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Linear-scaling density-functional theory with Gaussian orbitals and periodic boundary
conditions: Efficient evaluation of energy and forces via the fast multipole method

Konstantin N. Kudin and Gustavo E. Scuseria
Department of Chemistry and Center for Nanoscale Science and Technology, Mail Stop 60, Rice University, Houston, Texas 77

~Received 16 December 1999!

We report methodological and computational details of our Kohn-Sham density-functional method with
Gaussian orbitals for systems with periodic boundary conditions. Our approach for the Coulomb problem is
based on the direct space fast multipole method, which achieves not only linear scaling of computational time
with system size but also very high accuracy in all infinite summations. The latter is pivotal for avoiding
numerical instabilities that have previously plagued calculations with large bases, especially those containing
diffuse functions. Our program also makes extensive use of other linear-scaling techniques recently developed
for large clusters. Using these theoretical tools, we have implemented computational programs for energy and
analytic energy gradients~forces! that make it possible to optimize geometries of periodic systems with great
efficiency and accuracy. Vibrational frequencies are then accurately obtained from finite differences of forces.
We demonstrate the capabilities of our methods with benchmark calculations on polyacetylene, polyphenyl-
enevinylene, and a~5,0! carbon nanotube, employing basis sets of double zeta plus polarization quality, in
conjunction with the generalized gradient approximation and kinetic-energy density-dependent functionals.
The largest calculation reported in this paper contains 244 atoms and 1344 contracted Gaussians in the unit
cell.
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I. INTRODUCTION

Methods of density-functional theory~DFT! have become
an important tool in modern molecular quantum chemis
The best DFT functionals typically provide results comp
rable in quality with those of more elaborateab initio meth-
ods at a fraction of the computational cost.1,2 The computa-
tional expense of DFT is substantially less than that
second-order Moller-Plesset perturbation theory~MP2! or
coupled cluster~CC! methods. One of the very attractiv
features of DFT methods is their proven capability of achi
ing O(N) scaling of CPU time with respect to system siz
making it possible to model molecules with thousands
atoms.3 Recent developments in MP2 and CC methodolog
have reduced the scaling of these methods to near-linea
well.4–6 However, their cost prefactors are still significant
larger than that of state-of-the-art implementations of D
methods.

The combination of DFT methods with Gaussian-type
bitals ~GTO! is very popular in calculations of molecula
systems. There are also several periodic DFT programs
scribed in the literature that employ GTO basis sets.7–11,12

Some of these DFT codes are based on previous implem
tations of the periodic Hartree-Fock~HF! method,7,8,11while
others have been written as pure DFT programs9,10 and lack
the hybrid functionals which require exact HF exchange.
though many techniques have been employed in solid-s
calculations,8 plane-wave~PW! basis sets in combinatio
with effective core potentials have traditionally played
most important role in this field. Because the quality of t
PW basis set is uniform everywhere in space, one nee
large number of PWs to properly describe ‘‘sparsel
packed systems, such as polymers, surfaces, or zeo
where the electron density changes significantly from po
PRB 610163-1829/2000/61~24!/16440~14!/$15.00
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to point. This limitation makes Gaussian bases better su
to model these sparsely packed and covalently bonded
tems, especially those containing first-row atoms~B-F!,
where the shortcomings of pseudopotentials are w
documented.13 Due to the larger size of the basis set, larg
scale calculations with PWs are affected byO(N3) compu-
tational bottlenecks considerably earlier than GTO calcu
tions. Consequently, some groups14 have recently begun
advocating GTOs as a way to overcome prohibitive com
tational expenses in very large systems.

It is also worth mentioning that it is not uncommon to fin
studies where periodic systems are approximated by clu
models. Such an approach works fine in many cases w
chemical bonds are well localized, as, for examp
zeolites.15 On the other hand, there are many problems t
do require true periodicity because the interactions in
system are long ranged and the results of cluster calculat
converge fairly slowly. Metals and systems with relative
small band gaps such as conjugated polymers are typ
examples. Among the latter, there are derivatives of po
acetylene that have conjugation lengths of about 1
monomers.16 Evidently, oligomer calculations of such siz
would be very demanding. The technologically important d
rivatives of polyphenylenevinylene~PPV! have much
smaller conjugation length, about 5–10 units. However, th
large unit cells also make cluster calculations quite exp
sive. Another example of slowly converging cluster calcu
tions are systems with long-ranged electrostatic interactio
such as crystals of sugars and carboxilic acids.

