, by considering only the quantities$W̃,v,S̃% ~i.e.,
N51) the system can be solved analytically by means of
relations

v5
eE

m*
G~W̃!,

S̃52
eE

m*
W̃

bv
@avG~W̃!11#, ~36!

e2E2

m*
G~W̃!1nw~W̃2W̃0!50,

with

G~W̃!5S bs

bv
2

5

3D bv

bvas2bsav
.

These relations enables us to define explicitly therelaxation

rates$nv ,ns% for the vectorial moments$v,S̃%,

nv52
1

G~W̃!
,

ns5bs2asbvF G~W̃!

avG~W̃!11
G . ~37!

The balance equation for$W̃,v,S̃%, can be rewritten in the
standard form

evE1nw~W̃2W̃0!50,

e

m*
E1nvv50, ~38!

5

3
W̃

e

m*
E1nsS̃50.

By increasing the number of scalar and vectorial mome
~i.e., N.1) the system of Eqs.~34! and ~35! should be
solved numerically.

Figure 1 shows the HD values for$v,W̃,S̃% as a function
e

e

ts

of the electric field, calculated by solving Eqs.~34! and~35!
~for N51, N53, andN55), both in the parabolic and full-
band case. For the velocity, energy, and energy flux we
port the MC values of full-band simulations42 ~open circles!
and analytic nonparabolic-band simulations43 ~crosses!; for
the velocity we report also the experimental data, obtain
with the microwave time-of-flight~MTOF! technique,44,45

available up to 130 kV/cm. We note that the HD calculatio
exhibit small variations~at most within 10 %! from the num-
ber of moments used. In any case the numerical results
verge forN55 both in the parabolic and full-band case. T

FIG. 1. Drift velocity v, average total-energyW̃, and energy

flux S̃ vs electric field for electrons in Si atT05300 K. Lines refer
to present parabolic~P! and nonparabolic~NP! HD calculations
with N51 ~dashed lines!, N53 ~dash-dotted lines! andN55 ~solid
lines!. Open circles refer to full-band MC simulations performe
along^111& crystallographic directions.42 Crosses refer to analytica
nonparabolic-band MC simulations performed along the^111&
crystallographic direction.43 For the drift velocity we report also the
experimental data obtained with the microwave time-of-flight te
nique along thê111& crystallographic direction.44
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FIG. 2. Scalar moments

F̃ (2) ,F̃ (3) ,F̃ (4) ,F̃ (5) @with D̃ (2)

the nonequilibrium part ofF̃ (2)]
vs electric field for electrons in S
in the case of parabolic~P! and
nonparabolic~NP! band models at
T05300 K.
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convergence is particularly evident for the velocity-fie
curves that give values in close agreement with experime
data. The energy dependence of the effective mass obta
by fitting the velocity-field curve reproduces well the M
data of energy and energy flux, thus providing a valua
check of consistency of the present HD approach.

Figures 2 and 3 show the HD calculations for the rema
ing scalar $F̃ (2) ,F̃ (3) ,F̃ (4) ,F̃ (5)% and vectorial $F̃ (2)u1 ,
F̃ (3)u1 ,F̃ (4)u1 ,F̃ (5)u1% moments evaluated up toN55 in the
parabolic and nonparabolic case, respectively. Figure 2
ports also theD̃ (2) vs electric field to show, as an exampl
that the contribution of the nonequilibrium part ofF̃ (p) is
negligible for the evaluation of the scalar moments.

Finally, we note that while the introduction of a great
number of moments yields small differences in the HD n
merical results, by contrast the nonparabolicity provoke
strong suppression of all moments at increasing field va
Such a suppression is found to be more effective for hig
moments as expected.
al
ed

e

-

e-

-
a
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r

B. Linear analysis and response functions

To complete the study of the stationary state, we deve
the small signal analysis over steady state for different m
ments. BeingD̃ (p)!F̃ (p)uE , from a practical point of view,
the scalar moments can be expressed in terms of energy
ers @see Eq.~13!#. Accordingly, we will consider only the
time evolution of a small perturbation of the average ene
and of the vectorial moments$W̃,F̃ (p)u i%. In this case the
corresponding balance equations take the form:

dW̃

dt
52evE2nw~W̃2W̃0!, ~39!

dF̃(p)u1

dt
52

e

m*
~2p13!!!

