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Variable-range hopping in the critical regime
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Mott’s theory of variable range hopping~VRH! is extended to the critical regime approaching the metal-
insulator transition where the hopping energyDh(T),kT. The Miller-Abrahams impedance between a pair of
sites is minimized for an arbitrary value ofDh /kT. The theory features spatial dispersion of the dielectric
response functione(R,n), which introduces a new length scaler s into the Miller-Abrahams resonance energy.
In the regimeDh!kT the Mott exponent 1/4 changes to 2/7 and the numerical factor@18.1# in the Mott T0 is
reduced to 1.51. Efros-Shklovskii VRH is also modified by the inclusion ofe(R,n) and theT08 depends
critically on the spatial dispersion ofe(R,n) and this feature allows an explanation of the Ge:Ga data of
Watanabeet al., which exhibitsT08}(12n/nc)

1.0. The new result for the Mott case allows the Si:As and Si:P
results to be explained over a range of 106 in Mott T0 values encompassing the crossover from high-
temperature Mott VRH to conventional low-temperature Mott VRH. The reduced density dependence of the
Mott VRH prefactors0(n) is also satisfactorily explained. In the critical regime for 12n/nc,0.05, Si:As and
Si:P yield the localization length exponentn;1.
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For barely insulating disordered metal-insulator transit
~MIT ! systems the conductivity is determined by differe
phonon-assisted hopping processes at lowT and at higherT
there is also a thermally activated component from itiner
electrons excited above the mobility edge. The activa
component sa}Tp exp@2e2 /kT# becomes negligible for
e2 /kT@1 except extremely close tonc becausee2(n)→0 as
n→nc2 . For weakly compensated barely insulating samp
the two most important hopping processes lead to Mott1 and
Efros-Shklovskii2 ~ES! variable range hopping~VRH! con-
duction. These are of the forms(n,T)5s0(n,T)exp@
2(T0 /T)m# with m51/4 for Mott VRH andm51/2 for ES
VRH. There are numerous observations of both Mott VR
and ES VRH in many systems ranging from amorpho
semiconductors,3 which led to Mott’s original formulation,
crystalline doped semiconductors,4,5 amorphous
semiconductor-metal alloys,6 quasicrystals,7 and even in the
high-temperature superconducting materials8 like
La22xSrxCuO4. In a number of cases the crossover betwe
Mott VRH and ES VRH has been documented as a func
of temperature, doping, or magnetic field. A particularly
egant treatment of the crossover has been given by Ahar
Zhang, and Sarachik9 ~AZS!. A number of studies have
documented the scaling behavior of the Mott and ES cha
teristic temperaturesT0 and T08 . In general one findsT0

@T08 and one observes ES VRH at the lowestT and Mott
VRH at higherT. In the critical regime one finds the Mo
hopping energyDh51/4k(T3T0)1/4 becomes less thankT.
The original Mott derivation, and also subsequent deri
tions by Ambegaokar, Halperin, and Langer10 and by
Pollak,11 were intended for the regimeT0@T. In the critical
regime where the hopping energyDh,kT and the mean hop
ping distanceRh(n,T),j(n), where j is the localization
length, this calculation uses the Miller-Abrahams12 ~MA !
pair approximation and the impedanceZ(R,D) between a
pair of sites with spacingR and energy differenceD. A key
feature of the approach of this paper is the introduction
PRB 610163-1829/2000/61~24!/16596~14!/$15.00
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spatial dispersion13 of the dielectric responsee(n,R,T) that
is crucial in the critical regime wheree(R→`,n) diverges
as n→nc2 but e(R→0,n)→eh where eh is the dielectric
constant of the host semiconductor. Since the original th
ries were motivated by the amorphous semiconductor res
where the MottT0 was of order 108 K and the exponentia
temperature dependence was the dominant effect, insuffic
attention was paid to the prefactors0(n,T) and the charac-
teristic lengthL that entered the result in the percolatio
approach for whichs5Gc /L, whereGc is the critical con-
ductance associated with the resistor network of MA. In
critical regime where (T0 /T)1/4,1 it is important to care-
fully consider the prefactors0(n,T).

BACKGROUND

The subject of VRH conduction is now three decades
and new experimental results continue to emerge. The the
has been discussed in detail by many theorists and is
viewed by Efros and Shklovskii.14 With increased interest in
MIT studies in the last two decades a large number of stud
have documented both Mott and ES VRH asn→nc2 and
some of these studies have documented the critical beha
of the Mott and ES characteristic temperatures. The crit
behavior of VRH was reviewed15 a decade ago, but a numbe
of new, significant experimental results in the last five ye
have given important new information and presented so
new puzzles to be explained. In addition, the emergence
finite-T scaling ~fTs! has important implications for both
VRH conduction and thermally activated conduction of iti
erant electrons above the mobility edge.

A controversy developed over the proper interpretation
the Si:P data fors(n,T→0) and the scaling behavior o
s(n.nc ,T50)5s0(n/nc21)s. Paalanenet al.,16 obtained
s;0.50 and saw distinctds5s(n,T)2s(n,0)5m(n)AT
behavior to within 0.0008 ofnc . However, Stuppet al.,17

claimed a crossover froms;0.55, wherem(n),0 to s
16 596 ©2000 The American Physical Society
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;1.3 whenm(n) became positive very close tonc . Stupp
et al., claimed the critical regime was restricted tom(n)
.0. Their explanation reducednc from 3.74 to 3.52
31018/cm3 ~from here on the31018/cm3 will be dropped!.
This 6 % reduction innc is a large reduction and the expo
nent s is strongly coupled tonc . The Stuppet al., plot of
s(n,T) versusAT ~their Fig. 1! showedm(n) increasing
substantially with decreasingT suggesting a poor fit toAT
behavior. Their data for samples 3.38 to 3.69 is replotted
Fig. 1 in a Mott VRH plot (lns vs T21/4). The results sug-
gest a good fit to the Mott law forT.90 mK (T21/4

,1.82 K21/4), but there are sample-dependent deviatio
~3.63 is particularly pronounced! that indicate thermal de
coupling of the electrons from the thermal reservoir and t
has been confirmed by a detailed analysis of the Kap
resistance between the reservoir and sample and the the
time constant between reservoir and sample. Stuppet al.,
obtained a MottT0;2.3 K for the 3.52 sample they claime
as nc , but T0}@N(EF)j(n)3#21 @T0}(12n/nc)

3 close to
nc# andT0 must scale to zero asn→nc . The data in Fig. 1
for n>3.56 are in the regimeDh /kT,0.25 atT50.5 K and
T0;0.012 K for n53.69. It will be shown below that this
reanalysis leads to annc in good agreement with the
Paalanenet al., results. The Stuppet al., data in Fig. 1 is
very similar to the Si:As results18 of Shafarman, Koon, and
Castner~SKC, see Figs. 2 and 3!.

A. The Mott and Efros-Shklovskii characteristic temperatures

Figure 2 shows values of MottT0’s and EST08’s versus
reduced density for Si:As, the results of Hornung and v
Löhneysen19 for Si:P ~also the results of Stuppet al., as re-
plotted in Fig. 1 with a detailed analysis by Castner20!, the
new Ge:Ga results of Watanabeet al.,21 and the CdSe:In
results of Zhanget al.22 The first three results are for ver

FIG. 1. The Si:P results of Stuppet al. ~Ref. 17! replotted for
comparison with Mott’s VRH expression. The results forT
.0.09 K ~vertical dashed lineT50.09 K) are a good fit to Mott’s
1/4 law. The sample dependent upward deviations~particularly pro-
nounced for 3.63! result from thermal decoupling of the electron
from the lattice and thermal reservoir.
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weakly compensated samples, while the CdSe:In sam
have larger compensation, but are an excellent example
cause they show the crossover from Mott to ES VRH as
temperature is reduced below a crossover temperatureTx and
yield values of bothT0 and T08 . The new DC Si:P results
overlap in reduced density the earlier Si:P results of H
et al.,23 measured at 400 MHz. The sharp difference in t
T0(n) scaling results of Hesset al., with the Si:As results
has already been discussed.15 The new DC Si:P results yield
T0 values more than 200 times larger than the Hesset al.,
values for 12n/nc.0.15 and 100 times smaller forn
;0.98nc . 400 MHz corresponds toT519 mK, which is
3Dh/4 for T0;1 K andT550 mK, while for T0;15 K and
T560 mK 400 MHz is aboutDh/3. Whenhn is an appre-
ciable fraction ofDh the VRH theory needs to take accou
of photon-assisted VRH which qualitatively will enhanc
s(n,T) and reduce theT0 values. Hesset al., claim T0
;(nc /n21)5(nc /n)(12n/nc) which is close to the ES
T08;(12n/nc) results for Ge:Ga but is very different tha
the DC Si:P and Si:As results.