Our current research effort is aimed at bridging the g
between DFT calculations of molecular and periodic s
tems. We present here methods to carry out calculation
extended systems using exactly the same tools that are
rently available for molecules. This approach allows me
ingful comparisons between cluster and periodic compu
16 440 ©2000 The American Physical Society
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PRB 61 16 441LINEAR-SCALING DENSITY-FUNCTIONAL THEORY . . .
tions. In recent work, we have shown how to employ the f
multipole method17,18~FMM! in calculations of periodic sys
tems with GTOs.19 The FMM treats equally well system
with periodicity in one, two, or three dimensions. In th
paper, we describe our further progress in this area.
present methods capable of producing energy and ana
energy gradients for periodic systems via the FMM a
proach. We also discuss their computational implementa
on a development version of theGAUSSIAN suite of
programs.20 The FMM features lattice summations pe
formed entirely in direct space, as well as the ability
achieve arbitrary accuracy by controlling a single parame
High accuracy in the Coulomb problem is pivotal in avoidi
numerical instabilities that have previously plagued calcu
tions with large bases, especially those containing diff
functions. Furthermore, the FMM requires CPU time whi
scales only linearly with respect to system size, thus perm
ting simulations of very large systems. The largest calcu
tion reported in this paper contains 224 atoms and 1344 c
tracted Gaussians in the unit cell. In our formulation, analy
energy derivatives are available for both atomic coordina
and cell dimensions. The latter significantly accelerates
geometry optimizations of periodic systems. Several
amples of equilibrium structures are presented in this pa
We also calculate harmonic frequencies and infrared inte
ties by finite differences of forces in a benchmark syst
~PPV!, and report very good agreement with experimen
data. The applications discussed in this paper are limite
one-dimensional~1D! periodic systems; examples of system
with two-dimensional~2D! and three-dimensional~3D! peri-
odicity will be described elsewhere.21

II. THEORY

Our formulation is based on Gaussian orbitals of
form22

f~r !5~x2Rx!
l~y2Ry!m~z2Rz!

ne2a(r 2R)2
, ~2.1!

whereR5(Rx ,Ry ,Rz) is the Gaussian center,l ,m,n are in-
tegers determining the orbital angular momentum, anda is
the Gaussian exponent. Calculations with periodic bound
conditions ~PBC! require basis functions that have prop
translational symmetry. Therefore, GTOs are transform
into ‘‘crystalline orbitals’’ ~also referred to as Bloch sums!
that have the form8

Ck5(
g

F 1

AN
eik•gGcg , ~2.2!

wherek5(kx ,ky ,kz) is the reciprocal-lattice vector, whic
classifies periodic orbitals by their irreducible represen
tions ~irreps! of the infinite translation group,cg is a GTOc
centered in cellg, and i is the imaginary unit. Orbitals be
longing to different irreps do not interact directly with ea
other~although they are coupled through the density mat
see discussion below! and this allows one to solve conven
tional self-consistent-field~SCF! equations separately fo
eachk point,

FkCk5SkCkEk. ~2.3!
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We note that Eq.~2.3! is valid both for HF and DFT meth-
ods. The exponent in the Bloch orbital definition~2.2! intro-
duces complex factors and therefore all matrices in Eq.~2.3!
are, in general, complex. Matrix elements between perio
orbitals defined in Eq.~2.2! can be easily computed from
matrix elements for localized GTOs,

^FkuAuCk&5(
g

^f0uAucg&e
ik•g5(

g
Afc

0g eik•g. ~2.4!

In this equation,Afc
0g is a matrix element of operatorA be-

tween the Gaussian atomic orbitalsf located in the centra
cell 0 andc located in cellg. The Kohn-Sham Hamiltonian
matrix elements~or Fock matrix elements in the HF case!,
Fmn

0g , include several contributions:

Fmn
0g 5Tmn

0g 1Umn
0g 1Jmn

0g 1Vmn
0g , ~2.5!

whereTmn
0g is the electronic kinetic energy term,Umn

0g is the
electron-nuclear attraction term,Jmn

0g is the electron-electron
repulsion term, andVmn

0g is the contribution from the DFT
exchange-correlation potential.Tmn

0g and Umn
0g terms do not

depend on the density matrix, whileJmn
0g and Vmn

0g do. An
important feature of the Kohn-Sham Hamiltonian matrix
ements ,Fmn

0g , is their exponential decay with respect to th
increasing separation between them andn GTOs. Such be-
havior arises from the individual decay of the kinetic ener
term, the exchange-correlation potential term, and the ex
nential decay of the combined electrostatic terms. Over
all terms in Eq.~2.5! are quite similar to analogous terms
molecular calculations. The electrostatic terms (Umn

0g and
Jmn

0g ) include interactions of a given pair of basis functio
with all the other charges~or charge distributions! in the
system. The number of such interactions is infinite, and
is indeed different from the molecular case. The infin
sums can be handled using the Ewald summat
techniques8–10 or by the periodic fast multipole method.19