3p11
W̃pE2(

r 50

N

apr
(1)F̃ (r )u1 ,

with p50,1, . . . ,N. ~40!
FIG. 3. Vectorial moments

F̃ (2)u1 ,F̃ (3)u1 ,F̃ (4)u1 ,F̃ (5)u1 vs elec-
tric field for electrons in Si in the
case of parabolic~P! and nonpara-
bolic ~NP! band models atT0

5300 K.



i

an

16 674 PRB 61M. TROVATO AND L. REGGIANI
By assuming that at the initial time the system of carriers
perturbed by an electric fielddEj(t) @wherej(t) is an arbi-
trary function of time satifyinguj(t)u<1], we will calculate
the deviations from their average values of the energy
the vectorial moments denoted, respectively withdW̃(t) and
dF̃ (p)u1. After linearizing Eqs.~39! and ~40! around the sta-
tionary state, we obtain a system ofN12 equations, which
can be written in the form

dPa~ t !

dt
5GabPb~ t !2edEj~ t !Ga

(E) . ~41!

Where the vectors$Pa ,Ga
(E)% express the quantities
th

l-

s

s

d

Pa5$dW̃~ t !,dv~ t !,dS̃~ t !,dF̃ (2)u1~ t !, . . . ,

dF̃ (p)u1~ t !, . . . ,dF̃ (N)u1~ t !%, ~42!

Ga
(E)5H v,

1

m*
,

1

m*
5

3
W̃, . . . ,

1

m*
~2p13!!!

3p11

3W̃p, . . . ,
1

m*
~2N13!!!

3N11
W̃NJ ~43!

and with the response matrixGab given by
Gab53
Gww 2eE 0 ••• 0 ••• 0

G0w 2a00
(1) 2a01

(1)
••• 2a0r

(1)
••• 2a0N

(1)

A A A A A A A

Gpw 2ap0
(1) 2ap1

(1)
••• 2apr

(1)
••• 2apN

(1)

A A A A A A A

GNw 2aN0
(1) 2aN1

(1)
••• 2aNr

(1)
••• 2aNN

(1)
4 ~44!
e

e

ents

ity,

ues.

e

re-
the
e re-

e of

ned
being

Gww52nw2
]nw

]W̃
~W̃2W̃0!, ~45!

Gpw52
~2p13!!!

3p11
W̃p21eES p

m*
1W̃

]~m* !21

]W̃
D

2(
r 50

N ]apr
(1)

]W̃
F̃ (r )u1 ~46!

with p50,1, . . . ,N.
The relaxation of the system after the perturbation of

electric field is described by theresponse matrixGab . Thus,
introducing the standard chord mobilitym05v/E, and dif-
ferential mobilitym085dv/dE and defining themoment gen-

eralized chord mobility$m15S̃/E, m25F̃ (2)u1 /E, . . . ,mN

5F̃ (N)u1 /E% and themoment generalized differential mobi

ity $m185dS̃/dE, . . . ,mN8 5dF̃(N)u1 /dE, mw8 5dW̃/dE% the
diagonal and off-diagonal quantities of the matrix~44!
Gww ,Gpw , respectively, can be expressed in the form

Gww5eE
m081m0

mw8
, Gpw5(

r 50

N

apr
(1)

m r82m r

mw8
. ~47!

In this way, from the knowledge of the coefficientsapr
(1) and

from a numerical evaluation of the quantitiesm r andm r8 all
the elements of the matrixGab can be calculated. Let u
assume that at the initial timeP(0)50. Then, Eq.~41! has
the following formal solution23,46
e

P~ t !52edEE
0

t

K ~s!j~ t2s!ds, ~48!

with K (s)5exp(Gs)G(E) that can be determined through th
matrix

exp~Gt !5Fdiag$exp~l1t !, . . . ,exp~lN12t !%F21,
~49!

wherela are the eigenvalues ofGab andF is the matrix of
its eigenvectors.

