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Mott's theory of variable range hoppinyRH) is extended to the critical regime approaching the metal-
insulator transition where the hopping enetiy(T) <kT. The Miller-Abrahams impedance between a pair of
sites is minimized for an arbitrary value af,,/kT. The theory features spatial dispersion of the dielectric
response functioa(R,n), which introduces a new length scalgeinto the Miller-Abrahams resonance energy.
In the regimeA,<kT the Mott exponent 1/4 changes to 2/7 and the numerical f§&&d] in the Mott T, is
reduced to 1.51. Efros-Shklovskii VRH is also modified by the inclusiore@,n) and theT} depends
critically on the spatial dispersion af(R,n) and this feature allows an explanation of the Ge:Ga data of
Watanabeet al., which exhibitsT{e<(1—n/n)*% The new result for the Mott case allows the Si:As and Si:P
results to be explained over a range of® 1l Mott T, values encompassing the crossover from high-
temperature Mott VRH to conventional low-temperature Mott VRH. The reduced density dependence of the
Mott VRH prefactoroy(n) is also satisfactorily explained. In the critical regime for &/n.<0.05, Si:As and
Si:P yield the localization length exponent- 1.

For barely insulating disordered metal-insulator transitionspatial dispersiori of the dielectric response(n,R,T) that
(MIT) systems the conductivity is determined by differentis crucial in the critical regime where(R—«,n) diverges
phonon-assisted hopping processes atToand at higheT ~ as n—n._ but e(R—0n)— ¢, where ¢, is the dielectric
there is also a thermally activated component from itinerantonstant of the host semiconductor. Since the original theo-
electrons excited above the mobility edge. The activatedies were motivated by the amorphous semiconductor results
component o,>TP exd —e,/kT] becomes negligible for Where the MottT, was of order 18K and the exponential
€,/kT>1 except extremely close tg, becauses,(n)—0 as  temperature dependence was the dominant effect, insufficient
n—n,_ . For weakly compensated barely insulating samplegtténtion was paid to the prefactop(n,T) and the charac-
the two most important hopping processes lead to Matt teristic lengthL that entered the result in the percolation
Efros-Shklovskit (ES) variable range hoppingvRH) con- gpptror?Ch for Wrincthszw?t?\/ It_h V\;heiretGrc rl1$ ttr/erﬁrlt:‘cl?/ll:olrr]{th
duction. These are of the fornmv(n,T)=oq(n,T)exd u_c_:alce ?SSOC";G T 54 ef?‘? 1etWork o ) €
—(To/T)™ with m=1/4 for Mott VRH andm=1/2 for ES critical regime where To/T)**<1 it is important to care-

0 . fully consider the prefactoso(n,T).
VRH. There are numerous observations of both Mott VRH
and ES VRH in many systems ranging from amorphous

semiconductor$,which led to Mott’s original formulation, BACKGROUND
crystalline  doped  semiconductdt3, amorphous
semiconductor-metal alloysquasicrystalé,and even in the The subject of VRH conduction is now three decades old

high-temperature  superconducting  matefials like  and new experimental results continue to emerge. The theory
La,_xSKCuG,. In a number of cases the crossover betweemas peen discussed in detail by many theorists and is re-
Mott VRH and ES VRH has been documented as a functiojiewed by Efros and Shklovskif: With increased interest in

of temperature, doping, or magnetic field. A particularly el-MIT studies in the last two decades a large number of studies
egant treatment of the crossover has been given by Aharonjiave documented both Mott and ES VRH ms>n._ and
Zhang, and Sarachlk(AZS). A number of studies have some of these studies have documented the critical behavior
documented the scaling behavior of the Mott and ES charaf the Mott and ES characteristic temperatures. The critical
teristic temperatured, and T}. In general one find§,  behavior of VRH was reviewéda decade ago, but a number
>T; and one observes ES VRH at the low@sand Mott  of new, significant experimental results in the last five years
VRH at higherT. In the critical regime one finds the Mott have given important new information and presented some
hopping energyA,,=1/4k(T3T,)Y* becomes less thakT.  new puzzles to be explained. In addition, the emergence of
The original Mott derivation, and also subsequent derivafinite-T scaling (fTs) has important implications for both
tions by Ambegaokar, Halperin, and Lanfferand by VRH conduction and thermally activated conduction of itin-
Pollak!! were intended for the reginiB,>T. In the critical ~ erant electrons above the mobility edge.

regime where the hopping enerdy,<kT and the mean hop- A controversy developed over the proper interpretation of
ping distanceR,(n,T)<&(n), where ¢ is the localization the Si:P data foro(n,T—0) and the scaling behavior of
length, this calculation uses the Miller-AbrahdfmgMA) o(n>n,, T=0)=0y(n/n,—1)°. Paalaneret al,'® obtained
pair approximation and the impedanZ¢R,A) between a s~0.50 and saw distincso= o(n,T) — a(n,0)=m(n)\T

pair of sites with spacingR and energy differencA. A key  behavior to within 0.0008 ofi,. However, Stuppet al,!’
feature of the approach of this paper is the introduction ottlaimed a crossover frons~0.55, wherem(n)<0 to s
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FIG. 1. The Si:P results of Stupgt al. (Ref. 19 replotted for FIG. 2. Mott(open symbolsand ES(filled symbol$ To and T

comparison with Mott's VRH expression. The results for  values versus 4 n/n. for Si:P (0 and W), Si:As (O), CdSe:In(A

>0.09 K (vertical dashed lind=0.09K) are a good fit to Mott's andA), GeGa(), and Ge:Ma( ¢ ). The rapid upturn iff, for Si:P

1/4 law. The sample dependent upward deviatigmsticularly pro-  and Si:As for 1-n/n.>0.04 represents entry into the crossover

nounced for 3.68result from thermal decoupling of the electrons regime where the coefficie@(n) in T, increases rapidly. Note the

from the lattice and thermal reservoir. Ge:GaT} increases only linearly with £ n/n.. The lower dashed
line has a slope of three while the middle dashed line below the

~1.3 whenm(n) became positive very close tq.. Stupp  Ge:Ga data has a slope of one.

et al, claimed the critical regime was restricted ma(n)
>0. Their explanation reduced, from 3.74 to 3.52
X 10*¥cm?® (from here on thex 10¥cm® will be dropped.
This 6 % reduction im. is a large reduction and the expo-
nents is strongly coupled ton,. The Stuppet al,, plot of
a(n,T) versusT (their Fig. J showedm(n) increasing
substantially with decreasing suggesting a poor fit toT
behavior. Their data for samples 3.38 to 3.69 is replotted i
Fig. 1 in a Mott VRH plot (Ino vs T~Y4). The results sug-
gest a good fit to the Mott law foff>90mK (T~ %4

<1.82K™'), but there are sample-dependent deviationsy "\ aues more than 200 times larger than the Hessal.
(3.63 is particularly pronouncedhat indicate thermal de- values for n/n.>0.15 and 100 times smaller fom’
coupling of the electrons from the thermal reservoir and thisNO_ga] 400 Mch corresponds td =19 mK, which is
has been confirmed by a detailed analysis of the Kapitz% m fng 1K andT=50mK. while forT ’~15K and
resistance between the reservoir and sample and the thermra%“ 0 i 9

time constant between reservoir and sample. Steipal —60mK 400 MHz is aboutd/3. Whenhy is an appre-
obtained a MotfTo~ 2.3 K for the 3.52 sample they claimed ciable fraction ofA} the VRH theory needs to take account

as ng, but To[N(ER) &3] [Tox(1—n/n.)° close to of photon-assisted VRH which qualitatively will enhance

T o(n,T) and reduce theT, values. Hesset al, claim T
n.] and T, must.scale to Zero as—nc. The data in Fig. 1 ~(ng/n—1)=(n./n)(1—nin.) which is close to the ES
for n=3.56 are in the reglmA_h/kT<0.25 atr=0.5K and_ Ty~ (1—n/n.) results for Ge:Ga but is very different than
To~0.012K for n=3.69. It will be shown below that this . N
reanalysis leads to am; in good agreement with the the DC Si:P and Si:As results.
. o . _—
Paalaneret al, results. The Stupt al, data in Fig. 1 is Several striking features are illustrated in Fig. 2. The

L - Si:As and Si:PT, behavior is similar featuring a sharp up-
very similar to the Si:As resultd of Shafarman, Koon, and 0 ,
Castner(SKC, see Figs. 2 and)3 ward break to a very steep slope for-h/n.>0.04. This

steep slope is the intermediate regime whage-kT and
represents the crossover between high-temperature Mott
VRH (A,<kT) and conventional low-temperature Mott
Figure 2 shows values of Moffy’'s and EST|'s versus VRH (A,>kT). The crossover parametex=A;/2kT
reduced density for Si:As, the results of Hornung and vor= (T, /T) Y48 requires nearly four orders of magnitudeTig
Lohneysef?’ for Si:P (also the results of Stupet al, as re-  for a givenT to get fromx~0.3 tox~3, which is in quali-
plotted in Fig. 1 with a detailed analysis by Castierthe  tative agreement with the Si:P and Si:As results in Fig. 1.
new Ge:Ga results of Watanalet al,’! and the CdSe:In The slopes are similar for-1n/n.<0.03, however in this
results of Zhanget al?? The first three results are for very regime the ratioTo(As)/To(P)=[N(Eg)é&3]p/[N(Eg) £3]as

weakly compensated samples, while the CdSe:ln samples
have larger compensation, but are an excellent example be-
cause they show the crossover from Mott to ES VRH as the
temperature is reduced below a crossover temperatuaad

yield values of bothT, and Ty. The new DC Si:P results
overlap in reduced density the earlier Si:P results of Hess
bt al,?* measured at 400 MHz. The sharp difference in the
To(n) scaling results of Hesst al, with the Si:As results
has already been discussédrhe new DC Si:P results yield