The real-space density-matrix elementsPls
0g required for

the construction of the Coulomb, exchange, and correla
contributions can be obtained by integrating the comp
densityPls

k in reciprocal space,

Pls
0g 5

1

Vk
E Pls

k eik•gdk, ~2.6!

where Vk is the volume of the unit cell ink space. The
matrix Pk is obtained from the orbital coefficientsCk, which
are solutions to the eigenvalue Eq.~2.3!. The transformation
described by equation~2.6! is the only coupling of different
k points during the SCF procedure. In practice, the integ
tion is replaced by a weighted sum and the reader is refe
to Ref. 8 for detailed discussions on this topic. The ene
per unit cell can be computed as

E5 (
mP0

(
g

(
nPg

Pmn
0g S Tmn

0g 1Umn
0g 1

1

2
Jmn

0g D1Exc1ENR,

~2.7!

whereExc is the exchange-correlation energy andENR is the
nuclear repulsion energy. In the following, triple sums li
the one in Eq.~2.7! will be abbreviated by(mng . In order to
avoid convergence problems and to maximize accuracy,
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16 442 PRB 61KONSTANTIN N. KUDIN AND GUSTAVO E. SCUSERIA
important that electrostatic terms be grouped together
electronic (Ee) and nuclear (En) terms,

Ee5
1

2 (
mng

~Umn
0g 1Jmn

0g ! Pmn
0g ,

~2.8!

En5
1

2 (
mng

Umn
0g Pmn

0g 1ENR.

Once the converged density is available, it is possible
compute gradients of the total energy with respect to nuc
displacements~forces!. Several authors have described in t
literature the required theory23 and implementation for the
HF ~Refs. 24 and 25! and DFT~Ref. 11! methods in the 1D
case, as well as DFT implementations for 2D and
systems.10,12 Quite recently, Hirata and Iwata have extend
the analytic formalism even further and reported HF sec
derivatives26 and MP2 first derivatives27 for 1D systems.

We note here that the formulation of analytic energy fi
derivatives in periodic systems is quite similar to the mole
lar case, for which we refer the reader to details in Refs.
and 29. The final result relevant to our present discussio

dE

dx
5(

mng
Pmn

0g S dTmn
0g

dx
1

dUmn
0g

dx
1

1

2

dJmn
0g

dx D
2(

mng
Wmn

0g
dSmn

0g

dx
1

dExc

dx
1

dENR

dx
, ~2.9!

wherex is the nuclear displacement under consideration,Smn
0g

is an overlap matrix term, andWmn
0g is the real-space energy

weighted density matrix computed by integratingWk. The
latter is evaluated as

Wk5PkFkPk. ~2.10!

The overlap derivativedSmn
0g /dx enters the force equatio

due to the incompleteness of the Gaussian basis set.
term is usually referred to as ‘‘Pulay force.’’28

In periodic systems, unlike molecules, there is anot
derivative of the energy related to the geometry of the s
tem, namely the stress tensor, which describes the chan
the system energy due to elastic strain.30 The stress tensor i
related to the derivative of the cell energy with respect to c
dimensions and Teramaeet al.24 were first to describe the
required equations in the HF framework for the 1D ca
Later, Feibelman12 presented a GTO LSDA-based impl
mentation of stress for 1D and 2D periodic systems. Th
quantities can also be computed in calculations with pla
wave ~PW! basis sets.31 Previous formulations12,31 rely on
calculations in reciprocal space. We, however, prefer
evaluate stress contributions entirely in real space using
FMM, and we present below the required equations.

In order to derive an expression for the stress tensor,
consider a uniform lattice deformation defined by

Ra→(
b

~dab1eab!Rb , ~2.11!
to
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where a and b are Cartesian indices, anddab is the Kro-
necker delta. For a given strain component,eab , the stress
can be calculated as

dE

deab
5(

g
(
I Pg

r Ig
b dE

drIg
a

, ~2.12!

where r a5x, y, or z, and the second sum runs over a
atoms I in cell g. Let us apply such differentiation to th
energy expression~2.7!. It is convenient to classify contribu
tions to the total energy by the number of atomic cent
participating in the interaction. In general, overlap, kinet
and exchange-correlation contributions are effectively tw
center terms, nuclear attraction integrals are three-ce
terms, and the electron repulsion contributions are fo
center terms. Overlap derivatives occurring in Eq.~2.9! are
also two-center terms. Let us examine the two-center con
butions using as a particular example the overlap deriva
term in Eq. ~2.9! ~Pulay force!, denoted with a superscrip
‘‘ S’’ in the following. For the sake of simplicity, we assum
that thea and b axes are both alongx, and the system is
periodic only in one dimension, with translational vectort,
and a singleintegercell indexg. Then,

dES

dexx
5(

mng
Wmn

0g F S dm0

dxm0
UngD xm01S m0U dng

dxng
D xngG

5(
mng

Wmn
0g F S dm0

dxm0
UngD xm01S m0U dng

dxng
D ~xn01gt!G

5(
Ig

FIg
S xIo1t(

Ig
gFIg

S , ~2.13!

where we have used thatxng5xn01gt, I g is some atomic
center I in cell g, and FIg

S is the Pulay force due to the
displacement of this center

FIg
S 5

dES

dxIg
5(

mnh
Wmn

0h d

dxIg
~m0unh!. ~2.14!