The vector functionK (t) determines the linear respons
of the moments$W̃,F̃ (p)u i% to an arbitrary perturbation of the
electric field and can be expressed in terms of its compon
in the form

Ka~ t !5$Kw~ t !,Kv~ t !,Ks~ t !,K2~ t !, . . . ,KN~ t !%

where Kw(t),Kv(t) and Ks(t) are theresponse functions,
respectively for the fluctuations of mean energy, veloc
and energy flux; the remaing components ofK (t) refer to the
fluctuations of other vectorial moments.

Since Gab is a (N12)3(N12) not symmetric matrix,
the eigenvalues are either real or complex conjugate val
These eigenvalues correspond23,24 to the generalized relax-
ation rate2la , which determines the time behavior of th
response functions. As a matter of fact,2la can be consid-
ered as the analog of the energy and vectorial-moments
laxation rates, respectively, even if, strictly speaking,
correspondence between these generalized rates and th
spective relaxation processes exist only in the absenc
coupling among these variables.47–49

Figure 4 reports the generalized relaxation rates obtai
using an increasing number of moments~i.e. N51,N53,N
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FIG. 4. Rates and eigenvalue
of the relaxation matrix as a func
tion of the electric field for elec-
trons in Si in the case of paraboli
~P! and nonparabolic~NP! band
models at T05300 K. Symbols
refer to the velocitynv , energynw

and flux energyns relaxation rates
~for N51) respectively. The con-
tinuous and the dashed lines~bet-
ter evidenced in the inserts! refer
to the real part and the imaginar
part of the eigenvalues evaluate
for N51, N53, andN55.
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55), both in the parabolic and nonparabolic case, resp
tively. As a general trend, the higher the moment the large
the relaxation rate. Velocity and energy relaxation rates
coupled by the electric field and exhibit complex values
the low-field region. All rates, but energy, increase with
creasing field, the steeper and the higher the moment is.
net effect of nonparabolicity is to systematically suppress
increase of all moments with field. These general behav
are understood from a microscopic point of view by scatt
ing processes that increase their efficiency at increasing
rier energy. The interesting feature of this approach is
provide an analytical theory able to simultaneously desc
the response of all these moments under conditions very
from equilibrium. For the sake of comparison, in the ca
N51, we report also the relaxation rates$nw ,nv ,ns% calcu-
lated from Eqs.~37! and~A10!–~A14!. The results show two
distinct behaviors at increasing electric fields. A first one
associated with small and intermediate values of the elec
field, in which there are a couple of complex conjugate e
genvalues due to the strong coupling between velocity
energy relaxation.23,24 A complex eigenvalue indicates th
presence of some kind of deterministic relaxation48,49 in the
system that can be attributed to a streaming character o
distribution function. In the present case, the joint action
electric field and emission of intervalley phonons is kno
to produce the condition ofstreaming motion.45,50 A second
region, corresponds to the highest electric field, where
eigenvalues become real. At these high fields, energy t
malization of the carrier system becomes so efficient that
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deterministic character is washed out and the transport ta
a full chaotic character attributed to a nearly isotropic~but
heated! distribution function.

From Fig. 4 we note that the width of the region wi
complex values of the eigenvalues depends both on the
creasing number of moments used and on the nonparab
ity. Indeed, in both cases we found that the eigenvalues
squeezed towards lower values with the consequent ex
sion of the coupling region. For the time evolution of velo
ity and carrier energy, the eigenvalues of the relaxation m
trix have been explicitly evaluated in analytical form,23 using
the MC data as input parameters. Therefore, by analyzing
extention of the region where the velocity and energy rel
ations are strongly coupled, we observe that, in the nonp
bolic case, the agreement between present results and
reported in Ref. 23 is within a factor of 2 for N51 and
improves significantly to within 20% forN55.