Several striking features are illustrated in Fig. 2. T
Si:As and Si:PT0 behavior is similar featuring a sharp up
ward break to a very steep slope for 12n/nc.0.04. This
steep slope is the intermediate regime whereDh;kT and
represents the crossover between high-temperature
VRH (Dh,kT) and conventional low-temperature Mo
VRH (Dh.kT). The crossover parameterx5Dh/2kT
5(T0 /T)1/4/8 requires nearly four orders of magnitude inT0
for a givenT to get fromx;0.3 to x;3, which is in quali-
tative agreement with the Si:P and Si:As results in Fig.
The slopes are similar for 12n/nc,0.03, however in this
regime the ratioT0(As)/T0(P)5@N(EF)j0

3#P /@N(EF)j0
3#As

FIG. 2. Mott ~open symbols! and ES~filled symbols! T0 andT08
values versus 12n/nc for Si:P ~h andj!, Si:As ~s!, CdSe:In~n
andm!, GeGa~.!, and Ge:Mo~L!. The rapid upturn inT0 for Si:P
and Si:As for 12n/nc.0.04 represents entry into the crossov
regime where the coefficientD(n) in T0 increases rapidly. Note the
Ge:GaT08 increases only linearly with 12n/nc . The lower dashed
line has a slope of three while the middle dashed line below
Ge:Ga data has a slope of one.
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16 598 PRB 61T. G. CASTNER
is of order 3. The new EST08’s for Si:P for 12n/nc.0.12
are nearly two orders of magnitude smaller than the M
T0’s for the same value ofn/nc . One of the significant facts
about the Si:As and Si:P results is that the mean hopp
distanceRh(n,T)53/8j(n)(T0 /T)1/4 @j(n) the localization
length# goes through a minimum forn;0.9560.01nc at a
fixed T @for Si:As seeRh(n,T51 K) values in Table IV in
SKC#. This minimum cannot be explained by conventio
Mott VRH theory. Specific heat results24 showN@EF(n)# de-
creasing monotonically below nc implying Rh
}$j(n)/N@EF(n)#T%1/4 at fixed T will increase monatoni-
cally with n in the regime 0.8,n,0.99nc . The importance
of this minimum inRh(n,T5const) versusn has been over-
looked. It is exactly this regime where spatial dispersion
e8(n,R) is important.

The Mott T0 for CdSe:In is approaching the same ran
of values as for Si:P and Si:As for 12n/nc,0.04 and the
ratio T0 /T08 is approximately constant for 12n/nc,0.1, but
increases for larger values of 12n/nc . The T0 values for
CdSe:In also exhibit a break to a steeper dependence
2n/nc for 12n/nc.0.1. The Ge:Ga results for the EST08’s
are particularly striking becauseT08}(12n/nc)

a@a;1.0#
representing a much weaker dependence on 12n/nc than the
other data. Furthermore, the values ofT08 are 100 or more
larger than for Si:P and Si:As for 12n/nc,0.1. For a given
material in the critical regime one expectsT0@T08 and this is
confirmed for the Si:P and CdSe:In results. Another imp
tant difference in the Ge:Ga results21 are the strong devia
tions from ES VRH for 12n/nc,0.01 where the VRH ex-
ponent m@ ln s(T)52(T0 /T)m# decreases rapidly fromm
;1/2 thru Mott’sm51/4 tom;1/8. The large difference in
the value of 12n/nc where ES VRH starts to dominate b
tween Ge:Ga and Si:P~and also Si:As, but where ES VRH
has not been documented! suggests the critical regime fo
n,nc may be much smaller for Ge:Ga than for Si:P a
Si:As.

The Coulomb gap plays a crucial role in ES VRH and t
energy width of the Coulomb gap is DCG
;e3N(EF)1/2/@e8(n,R,T)#3/2. If spatial dispersion of
e8(n,R,T) is ignored, one expectsDCG to decrease rapidly a
e8(n,T) diverges asn→nc . However, the important tunnel
ing results of Massey and Lee25 for Si:B demonstrate an
initial decrease inDCG from 0.85 to 0.93nc , but this is fol-
lowed by successive increases inDCG for 0.96 and 0.99nc .
Spatial dispersion ofe8(n,R,T) can qualitatively account fo
this reversal. The broadening ofDCG very close tonc can
also account for the striking Ge:Ga results that demonst
ES VRH for 0.9,n,.99nc .

Deutscher, Levy, and Souillard26 have proposed a new
VRH mechanism for disordered systems such as gran
metals based on ‘‘superlocalization’’ of the wave function
the percolation threshold based on random walks on frac
They find a hopping conductivitys(T)}exp@2(T0 /T)(z/z1D)

wherez is an exponent characterizing the wave function
cay atEF andD is the fractal dimensionality of the percola
tion cluster. Using the Alexander-Orbach27 conjectureD/z
54/3 leads to a VRH exponent 3/7, which is close to the
result, but Coulomb interactions have been neglected. Un
the usual situation discussed herein where the crossov
from Mott VRH to ES VRH as the temperature is reduce
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the Deutscher, Levy, and Souillard proposal leads to
VRH at highT and 1/4 VRH at lowT, and therefore is not
relevant for the crystalline doped systems.

B. The VRH conductivity prefactor s0„n,T…

The second issue for any VRH theory to address is
prefactors0(n,T) and specifically theT andn dependence of
s0 . In many cases experimentalists have fit their data w
constant prefactors~T independent! that yield reasonable fits
to the data, however, which may not be in agreement w
theoretical predications. Pollak11 obtained s0
}a21(T0 /T)1/4 for the Mott VRH prefactor. Allen and Ad-
kins gaves0}a23(T0 /T)1/2 for Mott VRH for qR.1 while
ES gaves0}(T08

3/T)1/2 for ES VRH, although the relevanc
of these results to the critical regime is unclear. There h
been numerous analyses of prefactors by a variety of
proaches~random resistor networks, etc.!. These analyses
have been reviewed by Efros and Shklovskii.

In Fig. 3 the prefactors are shown for five experimen
systems ranging from the amorphous semiconductor-m
alloy system Ge:Mo, ton-type Si:As and Si:P, top-type
Ge:Ga, and finally to compensatedn-type CdSe:In. The first
three cases are for Mott VRH, while Ge:Ga and CdSe:In
for ES VRH. The two points for Ge:Mo are less than a fac
of 2 larger than the Si:As values although an (nc)

1/3 depen-
dence froms0}(e2/hdc) @dc5(nc)

21/3# would suggest a
ratio of 8.5. The Si:As and Si:P results are similar in dep
dence on 12n/nc and both seem to approach a consta
value asn→nc2 . The ratio is in approximate agreeme
with the @nc(As)/nc(P)#1/3. The onset of a significant in
crease for 12n/nc.0.05 suggests the onset of a differe
regime and is in good agreement with theT0 versus 1
2n/nc results shown in Fig. 1. There is more scatter in t
Ge:Ga results and the trend asn→nc2 is less obvious be-
cause of this scatter. Nevertheless, one can argue thats0 is

FIG. 3. Mott ~open symbols! and ES~filled symbols! conduc-
tivity prefactors s0 versus 12n/nc for Si:P ~h!, Si:As ~s!,
CdSe:In~m!, Ge:Ga~.!, and Ge:Mo~L!. In all cases with suffi-
cient datas0(n) approaches a constant asn→nc . The dashed line
with slope three is the theoretical prediction fors0(n) for zm!1.
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PRB 61 16 599VARIABLE-RANGE HOPPING IN THE CRITICAL REGIME
not changing rapidly. Based on thenc
1/3 dependence the

Ge:Ga values should be 0.36 times those for Si:P but a
little larger. The CdSe:Ins0 for ES VRH approaches a valu
3S/cm as n→nc2 and gradually rise with increasing
2n/nc , but without showing the sharp upward break sho
by Si:As and Si:P. The magnitude is smaller than expec
based ons0}nc

1/3 since nc52.831017/cm3 and thenc de-
pendence would yield a ratio~to Si:P! of 0.4, as compared to
the experimental ratio of 0.06 at 12n/nc50.06. Unfortu-
nately, values ofs0 for Mott VRH are not available. Com
parison of the two ES VRH cases fors0 for Ge:Ga and
CdSe:In appear to demonstrate a breakdown of thenc

1/3 de-
pendence ofs0 sincenc(CdSe:In)/nc(Ge:Ga);1.5, but the
CdSe:In results are for compensatedn-type samples while
the Ge:Ga results are for weakly compensatedp-type
samples.

Mansfield28 states that close tonc , hopping processes ar
complicated by correlated many-electron hopping effe
~CMEH! above a certain impurity densityNs . The complex
subject of CMEH has been discussed in detail by Pollak
co-workers,29 but their discussion seems most relevant
medium and heavier compensation. The Mansfield criter
for CMEH effects involves the Coulomb interactionEi j
5e2/e8(n,Ri j )Ri j for hopping between two sites separat
by Ri j . Equating 2Ri j /a and Ei j /kT Mansfield obtainsNs
5(3/4p)(2e8kT/e2a)3/2 and findsNs,0.01nc for Si and Ge
at 2K usinge85eh ~the host values ofeh at LT are 11.4 for
Si and 15.4 for Ge!. When one employse8;e(n,T) in the
critical regimeNs can increase by orders of magnitude, ho
ever one also needs to take account of spatial dispersio
e8(n,R,T) in calculatingNs . For smallR the screening is
that of the host so that the HubbardU for two electrons on
the same site is large, while the long-range part of the C
lomb interaction is fully screened bye(n,T) which diverges
asn→nc . The role ofe2e interactions and CMEH depen
strongly on the hopping distanceRh and onT. The viewpoint
adopted in this paper is pragmatic, namely, when the d
suggest Mott VRH it will be assumeds(n,T) is dominated
by one-electron hops. When the data suggest ES VRH
dominant, thene2e interactions are clearly important. Th
Mansfield criterion is qualitatively consistent with a cros
over from Mott VRH to ES VRH asT is lowered, but there
are other criteria based on the width of the Coulomb g
The extension of VRH theory discussed below doesn’t
clude CMEH effects.