We note that the overlap integrals (m0unh) and their deriva-
tives decay very rapidly with increasing distance betwe
basis functions, so there is only a small number of nonz
FIg

S terms. The usual atomic force due to an identical d
placement of the atomI and all its replicasI g can be written
in terms ofFIg

S as

FI
S5

dES

dxI
5(

g
FIg

S . ~2.15!

Consequently, we can simplify Eq.~2.13! into

dES

dexx
5(

I
FI

SxIo1t(
Ig

gFIg
S . ~2.16!

The first part of Eq.~2.16! contains atomic gradients multi
plied by atomic positions. The second part can be interpre
as the change in the system energy due to the change o
lattice vectort, but in each cell the atoms remain fixed wi
respect to each other. We will refer to this second part of
stress as the ‘‘short-ranged solid cell stress.’’
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Four-center~and three-center! terms are more compli
cated than the example discussed above. For illustrative
poses, we describe below the electronic repulsion part of
stress. By itself, this contribution is divergent and must
considered together with the electron-nuclear attrac
terms. For clarity, we neglect this fact for a moment a
examine how the equations look like

dEee

dexx
5

1

2 (
mngslhn

Pmn
0g Psl

n,n1hF S dm0

dxm0
ngUsnln1hD xm0

1S m0

dng

dxng
Usnln1hD ~xn01gt!

1S m0ngU dsn

dxsn
ln1hD ~xs01nt!

1S m0ngUsn

dln1h

dxl,n1h
D ~xl01ht1nt!G

5 (
mngslhn

Pmn
0g Psl

n,n1hF S dm0

dxm0
ngUsnln1hD xm0

1S m0

dng

dxng
Usnln1hD ~xn01gt!G

1
1

2 (
mngslhn

Pmn
0g S m0ngU d$snln1h%

dxn
Dnt Psl

n,n1h .

~2.17!

In Eq. ~2.17!, one finds terms similar to the overlap deriv
tives encountered before in Eq.~2.13!. At the same time,
there is a new term representing the change in the sys
energy due to the expansion of the lattice of charges. Ef
tively, during such deformation,mnnn1h pairs in celln are
kept fixed, while the celln is displaced with respect to th
cell 0 by nt. This extra term is very similar to the Coulom
contribution to the stress tensor in systems with po
charges recently discussed by us,32 and the reader is referre
to this paper for a detailed explanation. Finally, the sh
form of Eq. ~2.17! is

dEee

dexx
5(

I
FI

eexIo1t(
Ig

gFIg
ee

1
1

2
t (
mngslhn

Pmn
0g S m0ngU d$snln1h%

dxn
DnPsl

n,n1h .

~2.18!

Here, we emphasize again that there is only a finite num
of FIg

ee terms contributing to this equation because of the f
decaying nature of them0ng overlap. As mentioned above
the electron-electron and electron-nuclear interactions in
finite systems should be treated together, and in practice
computeFIg

ee together withFIg
en .

The full equation for the stress tensor with all contrib
tions included is
r-
e

e
n

m
c-

t

t

er
t

-
e

dE

dexx
5(

I

dE

dxI
xI1t(

Ig
g

dE

dxIg

1
1

2
tH (

mngslhn
nPmn

0g S m0ngU d$snln1h%

dxn
D Psl

n,n1h

1 (
mngIn

n
d

dxn
S m0UmI

r In
UngD J

1
1

2
tH (

Imnhn
n

d

dxn
S mnUmI

r Io
Unn1hD

1(
IJn

n
d

dxn

mImJ

ur Io2r JnuJ , ~2.19!

where I and J are nuclei withmI and mJ charges, respec
tively. The electrostatic terms are grouped together such
each sum in curly brackets is convergent.

To summarize, the stress tensor can be obtained as
lows. First, we differentiate the energy expression~2.7! with
respect to atomic positionsI g and accumulate forcesFIg
separately for eachI g . These terms allow us to comput
atomic gradients and the short-ranged part of the solid
force. At that point, the only part of the stress tensor wh
has not been computed yet is the four- and three-center te
contributing to the last part of Eq.~2.19!. At large separa-
tions between the interacting 0 andg cells, this becomes a
point multipole problem with point multipoles being nucl
and basis function pairs$m0ngPmn

0g %, and such a problem wa
addressed in Ref. 32.