Figure 5 reports the time dependence of the line
response function, respectively, of velocityKv(t), energy
Kw(t), and energy fluxKs(t) for $N51,N55% at increasing
electric fields. Values are calculated from Eqs.~43!,~44!,~47!,
and~49! and using the HD numerical results reported in Fig
1–3. As a general trend, from Fig. 5 we notice that the
crease in the number of moments yields small difference
the shape of the response function at any field value.
contrast, the nonparabolicity is responsible for a signific
decrease of the response functions at short times; su
decrease becomes more pronounced at higher values o
electric field. This is particularly evident forKw(t) andKs(t)
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FIG. 5. Response functions
$Kv ,Kw ,Ks% vs time for electrons
in Si in the case of parabolic~P!
and nonparabolic~NP! band mod-
els at T05300 K and increasing
electric fields E52 kV/cm, E
55 kV/cm, E520 kV/cm, and
E540 kV/cm. The dashed and
the continuous lines refer toN
51 and toN55, respectively.
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at 20 kV/cm and 40 kV/cm and is associated with the f
that, with respect to the parabolic case, the nonparabol
decreases the values of both the inverse effective mass
the average carrier energy~see Fig. 1 forW̃ andS̃), and thus
reduces the value of the response function of the corresp
ing moment. The decay with time of the response functio
is controlled essentially by the momentum and energy re
ation rates. The presence of the electric field couples the
relaxations processes, thus provoking a nonexpone
shape of the decay. For the response functionKv , at the
shortest times, a negative part is found at 20 and 40 kV/
which is associated with the above coupling between ve
ity and energy relaxation.50 At increasing fields, the respons
functionKw clearly evidences the coupling between veloc
and energy relaxation through a nonmonotonic behavior w
a maximum that separates the velocity from the ene
relaxation.51 Finally, we note thatKs decays similarly but
faster thanKv . A similar behavior is expected for all vecto
rial moments, with the natural tendency of a faster decre
the higher the order of the moment involved.

C. Energy flux in nonhomogeneous conditions

As a test to validate the constitutive relations, expres
through the Eqs.~31! and Eq.~33!, obtained in Sec. V for the
energy flux, we apply the present theory to a on
dimensional 0.1-0.4-0.1mm n1nn1 Si structure with doping
t
ty
nd

d-
s
x-
o

ial

,
c-

h
y

se

d

-

levelsn15531017 cm23 andn5231015 cm23, T05300 K,
applied voltage respectively of 0.5 V, 1 V, and 1.5 V. Th
analytical results are then compared with MC simulatio
performed with nonparabolic models.41,52 By using the spa-
tial profiles of$n, W, v, E% obtained from MC simulations
for N51 we have calculated the energy flux from Eq.~30!;

while for N.1 the energy fluxS̃ is determined by resolving
the system of Eqs.~31!. Starting from the above relations
the energy flux can be conveniently decomposed, resp
tively, in a diffusive term, a convective term, and an electr
field term. To analyze the contribution due to each term, F
6 reports their spatial profiles calculated forN51 and N
55. The contribution of the diffusive term is maximum ne
the cathode homojunctions, where it compensates the s
of the electric-field term. In then region the main contribu-
tions are due to the convective and field terms, whose val
even if they separately depend onN, keep their sum practi-
cally constant in then-region. Near the anode homojunctio
at the highest voltage considered of 1.5 V, the diffusive te
exhibits a spike that leads to overestimate the total-ene
flux. As a matter of fact, in this region the constitutive rel
tions obtained forS̃ give values greater than those direct
calculated by MC simulations. The total constitutive relati
for the energy flux is thus well verified in all points of th
structure except for the region strictly adjacent to the an
junction where both the electric field and its gradient exhi
very high values. Here the energy flux shows a peak t
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FIG. 6. Spatial profile of en-

ergy flux S̃ for a n1nn1 Si struc-
ture with a channel length o
0.4 mm, n15531017 cm23, n
5231015 cm23 and applied volt-
ages of, respectively, 0.5 V, 1 V
and 1.5 V. Symbols refer to an ex
plicit evaluation of the energy flux
making use of data obtained from
nonparabolic MC simulations.41,52