A. The Mott and Efros-Shklovskii characteristic temperatures
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is of order 3. The new ESy’s for Si:P for 1-n/n.>0.12
are nearly two orders of magnitude smaller than the Mott
Ty's for the same value ai/n.. One of the significant facts 10°
about the Si:As and Si:P results is that the mean hopping
distanceR;,(n, T) =3/84(n) (T, /T)Y* [£(n) the localization
length] goes through a minimum fon~0.95+0.01n., at a
fixed T [for Si:As seeR,(n,T=1K) values in Table IV in
SKC]. This minimum cannot be explained by conventional 10% ¢
Mott VRH theory Specific heat resuft$showN[ Eg(n)] de- ©
creasing monotonically below n, implying R, S/em
o {&(n)/N[Eg(n)]T}¥* at fixed T will increase monatoni-
cally with n in the regime 0.8 n<<0.9M.. The importance
of this minimum inR,(n, T=const) versus has been over- |
looked. It is exactly this regime where spatial dispersion of 107 &+
€'(n,R) is important. i CdSe:In .+
The Mott T, for CdSe:In is approaching the same range ! N S S A
of values as for Si:P and Si:As for-In/n.<0.04 and the 102 107!
ratio To/T{ is approximately constant for-1n/n.<0.1, but ¢
increases for larger values of-In/n.. The T, values for

j - FIG. 3. Mott (open symbolsand ES(filled symbolg conduc-
CdSe:In also exhibit a break to a steeper dependence Onu:\L/ity orefactors o, versus -nin, for SiP (0), Si:As (O).

—n/n; fqr 1—n/nc>.0..l. The Ge:Ga results for the B3's CdSe:In(A), Ge:Ga(k), and Ge:Mo(<). In all cases with suffi-
are particularly striking becaus@y=(1—n/nc)“[a~1.0]  cient dataoy(n) approaches a constant@ssn,. The dashed line
representing a much weaker dependence-em/h. thanthe  with slope three is the theoretical prediction tag(n) for z,<1.
other data. Furthermore, the valuesTgf are 100 or more
larger than for Si:P and Si:As for-in/n.<0.1. For a given  the Deutscher, Levy, and Souillard proposal leads to 3/7
material in the critical regime one expedtg>T, and thisis  VRH at highT and 1/4 VRH at lowT, and therefore is not
confirmed for the Si:P and CdSe:In results. Another imporrelevant for the crystalline doped systems.
tant difference in the Ge:Ga resdftsare the strong devia-
tions from ES VRH for +n/n <0.01 where the VRH ex-
ponent m[In o(T)=—(Ty/T)™] decreases rapidly fromm
~1/2 thru Mott'sm=1/4 tom~ 1/8. The large difference in The second issue for any VRH theory to address is the
the value of -n/n. where ES VRH starts to dominate be- prefactoraq(n,T) and specifically th& andn dependence of
tween Ge:Ga and Si:Rand also Si:As, but where ES VRH 0. In many cases experimentalists have fit their data with
has not been documenteduggests the critical regime for constant prefactor§l independentthat yield reasonable fits
n<n. may be much smaller for Ge:Ga than for Si:P andto the data, however, which may not be in agreement with
Si:As. theoretical predications. Polldk  obtained oy

The Coulomb gap plays a crucial role in ES VRH and thexa™ (T, /T)Y for the Mott VRH prefactor. Allen and Ad-
energy width of the Coulomb gap isAcg kins gavesoxa 3(To/T)¥2for Mott VRH for gR>1 while
~e3N(Ep) Y[ €' (n,R,T)]%2 If spatial dispersion of ES gaveoyx(T%/T)¥2for ES VRH, although the relevance
€' (n,R,T) isignored, one expectsc to decrease rapidly as of these results to the critical regime is unclear. There have
€'(n,T) diverges am—n.. However, the important tunnel- been numerous analyses of prefactors by a variety of ap-
ing results of Massey and L&efor Si:B demonstrate an proaches(random resistor networks, etc.These analyses
initial decrease im\ g from 0.85 to 0.98., but this is fol-  have been reviewed by Efros and Shklovskii.
lowed by successive increasesAgg for 0.96 and 0.98,.. In Fig. 3 the prefactors are shown for five experimental
Spatial dispersion oé’(n,R,T) can qualitatively account for systems ranging from the amorphous semiconductor-metal
this reversal. The broadening df-¢ very close ton, can  alloy system Ge:Mo, ton-type Si:As and Si:P, tg-type
also account for the striking Ge:Ga results that demonstrat&e:Ga, and finally to compensatadype CdSe:In. The first
ES VRH for 0.9<n<.9,M.. three cases are for Mott VRH, while Ge:Ga and CdSe:In are

Deutscher, Levy, and Souilléfihave proposed a new for ES VRH. The two points for Ge:Mo are less than a factor
VRH mechanism for disordered systems such as granulaf 2 larger than the Si:As values although an)t® depen-
metals based on “superlocalization” of the wave function atdence fromoy(e?/hd,) [d.=(n.) Y] would suggest a
the percolation threshold based on random walks on fractalsatio of 8.5. The Si:As and Si:P results are similar in depen-
They find a hopping conductivity-(T)cexd —(T,/T)¥™®  dence on +n/n. and both seem to approach a constant
where( is an exponent characterizing the wave function devalue asn—n._. The ratio is in approximate agreement
cay atEg andD is the fractal dimensionality of the percola- with the [n.(As)/n.(P)]*3. The onset of a significant in-
tion cluster. Using the Alexander-Orb&étconjectureD/¢ crease for +n/n.>0.05 suggests the onset of a different
=4/3 leads to a VRH exponent 3/7, which is close to the ESegime and is in good agreement with tfig versus 1
result, but Coulomb interactions have been neglected. Unlike- n/n, results shown in Fig. 1. There is more scatter in the
the usual situation discussed herein where the crossover Ge:Ga results and the trend as-n._ is less obvious be-
from Mott VRH to ES VRH as the temperature is reduced,cause of this scatter. Nevertheless, one can arguerthist

Go

B. The VRH conductivity prefactor oy(n,T)
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not changing rapidly. Based on the® dependence the and

Ge:Ga values should be 0.36 times those for Si:P but are a

little larger. The CdSe:lwr, for ES VRH approaches a value hg=(1/BA){expB(Ei— n) —expB(Ej—u)}, (10
3S/cm asn—n._ and gradually rise with increasing 1
—n/n¢, but without showing the sharp upward break shown
by Si:As and Si:P. The magnitude is smaller than expected _ 52 4/=2\, 2/ 6

based onoy=n’? sincen,=2.8x 10'/cm?® and then, de- B=(9n,/4)(poS"A /B (€if/€7). (d
pendence would yield a rati®o Si:P) of 0.4, as compared to E;= E;+A(A>0) with » the chemical potentialp, is the

the experimental ratio of 0.06 at-In/n.=0.06. Unfortu-  crystal density,s the velocity of soundE; a deformation
nately, values ofr, for Mott VRH are not available. Com- potential, €, the host dielectric constant, a the donor Bohr
parison of the two ES VRH cases far, for Ge:Ga and radius for a spherical envelope function, amdis the num-
CdSe:In appear to demonstrate a breakdown ofnﬂ’fede— ber of equivalent conduction-band valleys. After some alge-
pendence ofry sincen.(CdSe:In)h (Ge:Ga)-1.5, but the bra it can be shown

CdSe:In results are for compensatedype samples while

the Ge:Ga results are for weakly compensatetype hijhg=(4/BA)sinh(BA/2)[ coshB(E;— u+A/2)

samples. )
Mansfield® states that close to., hopping processes are +coshBA/2]. @

complicated by correlated many-electron hopping effectsrg gtates available for hopping lie within the ordekafof

(CMEH) above a certain impurity densitys. The complex  "ror simplicity we will minimizeZ,;; for two cases: case

subject of CMEH has been discussed in detail by Pollak anq ¢, E.=u; case 2 forE ;= u—A/2 The choice makes no
] ’ J )

co-vx{orkersz,g but their discussion seems most_relevgnt Wgitference forBA>1, but does change the result in a numeri-
medium and heawe_r compensation. The Mz_:msfleld_ criterion 5| way forBA<1. The MA result in Eq(1a) is valid in the
for 2CMEH effects mvolvc—_)s the Coulomb mteractuﬁii dilute  limit where the resonance integral(W)
=e /e’(n,Rij)_Rij for hopping between two sites S?paratEdz(2e2/36ha2)Re*R’a anngoc(sz and the subscrifif is

by R;; . Equating &;; /a and E;; /kT Mansfield obtainNs ., gropped orR;j. The crucial feature in the critical re-