VARIABLE RANGE HOPPING IN THE CRITICAL
REGIME

The first step in this calculation is the determination of t
impedance between two sites. MA found the impedance
tween sitesi and j, separated by the distanceRi j , for isotro-
pic envelope functions, but neglecting contributions from e
cited states becauseDex /kT@1, to be

Zg,i j ~Ba4/Ri j
2 !exp@2Ri j /a#hi j hg , ~1a!

where

hi j 5$11exp@2b~Ei2m!#%$11exp@2b~Ej2m!#%,
~1b!
a
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hg5~1/bD!$expb~Ei2m!2expb~Ej2m!%, ~1c!

and

B5~9nv/4!~r0s5\4/E1
2!~eh

2/e6!. ~1d!

Ei5Ej1D(D.0) with m the chemical potential.r0 is the
crystal density,s the velocity of sound,E1 a deformation
potential,eh the host dielectric constant, a the donor Bo
radius for a spherical envelope function, andnv is the num-
ber of equivalent conduction-band valleys. After some al
bra it can be shown

hi j hg5~4/bD!sinh~bD/2!@coshb~Ej2m1D/2!

1cosh~bD/2#. ~2!

The states available for hopping lie within the order ofkT of
m. For simplicity we will minimizeZg,i j for two cases: case
1 for Ej5m; case 2 forEj5m2D/2. The choice makes no
difference forbD@1, but does change the result in a nume
cal way forbD!1. The MA result in Eq.~1a! is valid in the
dilute limit where the resonance integral^W&
5(2e2/3eha2)Re2R/a andZg}^W&22 and the subscriptij is
now dropped onRi j . The crucial feature in the critical re
gime is the strong spatial dispersion of the dielectric
sponsee8(n,r ,T) given by

e8~n,r ,T!215@eh
212e~n,T!21#exp~2r /r a!1e~n,T!21,

~3!

where eh is the host dielectric constant,e(n,T→0)5eh
14px8(n) where x8(n) diverges asn→nc . Significant
VRH for n just belownc impliese(n,T)/e(n,0) can be much
larger than one. r s is the screening length andr s
5(3/4pkn)1/3 where k;4. This form in Eq.~3! has been
used earlier by Haken30 in treating the interaction of exciton
with optical phonons and is also similar to the interacti
term employed for polarons in ionic crystals because of
@eh

212e(n)21# factor. It has also been employed in a don
polarizability enhancement13 calculation asn→nc2 . For r
!r s , e8(n,r ,T)→eh while for r @r s , e8(n,r ,T)→e(n,T).
This implies the localized wave function is characterized
a Bohr radiusa5aBeh(m/m* ) for r !r s and a Bohr radius
of order the localization length j(n)5aBe(n,T
→0)(m/m* ) for r @r s suggesting a wave function

c~r ,r s ,a,j!5c~pa3!21/2e2r /a1~a/r s!
3/2~pj3!21/2e2r /j,

~4!

where c is a coefficient determined by normalization. Th
coefficient (a/r s)

3/2 is an approximate coefficient estimate
from the probability the electron is inside a sphere of rad
r s . For a/r s<1/3.2(a/r s)

3<0.03, which guaranties mos
of the probability density ofucu2 lies within r s . The coef-
ficient c52(a/r s)

3/2l1@12(a/r s)
3(12l)#1/2 where l

58/@(j/a)1/21(a/j)1/2#3. In the critical regimec.0.9 and
c→1 as j(n)→` as n→nc2 . The matrix elements
L(R),J(R) and overlap are calculated in the appendix. Th
it is shown S(R)<0.06 in the relevant regime and tha
J(R)!L(R). The MA expressionW5L2SJ in the critical
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16 600 PRB 61T. G. CASTNER
regime becomesW;L. The largest term inL results from
cross terms between inner and outer portions ofc(n,r ). One
finds

W;Lct'$8e2a2@eh
212e~n!21#/~r sj!3/2~11a/r s!

2%

3e2R/j@122a2/Rj#. ~5!

There are three other smaller contributions toLct propor-
tional toe2R(1/j11/rs), e2R/a, ande2R(1/a11/rs), respectively,
that are much smaller than the contribution in Eq.~5!. In the
critical regime wheree(n)@eh , the various lengths satisf
a,r s,Rh(n,T),j(n) with a!Rh and j. The quantity
2a2/Rj<0.025.In the critical regime W(R)}e2R/j with no
significant R dependence in the prefactor. This crucial res
removes any significant T dependence of the prefa
s0(n). The MA resultW}@e2R/eha2#e2R/a is removed in
the critical regime becauseeh is replaced bye(n) ande(n)
@eh . Spatial dispersion ofe(n,r ) introduces the screenin
lengthr s and suggests the more complexc(r ,r s ,a,j) in Eq.
~4!. As shown in the appendix this simple form of spat
dielectric dispersion changes the leading term to^W&2

;$8ce2/@eh(r sj)3/2(11a/r s)
2#%2e22R/j when e(n,T)@eh .

The MA matrix element for phonon absorption is given b

H85 iE1~\qnq/2r0Vs!^~W/D!~eiq•Rb2eiq•Ra!^bueiq•rbub&

1@12~W/D!2#S~q!&, ~6!

where the overlap matrix elementS(q) is given in the ap-
pendix. The calculation ofSab(q) is tedious with numerous
terms, but the results show that, as in the dilute case,W/D is
much larger than@12(W/D)2#uS(q)u. This conclusion is
contrary to that in SKC because the earlier considera
neglected dielectric dispersion and didn’t use thec(r ,a,j) in
Eq. ~4!. The modified MA impedance, neglecting the co
ventional MA terms in the regimee(n)@eh becomes

Zg~R,D,T!5@~Bcrr s
3j3/a4!~11a/r s!

4#e2R/j f ~z!,

case #1: f ~z!5sinh~2z!/2z,

case #2: f ~z!5~sinhz11/2 sinh 2z!/2z, ~7!

where z5bD/2 and Bcr5(256c2/9)B. The quantity zm
5Dm/2kT obtained after minimization of the MA impedanc
is the crossover parameter between low-T Mott VRH with
zm.3 and the new case of high-T Mott VRH encountered in
the critical regime wherezm,1.

A. The Mott VRH case

Mott used the ansatzD53/4pR3N(EF) and minimized
the exponent ofZ ~or s}(1/Z)) and obtained values ofRm /j
andDm . In the critical regime where the exponent becom
small (Rm /j,1 and Dm /kT,1) one must minimize
Zg(R,D,T) with respect toR, but still employing the Mott
ansatz forD(R). For the two cases the minimization leads

~Rm /j!45@9/16pN~EF!a3kT#g~zm!,

case #1: g~zm!5~ tanhzm1cothzm21/zm!,

case #2: g~zm!5~ tanh~zm/2!1cothzm21/zm!. ~8!
lt
or

l

n

s

In both cases forzm@1g(zm)→2 and one obtains Mott’s
results withRm /j5(3/8)(T0 /T)1/4, Dm51/4k(T3T0)1/4, and
T05512/27pN(EF)j3k. In the opposite limit forzm!1 rel-
evant to the critical regime, one obtainsg(zm)54zm/3
216zm

3 /451¯ for case #1 andg(zm)55zm/6223zm
3 /360

1¯ for case #2. Keeping only the linear term and using
Mott ansatz forz5bD(R)/2 one finds

~Rm /j!3.55@3/4&pN~EF!j3kT#. ~9!

For zm!1 f (zm);1 for both cases #1 and #2 andZg,m
} exp@2Rm/j#, which leads to a smaller value of the nume
cal coefficientD in T05D/N(EF)j3k ~6/p for case #1 and
4.74/p for case #2!, or more than an order of magnitud
smaller than theT0 for zm.1. It is easily shown that for
zm,1 case #2 yields the minimum value ofD. The Mott
exponent of 1/4 has changed to 2/7~14% increase!. The
quantity Dm differs from the conventional Mott case and
given by

Dm53/4pN~EF!Rm
3 5~6/pD !kT0

1/7T6/7, ~10!

where the coefficient 6/pD51.2648~case #2! which is five
times the case forzm@1. This difference is important and
increases the magnitude of the phonon wave numbeq
5D/hcs by a large factor~5! compared to the usual Mot
case. In addition, in the regimezm,1 Rm /j(n) andDm /kT
have differentT dependencies, however, only the former e
fects the T dependence ofZ(Rm). The prefactor ofs
51/Zg,mLc is independent ofT assuming the characteristi
lengthLc is independent ofT. Since 1/Zg,m can be viewed as
the critical conductanceG0 , the characteristic lengthLc is a
macroscopic length determined by sample dimensions
substantial body of experimental data~Refs. 16–18 and 20–
22! supports the notions0(n) is independent ofT. From Eq.
~6! the density dependence iss0(n)}j(n)23 as long as 1
2eh /e(n,T)'1.

B. The Efros-Shklovski VRH case

One starts with the same MA expression forZg(R,D,T),
but uses the ES resultD5e2/e(n,R)R for the energy differ-
ence, namely,

D~R!5~e2/R!$@eh
212e~n,T!21#exp2R/r s1e~n,T!21%,

~11!

where aT dependence has been included since in the h
ping regime the low-frequency dielectric response is stron
T dependent until the hopping is frozen out. The minimiz
tion is complicated by the spatial dispersion and fore(n,T)
@eh it might appear that only the first term is important, b
this depends critically on the magnitude ofR/r s . dZg /dR
50 yields for case #1

~Rm /j!25@e2/4e~n,T!jkT#$11@e~n,T!/eh21#

3~11Rm /r s!exp2Rm /r s%

3@ tanhzm1cothzm21/zm#. ~12!