Curves refer to results obtaine
from the constitutive functions
~dotted lines for the convective
term, dashed lines for the diffu
sive term, dash-dotted lines for th
field term and continuous lines fo
the total! by substituting in Eq.
~30! ~for N51) and in Eq.~31!
~for N55) the values of
$n,W,v,E% obtained from MC
data.
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tends to reduce by increasing the number of momentsN @see
Fig. 7~a!#. We remark, that for a more rigorous approach
is necessary to implement a nonlinear theory for the con
tutive relations. Indeed, the present approach is based
linearization of the distribution function that implies a mo
ellization of constitutive relations strictly valid only in th
limit of small gradients. From HD calculations it wa
observed15–18 that only with a nonlinear description of th
distribution function it is possible to improve significant
the agreement with MC simulations even in proximity of t
critical regions adiacent to the homojunctions. Overall,
agreement between the HD and MC results is considere
t
ti-

a

e
to

be satisfactory, thus validating the constitutive relations p
sented here within the limits described above.

Finally, Fig. 7~b! reports the spatial profile of the energ
flux for the device with the highest bias of 1.5 V, calculat
with the generalized Fourier law given in Eq.~33!, for N
51 andN55, respectively. We have found that the agre
ment between HD and MC results near the anode homoju
tion becomes less satisfactory when compared to similar
sults in Fig. 7~a!. As a matter of fact, a very high spike i
observed in the spatial profile ofS̃ that, contrary to expecta
tions, further increases by increasing the number of m
ments. These unexpected results are due to the fact that
the
qs.
FIG. 7. Spatial profile of the energy fluxS̃ as in Fig.~6! for an applied voltage of 1.5 V. Symbols refer to an explicit evaluation of
energy flux directly obtained from MC simulations. Curves refer to results obtained from the constitutive functions obtained using E~31!
~on the left! with N51, N55, andN540 and using the generalized Fourier law of Eq.~33! ~on the right! with p51, N51, andN55.
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lowing the iterative procedure described in Sec. V A, t
explicit dependence on the electric field has been remove
the balance equation for the vectorial moments. This furt
approximation allows us to solve the problem at a low le
and to obtain a Fourier-like law with a diffusive term
which the thermal conductivity~not depending explicitely
from the electric field! is overestimated in then region near
the anode homojunction. This drawback is already known
the literature and has been recently considered in Ref.
Here, the presence of different time scales for the veloc
energy, and energy fluxes all depending on the local-fi
strength, was proved to be of major importance in trying
generalize the thermal conductivity under hot-carrier con
tions.

VII. CONCLUSIONS

By means of generalized kinetic fields we have develo
a general formulation of the maximum entropy princip
within a total energy scheme and including the contribut
of higher moments of the distribution function. A new sy
tem of generalized hydrodynamic equations is derived w
the full complexity of the band modeled in terms of a sing
particle with an effective mass that is a function of the av
age total energy. From the knowledge of the effective ma
which becomes a new constitutive function, and of the phy
cal constants of the bulk materials all other constitutive fu
tions are determined. Present hydrodynamic theory thus d
not need other adjustable parameters but, for a kinetic le
the knowledge of the elementary microscopic interactio
The set of equations so introduced is proven to be suffic
to describe the relevant transport properties of electron
the bulk material. Accordingly, stationary and small sign
kinetic coefficients are consistently obtained as a function
the external electric field. In the context of the small sign
analysis we have introduced a generalizedresponse matrix
and evaluated numerically the linearresponse functionsof
the different moments in the time domain. The validity
this approach has been confirmed by the satisfactory ag
ment with the numerical results of full-band Monte Car
simulations and available experimental data for the cas
electrons in Si~bulk andn1nn1 structures! at T05300 K.
In particular, we have provided a generalization of the F
rier law for the thermal conductivity of hot carriers in th
small gradient limit, indicating the possibility for a furthe
extension within a nonlinear expansion of the distributi
function. We notice that, although the general clos
scheme~with an arbitrary number of moments! is obtained
using a linearized maximum entropy method, the maxim
entropy formalism can be developed also in a nonlinear c
text using both the collision integral@Eqs.~21!–~22!# and the
fixed most important macroscopic variables$n,W,v i ,Si ,
F (0)u^ i j &%.