_ l 24132 1 H
= (3/4m)(2¢'kT/e*a) " and findsN;<0.01n; for Siand G gime is the strong spatial dispersion of the dielectric re-
at 2K usinge’ = ¢, (the host values oé, atLT are 11.4 for sponsee’ (n,r,T) given by

Si and 15.4 for Ge When one employg’ ~ €(n,T) in the

critical regimeNg can increase by orders of magnitude, how- er(n,r’-l-)flz[eﬁl_ e(n,T) Yexp —r/ry) +e(n,T) "4,

ever one also needs to take account of spatial dispersion of 3)

€' (n,R,T) in calculatingNg. For smallR the screening is

that of the host so that the Hubbaldfor two electrons on  where ¢, is the host dielectric constang(n,T—0)=¢

the same site is large, while the long-range part of the Cou+4ax’'(n) where x’(n) diverges asn—n.. Significant

lomb interaction is fully screened by(n,T) which diverges  VRH for n just belown. implies e(n,T)/e(n,0) can be much

asn—n.. The role ofe—e interactions and CMEH depend larger than one.rg is the screening length andg

strongly on the hopping distan&, and onT. The viewpoint = (3/47kn)*® wherek~4. This form in Eq.(3) has been

adopted in this paper is pragmatic, namely, when the datased earlier by Hakéfin treating the interaction of excitons

suggest Mott VRH it will be assumed(n,T) is dominated with optical phonons and is also similar to the interaction

by one-electron hops. When the data suggest ES VRH igerm employed for polarons in ionic crystals because of the

dominant, there— e interactions are clearly important. The [e, *— e(n) 1] factor. It has also been employed in a donor

Mansfield criterion is qualitatively consistent with a cross-polarizability enhancemetit calculation asn—n._ . Forr

over from Mott VRH to ES VRH ad is lowered, but there <r, €'(n,r,T)— e, while for r>rg, €' (n,r,T)—¢(n,T).

are other criteria based on the width of the Coulomb gapThis implies the localized wave function is characterized by

The extension of VRH theory discussed below doesn'’t in-g Bohr radiusa=age,(m/m*) for r<rg and a Bohr radius

clude CMEH effects. of order the localization length &(n)=age(n,T
—0)(m/m*) for r>r4 suggesting a wave function

and

VARIABLE RANGE HOPPING IN THE CRITICAL
REGIME Y(r.rs,a,6)=c(ma®)" e "2+ (alr) ¥ we®) Ve TTE,
(4)
The first step in this calculation is the determination of the ) o ) o
impedance between two sites. MA found the impedance bevherec is a coefficient determined by normalization. The
tween sites andj, separated by the distang , for isotro- ~ Coefficient @/ r)>?is an approximate coefficient estimated
pic envelope functions, but neglecting contributions from ex-from the probability the electron is inside a sphere of radius

cited states becauﬂex/kT> 1, to be ls. For a/rs$ 1/3.2(a/|’3)3$ 0.03, which guaranties most
of the probability density of|? lies within rg. The coef-
Z,:(Ba*/R¥)ex 2R; /alh; h (13 ficient c=—(a/r)¥\+[1-(alr)3(1—\)]¥* where \
9.ij ij ij ijtg» _ 172 17213 " i
=8/ (¢la)Y?+ (al€)Y?]3. In the critical regimec>0.9 and
where c—1 as ¢(n)—« as n—n,_ . The matrix elements

L(R),J(R) and overlap are calculated in the appendix. There
hij={1+exd — B(Ei—w)]H{1+exd — B(E;— w)]}, it is shown S(R)=<0.06 in the relevant regime and that
(1b J(R)<L(R). The MA expressionW=L—SJin the critical
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regime becomed¥V~L. The largest term ik results from

cross terms between inner and outer portiong(of,r). One
finds

W~ L ~{8e%a e, —e(n) " 1/(ré)¥H1+alry)?}

x e R{1-2a%/R¢]. 5

There are three other smaller contributionsLig propor-
tional toe R(ET1IS) o=Ra gnde=R(ATINS) ragpectively,
that are much smaller than the contribution in Eg). In the
critical regime wheres(n)> ¢, the various lengths satisfy
a<rgs<R,(n,T)<¢(n) with a<R;, and & The quantity
2a°/Ré<0.025.1n the critical regime WR) e~ ~¢ with no

T. G. CASTNER
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In both cases for,>1g(z,)—2 and one obtains Mott's
results withR,/ €= (3/8) (To/T) ¥4, A= 1/4k(T3T,) ¥ and
To=512/277N(Eg) £3k. In the opposite limit forz,,<1 rel-
evant to the critical regime, one obtairgz,)=4z./3
—1623/45+--- for case #1 andy(zy)=5z.,/6—23z/360
+--- for case #2. Keeping only the linear term and using the
Mott ansatz forz= BA(R)/2 one finds

(R /€)3°=[3/4V27N(Eg) £3KT]. 9)

For z,<1 f(z,)~1 for both cases #1 and #2 aj

« exfd 2R,,/&], which leads to a smaller value of the numeri-
cal coefficientD in To=D/N(Eg) &k (6/7 for case #1 and
4. 74k for case #2 or more than an order of magnitude

significant R dependence in the prefactor. This crucial resuliymalier than theT, for z,>1. It is easily shown that for

removes any significant T dependence of the prefact
ao(n). The MA resultWe[e’R/ e a’]e R is removed in
the critical regime becauss, is replaced bye(n) and e(n)

> ¢€p,. Spatial dispersion o€(n,r) introduces the screening
lengthrg and suggests the more complgter,rg,a,€) in Eq.

(4). As shown in the appendix this simple form of spatial

dielectric dispersion changes the leading term (W)?2
~{8ce/[ en(rsé)¥1+alry)?]}2e 2R¢ whene(n,T)>¢,.
The MA matrix element for phonon absorption is given by

H' =iE1(hqng/2poVs)((W/A) (e RP— g"Ra)(p|ed 1P |p)

+[1-(W/A)%1S(a)), (6)

where the overlap matrix eleme8{q) is given in the ap-
pendix. The calculation 08,,(q) is tedious with numerous
terms, but the results show that, as in the dilute casd, is

much larger tharf1—(W/A)?]|S(q)|. This conclusion is

0}, <1 case #2 yields the minimum value Bf The Mott

exponent of 1/4 has changed to 2/T4% increasg The
quantity A ,, differs from the conventional Mott case and is
given by

Am=3/47N(Ep)RS = (6/7D)KTZ T, (10)

where the coefficient @D = 1.2648(case #2 which is five
times the case fog,,>1. This difference is important and
increases the magnitude of the phonon wave nunber
=A/hcg by a large facton5) compared to the usual Mott
case. In addition, in the regin®g, <1 R,,/&(n) andA,,/kT
have differentT dependencies, however, only the former ef-
fects the T dependence ofZ(R,). The prefactor ofo
=1/Z4 L is independent off assuming the characteristic
lengthL . is independent of. Since 1Z , can be viewed as
the critical conductanc&,, the characteristic length,. is a

contrary to that in SKC because the earlier consideratiofinacroscopic length determined by sample dimensions. A

neglected dielectric dispersion and didn't use #lfe,a, £) in

Eqg. (4). The modified MA impedance, neglecting the con-

ventional MA terms in the regime(n)> ¢, becomes
Z4(R,A,T)=[(Bri&¥a) (1 +alry)*]e’™¢(2),
case #1: f(z)=sinh(2z)/2z,

case #2: f(z)=(sinhz+1/2sinhZ)/2z, (7)

where z=BA/2 and B,,=(256c2/9)B. The quantity z,
=A/2kT obtained after minimization of the MA impedance
is the crossover parameter between BwWwAott VRH with
Z,,>3 and the new case of highMott VRH encountered in
the critical regime where,,<1.

A. The Mott VRH case

Mott used the ansatA =3/47R3N(Eg) and minimized
the exponent oZ (or o< (1/Z)) and obtained values &,/ ¢

substantial body of experimental ddfRefs. 16—18 and 20—
22) supports the notioay(n) is independent of. From Eq.

(6) the density dependence ig(n)=&(n) 2 as long as 1
—enle(n,T)~1.