For zm@1 ~both cases #1 and #2! and negligible dispersion
@exp2Rm/rs(11Rm/rs)e(n,T)/eh!1# one obtains a standar
result Rm /j5@e2/2e(n,T)akT#1/2. This leads to the ES
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VRH results withRm /j51/4(T08/T)1/2, Dm51/2k(TT08)
1/2,

and T085@8e2/e(n)jk#. The numerical coefficient inT08 is
2A2 larger than that given by ES and gives a smaller ratio
T0 /T08 that seems in better agreement with the experime
ratios. AZS also obtained the numerical factor 8 forT08 .
When spatial dispersion is crucial$@e(n,T)/eh21#exp
2Rm/rs(11Rm/rs)@1% where Rm /r s is near unity @exp
2Rm /rs (11Rm /rs) ; @121/2 (Rm /r s)

2 2 1/3(Rm /r s)
3 1¯#

one obtains the results for ES VRH but withe(n,T) replaced
by eh . The resultT0858e2/ehjk is highly relevant to the
Ge:Ga results of Watanabeet al. In addition the Coulomb
gap widthDCG is strongly affected by the spatial dispersio
of e(n,R). One findsDCG(R;r s)@DCG(R@r s) because of
the spatial dispersion ofe(n,R). ES VRH depends critically
on e(n,Rm ,T). It is also well known from many experimen
tal studies ofe(n,T) that ultralow temperatures are require
close tonc to freeze out hopping and achieve asympto
values ofe(n,T→0). One specific example is the data
Katsumoto31 for Ga0.7Al0.3As:Si showinge(n,T)5e(n,0)@1
1aT21bT41¯#. This behavior can be approximated b
e(n,T)5e(n,0)cosh@kT/Ec(n)# whereEc(n) is a characteris-
tic energy that becomes small asn→nc2 . It is quite likely
that e(n,T) is larger thane(n,0) in the ES VRH regime,
however if spatial dispersion is dominant, then it iseh that
enters the ES parameterT08 . This is one of the importan
differences between Mott VRH, which is independent
e(n,T), and ES VRH.

C. The relation between the impedanceZ„R… and the
macroscopic conductivity and resistivity

The above extension of VRH to the critical regime
based on the MA impedanceZg(R,D) between a pair of sites
separated byR and differing in energy byD. Minimization of
Zg(R,D) rather than just the exponential terms is a va
procedure for the entire range ofz5D/2kT and is necessary
when z,1. The shape ofZ(R) and how it changes asn
→nc2 , is important, particularly because fluctuations in t
hopping length aboutRm can become important nearnc .
Figure 4 showsZ(R)/Z(Rm), based on Eq.~7! @case #1# and
the Mott ansatz, versusR/Rm for threeT0 values. The results
show Z(R) is asymmetrical and it rises very rapidly forR
,Rm . There is a strong drop in curvature forR>Rm asT0
→0. For smallT0 value hops with 2Rm and 3Rm have only
slightly larger values ofZ(R). The larger range ofR values
with nearly the sameZ(R) values forR.Rm , suggests val-
ues ofqReff will be substantially larger than theqRm listed in
Table II. This helps to explain whŷsin(qR)/qR& is less than
for a single value forR5Rm . The curvature for case #
yields

d2Z/dR2] Rm5Z~Rm!$8/Rmj1~91Rm
2 !

3@12~2zm /sinh 2zm!2#%. ~13!

In the regime wherezm is enough smaller than 1@1
2(2zm /sinh 2zm)2#→4zm

2 /9 and usingRm /j51/2(T0 /T)2/7,
one finds

@d2Z/dR22#Rm;46Z~Rm!/Rmj}Z~Rm!~T/T0!2/7/j2.
f
al

f

@1/Z(Rm)#@d2Z/dR2#Rm scales to zero asn→nc2 and as
(12n/nc)

8n/7 and for fixedn exhibits aT2/7 T dependence.
The correction to Z from fluctuations aboutRm is
@1/2d2Z/dR2#Rm̂ (R2Rm)2&. If ^(R2Rm)2&}dRm

2 @d
5const# the correction will be negligible asn→nc2 since
Rm /j→0. But if ^(R2Rm)2&}Rmj then the fluctuation cor-
rection is exactly proportional toZ(Rm) and will not lead to
different T or n dependencies for the totalZ(R). The mag-
nitude ofqReff can be increased considerably and will redu
the effects of thêsin(qR)/qR& term. Figure 4 and the result
from Eq. ~13! are based on the Mott ansatz. This ansatz w
breakdown for too small aR, but remains valid forR some-
what larger thanr s . In percolation analysis one seeks th
critical value ofZ, namely,Zc assuming that there are value
of Z both larger and smaller thanZc . In the present calcula
tion there are no values ofZ(R) less thanZ(Rm). The
present analysis, based on the MA approach, makes no
sumptions about the nature of the resistor network or ab
the probability distributionp(Z). The carriers choose path
that minimizeZ(R) total and maximizes.

Using p(Z)dZ;4pnR2dR leads to a divergentp(Z) as
Z→Z(Rm) sincedZ/dR→0 at Rm . For a givenZ(R),p(Z)
can be calculated from the result

p~Z!5d/dZE
zm

z

p~Z8!dZ8

5~n/Ns!d/dZF E
R2

R1

F~r !4pr 2drG , ~14!

where F(r ) is the fraction of localized electrons withi
2D(r ) of EF given approximately by 2D(r )/@EF2ED(n)#
whereD(r ) is given by the Mott ansatz andED(n) is the
donor binding energy.Ns is the total number of donors an
Ns5nVs with Vs the volume of the sample.R1(Z) and
R2(Z) are the two values ofR corresponding to a specifi
value of Z.Zm ~see Fig. 4!. In the quadratic regime nea
Zm@0.95Rm,R,1.05Rm# p(Z)}(Z/Zm21)21/2. The inte-
gral in Eq.~14! yields ln(R1 /R2). For larger values ofZ/Zm

FIG. 4. The normalized impedanceZ(R)/Z(Rm) versusR/Rm

based on the Mott ansatz atT51 K for Si:As samples withT0

50.036, 2.74, and 296 K, respectively. Asn→nc2(T0→0) the
curvature forR.Rm becomes dramatically smaller.R1(Z).Rm

andR2(Z),Rm are shown forT050.036 K.
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TABLE I. The prefactorss0(n,T), T0 , andT08 .

zm.1 zm,1

Mott s0}(1/j3Lc)(T0 /T)1/4 s0}(1/j3Lc)
T0518.1/N(EF)j3k T05D/N(EF)j3k,

1.51,D,1.9
Efros- s0(1/j3Lc)(T08/T)1/2 not physically
Shklovskii T0858e2/e(n)jk (ND) relevant

T0858e2/ehjk (D)
Finite-T ATx2pyfp exp@2bfq/Tqy# Mott qy51/4, x2py50, p51/2
scaling f5(nc2n); T05b(12n/nc)

q ES qy51/2, x2py521/2, p53/2
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p~Z!}Z21$j/2R11~3x!21@2zm2x212~2Rm /jx4/3!#21%,
~15a!

and

R1~Z!5Rm1~j/2!@ ln~sinh~2zm!/2zm!1 ln~Z/Zm!#,
~15b!

and

x5~Rm /R2!3,Z/Zm5exp@2~R2Rm!/j#

3@sinh 2zmx/x sinh 2zm#. ~15c!

The first term in the$ % in Eq. ~15a! decreases with increasin
Z sinceR1 increases withZ as ln(Z/Zm). The second term in
the $ % decreases more rapidly with increasingZ. The first
term dominates for largerZ/Zm and the overall result is tha
p(Z) decreases less rapidly thanZ22 for Z larger than a
characteristic value than depends onT0 @for T050.036 K
Zc;2.0Zm . This is a problem forj.2Rm , namely, for the
smallest values ofT0 such as theT050.036 K curve in Fig.
4. The macroscopic conductivity is given bŷs&
5L21*Zm

Zs@p(Z)/Z#dZ, where Zs is determined by the
sample volumeVs , sincep(Z) is sharply peaked for sma
Z/Zm21 and continues to drop faster thanZ21^s&
'(LZm)21. On the other hand, the macroscopic resistiv
^r&5L*Zm

ZsZp(Z)dZ is more complicated. The quadrat
region with the sharply peakedp(Z) provides a contribution
kLZm @k,1 and dependent on the normalization ofp(Z)#.
However, there can be a contribution from the tail ofp(Z)
for Z.2Zm sinceZp(Z) doesn’t decrease faster thanZ2t(t
.1) with increasingZ. The tail contribution leads tôr&
significantly larger thanLZm and yields^s& ^r& larger than
one. The tail ofp(Z) depends sensitively on the asympto
behavior of c(r ) @see Eq.~4!# for r .Rm . If c(r )}exp
@2r/(Rmj)1/2# for r .Rm then p(Z) would fall off faster for
Z.2Zm and^s& ^r& would be closer to one. This is plausib
sincec}exp@ikFr# wherekF5@2m* (EF2Ec)/\

2#1/2. For n
,nc EF,Ec and kF} i (Ec2EF)1/2} i /j(n)1/2 leading to
c(r )}exp@2r/(bj)1/2# sincej(n)}@EF2Ec#

2n and n'1.0.
The experimental data determine^r& and ^s& was obtained
from ^r&5^s&21. While the data is in apparent agreeme
with ^r&}LZm the result̂ s&^r&'1 has not been establishe
experimentally. The asymptotic behavior ofc(r ) for r
.Rm @andp(Z) for Z.2Zm# remains a large uncertainty i
the present treatment whenj@Rm . In addition, thep(Z)
given by Eq.~15a! and theZ(R) in Fig. 4 are based on th
Mott ansatz ~a continuum approach!, which for a given
t

N(EF) yields a uniqueD for a given R. This ignores the
detailed random potential and the statistical distribution
donors.