15–18 We believe that the present hydrodynam
method can be fruitfully applied to describe transport pro
erties of hot carriers having the relevant advantage of p
viding a closed analytical approach and a reduced comp
tional effort with respect to other competitive numeric
methods at a kinetic level.
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APPENDIX A

By resolving the system of Eqs.~17! and defining the
elements of matrixAml

(s) through the relation

~Aml
(s)!215

@2~m1 l 1s!11#!!

2m1 l 1s11
, ~A1!

we obtain the general expressions for the scalarsL̂ (m) and
the tensorialL̂^ i 1i 2••• i s&

(m) Lagrange multipliers

L̂ (m)52
1

2n S \

m* D 2mS 3

4

nm*

W D m

(
l 52

N

Aml
(0)S 3

2

n

WD l

D ( l ) ,

~A2!

L̂^ i 1i 2••• i s&
(m) 52

1

2n

~2s11!!!

s! S \

m* D 2m1sS 3

4

nm*

W D m1s

3(
l 50

N

Aml
(s)S 3

2

n

WD l

F ( l )u^ i 1i 2••• i s&
, ~A3!

for m50,1, . . . ,N and s51,2, . . . ,M .

The coefficentsx (N11)l
(r ) entering the constitutive relation

given by Eqs.~18! and ~19! are

x (N11)l
(r ) 5 (

m50

N
@2~N1m1r !11#!!

2N1m1r 11
Aml

(r 21)S 2

3

W

n D N112 l

,

~A4!

for r 51,2, . . . ,M .

The quantities$P(p)
0 ,apl

(s)% entering the collisional produc
tions of Eqs.~23! and ~24! are

P(p)
0 54S 2

3

W

n D p12

(
h

Ah (
k50

p21 S p

k D ~2Xh!p2k

3@NhH2k11
2 1~21!p2k~Nh11!H2k11

1 #, ~A5!
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(0)5

2

n S 2

3

W

n D p2 l 12

(
h

Ah (
m50

N

Aml
(0)(

k50

p21 S p

k D ~2Xh!p2k

3@NhH2(k1m)11
2 1~21!p2k~Nh11!H2(k1m)11

1 #

~A6!

apl
(s)52

2

nS 2

3

W

n D p2 l 12

(
h

Ah (
m50

N

Aml
(s)

3@~Nh11!H2(m1p1s)11
1 1NhH2(m1p1s)11

2 #

1
1

2S 2

3

W

n D p2 l 21

j (
m50

N

~m1p1s11!!Aml
(s) , ~A7!

for s51,2, . . . ,M

with
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Ah52
n

\3S 3

4

m*

p

n

WD 3/2 Dh
2

rvh
ZhXh , Xh5

3

4
\vh

n

W
,

j5
El

2KBT0

\4rUl
2 S 4

3

m*

p

W

n D 3/2

,

whereZh is the number of equivalent valleys that are po
sible final states and the dimensionless quantitiesH2r 11

6 are
expressed through the modified Bessel functions of sec
kind K1 and K2. By definingG65Xhexp(7Xh)K2(Xh) and
H1

65exp(7Xh)K1(Xh) we have, in general, that

H3
656XhH1

61G6, ~A8!

H2r 11
6 562XhH2r 21

6 6~r 11!!