B. The Efros-Shklovski VRH case

One starts with the same MA expression By(R,A,T),
but uses the ES result=e?/e(n,R)R for the energy differ-
ence, namely,

A(R)=(e?R){[ e, 1= e(n,T) Y]exp—R/rg+e(n,T) "1},
(11

where aT dependence has been included since in the hop-
ping regime the low-frequency dielectric response is strongly
T dependent until the hopping is frozen out. The minimiza-
tion is complicated by the spatial dispersion and &6n, T)

> ey, it might appear that only the first term is important, but
this depends critically on the magnitude Bfrs. dZ,/dR

andA,,. In the critical regime where the exponent becomes=0 yields for case #1

small (R,/é<1 and A,/kT<1) one must minimize
Z4(R,A,T) with respect toR, but still employing the Mott

ansatz forA (R). For the two cases the minimization leads to

(Rn/)*=[9/16mN(E)a®k T]g(zy),
case #1: ¢(z,) = (tanhz,+ cothz,,—1/z,),

case #2: g(z,) =(tanhz,/2)+cothz,,—1/z,). (8)

(Rn/&)?=[€%/4e(n, T)ékT{1+[e(n, T) e —1]
X (1+Ry/rg)exp— Ry /rg}
X [tanhz,+ cothz,,— 1/z,]. (12

For z,,>1 (both cases #1 and #2nd negligible dispersion
[exp—Ry/r(1+Ry,/rde(n,T)/g,<1] one obtains a standard
result R,/é=[e*/2¢(n,T)akT]¥2. This leads to the ES
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VRH results withR,/&=1/4(THT)Y2 A,=1/2k(TTE)Y,
and T,=[8e?/e(n) ék]. The numerical coefficient iy is

2,2 larger than that given by ES and gives a smaller ratio of
T, /Ty that seems in better agreement with the experimental

ratios. AZS also obtained the numerical factor 8 .
When spatial dispersion is crucid[e(n,T)/e,—1]exp
—Rn/r(1+R,/r9>1} where R, /rg is near unity [exp
—Rn/rs(1+Rp/rd ~[1—1/2 (R /1 )2 — L3Ry /1) 3 + - ++]
one obtains the results for ES VRH but wifn,T) replaced
by e,. The resultT;=8e%/ e ék is highly relevant to the
Ge:Ga results of Watanalet al. In addition the Coulomb
gap widthA ¢ is strongly affected by the spatial dispersion
of €(n,R). One findsAcg(R~rg)>Acg(R>r,) because of
the spatial dispersion af(n,R). ES VRH depends critically
one(n,R,,T). Itis also well known from many experimen-
tal studies ofe(n,T) that ultralow temperatures are required
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close ton. to freeze out hopping and achieve asymptotic

values ofe(n,T—0). One specific example is the data of
Katsumotd® for Ga, -Al 5 5As:Si showinge(n, T)=e(n,0)[ 1
+aT?+DbT*+---]. This behavior can be approximated by
e(n,T)=¢e(n,0)coshkT/E,(n)] whereE.(n) is a characteris-
tic energy that becomes small as->n;_ . It is quite likely
that e(n,T) is larger thane(n,0) in the ES VRH regime,
however if spatial dispersion is dominant, then itejsthat
enters the ES paramet&y. This is one of the important

differences between Mott VRH, which is independent of

e(n,T), and ES VRH.

C. The relation between the impedanc& (R) and the
macroscopic conductivity and resistivity

The above extension of VRH to the critical regime is
based on the MA impedang(R,A) between a pair of sites
separated bir and differing in energy byA. Minimization of

Z4(R,A) rather than just the exponential terms is a valid

procedure for the entire range ot A/2kT and is necessary
when z<1. The shape o#Z(R) and how it changes as

FIG. 4. The normalized impedan&R)/Z(R,,) versusR/R,,
based on the Mott ansatz at=1 K for Si:As samples withT
=0.036, 2.74, and 296 K, respectively. As—n._(T,—0) the
curvature forR>R,, becomes dramatically smalleR,(Z)>R,,
andR_(Z)<R,, are shown fofT;=0.036 K.

[1/Z(Ry) ][d2Z/dR?]z, scales to zero as—n._ and as
(1—n/n.)®"" and for fixedn exhibits aT?’ T dependence.
The correction toZ from fluctuations aboutR,, is
[1/2d°Z/dR? g (R—Rm)?).  If ((R—Rp)?)xdRZ [d
=consi the correction will be negligible as—n;_ since
R/ &é—0. But if ((R—Ry)?)*R,¢ then the fluctuation cor-
rection is exactly proportional td(R,,) and will not lead to
different T or n dependencies for the totd(R). The mag-
nitude ofgR.¢ can be increased considerably and will reduce
the effects of thésin(R)/gR) term. Figure 4 and the results
from Eg. (13) are based on the Mott ansatz. This ansatz will
breakdown for too small &, but remains valid foR some-
what larger tharrg. In percolation analysis one seeks the
critical value ofZ, namely,Z. assuming that there are values
of Z both larger and smaller thafy. . In the present calcula-

—nNc_, is important, particularly because fluctuations in thegon there are no values d(R) less thanZ(R,). The

hopping length abouR,, can become important nea.
Figure 4 showZ(R)/Z(R,,), based on Eq.7) [case #] and
the Mott ansatz, versuR/R,, for threeT, values. The results
show Z(R) is asymmetrical and it rises very rapidly f&
<R,,. There is a strong drop in curvature fRE=R,, asT,
—0. For smallT, value hops with R, and 3R, have only
slightly larger values oZ(R). The larger range oR values
with nearly the sam&(R) values forR>R,,, suggests val-
ues ofqRe will be substantially larger than thegR,, listed in
Table Il. This helps to explain whisin(@R/gR) is less than
for a single value forR=R,,. The curvature for case #1
yields

d?Z/dR?] gm=Z(Rm){8/Rmé+ (9+R2)

X[1—(22y/sinh 22,,)?]}. (13

In the regime wherez, is enough smaller than[1

—(2zy/sinh 22,)?]—425/9 and usingRy,/&=1/2(T,/T)?",
one finds

[d2Z/dR%2] g~ 46Z(R)/Rméx Z(Ry) (TIT) 21 €2.

present analysis, based on the MA approach, makes no as-
sumptions about the nature of the resistor network or about
the probability distributiorp(Z). The carriers choose paths
that minimizeZ(R) 1 @and maximizeo.

Using p(Z)dZ~4mnR?dR leads to a divergerp(Z) as
Z—Z(R,,) sincedZ/dR—0 atR,,. For a givenZ(R),p(2)
can be calculated from the result

p(Z)=d/dzf p(2')dz’
zm

:(n/NS)d/dZ[jR+F(r)4m2dr . (19
R

where F(r) is the fraction of localized electrons within
2A(r) of Eg given approximately by &(r)/[Eg—Ep(n)]
where A(r) is given by the Mott ansatz anfl,(n) is the
donor binding energyl\ is the total number of donors and
Ns=nVg with Vg the volume of the sampleR, (Z) and
R_(Z) are the two values oR corresponding to a specific
value of Z>Z, (see Fig. 4 In the quadratic regime near
Z[0.9R,<R<1.0R,] p(Z2)=(Z/Z,—1) Y2 The inte-
gral in Eq.(14) yields InR,. /R_). For larger values oZ/Z,,
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TABLE I. The prefactorsoo(n,T), Ty, andTj.

Zn>1 z,<1

Mott oo (LE3L ) (T /T)VA oo (LE3L,)

To=18.1N(Ep) &k To=D/N(Eg) €%k,

1.51<D<1.9

Efros- ao(LEL ) (THT)V2 not physically
Shklovskii To=8¢€% e(n)ék (ND) relevant

Ty=8e%/ e ¢k (D)
Finite-T AT PY P exd —bpYTY] Mott qy=1/4,x—py=0, p=1/2
scaling ¢=(n,—n); To=b(1—n/ny)? ESqy=1/2,x—py=—1/2,p=3/2

P(Z)xZ HEI2R, +(3X) Y[ 2zm—x 1= (2R, /€x*3171}, N(Eg) vields a uniqueA for a givenR. This ignores the
(153 detailed random potential and the statistical distribution of
donors.
The critical conductance distributiop.(g) has been
R, (Z)=Rn+ (&2)[In(sinh(22,)/2z,,) +In(Z/Z,y) ], calculated” numerically for the Anderson MIT. Slevin and
(15b) Ohtsuk?? demonstratedp.(g) decreases rapidly for small
0(g<0.02). Knowledge op.(g) permits a determination of
and Pe(Z) =pc(9)dg/dZoxpe(g)/Z®. For g<0.02, p,(Z) drops
_ 3 m faster tharZ ~ 2 and removes any contribution ¢p) from the
x=(Rn/R-)*ZIZ"=exd 2(R—Ry)/¢] largeZ tail. This suggests when the random Anderson poten-
X[ sinh 2z, x/x sinh 2z,,]. (159 tial is properly incorporated intd(R) for R>R,, one should
obtain for 1-n/n.<1 ap(Z) that should drop more rapidly
The first term in the } in Eq. (158 decreases with increasing than Eq.(153.
Z sinceR, increases wittZ as In@/Z,)). The second term in The second moment @(R) is related to/(R—R,;)?) and
the {} decreases more rapidly with increasidg The first  this quantity can be calculated with this simgé€z). The
term dominates for large£/Z,, and the overall result is that integration is difficult sincedZ/dR is complicated and
p(Z) decreases less rapidly thati 2 for Z larger than a changes signt>1 is required for a convergent second mo-
characteristic value than depends ©p [for T;=0.036 K  ment. An estimate fot=2
Z.~2.0Z,,. This is a problem fog>2R,,, namely, for the
smallest values of; such as thé;=0.036 K curve in Fig.
4. The macroscopic conductivity is given byo) ((R=Rp)2)~&%12[1—h(Ry/é)], (16)
=L"1,.29p(2)/Z]dZ, where Z, is determined by the

sample volumé/y, sincep(Z) is sharply peaked for small i ) i )
Z/Z,—1 and continues to drop faster thad (o) whereh(R,,/£) is a complicated function that increases to-

~(LZ,)~1. On the other hand, the macroscopic resistivityward 1 asR,,/¢ increases. Because of' the asymmetry of
(p)=LJS,x2Zp(Z)dZ is more complicated. The quadratic Z(R), Eq..(16) dgmpnstrates the effect!ve hopping length
region with the sharply peakez(Z) provides a contribution (Re™>Rm) in the limit >R, must remain less thag/v2
kLZ, [k<1 and dependent on the normalizationpgiz)]. ~ depending on the magnitude b{Ry/¢).