The critical conductance distributionpc(g) has been
calculated32 numerically for the Anderson MIT. Slevin an
Ohtsuki32 demonstratedpc(g) decreases rapidly for sma
g(g,0.02). Knowledge ofpc(g) permits a determination o
pc(Z)5pc(g)dg/dZ}pc(g)/Z2. For g,0.02, pc(Z) drops
faster thanZ23 and removes any contribution to^r& from the
largeZ tail. This suggests when the random Anderson pot
tial is properly incorporated intoZ(R) for R.Rm one should
obtain for 12n/nc!1 a p(Z) that should drop more rapidly
than Eq.~15a!.

The second moment ofZ(R) is related tô (R2Rm)2& and
this quantity can be calculated with this simplep(Z). The
integration is difficult sincedZ/dR is complicated and
changes sign.t.1 is required for a convergent second m
ment. An estimate fort52

^~R2Rm!2&;j2/2@12h~Rm /j!#, ~16!

whereh(Rm /j) is a complicated function that increases t
ward 1 asRm /j increases. Because of the asymmetry
Z(R), Eq. ~16! demonstrates the effective hopping leng
(Reff.Rm) in the limit j@Rm must remain less thanj/&
depending on the magnitude ofh(Rm /j).

D. Summary of prefactor s0„n,T…, T0 , and T08

The prefactor for ES VRH forzm@1 for both cases #1
and #2 takes the forms0}@1/j(n)3Lc#(T08/T)1/2 ~Table 1!.
The T21/2 of the prefactor agrees with that obtained by E
Finite T-scaling of the forms(n,T)5ATxf (un2ncu/Ty) has
been used recently in the analysis of experimental data
its predictions for the prefactor of Mott and ES VRH shou
be examined. It yields a prefactor of the forms0(n,T)
5ATx2py(nc2n)p where thep depends on the functiona
form of f, which can be determined from the data. The e
ponential part off for Mott and ES VRH is different and is
not governed by the form of the prefactor. Data from t
metallic side for many doped weakly compensated semic
ductors supportsx/y5s50.5, which yieldsp50.52m/y.
The different choices ofm will determinep and theT andn
dependence of the Mott and ES VRH prefactors and
expects in generalm will be different for Mott and ES VRH.
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DISCUSSION

Before attempting to compare the experimental res
with the theoretical expressions one should first compare
results with possible predictions of fTs. There are two clas
of MIT systems, namely, the weakly compensated doped
and Ge systems that shows(n.nc ,T)5s0(n/nc21)s

1m(n)T1/2, wheres;0.5 andm(n) gets large asn→nc2 ,
and the amorphous semiconductor-metal alloys wheres;
51.0 andm(n) is nearly a universal constant for system
like Si:Nb. The former can be explained withx5y/2;0.27
ands5x/y. If one assumes the prefactor is independent oT
then this requiresp51/2 and leads tos0a(nc2n)1/2. How-
ever, the experimental results in Fig. 2 fors0 for Si:P and
Si:As show no appreciablen dependence for 12n/nc

,0.05. If instead one setsp50 to remove then dependence
one findss0}T1/4. This is inconsistent with the experiment
results that would support aTs prefactor withs,0.04 for
Si:As ands,0.02 for Si:P. The Si:As and Si:P results appe
to be incompatible with fTs~at least withx;0.27 andy
52x). They can be explained by the prefactor given
Table I for Mott VRH forz,1 if the characteristic lengthLc

is independent ofT. As 12n/nc increases one eventuall
crosses over toz.1 and this leads tos0}(T0 /T)1/4 for Lc

independent ofT and slowly varying withn. This can be
explained with fTs withx2py521/4 and p;1.0. The
Si:As and Si:Ps0 are varying more rapidly with 12n/nc ,
but it should be emphasized that the transition region
tweenz!1 andz@1 is broad and one can be in the inte
mediate regime whereT0 itself ~see Fig. 2! is changing much
more rapidly than expected fromT0}@N(EF)j3#21 for rea-
sonable values of the localization length exponentn;1. The
results in Figs. 2 and 3 for Si:P and Si:As are either in
zm,1 regime or in a broad transition regime. Note that
T51 K, z51 requiresT054096 K while for T50.1 K, z
51 requiresT05410 K. It is much easier to satisfy the con
dition zm.1 for ES VRH sincezm51/4(T08/T)1/2. The
Ge:Ga data, remarkably, exhibits ES VRH conduction
about 0.99nc . For 12n/nc50.0109 the Ge:Ga results yiel
T08;4 K, which giveszm52.5 atT540 mK andzm50.5 at
T51 K. It is exactly in the regime for 12n/nc,0.01, as
seen in Figs. 6 and 7 in Ref. 20, that strong deviations fr
conventional ES VRH are observed. The two CdSe
samples withT* 50.056 K (T* 5T08) @12n/nc50.0536#
and T* 50.24 K @12n/nc50.10# only yield z51 for T
53.5 and 15 mK, respectively, and the data were obtaine
the regime wherez,1, where corrections to conventional E
VRH are expected.

TABLE II. Hopping parameters for Si:As samples.

n 12n/nc

q31025

cm21 qaa qRm
a qja Rm /j Lct /Dm

8.48 0.014 1.90 0.029 0.47 2.44 0.174 0.61
8.07 0.06 3.53 0.054 0.60 0.906 0.514 1.45
7.90 0.081 4.40 0.068 0.87 0.837 0.764 0.5
7.57 0.12 6.88 0.106 2.28 0.89 1.66 0.39

aBased ona515.4 Å, j0515.4 Å, andT51 K.
ts
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A. Magnitude of VRH parameters near nc

Comparison of the theory with the experimental resu
requires a knowledge of the relative magnitude of the ter
in Eq. ~6!. These parameters are shown for Si:As for fo
samples from SKC. The magnitude ofqRm is substantially
larger than found in SKC because of the larger coefficien
q ~factor of 5.1!. qRm andqj in Table II are the minimum
values based onj05a* . If j0.a* these values increas
correspondingly. The quantitiesqa, qRm , and qj all get
smaller asT is reduced and this causesS(q) to get larger at
lower T, unlesse2Rm/j gets smaller more rapidly than th
increase in the other terms in Eq.~A7!. However, the ratio
Lct /Dm also gets larger with reducedT ase2Rm/j/T6/7 since
Dm}T6/7. Unlike the dilute case, the ratioW/D;Lct /D can
approach unity atT51 K and is even larger atT;0.1 K for
samples close enough tonc . The crucial point is thatW/D is
always much larger than@12(W/D)2#S(q), and the term
neglected by MA can also safely be neglected in the criti
regime. In addition the angular average of the first te
^uH8u2& in Eq. ~6! yields ^(222 cosq•R)&52@1
2sin(qR)/qR#. In the dilute limitqRm@1 and the oscillatory
term could be ignored. In the critical regimeqRm becomes
smaller than one forT,1 K for the 8.48 sample. In the limi
that qRm!1, @12sin(qRm)/qRm#}(qRm)2. The extraRm

22 de-
pendence inZ(Rm) changes the theoretical results in Sec.
and leads to a much strongerT dependence of the prefacto
s0(n,T) than is observed in the data. The actual conduct
path is not one of a series of hops of lengthRm , but includes
fluctuations aboutRm . These fluctuations will produce a
averaging of sin(qR)/qR that may make the oscillatory term
unimportant, but this remains an issue. Also, in the regi
12n/nc,0.02, where the theory may need corrections,
role of doping inhomogeneity becomes important. One
pects the average over a doping distribution^qRm& to be
larger thanqRm , although it is difficult to estimate the mag
nitude of this effect. The Si:P data17 in Fig. 1 appears to
show a good fit to Mott VRH down toT;0.1 K. The data is
a reasonable fit to Eq.~7! for T.0.1 K and 12n/nc.0.01.