In general, a three-dimensional periodic solid will ha
three translational vectors, and Eq.~2.19! will have terms for
eachgi . For example, the short-ranged solid cell force w
look like

X1(
Ig

g1

dE

dxIg
1X2(

Ig
g2

dE

dxIg
1X3(

Ig
g3

dE

dxIg
,

~2.20!

whereg5t1g11t2g21t3g3, and the periodic vectors aret i
5(Xi ,Yi ,Zi). Also, now one has to compute all other com
ponents of the stress tensor, such asdE/dexy , dE/deyy ,
dE/dexz , dE/deyz , anddE/dezz.

III. IMPLEMENTATION ISSUES

A. Electrostatic terms

Electrostatic terms were extensively discussed in our p
vious publication,19 and here we just want to highlight som
important features of our method. The use of the FMM
electrostatic interactions allows us to compute the infin
lattice sums exactly for systems of any periodicity. The co
putational cost of the infinite periodic part is very small a
our code achieves practically perfect linear scaling for s
tems containing hundreds of atoms19 ~see also Sec. III H!.
For noncubic cells, one might use the strategy describe
Ref. 33. Calculations of energy derivatives with the FMM
periodic systems are similar to those in molecules, and
previously developed algorithm34,35 can be used here with
minor modifications.
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In order for the FMM to yield high accuracy at a fixe
computational expense, it is necessary to keep the lea
term of the multipole expansions~i.e., the charge term!
small. In the case of electronic-structure calculations, such
objective is fairly easy to achieve if one merges electro
and nuclear contributions together, because, on average
electron-nuclear charge mixture is neutral. Therefore,
have chosen in our implementation to replace all nuclei
charge distributions~shell pairs! which are products of two
very tight Gaussians with very large exponents (1030). For
all practical purposes, such pairs are indistinguishable fr
the nuclear point charges that they replace. Consequently
compute all electron-electron and electron-nuclear term
the near-field~NF! via the regular four-center two-electro
integral evaluation code and use FMM for the far field~FF!.
The FMM accuracy for a givenl max is here improved com-
pared to our earlier implementation, where electron-elect
and electron-nuclear contributions were evaluated separa
Another recent improvement used in our PBC code is a d
nition of ranges for Gaussian charge distributions,36 which
achieves optimal balance between exact and approxim
terms and yields better accuracy for a given computatio
cost.

It is worth noting that, to the best of our knowledge, w
are the first to use FMM in periodic GTO-based electron
structure calculations. Most other programs use either Ew
summation8–10 or direct space cutoffs,11 however the latter
seem to work fairly well only in the case of periodic 1
systems. We are the first to develop a general,robust solu-
tion for the infinite lattice summations for 1D, 2D, and 3
systems based on the FMM. High accuracy in the Coulo
problem is crucial to avoid numerical instability problem
~see the discussion below!.

B. DFT numerical integration

In calculations with PBC, the numerical integration of t
DFT exchange-correlation terms has to be carried out o
the volume of the unit cell including weighte
contributions—in principle—from all atoms in the infinit
system,

Exc5E
rPU

exc~r ! dr

5(
Ig

E
rPU

exc~r !
p Ig~r !

(
Jh

pJh~r !

dr

5(
Ig

E
rPU

exc~r !P Ig~r ! dr , ~3.1!

whereU is the unit cell andP Ig(r ) is the normalized weigh
of an atomic centerI located in cellg. The sum of these
weights over all atoms in the system is 1 at any pointr . Each
of these weights contain pairwise contributions from
other atoms. The translational symmetry of the system
lows one to transform the integral over the unit cell into
integral over all space,
ng

n
c
the
e
y

m
we
in

n
ly.
fi-

te
al

-
ld

b

er

l
l-

Exc5(
Ig

E
rPU

exc~r ! P Ig~r ! dr

5(
I
E

all r
exc~r ! P Io~r ! dr , ~3.2!

where we emphasize that in the last term the integratio
performed over allr but the sum is restricted to atoms in th
central cell. Such integration is very similar to the integrati
over an atom in the center of a big but finite cluster of atom
The Stratmann-Scuseria~SS! weights,37 although originally
proposed for systems without periodicity, were designed
deal exactly with this type of situation. Therefore, we ha
used them in our PBC program with minor modifications.
course, it is also possible to use other weight schemes
PBC code, and some alternatives are discussed in Ref.