3F (
n51

r 22 3XhH2n11
6

~n13!!
6

G6

2 G with r>2. ~A9!

We note that the collisions with intravalley acoustic phono
being considered as elastic processes, lead the scalar
ments to relax more slowly than other dynamical variab
$F (p)u^ i 1••• i n&%. In this way, in local thermodynamic equilib
rium all collisional productions vanish except the quantit
P(p)uE52P(p)

0 . By using Eq.~A5! it is possible to verify,
also that the productionP(p) cancels out only when therma
equilibrium condition is achieved~i.e., D (p)5F (p)u^ i 1••• i s&

50 andW53/2nKBT0).
The average collision rates$nw ,av ,bv ,as,bs% entering

the relations~25!–~30! and ~36!–~37! are

av52
16

27 (
h

Ãh$7@~Nh11!H3
11NhH3

2#

22@~Nh11!H5
11NhH5

2#%1 j̃, ~A10!
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9 (
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11NhH3
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1
2

5
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2#J 1
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5
j̃, ~A11!
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27
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(
h

ÃhXh@~Nh11!H1
12NhH1
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~A12!
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32

81 (
h
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22@~Nh11!H7
11NhH7

2#%22j̃, ~A13!

bs52
32

27 (
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11NhH5
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1
2

5
@~Nh11!H7

11NhH7
2#J 1

18
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j̃, ~A14!

with
-

nd

,
o-

s

s

Ãh52
~m* !3/2W̃1/2

\3 S 3

4p D 3/2 Dh
2

rvh
ZhXh ,

j̃5~m* !3/2W̃1/2
El

2KBT0

\4rUl
2 S 4

3p D 3/2

.

APPENDIX B

From the knowledge of the constitutive relations~18!–
~20!, ~23!–~24!, and~A5!–~A7!, we can separate the close
system of field Eqs.~16! in two sets. The first set represen
the usual balance equations for the variables$n,W,v i%
coupled with Poisson’s equation for the electric fieldEi

]n

]t
1

]nvk

]xk
50, ~B1!

]W

]t
1

]F (1)uk

]xk
52nev lEl2P(1)

0 2(
l 52

N

a1l
(0)D ( l ) , ~B2!

]nv i

]t
1

]

]xi
H 2

3

1

m*
WJ 1

]F (0)u^ ik&

]xk

52
ne

m*
Ei2a00

(1)nv i2(
l 51

N

a0l
(1)F ( l )u i , ~B3!

«Df5e~ND2n!. ~B4!

The second set represents the balance equations for th
maining

~N11!F(
i 50

M

~2i 11!G25

higher moments$D ( l ) , F (r )u i , . . . ,F (p)u^ i 1i 2 . . . i s&
%

]D (p)

]t
1

]F (p)uk

]xk
1

~2p11!!!

3p S W

n D p21

3H ~p21!S W

n D ]nvk

]xk
2p

]F (1)uk

]xk
J

52epH F (p21)uk2
~2p11!!!

3p S W

n D p21

nvkJ Ek

1p
~2p11!!!

3p S W

n D p21

P~1!
0 2P(p)

0

1(
l 52

N H p
~2p11!!!

3p S W

n D p21

a1l
(0)2apl

(0)J D ( l ) ,

for p52, . . . ,N, ~B5!
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]F (p)u i

]t
1

1

3

]

]xi
H 2

m*
F (p11)J 1

]F (p)u^ ik&

]xk

52epF(p21)u^ ik&Ek2
e

m*
2p13

3
F (p)Ei

2(
l 50

N

apl
(1)F ( l )u i , for p51, . . . ,N ~B6!

]F (p)u^ i 1i 2••• i s&

]t
1

s

2s11

]

]xi s&
H 2

m*
F (p11)u^^ i 1••• i s21&J

1
]F (p)u^ i 1••• i sk&

]xk

52epF(p21)u^ i 1••• i sk&Ek2
e

m*
sF2~p1s!11

2s11 G
3F (p)u^^ i 1••• i s21&Ei s&

2(
l 50

N

apl
(s)F ( l )u^ i 1i 2••• i s&

,

for s52, . . . ,M ; p50, . . . ,N, ~B7!

where, the time derivates of the density and of the ene
have been eliminated from the scalar Eqs.~B5! through the
use of Eqs.~B1!–~B2!, and the constitutive relationsGA
5$F (N11)u^ i 1••• i r 21& , F (p)u^ i 1••• i Mk&% is expressed by Eqs
~18!–~20!.