B. Comparison of localization length exponent and metallic
scaling exponent

Returning to the Si:As and Si:P results in Fig. 2 one c
compare the localization length exponentn8 obtained from
T0

1/3}@N(EF)#21/3j(n)21;@N(EF ,nc)#21/3j0
21(12n/nc)

n8
with the conductivity exponents obtained froms(n.nc ,T
→0)5s0(n/nc21)s ~a new scaling expression33 for the
Boltzmann conductivity obtained from standard scatter
theory and Anderson localization concepts yieldss51/2 and
suggests the possibilityn852s). Figure 5 showsT0

1/3 for
Si:As and Si:P versus 12n/nc for several different values o
nc . The finer grid of samples for Si:P yields nearly line
behavior fornc;3.75 for 12n/nc,0.05 and a steeper slop
for 12n/nc.0.05. The Si:As results~with a smaller density
of points and more scatter! also shows approximate linea
behavior fornc58.60, but only three-plus points are in th
linear range. Both the Si:P and Si:As results show a sign
cant drop inn8 as nc is decreased. The scaling ofs(n
.nc ,T→0)}(n/nc21)s, where the new scaling expressio
suggestsn8;2s, and the experimental results for weak
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compensated Si and Ge MIT systems withs;0.5 also pro-
duce a variation ofs with nc , but in this cases increases as
nc decreases. The opposite dependence ofn8 on T0

1/3 and s
from s(n.nc ,T→0) and second-order phase transiti
theory suggests the plot in the inset in Fig. 5. Both theT0

1/3

data and thes(n.nc ,T→0) data are force fit to a powe

law @un/nc21un8 or (n/nc21)s# with nc as a floating param
eter. The functionsn85F(nc) and 2s5G(nc) are shown in
the inset for Si:P. Two straight lines ofn8 versusnc are
shown for the 5 and 4 samples nearestnc , respectively. An
analysis of the Si:P results of Blaschetteet al.34 ~10 metallic
samples in the rangen53.85 to 4.37! and the four smalles
values ofT0 shown in Fig. 5, leads tonc53.756, n852s
51.024, ands50.512. The forced fit results for the 10 Si:
metallic samples yields standard deviations@for s# that were
smaller than for the more limited Si:As results with only fiv
metallic bar samples, but the minimum standard deviat
for the Si:P case occurred fornc53.75, suggesting the bes
fit of the Blaschetteet al., data is fors;0.5. The value of
s;1.3 suggested by Stuppet al., resulted from usingnc
53.52, which is 6 % belownc53.756 because the sample
3.54 to 3.69~see Fig. 1! were identified as metallic rathe
than insulating. A similar analysis for five metallic Si:As b
samples~SKC n58.67, 8.91, 9.06, 9.50, and 10.4! yield s
versusnc . The two curves intersect for@n852s# for nc
58.58 for fiveT0 points andnc58.592 for fourT0 points. In
both cases the intersectionn852s is close to 1.0 yielding
1.02 fornc58.58 and 0.98 fornc58.592. The new theoret
ical scaling result suggestss>0.5. This analysis is consisten
with the results in SKC~ignoring the Hall disk results!, but
the use of the criterionn852s provides a considerably mor
sensitive determination ofnc .

FIG. 5. T0
1/3 versus 12n/nc for Si:P @3.73 ~m!, 3.74 ~l!, 3.75

~d!, 3.76~j!# and Si:As@8.57~n!, 8.58~L!, 8.59~s!# for several
values of nc . The dashed lineT0

1/3}j(n)21}(12n/nc) for n
51.0 is shown for comparison. The inset showsn versusnc from
T0

1/3 ~solid symbols! and s(n.nc ,T→0)5s0(n/nc21)s ~open
symbols! based on a forced fit of the data withnc as a variable. The
intersection of the insulatorn and the metallic 2s yields a more
accurate value ofnc .
n

C. The correction factor C„n,T… for ES VRH

The correction factorC(n,T)5@e(n,T→0)/eh21#$exp
@2Rm(n,T)/rs#@11Rm(n,T)/rs#% in Eq. ~12! is shown in Fig.
6~a! demonstrating the effect of spatial dispersion of the
electric responsee(n,R). The factor e(n,T→0)/eh21
54px8(n)/eh is obtained from the experimental data f
Si:P ~Ref. 35! @4px857.0(nc /n21)21.15# and Si:As~Ref.
36! @4px858.0(nc /n21)21.20#. The values ofr s are ob-
tained from 4pr s

3/35k/(Nd2Na) for k54.19 @r s;nc
21/3#.

k51 corresponds to a volume containing on average
donor whilek54.19 corresponds to a volume with 4.19 d
nors. The precise value ofk isn’t known but forR/r s.3 the
screening is nearly complete@unlesse(n).50eh#. R53r s
corresponds to an average of 113 donors inside 3r s .
Rm(n,T) has been calculated with the Mott resultRm
53/8j(n)(T0 /T)1/4 for zm(n,T).1 and the new HT Mott
result Rm51/2j(n)(T0 /T)2/7 for zm(n,T),1 while Rm

51/4j(n)(T08/T)1/2 was used for the ES case. The dash
lines ~Si:P, sT51 K, hT50.1 K; Si:As, LT51 K, nT
50.1 K) based on the MottRm , demonstrate the correctio
is large close tonc because of the large values of 4px8.
C(n,T) is smaller at 0.1 K than at 1 K because of larger
values of exp (Rm/rs) at 0.1 K and smaller values o
expRm/rs. C(n,T) can be much larger than shown in Fi
6~a! because of the use ofe(n,T→0) rather thane(n,T).
e(n,T)/e(n,T→0) can be large nearnc because it is hard to
freeze out the hopping. WhenC(n,T).202100, the dielec-
tric response that determinesRm and T08 for ES VRH is
e(n,Rm);eh exp(Rm/rs)/(11Rm/rs). The solid lines in Fig.
6~a! showC(n,T) based on ESRm values obtained from the

FIG. 6. ~a! The correction factorC(n,T) versus 12n/nc dem-
onstrating the importance of the spatial dispersion ofe8(n,R,T) for
Si:P @Mott ~s! T51 K, ~h! T50.1 K; ES ~d! T51 K, ~j! T
50.1 K# and Si:As @Mott ~L! T51 K, ~n! T50.1 K#. C(n,T)
drops asRm(n,T) increases with decreasingT. C(n,T) is larger for
Si:P than for Si:As for 12n/nc,0.04. ~b! The lengthj(n) versus
12n/nc for Ge:Ga, Si:P, and Si:As based onj0 equal 45.6, 16.7,
and 15.4 Å, respectively. Ther s values are obtained fromr s

5(3•4.19/4pnc)
1/3(nc /n)1/3 for nc equal 0.186, 3.75, and 8.59

respectively.
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Si:P data19 in Fig. 2. The correction shows the same quali
tive trends as for the dashed curves for the MottRm . How-
ever, the values ofC(n,T) at the same value of 12n/nc

@0.123 and 0.173# are larger by a factor or 3–5 because
the smaller ESRm values.

Figure 6~b! shows localization lengthsj(n) versus 1
2n/nc for Ge:Ga, Si:P, and Si:As based onj5a* values of
45.6, 16.7, and 15.4 Å, respectively. The Ge:Ga value
smaller than used in Ref. 20 and is based oneh515.4 ~see
Faulkner37 and Castneret al.38! the acceptor binding energ
11.0 meV, and the relationa* 5aem* @Eem/EA#1/2 based on
the Whittaker envelope function. If one employedr s;a* , as
done in the derivation of the Mott criterion@nc

1/3a* ;1/4#,
one would obtaink5p/48;0.065. The values ofRm /r s

would be much too large and exp(2Rm/rs)@11Rm/rs# would
be much too small. There can’t be much screening from
neighboring donors fork!1. In order for spatial dispersion
to be important one must haver s /a* ;4. The values ofr s

shown in 6~b! are based onk54.19 and these yieldr s /a*
values of 3.845, 3.85, and 3.17 for Ge:Ga, Si:P, and Si:
respectively. For 12n/nc,0.1 the values ofC(n,T) are
larger for Si:P than for Si:As because~1! j0 /r s is larger for
Si:As, and~2! for 12n/nc,0.05 T0~As!/T0(P);3. How-
ever, the values ofj0 /r s are virtually identical for Ge:Ga and
Si:P. The results in Fig. 5 suggest the origin of the ES VR
in Ge:Ga for 0.9nc,n,0.99nc results from very large val-
ues of C(n,T) ~corresponding to large values of the Co
lomb gap width! which results from much larger values o
e(n,T)/e(n,0) at a givenT for Ge:Ga than for Si:P. The
smaller activation energies for doped Ge than for doped
make it harder to freeze out the hopping in Ge. At a fixedT
the increase ine(n,T)/e(n,0) asn→nc leads qualitatively to
an increase inDCG as n→nc2 , in agreement with the ex
perimental results of Massey and Lee25 for Si:B.

Experimental values ofe(n,T→0) are not available for
Ge:Ga, but based on the results in Fig. 6 it is plausible
assume thatC(n,T)@1 for 12n/nc,0.1. In this case the
relevant dielectric constant to use in Eq.~7! and inT08 will be
much closer toeh than to e(n,T). Dielectric studies of
n-type Ge demonstrate that even atNd;0.44nc temperatures
well below 0.1 K are required to freeze out the hoppi
contributions toe(n,T). For 0.9nc,n,0.99nc even 10 mK
may not be cold enough to freeze out all the hopping. T
suggestsC(n,T)@1 for the Ge:Ga results and explains wh
the Watanabeet al., T08 results are in agreement withT08
52.8(e2/ehj0)@12n/nc#

1.0. The Ge:Ga results supportn8
51.0. These results are strikingly different than the ES VR
results for Si:P and CdSe:In in Fig. 2. The latter two syste
haveT08,T0 at the same value ofn/nc and the scaling ofT08
~see Fig. 2! is more rapid than linear in 12n/nc . Zabrodskii
and Zinov’eva39 have observed for Ge:As ES VRH withT08
}(12n/nc)

2.0 which can be interpreted withn851.0 and
4px8}(12n/nc)

21 although these authors suggested21.3
for the exponent of 4px8 and n850.7. The Ge:Ga result
suggestT08;e2/ehj(n) and no collapse of the Coulomb ga
in the range 0.9nc,n,0.99nc . This is explained by strong
spatial dispersion ofe(n,R) and a largeC(n,T), but the
parameters are not well known for Ge:Ga. Since the res
for Ge:As are closer to the Si:P and CdSe:In results,
-
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reason for the different behavior of Ge:Ga doesn’t depend
a difference between Ge systems and the others in Fig.