C. Real-space–reciprocal-space transformations

In our DFT PBC implementation, we do as much work
possible in real space. Consequently, all matrices are st
in real-space form, e.g.,Amn

0g , and transformed intok space
only when needed. In the iterative part of the code, we fi
construct the entire real-space Fock matrixFmn

0g , transform it
into severalk-space matrices, diagonalize them, obtain
bital coefficients and energies, and then construct
reciprocal-space density matrices. The latter are integra
by numerical quadrature of Eq.~2.6!, to yield the real-space
density matrix which is used in the following SCF cycle. A
SCF convergence, we computek-space-dependent energ
weighted density matricesWk using Eq. ~2.10!, and then
transform them intoWmn

0g form. As a result, the gradient pa
of the code also deals with real-space quantities only. Ov
all, k-space-integration adds just a few extra steps to
PBC calculation when compared to the molecular case.
the transformations between real and reciprocal spaces
computationally inexpensive and simple to implement.

An extremely important feature of our direct-spa
Gaussian PBC code is that once the real-space matrice
available, the major cost of any additionalk-point calcula-
tion is just the transformation into an orthonormal basis
plus the diagonalization. This is drastically different from t
PW implementations where one computes the Fock ma
for eachk point separately. Even though the cost of su
matrix formation may be considerably lower for PWs th
for our real-space Fock matrix, the relative low cost of ad
tional k-point calculations when using Gaussians perm
denserk-point meshes in reciprocal space even for syste
of medium size. Furthermore, the derivatives of the ba
energies with respect to thek vector are also rather straigh
forward to compute.38 Such information may be very usefu
in the Brillouin-zone integration for systems with comp
cated band structures.39

D. Convergence in reciprocal space

The number ofk points required to achieve convergen
of the real-space density matrices, and, consequently, o
ergy and forces, depends on the size of the unit cell and
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band gap of the system. The general relation here is the
and forces, depends on the size of the unit cell and the b
gap of the system. The general relation here is the followi
a doubled unit-cell size in real space halves the correspo
ing lattice dimension in reciprocal space and therefore
quires half as manyk points in this dimension. Also, the
smaller the band gap of the system, the larger the numbe
k points that is required to achieve the same accuracy. In
limit of zero band gap, the system becomes metallic and
orbital occupations becomek-point dependent. Such discon
tinuity requires more sophisticated and robust methods
reciprocal space integration than just the simple rectang
quadrature used in this work.40–44

An example of reciprocal-space integration converge
for a system with a fairly small gap is shown in Table
These are LSDA/3-21G calculations for PPV, which at t
level of theory has a band gap of 1.35 eV. For calculatio
with only onek point, one can observe that results for theG
point are much worse than for thep/2 point in reciprocal
space. A similar situation occurs in calculations with twok
points, where the case without theG point gives much bette
energy than the case with theG point. For the polyacetylene
discussed below in Sec. IV A, the band gap is usually l
than 1 eV, and those calculations required about 400k points
to converge the energy to 1029 Hartree accuracy.

TABLE I. Converged SCF energy~in Hartrees! as a function of
the number ofk points for PPV at the LSDA/3-21G level of theory

No. k Total energy Comment

1 2305.046267410 G

1 2305.016437317 p/2
2 2305.003488239 G1p
2 2305.011151754 p/413p/4
4 2305.010605979
8 2305.010590467

16 2305.010590432
32 2305.010590432
gy
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E. SCF convergence

As is the case in usual molecular calculations, SCF c
vergence problems may arise in calculations with PBC.
order to reduce the number of SCF cycles, we have used
direct inversion of the iterative subspace method~DIIS! de-
veloped by Pulay.45,46 DIIS requires formation of error ma
trices R5(FPS2SPF) for each SCF cycle. The matrixR
approaches zero as the calculation proceeds toward con
gence. During the DIIS procedure, one evaluates inner p
ucts of the error matrices from different SCF cycles,Bi j

5Ri•Rj , and uses theseBi j products to determine the DIIS
mixing coefficients.46

A simple way to incorporate the DIIS procedure into
PBC code is to employF, P, and S matrices just for one
point in reciprocal space, for example theG (k50) point.
For this point, theF, P, andS matrices are real, and all th
DIIS steps are then the same as in the case of molec
calculations. The DIIS mixing coefficients are used to fo
the extrapolated real-space Fock matrixF̃mn

0g . In summary,
our strategy is to evaluate the DIIS mixing coefficients fro
matrices atk50, and use these coefficients to build Fo
matrices in allk points through the extrapolation of the rea
spaceF̃mn

0g matrix.
In Table II, we present the SCF energy convergence p

terns for LSDA/3-21G calculations of PPV with varyin
number ofk points used in the reciprocal-space integratio
The DIIS procedure was always carried out forG matrices
only. All these calculations were performed at the same
ometry ~starting from the same converged LSDA/STO-3
density for theG point!. The SCF procedure was consider
converged when the rms change in density-matrix eleme
between successive cycles became smaller than 1028. One
can see that all calculations presented in Table II converg
a similar manner and require roughly the same numbe
SCF cycles. These results demonstrate that the efficienc
theG point DIIS does not depend on the number ofk points
employed in the reciprocal-space integration.