However, there can be a contribution from the tailpdz)
for z>27,, sinceZp(Z) doesn’'t decrease faster th@n'(t
>1) with increasingZ. The tail contribution leads tdp)
significantly larger tharLZ,, and yields{o) (p) larger than The prefactor for ES VRH fog,>1 for both cases #1
one. The tail ofp(Z) depends sensitively on the asymptotic and #2 takes the fornorgoc[ 1/£(n)3L ](TH/T)Y? (Table J).
behavior of ¥/(r) [see Eq.(4)] for r>Ry,. If y(r)xexp The T %2 of the prefactor agrees with that obtained by ES.
[—r/(Ry®Y?] for r>R,, thenp(Z) would fall off faster for  Finite T-scaling of the formo(n, T) =AT*f(|n—n|/TY) has
Z>2Z,, and(o) {p) would be closer to one. This is plausible been used recently in the analysis of experimental data and
since yxexiker] whereke=[2m* (Eg— E.)/4#2]Y2 Forn its predictions for the prefactor of Mott and ES VRH should
<n. Eg<E. and kexi(E.—Eg)Y%xi/¢(n)Y? leading to  be examined. It yields a prefactor of the foray(n,T)
P(r)cexd —r/(bé)Y?] sinceé(n)<[ER—E.] * andv~1.0. =AT* PY(n.—n)P where thep depends on the functional
The experimental data determigg) and (o) was obtained form of f, which can be determined from the data. The ex-
from (p)=(o) 1. While the data is in apparent agreementponential part of for Mott and ES VRH is different and is
with (p)«LZ, the resul{a)(p)~1 has not been established not governed by the form of the prefactor. Data from the
experimentally. The asymptotic behavior @f(r) for r metallic side for many doped weakly compensated semicon-
>R, [andp(Z) for Z>2Z,,] remains a large uncertainty in ductors supportsx/y=s=0.5, which yieldsp=0.5—m/y.

the present treatment whef®>R,,. In addition, thep(2) The different choices ofn will determinep and theT andn
given by Eq.(158 and theZ(R) in Fig. 4 are based on the dependence of the Mott and ES VRH prefactors and one
Mott ansatz(a continuum approag¢h which for a given expects in generah will be different for Mott and ES VRH.

and

D. Summary of prefactor oo(n,T), Ty, and T
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TABLE Il. Hopping parameters for Si:As samples. A. Magnitude of VRH parameters near n.

Comparison of the theory with the experimental results
requires a knowledge of the relative magnitude of the terms
in Eqg. (6). These parameters are shown for Si:As for four
8.48 0.014 1.90 0.029 0.47 244 0.174 0.61 samples from SKC. The magnitude @R, is substantially

gx10°°
n 1-n/n, cm? ga@ gR,® g€ Rn/é Lg/An

8.07 0.06 3,53 0.054 0.60 0.906 0.514 1.45 larger than found in SKC because of the larger coefficient of
7.90 0081 440 0.068 0.87 0.837 0764 053 ( (factor of 5.3. qR, andqé in Table Il are the minimum
757 0.12 6.88 0.106 2.28 0.89 1.66 0.39 Vvalues based ogy=a*. If {,>a* these values increase
correspondingly. The quantitiega, qR,,, and g¢ all get
“Based ora=15.4A, £,=15.4A, andT=1K. smaller asT is reduced and this caus&§q) to get larger at
lower T, unlesse”R™¢ gets smaller more rapidly than the
DISCUSSION increase in the other terms in EGA7). However, the ratio

L./Ap, also gets larger with reducédase™ R™¢/T%7 since

Before attempting to compare the experimental result%mocTG/?_ Unlike the dilute case, the ratM/A~L /A can
with the theoretical expressions one should first compare thgpproach unity aT =1 K and is even larger &~ 0.1 K for
results with possible predictions of fTs. There are two classesamples close enoughtg. The crucial point is thatV/A is
of MIT systems, namely, the weakly compensated doped Salways much larger thapl—(W/A)2]S(q), and the term
and Ge systems that show(n>n.,T)=o0¢(n/n.—1)° neglected by MA can also safely be neglected in the critical
+m(n)TY2, wheres~0.5 andm(n) gets large as—n,_, regime. In addition the angular average of the first term
and the amorphous semiconductor-metal alloys wieere (|[H'|?) in Eq. (6) yields {((2—2cosq-R))=2[1
=1.0 andm(n) is nearly a universal constant for systems —sin(@R/qR]. In the dilute limitgR,>1 and the oscillatory
like Si:Nb. The former can be explained wik+y/2~0.27  term could be ignored. In the critical reginggR,, becomes
ands:x/y_ If one assumes the prefactor is independeﬂf of smaller than one fof <1 K for the 8.48 sample. In the limit
then this requirep=1/2 and leads taga(n.—n)*2 How-  thatqRy<1,[1-sin@Ry/aR.*(qRy)? The extraR, > de-
ever, the experimental results in Fig. 2 feg for Si:P and Ppendence iiZ(Ry,) changes the theoretical results in Sec. IlI
Si:As show no appreciablen dependence for 4n/n, and leads to a much strongérdependence of the prefactor
<0.05. If instead one sefs=0 to remove then dependence  @o(N,T) than is observed in the data. The actual conducting
one findsox T, This is inconsistent with the experimental Path is not one of a series of hops of length, but includes

results that would support &° prefactor withs<0.04 for quctuat_ions ab_ouRm. These fluctuations will _produce an
averaging of siffR)/gR that may make the oscillatory term

Si:As ands<0.02 for Si:P. The Si:As and Si:P It ) : . . . .

tol bz eilgcsm atiblgrwilth fTs(zt Ileazta\?vith;~86257u a?n‘r:;ppemun|mportant, but this remains an issue. Also, in the regime

~2x). The pcan be explained by the refa(.:tor ivgn in1—n/nc<0.02, where the theory may need corrections, the
' y prain y pretac 9 role of doping inhomogeneity becomes important. One ex-

Table | for Mott VRH forz<1 if the characteristic length, pects the average over a doping distributiarR,) to be

. . . m

is independent ofl. As 1__ n/n. increases onelgventually larger thamR,,,, although it is difficult to estimate the mag-

crosses over ta>1 and this leads tao=(To/T)™ for Le  nityde of this effect. The Si:P ddfain Fig. 1 appears to

independent off and slowly varying withn. This can be  ghow a good fit to Mott VRH down t§~0.1K. The data is

explained with fTs withx—py=—1/4 andp~1.0. The 3 reasonable fit to Eq7) for T>0.1K and - n/n.>0.01.

Si:As and Si:Po are varying more rapidly with n/n.,

but it should be emphasized that the transition region be-

tweenz<1 andz>1 is broad and one can be in the inter- B. Comparison of localization length exponent and metallic

mediate regime wher§, itself (see Fig. 2is changing much scaling exponent

more rapidly than expected froffoc[N(Eg)£%] ™ for rea- Returning to the Si:As and Si:P results in Fig. 2 one can
sonable values of the localization length exponentl. The  compare the localization length exponerit obtained from
results in Figs. 2 and 3 for Si:P and Si:As are either in therél%c[N(EF)]fl/%(n)flw[N(EF )] Y3~ (1—n/ny)”’
z,<1 regime or in a broad transition regime. Note that foryjth the conductivity exponerg obtained fromo(n>n.,T
T=1K, z=1 requiresTo=4096K while forT=0.1K, z - 0)=04(n/n,—1)° (a new scaling expressidhfor the
=1 requiresT,=410K. It is much easier to satisfy the con- Boltzmann conductivity obtained from standard scattering
dition z,,>1 for ES VRH sincez,= 1/4(T(’,/T)1’2. The  theory and Anderson localization concepts yiedes1/2 and
Ge:Ga data, remarkably, exhibits ES VRH conduction tosuggests the possibility’ =2s). Figure 5 showsTs? for
about 0.99. For 1-n/n.=0.0109 the Ge:Ga results yield Si:As and Si:P versus-in/n, for several different values of
To~4 K, which givesz,,=2.5 atT=40mK andz,,=0.5 at n.. The finer grid of samples for Si:P yields nearly linear
T=1K. It is exactly in the regime for £n/n.<0.01, as behavior forn.~3.75 for 1-n/n.<0.05 and a steeper slope
seen in Figs. 6 and 7 in Ref. 20, that strong deviations fronfor 1—n/n.>0.05. The Si:As resultévith a smaller density
conventional ES VRH are observed. The two CdSe:lnof points and more scattealso shows approximate linear
samples withT*=0.056K (T*=T() [1-n/n.=0.0534 behavior forn,=8.60, but only three-plus points are in the
and T*=0.24K [1—n/n;=0.10] only yield z=1 for T linear range. Both the Si:P and Si:As results show a signifi-
=3.5 and 15 mK, respectively, and the data were obtained isant drop inv' as n. is decreased. The scaling of(n

the regime where< 1, where corrections to conventional ES >n.,T—0)x=(n/n.—1)* where the new scaling expression
VRH are expected. suggestsv’ ~2s, and the experimental results for weakly
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FIG. 5. T3 versus & n/n, for Si:P[3.73(A), 3.74(#), 3.75
(@), 3.76(W)] and Si:Ag[8.57(A), 8.58(<), 8.59(0)] for several
values of n,. The dashed lineT3x¢g(n) tc(1—n/ny) for v
=1.0 is shown for comparison. The inset showsersusn. from
T33 (solid symbol$ and o(n>n,,T—0)=oy(n/n.—1)° (open
symbolg based on a forced fit of the data with as a variable. The
intersection of the insulator and the metallic & yields a more
accurate value ofi. .