D. The minimum in Rm„n,TÄconst… versusn for Mott VRH

What of the minimum inRm(n,T5const) versusn? One
usesT05@D(n)/N(EF ,n)j(n)3k# where D(n) varies rap-
idly with n in the crossover regime between convention
Mott VRH and HT Mott VRH. The logarithmic derivative o
Rm is

d ln Rm /d ln~n!51/4@n8~12n/nc!
21

2d ln N~EF ,n!/d ln~n!

1d ln D~n!/d ln~n!#. ~17!

The minimum inRm@dRm /dn50# at n;0.9560.01nc can-
not be explained with the density-of-states term beca
d ln N(EF ,n)/d ln(n) is of order unity. D(n)→18.1 as n
→0.8nc and D(n);1.51 asn→nc . The functional depen-
dence ofD(n) isn’t known, but it is approximated by an
S-shaped curve that is steepest in the region in Fig. 2 wh
T0 is changing most rapidly withn, which means atn
slightly below the minimum. An estimated ln D/d ln n
for the entire rangeDn50.2nc is (n/D)(DD/Dn);
2(0.9/9.8)(16.6/0.2)527.6. Thusd ln D/d ln(n) need only
be 2.5 times larger to account for the minimum. The ra
drop in the coefficientD(n) in the Mott characteristicT0 in
the crossover regime, explains the minimum inRm(n,T
5const) versusn.

E. The effect of doping inhomogeneity on the prefactors0„n…

In the critical regime wheree(n,T)@eh and zm,1 the
prefactors0(n)}Lct

2 }1/j3 with r s virtually constants0(n)
}(12n/nc)

3n, which is reasonable agreement for 12n/nc
.0.1, but is in sharp contrast to the results in Fig. 3 show
s0(n) for Si:P and Si:As approaching a constant asn
→nc . The rapid variation ofs0(n) for 12n/nc.0.1 is
faster than the prediction forn51, which may result from
the increasing importance of the neglected MA terms. Wh
ever a quantity approaches zero atnc one must take accoun
of doping inhomogeneity. For a normalized@*P(n)dn51#
Gaussian doping density distributionP}exp2@(n2nI)/anc#

2,
where a is measure of the spread inn about the average
density nI . The averagê s0&5*s0(n)P(n)dn, where for
s05A(12n/nc)

t one obtains a result in terms of Hermi
polynomials, namely,

^s0&5AAp@xI 413a2xI 213a4/4# for t54, ~18a!

^s0&5AAp@xI 313a2xI /2# for t53, ~18b!

wherexI 512nI /nc . The t53 case reduces the dependen
of ^s0(n)& on xI , but doesn’t yield a constant asxI→0. The
t54 case qualitatively fits the behavior in Fig. 3 reasona
well, but doesn’t explain the shallow minimum seen in t
Si:P results. Using Eq.~12a! and the Si:As data in Fig. 3 fo
0.091,12nI /nc,0.148 yieldsa50.02, certainly a plausible
estimate of the doping inhomogeneity, but this yields t
small a value of̂ s0(nI 5nc)&. A change in the asymptotic
behavior ofc(r ) for r .Rm from e2r /j to exp@2r/(bj)1/2# ~b
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a characteristic length of orderr s) will reduce the exponentt
to t/2 for j@Rm , which is qualitatively consistent with th
Si:P and Si:As data in Fig. 3. The physical significance
^s0& finite at nc , is that its magnitude is a measure of t
inhomogeneity. For a truly homogeneous system the the
yieldss0(n)→0 asn→nc . Some have argued a finites0 as
n→nc is consistent with a Mott minimum metallic condu
tivity. The results0(n)→0 is qualitatively consistent with
the fTs result, which forzm,1 has aT-independent prefacto
scaling to zero asn→nc . This inhomogeneity analysis pro
vides a second reason why the Ge:Ga results21 don’t exhibit
Mott VRH for 0.9,n/nc,0.99. The more homogeneou
doping achieved with the NTD approach leads to a sma
Mott prefactor^s0& in the critical regime.

F. Beyond the pair approximation „?… and validity issues when
DmËkT

The validity of the pair approximation itself in the critica
regime is not obvious and this question is difficult to addr
quantitatively. When the localization lengthj(n)@d close to
nc there are of order (j/d)3 donor sites within a localization
radius @for n50.98nc(j/d)3.1000#. Consider localized
eigenstates

ca~r2Ra ,Ea!5(
i

m

ca,if i~r2Ri !

and

cb~r2Rb ,Eb!5(
j

m

cb, jf j~r2Rj !

which differ in energy withD5Eb2Ea . Sinceca and cb
are appreciable over many sites (m.1000) the hopping
should be viewed as between eigenstates rather than bet
specific sites. Theca,i andcb, j oscillate in sign and are par
ticularly complex in many valley semiconductors becau
the f i(r2Ri) are 1s2A1 ~ground state impurity band!
which are symmetric linear combinations of the six~Si! and
four ~Ge! conduction band valleys. These functions oscilla
in sign and the dependence ofci ,a on uRiau features both
oscillatory and exponential decay components. Calcula
of the phonon matrix element^cbuVqeiq•ruca& for hopping
leads to an expression of the form

^cbuVqeiq•ruca&

5(
i

(
j

cb, j•ci ,aVq exp~ iq•Ri j !Fi j ~q•Ri j !,

~19!

where Fi j 5*f j (r2Rj )exp@iq•(r2Ri j )#f i(r2Ri)dr . This
is a complex summation for a dense array of random don
and is well beyond the scope of the present work. Howe
it is at least plausible that the important functional dep
dence is of the formAqG(Rab)exp@2uRabu/j(n)#, but where
G@Rab ,a,r sj(n)# is a weak function ofRab @as in the case
of Eqs. ~5! and ~A3c!# rather than a simple polynomial i
uRabu/j found in the dilute limit by MA. The crucial new
feature of this paper is the introduction of spatial dispers
f

ry
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n

in e8(n,R) which introduces the new characteristic lengthr s
and removesR in the MA expression for the resonance e
ergy W. This new lengthr s removes the cancellation inW
5L2SJand makesL@SJ, which in turn makes the form o
the overlapSmuch less important. The overlap for the fun
tions ca and cb will be reduced compared with the pa
expression in Eq.~A6!.

In analyzing whether Mott VRH is meaningful whenT0
,T and Rm,j, one needs to consider the following. Th
number of states in a hopping volume in the hopping ene
interval Dm is N(EF)(4pRm

3 /3)Dm . By Mott’s ansatz this
quantity is unity independent of whetherT0,T or T0.T.
The number of neutral donors~number of localized electron
nl) in a hopping volume isnl(4pRm

3 /3)5Nd,hv@1 at tem-
peratures where most of the electrons are in states below
mobility edgeEc . This inequality is an essential feature
Mott VRH. This is satisfied over a substantial range ofT, but
breaks down at higherT when thermal excitations excit
electrons above the mobility edge. In this casenl5n@1
2 f a(n,T)# and the density of electrons thermally activat
aboveEc is n fa(n,t). The quantityf a(n,T) has been deter
mined for Si:As samples40 @f a50.1 for the 7.39, 7.57, 7.90
and 8.41 atT537, 32, 27, and 24 K, respectively#. For f a
50.1 a significant portion of the conductivity results fro
the activated componentsa(n,T). The smallest value of
Nd,hv occurs at the minimum inRm discussed after Eq.~8!.
For Si:As this occurs close to 0.94nc @the 8.07 sample in
Table IV in SKC# and leads toNd,hv;155 at 1 K and 9 at 25
K, but by 25 K d ln s(T)/d ln T already shows large devia
tions from the Mott result 1/4(T0 /T)1/4(zm@1) @or
2/7(T0 /T)2/7(zm!1)# due to large values ofd ln sa(T)/d ln T.
However, there is a substantial range ofT where
Nd,hv@1 and in this T regime it is easy to show
that Rm /j!1.5@n/N(EF)kT# for zm@1 and Rm /j
!0.35@n/N(EF)kT#2 for zm!1. For the above, Si:As
samples one can prove that bothRm /j.1 for zm.1 and
Rm /j,1 for zm,1. In the T regime ~see Fig. 6 in SKC!
where Mott VRH determines the logarithmic derivativ
d ln s/d ln T;1/4(T0/T)1/4 @or 2/7(T0 /T)2/7, which would be
hard to distinguish from the Mott result# both of the above
inequalities can be satisfied because of the large value
Nd,hv .

For 12n/nc,0.02 the comparison of the theory and th
experimental results starts to become problematic. T
sample homogeneity might only be of order 2 %. The 8
Si:As and the 3.69 Si:P samples show VRH exponents so
what less than the Mott valuem52/7. For 12n/nc,0.01
the Ge:Ga results21 show m dropping fromm;1/2 through
1/4 towardm;1/8. For T0!T the changes ins(n,T) are
small and an accurate determination of the parametersm, T0 ,
ands0 becomes progressively more difficult asn→nc . Un-
certainties in the magnitude of the parameterqReff ~larger
thanqRm) asn→nc , make quantitative estimates of the v
lidity of theory difficult. In particular, there are serious que
tions about the correct asymptotic behavior ofc(r ) in the
regimej@Rm . The difficulties with the theory parallel thos
of the experimental analysis when 12n/nc becomes suffi-
ciently small and are complicated by sample homogenei

SUMMARY

In summary, the minimization of the MA impedance pr
vides an extension of the procedure used by Mott that p



ti
g

at

g
ey

d
R

the
r by

ilar
ut

.