We have also explored the use of error matrices for po
other than theG point. In such a case, the matrices are co
e
ity
TABLE II. SCF energy convergence for the different number ofk points used in reciprocal spac
integration for PPV at the LSDA/3-21G level. TheG point DIIS extrapolation is used in all cases. The dens
is converged to a rms deviation of 1028.

Cycle G point 4 k points 16k points

2 20.224691937902 20.189839234123 20.189825525804
3 20.001679363067 20.001589740097 20.001590495497
4 20.010874794608 20.010126205214 20.010123523908
5 20.000051023879 20.000056762104 20.000056803464
6 20.000006455924 20.000030254529 20.000030301006
7 20.000000136088 20.000000075913 20.000000075704
8 20.000000019909 20.000000027911 20.000000027601
9 20.000000000382 20.000000000328 20.000000000333

10 20.000000000086 20.000000000172 20.000000000170
11 20.000000000003 20.000000000001 0.000000000000
12 20.000000000003 20.000000000003

Et 2305.046267410044 2305.010605978591 2305.010590431688
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plex, and yield complex mixing coefficients, which are us
to form linear combinations of complex matricesFk from
previous SCF cycles. It turns out that while the density is
away from a stationary point, the imaginary part of the m
ing coefficients remains small and the convergence rate is
same as in the previous case withG matrices. However, once
the stationary point is close, the imaginary parts of the co
ficients usually become relatively large and cause osc
tions in energy and density. As a consequence, it was
possible to reliably achieve the required accuracy in a sm
number of SCF cycles with such an approach. After rem
ing the imaginary parts of the DIIS mixing coefficients, th
DIIS procedure worked as in the case of theG-point matrices
described above. So, in our experience DIIS gives us
results only when the mixing coefficients are real. We ha
also tried to employ error matrices for severalk points at
once with the inner products formed asBi j 5Bi j

k11•••

1Bi j
kn . In this particular situation, the acceleration of t

SCF convergence was slightly worse than with matrices
onek point only, and the SCF usually took one extra cyc
In summary, we did not find the additional computation
effort of dealing with severalk matrices useful for DIIS, and
settled on theG point scheme described above.

F. Numerical instability problems

In periodic calculations, large basis sets with diffuse fun
tions may cause instabilities in the SCF procedure due to
limited accuracy of the Fock matrix construction, and mu
more rarely due to the limited accuracy of the diagonali
tion routines.47 Such problems can also be encountered
molecular cases if the contributions to the Fock matrix e
ments are approximated without proper precautions.48 The
usual prescription for restoring the stability of the SCF p
cedure for both types of problems is to project out the or
als with small overlap eigenvalues from the basis set, wh
can be done during the orthonormalization. In order to tra
form GTOs to an orthonormal basis, one may employ sy
metric orthogonalization and use theS21/2 matrix.49 The lat-
ter is computed by diagonalizingS to obtain a matrixV such
that V†SV5s, wheres is a diagonal matrix containing th
eigenvalues ofS. The S21/2 matrix is then obtained a
S21/25Vs21/2V†.

Another way to orthonormalize the basis set is called
nonical orthogonalization and uses the matrixU5Vs21/2.
Columns of U contain thei th eigenvector of the overlap
matrix divided by the square root of its eigenvaluesi . In the
case of instabilities, one can throw away columns ofU cor-
responding to very small eigenvaluessi .50 As a conse-
quence, during the transformationU†FU of the Fock matrix
F into an orthonormal basis, the offending orbitals are p
jected out, and the stability is restored. In general, it is
sirable to check theU†SU matrix and make sure that it i
sufficiently close to unity because in certain cases where
S matrix has rather small eigenvalues, the diagonalization
S may produce inaccurate results due to numer
problems.48 If such problems appear, one may resort to
more robust Gram-Schmidt orthogonalization technique.48

We would like to point out that the SCF instabilities du
to any of the two above mentioned causes are usually
ferred to in the literature as ‘‘linear dependency’’ problem
r
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While the problems related to errors in the accuracy of
Hamiltonian matrix may happen for the smallest overlap m
trix eigenvalues as large as 1022–1023, true linear depen-
dences do not occur until the smallest overlap matrix eig
value becomes of order 1026–1027 ~see discussion in Ref
47!. Needless to say, practically all references in the lite
ture to ‘‘linear dependences’’ in calculations with PBC re
resent the first kind of instabilities, which arise from nume
cal inaccuracies on the Hamiltonian matrix formation rath
than true linear dependences in the basis set.