We are interested in a theory characterized by the first
moments$n,v i ,W% and by the electric fieldEi . In this
case the quantitiesLA5$D ( l ) ,F (r )u i ,F (0)u^ i j &%, ~with l
52, . . . ,N, r 51, . . . ,N) present in the balance Eqs.~B2!–
~B3! must be expressed in terms of the independent varia
$n,v i ,W,Ei%. In order to get the constitutive relations for th
quantitiesLA we take the remaining Eqs.~B5!–~B7! and use
a method akin to the Maxwellian iteratio
procedure.17,33,36,38,39The first iteration is obtained by inser
ing the equilibrium values

D
@0#

( l )5 F
@0#

(r )u i5•••5 F
@0#

(p)u^ i 1i 2••• i s&
50

and

G
@0#

A50

in the left-hand side of Eqs.~B5!–~B7!. In this
way, from the right-hand side of Eqs.~B5!–~B7!, we obtain
a set of equations for the first iterated valu

$ D
@1#

( l ) , F
@1#

(r )u i , . . . ,F
@1#

(p)u^ i 1i 2••• i M&%:

(
l 52

N H p
~2p11!!!

3p S W

n D p21

a1l
(0)2apl

(0)J D
@1#

( l )

1epH ~2p11!!!

3p S W

n D p21

nvk2 F
@1#

(p21)ukJ Ek

1p
~2p11!!!

3p S W

n D p21

P~1!
0 2P(p)

0 50,
y

e

es

for p52, . . . ,N, ~B8!

(
l 51

N

apl
(1) F

@1#

( l )u i1ap0
(1)nv i1ep F

@1#

(p21)u^ ik&Ek1
e

m*
2p13

3

3@F (p)uE1 D
@1#

(p)#Ei1
1

3

]

]xi
H 2

m*
F (p11)UEJ 50,

for p51, . . . ,N, ~B9!

(
l 50

N

apl
(s) F

@1#

( l )u^ i 1i 2••• i s&
1

e

m*
sF2~p1s!11

2s11 G
3 F

@1#

(p)u^^ i 1••• i s21&Ei s&
1ep F

@1#

(p21)u^ i 1••• i sk&Ek50

for s52, . . . ,M ;p50, . . . ,N ~B10!

with F (p)u^ i 1••• i Mk&50 for p50, . . . ,N.

We note that, for fixed values of the basic field
$n,W,v i ,Ei% and of the gradients$]n/]xi , ]W/]xi%, the set
of Eqs.~B8!–~B10! is a linear system of algebrical equation
for the first iteration of the remaining variables. Anal
gously, in the second iteration we substitute into the le
hand side of Eqs.~B5!–~B7! the linear expressions for th
GA describing the quantities$D ( l ) , F (r )u i , . . . ,F (p)u^ i 1i 2••• i s&

%
by means of the first iteration. In this way, from
the right-hand side of Eqs.~B5!–~B7!, one obtains a
system of equations for the second iterated val

$ D
@2#

( l ) , F
@2#

(r )u i , . . . ,F
@2#

(p)u^ i 1i 2••• i M&%. With this procedure, the

values of the second iteration are more complex than th
of the first since the former depend on the second derivat
of the basic fields, but here we consider only the values
the first iteration.

When considering the scalar and vectorial moments~e.g.
M51! we have only the two Eqs.~B8! and ~B9! with the
constraintsF (p)u^ i 1••• i s&

50 for all the tensorial moments. In

this case, by assuming thatD (p)!F (p)uE ~see, for example,
the numerical results for the bulk!, from the vectorial Eq.
~B9! we obtain:

(
r 51

N

apr
(1) F

@1#

(r )u i52ap0
(1)nv i2

e

m*
2p13

3
F (p)uEEi

2
1

3

]

]xi
H 2

m*
F (p11)UEJ , ~B11!

where, in general, the solution of this system suffices to
termineexplicitly the first iteration for all the vectorial mo
ments as functions of the basic fields$n,W,v i ,Ei%.
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