PRB 61 16 607VARIABLE-RANGE HOPPING IN THE CRITICAL REGIME
duces the original Mott VRH results in the limitDm.kT,
but also yields a new high-temperature result~with m
52/7) in the regimeDm,kT. In the latter regime the
T-independent prefactors0(n)}j(n)23 is in reasonable
agreement with the Si:P and Si:As data for 12n/nc.0.1.
Doping inhomogeneity leads to a nonzero^s0(nI 5nc)&. An
important new feature of this approach arises from the spa
dispersion ofe8(n,R,T) which introduces a new screenin
length r s . The large change~18.1 to 1.51! in the coefficient
D(n) in the Mott T0 between the LT and HT Mott VRH
regimes, is strongly supported by the Si:As and Si:P d
The rapid decrease inD(n) accounts for the minimum in the
mean hopping distanceRm(n,T5const) for n;0.95
60.01nc . The spatial dispersion ine8(n,R,T) permits an
explanation of the Ge:Ga ES VRH results for 12n/nc
.0.01 and can also explain the increase in the Coulomb
width at fixedT observed in the tunneling results of Mass
and Lee.
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APPENDIX: EVALUATION OF THE RESONANCE
INTEGRAL W

The integrals involved in MA’s quantityW5L2SJ are
readily evaluated for the case of spatial dispersion of
density-dependent dielectric response given much earlie
the expression e(r ,n)215eh

21 exp@2r/rs#1e(n)21(12exp
@2r/rs#), where e(n)5eh14px8(N), where x8(n) is the
diverging dielectric susceptibility.

The integral L(R)5e2*@cAcB /e(r B ,n)r B#dt for two
sites a distanceR5RA2RB apart, is given byL5Li1Lo
1Lct , whereLi results from the inner portions@see Eq.~4!#
of cAcB ,Lo from outer portions andLct from the cross
terms between the inner and outer portions ofc.

L~R!5e2E cA~r A!cB~r B!~@eh
212e~n!21#exp2r B /r s

1e~n!21!dt/r B . ~A1!

The second term in the square brackets yields results sim
to that obtained by MA for a spherical envelope function, b
with eh replaced bye(n). In the critical regime where
e(n)@eh , this term is very small compared to the first term
Using elliptical coordinates withm1n52r A /R, m2n
52r B /R, anddt5(R3/8)(m22n2)dmdndf one obtains for
the first term in~A1! the results forLi , Lo , andLct , namely,
Li5c2@2e2r s /eha2~11a/2r s!# f ~n!e2R/a@12@r s /R~11a/2r s!#~12e2R/rs!#, ~A2a!

Lo5@4e2a3/ehr sj
3~112r s /j!# f ~n!e2R/j@12@2r s

2/Rj~112r s /j!#~12e2R/rs!#, ~A2b!

Lct5@8ce2a2/eh~r sj!3/2# f ~n!$e2R/j/~11a/r s!
222a2/Rj~11a/r s!

4@e2R/j2e2R~1/a11/rs#

2e2R/a/@12~a/r s
2#12a/R@12~a/r s!

2#2@e2R/a1e2R~1/rs11/j!#%, ~A2c!
e-
where f (n)512eh /e(n) and very small terms of orde
(a/j)2 and a2/r sj have been omitted. For comparison t
MA-like matrix elements, but witheh replaced bye(n), are
shown to be

Li ,MA5c2@e2/e~n!a#e2R/a~11R/a!, ~A3a!

Lo,MA5~a/r s!
3@e2/e~n!j#e2R/j~11R/j!, ~A3b!

Lct, ‘‘MA’’ 5@8ce2/e~n!~r sj!3/2#@~e2R/j2e2R/a!

3~112a/R!#. ~A3c!

In the critical regimeLct, ‘‘MA’’ is the largest of these thre
just asLct in Eq. ~A2! is the largest of the terms containin
f (n). These cross terms do not have the polynomial fo
shown in Eqs.~A3a! and ~A3b!. The ratio of the leading
terms inLct andLct, ‘‘MA’’ ~the e2R/j terms! is given by

Lct /Lct, ‘‘MA’’ 5@e~n!/eh21#/@~11a/r s!
2~112a/R!#.

~A4!

Based on the Si:As data36 for e(n,T→0) and the parameter
in Table II, one finds this ratio to be 2.0 at 0.8nc , 3.9 at
0.88nc , 8.9 at 0.94nc and 87.3 at 0.99nc . In the entire range
of 12n/nc shown in Figs. 2 and 3, the MA resonance int
gral W is determined predominantly byLct(R)}e2R/j. The
prefactor dependence of Lct on R is negligible.

Applying the same approach to evaluatingJ(R)
5e2*@ ucAu2/e(r B ,n)r B#dt and ignoring thee(n)21 term
that is the same as the MA result, one obtains forJct(R)

Jct~R!5@8ce2a2/eh~r sj!3/2# f ~n!$2e2R~1/a11/j!/12~a/r s!
2

1@2a/R@12~a/r s!
2#2#@e2R/rs2e2R~1/a11/j!#%,

~A5!

TABLE III. Typical wave function parameters and overlap.

12n/nc Rm(Å) a j ~Å!a (a/j)3/2 c S(q50) S(q)a

0.118 214 129 0.041 0.947 0.0416,0.024
0.081 146 191 0.0229 0.961 0.059 ,0.055
0.06 128 249 0.0154 0.968 0.0622,0.057
0.012 192 1104 0.00165 0.982 0.0348,0.01

aBased on Si:As values from SKC,a515.45 Å, r s;49 Å, T
51 K.
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where small terms (a/j)2 anda2/r sj are again neglected.Jct
contains no term ine2R/j and is always smaller thanLct
sincej.R.r s.a. Even for the smallest value ofRm one
finds Lct;16Jct for Si:As. It is also important to note tha
J(R) differs from the dilute MA result because a ter
e2/eha is missing. This in turn means there is no cancellat
in the expressionL2SJ and that the leading term inW
comes only fromL since theSJterms involve eithere23r or
exp@2(r12R/2r s)#. In the present case fore(n)@eh the
leading term inW is Lct .

The overlap integral for the wave function in Eq.~4! is
readily calculated using elliptic coordinates yielding

S5c2@11R/a11/3~R/a!2#e2R/a1~a/r s!
3@11R/j

11/3~R/j!2#e2R/j116c~a/r s!
3/2~a/j!3/2

3@~124a2/Rj!e2R/j1~114a2/Rj!e2R/a#. ~A6!

In Eq. ~A6! we have usedab5R2(1/2a11/2j)(1/2a
21/2j)5(R/2a)2(12a2/j2)'(R/2a)2 since j@a in the
critical regime. In this regime the first term in Eq.~A6! is
always negligible. Numerical calculations indicate the s
hy

-

S

n

-

ond term is always important and the third cross term
comparable for 0.88nc and 0.94nc , but is negligible for
0.99nc . Values ofRm , j, (a/j)3/2, c, andS(Rm ,q50) are
given Table III for four values ofn/nc in the critical regime
for Si:As. The largest value ofSoccurs at the smallest valu
of Rm at n/nc;0.94.S is small in the critical regime becaus
most of the wave function density is in the core region sin
c is substantially larger than (a/r s)

3/2. The significant result
is thatS(R) is very small in the critical regime and even
J(R) were comparable toL(R) the leading term forW5L
2JS comes fromL. Theq-dependent overlap integralsS(q)
can also be calculated and are given by

So(q)5(a/r s)
3eiq•RaeiqR/2e2R/jH cosfH 1

@ f ~qj!#2 1
R/2j

f ~qj!J
1sinfH @12~qj/2!2#

@ f ~qj!#2 1
R/j

f ~qj!J
2(qj/2)23$sinf(R/j21)2 i (R/j)2eR/j

3[Ei(2R/j2 if)2Ei(2R/j1 if)] J ~A7a!
r

Sct~q!

Sct~0!
;

eiq"ReiqR/2$cosf@~12y2!412~qa!2~12y2!~123y2!1~qa!4#1sinf@2qay1 11~qa!2#%

g1~qa,y!g2~qa,y!
, ~A7b!

wheref5qR/2, f (qj)5@11(qj/2)2#, g6(qa,y)5@(16y)21(qa)2#2 with y5a/j. Si(q) is the same as in Eq.~A7a!, but
with j replaced bya and the prefactor (a/r s)

3 replaced byc2. Only the largest term inSct(q) has been given~thee2R/j term!.
Terms inSct(q)}e2R/j that are smaller by the ratioa/R and (a/R)2 have been neglected. It should be stressed thatSct(q) is
much larger thanSi(q) andSo(q), So(q)/So(0),1 sincef (qj).1 and the ratio can be small whenqj@1, as is the case fo
T51 K and higher. At lower temperatures@T<0.1 K#qj,1 and f (qj)→1 as qj→0, however in this regimeRm /j is
increasing and the exponential term reduces bothSct(q) andSct(0).
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