FIG. 6. (8) The correction facto€(n,T) versus +-n/n. dem-
onstrating the importance of the spatial dispersioe’¢h,R, T) for
Si:P [Mott (O) T=1K, (0) T=0.1K; ES(®) T=1K, (M) T
=0.1K] and Si:As[Mott (¢) T=1K, (A) T=0.1K]. C(n,T)
drops asR,,(n, T) increases with decreasiig C(n,T) is larger for
Si:P than for Si:As for n/n.<0.04.(b) The length&(n) versus
1-n/n, for Ge:Ga, Si:P, and Si:As based gp equal 45.6, 16.7,
and 15.4 A, respectively. Thes values are obtained from,
=(3-4.19/4mn.)¥3(n./n)*"3 for n. equal 0.186, 3.75, and 8.59,
compensated Si and Ge MIT systems with 0.5 also pro-  respectively.
duce a variation o with n., but in this cases increases as

n. decreases. The opposite dependence’ofn T3 ands C. The correction factor C(n,T) for ES VRH

from o(n>n;,T—0) and second-order phase transition The correction factoiC(n,T) =[e(n,T—0)/e,— 1]{exp
theory suggests the plot in the inset in Fig. 5. Both 'flf;@ [—Ru(NTrJ[1+R,(nTY/rg} in Eq. (12) is shown in Fig.
data and ther(n>n;,T—0) data are force fit to a power 6(a) demonstrating the effect of spatial dispersion of the di-
law [|n/n,—1|"" or (n/n,— 1)%] with n. as a floating param- electric responsee(n,R). The factor e(n,T—0)/e,—1
eter. The functions’ =F(n.) and Z=G(n,) are shown in =4mx’(n)/e, is obtained from the experimental data for
the inset for Si:P. Two straight lines of versusn, are  Si:P (Ref. 39 [4mx'=7.0(n./n—1)"**°] and Si:As(Ref.
shown for the 5 and 4 samples neanest respectively. An 36 [47x’ :8-0(3nc/n_ 1)~*+?%. The values ofr afellgb'
analysis of the Si:P results of Blaschetteal®* (10 metallic ~ tained from 47r/3=k/(Ng—N,) for k=4.19[rs~n; "]
samples in the range=3.85 to 4.37 and the four smallest K=1 corresponds to a volume containing on average one
values of T, shown in Fig. 5, leads tm.=3.756, v’ =2s donor whilek=4.19 corresponds to a volume with 4.19 do-
=1.024, ands=0.512. The forced fit results for the 10 Si:P nors. The precise value &fisn’t known but forR/rs>3 the
metallic samples yields standard deviatigfes s] that were ~ screening is nearly complefeinlesse(n)>50e,]. R=3r
smaller than for the more limited Si:As results with only five corresponds to an average of 113 donors insidg. 3
metallic bar samples, but the minimum standard deviatiolRm(N,T) has been calculated with the Mott resuRy,

for the Si:P case occurred for,=3.75, suggesting the best =3/8(n)(To/T)"* for z,(n,T)>1 and the new HT Mott
fit of the Blaschetteet al, data is fors~0.5. The value of result Rp=1/2£(n)(To/T)?" for z,(n,T)<1 while Ry
s~1.3 suggested by Stupet al, resulted from usingn, = 1/4£(n)(To/T)"* was used for the ES case. The dashed
=3.52, which is 6% below.=3.756 because the samples lines (Si:P, OT=1K, OT=0.1K; Si:As, O T=1K, AT
3.54 to 3.69(see Fig. 1 were identified as metallic rather =0.1K) based on the Mot,,, demonstrate the correction
than insulating. A similar analysis for five metallic Si:As bar is large close ton. because of the large values ofr4’.
samples(SKC n=8.67, 8.91, 9.06, 9.50, and 10.4ield s C(n,T) is smaller at 0.1 K thantal K because of larger
versusn.. The two curves intersect fdry’'=2s] for n,  values of expR,/r9 at 0.1 K and smaller values of
=8.58 for fiveT, points anch,=8.592 for fourT, points. In  expR,/rs. C(n,T) can be much larger than shown in Fig.
both cases the intersectiad =2s is close to 1.0 yielding 6(a) because of the use @fn,T—0) rather thane(n,T).
1.02 forn,=8.58 and 0.98 fon.=8.592. The new theoret- €(n,T)/e(n,T—0) can be large near, because it is hard to
ical scaling result suggesss=0.5. This analysis is consistent freeze out the hopping. When(n, T)>20— 100, the dielec-
with the results in SKQignoring the Hall disk resulisbut  tric response that determind®, and T, for ES VRH is
the use of the criteriom’ =2s provides a considerably more e(n,R,) ~ €, expRn/ro)/(1+Ry,/rd. The solid lines in Fig.
sensitive determination of; . 6(a) showC(n,T) based on ER,, values obtained from the
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Si:P datd® in Fig. 2. The correction shows the same qualita-reason for the different behavior of Ge:Ga doesn’'t depend on
tive trends as for the dashed curves for the MR)it. How-  a difference between Ge systems and the others in Fig. 2.
ever, the values o€(n,T) at the same value of in/n,

[0.123 and 0.17Bare larger by a factor or 3—5 because of D. The minimum in R,,(n,T=cons versusn for Mott VRH

the _smaller ERp, values. L What of the minimum inR,,(n, T=const) versusn? One
Figure 6b) shows localization lengthg(n) versus 1 usesTo=[D(n)/N(Eg ,n)&(n)°k] where D(n) varies rap-
. ) i *
—n/n. for Ge:Ga, Si:P, and Si:As based 6ra” values of gy with n in the crossover regime between conventional

45.6, 16.7, and 15.4 A, respectively. The Ge:Ga value isyjott VRH and HT Mott VRH. The logarithmic derivative of
smaller than used in Ref. 20 and is basedepr 15.4(see R s

Faulkne?’ and Castneet al®) the acceptor binding energy
11.0 meV, and the relatioa* =a¥ [ E.n/Ea]*2 based on dinRy/dIn(n)=1/4v'(1—-n/ny) !
the Whittaker envelope function. If one employed-a*, as

done in the derivation of the Mott criterioma* ~1/4], ~dInN(Eg,n)/din(n)
one would obtaink= 7/48~0.065. The values oR,,/rq +dInD(n)/dIn(n)]. (17)
would be much too large and expR,/rJ[1+R,/rs] would

be much too small. There can’'t be much screening from th
neighboring donors fok<1. In order for spatial dispersion

to be important one must havg/a* ~4. The values of ¢ —,0.8n, andD(n)~1.51 asn—n,. The functional depen-

shown in b) are based oik=4.19 and these .yleIdS/a* . dence ofD(n) isn't known, but it is approximated by an
values of 3.845, 3.85, and 3.17 for Ge:Ga, Si:P, and Si:ASg gpaned curve that is steepest in the region in Fig. 2 where
respectively. For +n/n.<0.1 the values ofC(n,T) are T, is changing most rapidly wit, which means an
larger for Si:P than for Si:As becau$®) &,/ is larger for slightly below the minimum. An estimate In D/dInn
Si:As, and(2) for 1—n/n;<<0.05 To(As)/To(P)~3. HOW-  for the entire rangeAn=0.2n. is (n/D)(AD/An)~
ever, the values ofo/r s are virtually identical for Ge:Ga and  —(0.9/9.8)(16.6/0.2% —7.6. Thusd In D/dIn(n) need only
Si:P. The results in Fig. 5 suggest the origin of the ES VRHpe 2.5 times larger to account for the minimum. The rapid
in Ge:Ga for 0.8,<n<0.9M, results from very large val- drop in the coefficienD(n) in the Mott characteristi@, in

ues of C(n,T) (corresponding to large values of the Cou-the crossover regime, explains the minimum Ry,(n, T
lomb gap width which results from much larger values of =const) versus.

€(n,T)/e(n,0) at a givenT for Ge:Ga than for Si:P. The

smaller activation energies for doped Ge than for doped Sg. The effect of doping inhomogeneity on the prefactoroy(n)
make it harder to freeze out the hopping in Ge. At a fiXed
the increase ir(n,T)/e(n,0) asn—n. leads qualitatively to

an increase iMcg asn—n;_, in agreement with the ex- o et
perimental results of Massey and F&éor Si:B. *(1—n/n)*", which is reasonable agreement for /n.

Experimental values o&(n,T—0) are not available for >0.1, butis !n sharp co_ntrast to the re-sults in Fig. 3 showing
Ge:Ga, but based on the results in Fig. 6 it is plausible t¢o(n) for Si:P and Si:As approaching a constant ms

assume tha€(n,T)>1 for 1—n/n.<0.1. In this case the ~~c- The rapid varia_tion Oforo(n) fpr 1-nin.>0.1 s
relevant dielectric constant to use in Ed) and inT will be fﬁSt?r than the prediction fcfw:l, WT'Ch rgi\)l/Aresult fr\c;vnkw]
much closer toe, than to e(n,T). Dielectric studies of the increasing importance of the neglecte terms. en-

ever a quantity approaches zerangtone must take account
n-type Ge demonstrate that everi\gt~ 0.44n . temperatures A ) . =
well below 0.1 K are required to freeze out the hoppingoef dop!ng g]hqmo%ene{iy. ;otr .?) r][prmahzeﬂP(E)d/n—lz]
contributions toe(n, T). For 0.9,<n<0.9M; even 10 mK aussian doping density distributidte-exp—[(n—n)/an.I",

may not be cold enough to freeze out all the hopping. ThiéNherfaa is measure of the spread m about the average
suggestC(n,T)>1 for the Ge:Ga results and explains why derlSIty 0. The taverage(crq)=fcro(n)P(n)dn, where for_
the Watanabeet al, T results are in agreement with} UOI_A(l._lnlnC) Or;e obtains a result in terms of Hermite
=2.8(e?lenéo)[1—nin ]*0 The Ge:Ga results suppopt ~ POYNOMIAS, hamely,

=1.0. These results are strikingly different than the ES VRH
results for Si:P and CdSe:In in Fig. 2. The latter two systems
haveT,<T, at the same value af/n, and the scaling of B 3 5 .
(see Fig. 2is more rapid than linear in-tn/n.. Zabrodskii (7o) =A\Tx*+3a%/2] for t=3, (180
and Zinov'eva® have observed for Ge:As ES VRH witf), wherex=1—n/n,. Thet=3 case reduces the dependence
«(1—n/nc)*° which can be interpreted with’=1.0 and  of (op(n)) onx, but doesn't yield a constant as-0. The
4mx'«(1—-n/n;) ! although these authors suggestetl.3  t=4 case qualitatively fits the behavior in Fig. 3 reasonably
for the exponent of 4y’ and »'=0.7. The Ge:Ga results well, but doesn't explain the shallow minimum seen in the
suggesftT,~e?/ e,&(n) and no collapse of the Coulomb gap Si:P results. Using Eq123a and the Si:As data in Fig. 3 for
in the range 0.8, <n<0.9M.. This is explained by strong 0.091<1-n/n.<0.148 yieldsa=0.02, certainly a plausible
spatial dispersion ok(n,R) and a largeC(n,T), but the estimate of the doping inhomogeneity, but this yields too
parameters are not well known for Ge:Ga. Since the resultsmall a value of og(n=n¢)). A change in the asymptotic
for Ge:As are closer to the Si:P and CdSe:In results, théehavior ofy(r) for r>R,, from e "¢ to exg —r/(b&)*?] (b

Jhe minimum inR,[dR,,/dn=0] atn~0.95+0.0In.. can-
not be explained with the density-of-states term because
d InN(Eg ,n)/dIn(n) is of order unity. D(n)—18.1 asn

In the critical regime where(n,T)>¢, and z,,<1 the
prefactoroo(n)ochtoc 1/£3 with r virtually constantoy(n)

(oo)=A\a[x*+3a%?+3a%4] for t=4, (183
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a characteristic length of ordeg) will reduce the exponerit  in €’'(n,R) which introduces the new characteristic length
to t/2 for &R, which is qualitatively consistent with the and removesRin the MA expression for the resonance en-
Si:P and Si:As data in Fig. 3. The physical significance of€'dY W- This new lengtir; removes the cancellation W
(o) finite atng, is that its magnitude is a measure of the - -~ SJand makes.>SJ, which in turn makes the form of

inhomogeneity. For a truly homogeneous system the theorﬁpe overlapS much less important. The averlap for the func-

yields oy(n)—0 asn—n;. Some have argued a finitg, as elgn?efgioin?n% E"VA\'g) be reduced compared with the pair
n—n. is consistent with a Mott minimum metallic conduc- IIDn analyzing 3vhetﬁer Mott VRH is meaningful whdh
tivity. The resultog(n)—0 is qualitatively consistent with <T andR,<¢, one needs to consider the following. The
the fTs result, which foe,,<1 has ar-independent prefactor ., per ofmstatés in a hopping volume in the hopping energy
scaling to zero as—n;. This inhomogeneity analysis pro-

) _ Lotton’ > 1 interval A, is N(E,:)(47TR3m/3)Am. By Mott's ansatz this
vides a second reason why the Ge:Ga resutten’t exhibit quantity is unity independent of wheth@<T or To>T.

Mott VRH for 0.9<n/n.<0.99. The more homogeneous The number of neutral donotaumber of localized electrons
doping achieved w!th the NTD appr.oach leads to a smallehl) in a hopping volume iml(47TR§1/3):Nd,hu>1 at tem-
Mott prefactor(oy) in the critical regime. peratures where most of the electrons are in states below the
mobility edgeE.. This inequality is an essential feature of
Mott VRH. This is satisfied over a substantial rangépbut
breaks down at highel when thermal excitations excite
electrons above the mobility edge. In this cagse=n[1
fa(n,T)] and the density of electrons thermally activated
boveE. is nf,(n,t). The quantityf,(n,T) has been deter-
mined for Si:As samplé§[f,=0.1 for the 7.39, 7.57, 7.90,
and 8.41 afT=37, 32, 27, and 24 K, respectivélyFor f,
=0.1 a significant portion of the conductivity results from
the activated component,(n,T). The smallest value of
Ng n, OCcurs at the minimum iR, discussed after Ed8).
For Si:As this occurs close to 0.84 [the 8.07 sample in
Table IV in SKC] and leads tdNg ,,~155 at 1 K and 9 at 25
K, but by 25 KdIno(T)/dInT already shows large devia-
tions from the Mott result 1/4,/T)Y(z,>1) [or
2/7(To/T)?"(zw<1)] due to large values af In o(T)/dINT.
However, there is a substantial range df where
Ngn,>1 and in this T regime it is easy to show
that R,/é<1.9n/N(Ep)kT] for z,>1 and R,/¢
which differ in energy withA=E,—E,. Sincey, and g,  <O0.34n/N(Ep)kT]* for z,<1. For the above, Si:As
are appreciable over many sites1¥1000) the hopping Samples one can prove that bdg,/¢>1 for z,>1 and
should be viewed as between eigenstates rather than betwe\%ﬂé §e< 1M :)ottr @;Hl. Jgté?r?];erggﬂee (I?)zzr'i:t;?rhi?: Ige?i\}fg[ive
specific sites. The,; andcy, ; oscillate in sign and are par- !

ticularly complex in many ]valley semiconductors because! IN o7dIn T~1/A(TyT)“* [or 2/7(To/T)2", which would be
the ¢ (r—R)) are 1s—A, (ground state impurity band | ard to_(_1|st|ngU|sh from t_he Mott reslilboth of the above
which are symmetric linear combinations of the £80) and inequalities can be satisfied because of the large values of
four (Ge) conduction band valleys. These functions oscillate' “d.hv - .

in sign and the dependence of, on |Ri,| features both For 1-n/n.<0.02 the comparison of the theory and the

; ; ; i tal results starts to become problematic. The
oscillatory and exponential decay components. CalculatioffXPENmMen . .
of the phonon matrix elemenrftjy| Ve "|4,) for hopping sample homogeneity might only be of order 2%. The 8.48
leads to an expression of the formq a Si:As and the 3.69 Si:P samples show VRH exponents some-

what less than the Mott value=2/7. For 1-n/n.<0.01
(ol Vg€ o)

F. Beyond the pair approximation (?) and validity issues when
A <kT

The validity of the pair approximation itself in the critical
regime is not obvious and this question is difficult to addressd
guantitatively. When the localization lenggin)>d close to
n. there are of orderg/d)® donor sites within a localization
radius [for n=0.98n.(¢£/d)3>1000. Consider localized
eigenstates

z//fﬂ(r—Ra,Ea>=2i Caidhi(r —R))

and

wb(r—Rb,Eb>=2cb,j¢j<r—Rj>

the Ge:Ga resultd showm dropping fromm~ 1/2 through
1/4 towardm~1/8. For To<T the changes inr(n,T) are
small and an accurate determination of the parametgerg,
and oy becomes progressively more difficult as-n;. Un-
certainties in the magnitude of the parameid. (larger

(19) thangR,) asn—n., make quantitative estimates of the va-
where F; = [ ¢;(r—R;)exdiq- (r —R;;)1¢(r—R)dr. This Iidity of theory difficult. In particule}r, there are seriqus ques-
is a complex summation for a dense array of random donordons about the correct asymptotic behavioryfr) in the
and is well beyond the scope of the present work. Howeverr,eg'me§> Rm. The dlfflcultlgs with the theory parallel thqse
it is at least plausible that the important functional depen®f the experimental analysis when-h/n; becomes suffi-

dence is of the form/qG(R, ) extf —|Ray|/£(n)], but where  ciently small and are complicated by sample homogeneity.
G[Rap,a,rsé(n)] is a weak function oR,;, [as in the case

:Z 2,: Cp,j- Ci.aVqeXQiq-Rij)Fij(q-Rjj),

of Egs. (5) and (A3c)] rather than a simple polynomial in
|R.p//& found in the dilute limit by MA. The crucial new

SUMMARY

In summary, the minimization of the MA impedance pro-

feature of this paper is the introduction of spatial dispersiorvides an extension of the procedure used by Mott that pro-
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duces the original Mott VRH results in the limi,>kT, APPENDIX: EVALUATION OF THE RESONANCE
but also yields a new high-temperature res(iith m INTEGRAL W
=2/7) in the regimeA,,<kT. In the latter regime the

T-independent prefactorrg(n)£(n) ° is in reasonable readily evaluated for the case of spatial dispersion of the
agreement with the Si:P and Si:As data for@/nc>0.1.  gensity-dependent dielectric response given much earlier by
Doping inhomogeneity leads to a nonzéi,(n=n.)). AN i4e expression e(r,n) 1= Eh—l exy] —r/rd]+e(n) " {(1—exp
important new feature of this approach arises from the spatiQI_ r/rg), where e(n)=e,+4my’(N), where x'(n) is the
dispersion ofe’(n,R,T) which introduces a new screening giverging dielectric susceptibility.

lengthr. The large chang€l8.1 to 1.5] in the coefficient The integral L(R)=e?[[ yathg/€e(rg,n)rgldr for two
D(n) in the Mott T, between the LT and HT Mott VRH sijtes a distancd&k=R,— Rg apart, is given byL=L;+L,
regimes, is strongly supported by the Si:As and Si:P data+ L, whereL; results from the inner portiorjsee Eq(4)]

The rapid decrease iD(n) accounts for the minimum in the of ¢,yg,L, from outer portions and . from the cross
mean hopping distanceR(n,T=const) for n~0.95 terms between the inner and outer portionsjof

+0.0In.. The spatial dispersion i&’(n,R,T) permits an

explanation of the Ge:Ga ES VRH results for-f/n, — 2f —1_ -1

>0.01 and can also explain the increase in the Coulomb gap LR)=€ | dalra)velre)(Len ™ e(n) " lexp=ra/rs

width at fixedT observed in the tunneling results of Massey

The integrals involved in MA's quantityV=L —SJ are

+e(n)~t :
and Lee. e(n)”")d7/rg (A1)
The second term in the square brackets yields results similar
ACKNOWLEDGMENTS to that obtained by MA for a spherical envelope function, but
with e, replaced bye(n). In the critical regime where
The author gratefully acknowledges the value3 gf T}, e(n)>e¢,, this term is very small compared to the first term.

oo, andoy provided by H. v. Léineysen, M. Watanabe, and Using elliptical coordinates withu+v=2r,/R, u—v
S. Yoshizume, and also support by NSF Grant No. DMR-=2rg/R, andd 7= (R%/8)(u?— v?)dudvd¢ one obtains for

9803969. the first term in(Al) the results fok; , L,, andL,, namely,
|

L,=c?[2e’r/e@’(1+al2rg)]f(n)e R 1—[rs/R(1+a/2ry)](1—e )], (A2a)

Lo=[4e%a enr£3(1+2rs/&)]f(n)e M 1—[2rRE(1+2r4/é)](1—e F9)], (A2b)

Lei=[8ce?a? en(rs&)¥2f(n){e Ré/(1+alrg)®—2a%/RE(1+alrg) e ME—e Rlatils)

—e RA[1—(alr2]+2a/R[1—(a/rg)?|[e A+ e RUISTUO] (A2c)

where f(n)=1—¢,/e(n) and very small terms of order of 1—n/n. shown in Figs. 2 and 3, the MA resonance inte-
(a/€)? and a®/r ¢ have been omitted. For comparison the gral W is determined predominantly Hy.(R)xe ¢ The
MA-like matrix elements, but witte,, replaced bye(n), are  prefactor dependence of.Lon R is negligible.

shown to be Applying the same approach to evaluating(R)
- =e?[[|yal? e(rg,n)rg]dr and ignoring thee(n) ! term
Lima=c’[e?/e(n)ale” N3 (1+R/a), (A38)  that is the same as the MA result, one obtainsJg(R)

Loma=(alrg)3e? “RE1+RIE), (A3b
wa=(@/rs) e e(m) £le £, (A3b) Jo(R)=[8ce?a?l en(r£)¥2]f(n){—e RABT1O/1_ (a/r )2

Lot mar =[8Cee(n)(rsé)¥?[ (e Ri—e R +[2a/R[1—(alr)?]2|[e RIrs— e R+ U]y
X (1+2a/R)]. (A3c) (A5)

In the critical regimeL; «ya» is the largest of these three
just asL; in Eq. (A2) is the largest of the terms containing ~ TABLE lIl. Typical wave function parameters and overlap.
f(n). These cross terms do not have the polynomial forms
shown in Egs.(A3a) and (A3b). The ratio of the leading 1-n/n. Ry (A)* &R (a/9)* ¢  §q=0) S(q)°
terms inLc andL; «ya- (the e R'¢ terms is given by

0118 214 129 0041 0947 0.0416<0.024
Lo/Lorar =L e(m/en—1V[(1+alr )31+ 2a/R)]. 0.081 146 191 0.0229 0961 0.059 <0.055
(A4) 006 128 249 00154 0968 0.0622<0.057

. 0.012 192 1104 0.00165 0.982 0.0348<0.01
Based on the Si:As datdfor e(n, T—0) and the parameters

in Table I, one finds this ratio to be 2.0 at 88 3.9 at  2Based on Si:As values from SKG3=15.45A, r~49A, T
0.8, 8.9 at 0.94. and 87.3 at 0.99.. In the entire range =1K.
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ond term is always important and the third cross term is
contains no term ire”R'¢ and is always smaller thah,,  comparable for 0.88 and 0.94, but is negligible for
since £>R>r >a. Even for the smallest value &, one  0.9M.. Values ofRy,, & (a/§)%? ¢, andS(R,,,q=0) are
finds L¢~ 16J,, for Si:As. It is also important to note that given Table Ill for four values of/n. in the critical regime
J(R) differs from the dilute MA result because a term for Si:As. The largest value & occurs at the smallest value
e’/ epa is missing. This in turn means there is no cancellatiorof Ry, atn/n.~0.94.Sis small in the critical regime because

where small termsg/ £)? anda?/r (¢ are again neglected,,

in the expressiorL—SJ and that the leading term ikV
comes only fronL since theSJterms involve eithee™ 3" or
exd —(p+2R/2rg)]. In the present case fog(n)>¢, the
leading term inWis L.

The overlap integral for the wave function in E@) is
readily calculated using elliptic coordinates yielding

S=c[1+R/a+1/3Rla)?]le N2+ (alry)[1+R/E
+1/3(R/¢)*le” Fé+16c(alrg) ¥2(al €)%
X[(1—4a?/R¢)e Né+ (1+4a%/RE)e N3], (A6)

In Eq. (A6) we have usedafB=R?(1/2a+ 1/2¢)(1/2a
—1/2¢) = (R/2a)?(1—a%/ £?)~(R/2a)? since é&>a in the

most of the wave function density is in the core region since
c is substantially larger thara(r ;)2 The significant result

is thatS(R) is very small in the critical regime and even if
J(R) were comparable th(R) the leading term folV=L
—JScomes fronmL. Theg-dependent overlap integra®q)

can also be calculated and are given by

) . 1 R/2¢
— 34i0-RanpiqRI24—R/E
So(q)=(alry)’e e e :cos¢[[f(q§)]2+ f(qg)]
_[[1-(gél2)®] RIE ]
*S'”"’[ [fa ' T(q®)

—(q¢/2)¥{sinp(R/€—1)—i(RI§)%eN*

critical regime. In this regime the first term in EGA6) is
always negligible. Numerical calculations indicate the sec- ><[Ei(—R/§—i¢)—Ei(—R/§+i¢)]J (A73)
|
Se(q) €9 cosp[ (1-y?)*+2(qa)*(1—y?)(1-3y®) +(qa)*]+sing[2qay+ 1+ (qa)’]}
~ , (A7b)
Se(0) 9+(qa,y)g-(qay)

wherep=qR/2, f(qé)=[1+(q&/2)?], g-(ga,y)=[(1+Yy)?+ (qa)?]? with y=a/&. Si(q) is the same as in E4A7a), but
with & replaced bya and the prefactorg/rs)° replaced byc?. Only the largest term iS.,(q) has been givefthee /¢ term).
Terms inS.,(q)xe~ /¢ that are smaller by the rati/R and (@/R)? have been neglected. It should be stressedShéq) is
much larger thars (q) andS,(q), S,(q)/S,(0)<1 sincef(qé&)>1 and the ratio can be small wheg>1, as is the case for
T=1K and higher. At lower temperaturéd<0.1K]gé<1l andf(q&)—1 asgé—0, however in this regimdR, /¢ is
increasing and the exponential term reduces I83ttg) and S.(0).
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