In our code, kinetic and electrostatic contributions to t
Fock matrix are evaluated exactly~the latter via FMM!,
while the DFT exchange-correlation quadrature is also c
ried out with high accuracy. Therefore, we might expect t
the SCF instabilities would occur only for very small overla
matrix eigenvalues, somewhere in the 1026–1027 range. In-
deed, this is the behavior observed in all of our calculatio
For example, in the case oftrans-polyacetylene, we have
successfully carried out calculations using a 6-311G~d,p! ba-
sis set~smallest overlap eigenvalues of; 1024) without any
problems. Using the 6-3111G~d,p! basis set~smallest over-
lap eigenvalue of; 1027), we had to eliminate one orbita
at somek points to make the SCF calculation stable. Th
shows that PBC calculations are not inherently more pron
have linear dependences than molecular calculations.
key issue seems to be the Hamiltonian matrix evaluati
which needs to be done to very high accuracy, especiall
the infinite Coulomb sums. We achieve this goal by mean
the FMM without resorting to any truncation.

G. Atomic gradients and stress tensor

As mentioned above, our analytic energy gradient co
uses only the real-space density matrix and the real-sp
energy-weighted density matrix. This makes the evaluat
of forces in the PBC case somewhat similar to analog
computations for molecular systems, with few additions. W
want to remind the reader that the stress tensor~2.19! re-
quires derivatives of the unit-cell energy with respect to
oms in the neighboring cells,dE/dxIg . Therefore, we simply
increase the size of the force array in the computer prog
and accumulate contributions for eachxIg separately. During
the differentiation of the pairm0(I )ng(J), we add the com-
puted values to the elementsdE/dxIo anddE/dxJg , respec-
tively. Then, the total forcedE/dxI is obtained by adding up
all dE/dxIg terms. The short-ranged part of the solid c
stress is computed from thesedE/dxIg parts, and the long-
ranged ~electrostatic! part is treated by the FMM, as de
scribed in our paper for point charges.32 We note that the
extra work required to compute the long-ranged part of
solid cell force is relatively small because these compu
tions can be efficiently incorporated into the atomic for
code. Having a complete set of energy derivatives with
spect to geometrical parameters, it is possible to carry
efficiently full geometry optimizations. In order to perform
them, we have extended the redundant internal coordin
method of Pulay51 to periodic systems. The periodic vecto
are included in the procedure indirectly through internal c
ordinates that cross cell boundaries. This allows us to use
BERNY optimization algorithm for redundant coordinate
implemented in theGAUSSIAN suite of programs with mini-
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mal modifications. The number of steps required to optim
a given structure turns out to be very similar to the molecu
case using redundant internal coordinates. A more deta
description of the extension of molecular optimization me
ods to PBC will be given elsewhere.52

H. Computational scaling and diagonalization alternatives

In energy calculations, each SCF cycle requires two ma
steps, the Fock matrix construction and the density-ma
update. Recent research has shown that one can explo
locality of the interactions in a physical system and build
Fock matrix inO(N) CPU time operations.3,53 We fully in-
corporate these recent developments in our PBC code. T
are three major contributions to the Fock matrix formatio
the kinetic energy term, the electrostatic term, and
exchange-correlation contribution. In large systems, the
netic energy matrix is sparse, computed only once, and th
fore easy to deal with. The electrostatic part of our code u
the periodic FMM, so its scaling is very close to linear, as
have shown before.19 Our periodic exchange-correlatio
quadrature is a straightforward extension of the one use
molecular calculations whose linear scaling has also b
demonstrated.37,3 Furthermore, the analytic gradient code r
sembles the Fock matrix formation, and, therefore, the fo
calculation has alsoO(N) computational cost.

In the applications carried out in this paper, the dens
matrix update is done in the conventional way, by diagon
izing the Kohn-Sham Hamiltonian matrix and constructi
the density matrix from its eigenvectors. Although this pr
cedure scales asO(N3), it has such a small scaling prefact
that the diagonalization cost for systems with up to a f
thousand Gaussian basis functions is rather small comp
to other steps in the PBC code. The DIIS procedure cont
matrix multiplications with regularO(N2) matrices, and this
step also scales asO(N3). Millam and Scuseria54 were first
to demonstrate that in DFT calculations with Gaussians
can replace the diagonalization step by anO(N) alternative
such as conjugate gradient density-matrix search~CGDMS!.
This method works very well for systems with large ba
gaps as demonstrated before.3,53,54 For very large systems
the DIIS procedure uses sparse matrices and therefor
cost also becomes close to linear. ForG-point calculations,
we can use in our PBC code all the sparse matrix multi
cation routines developed previously.54 We have not imple-
mented yet, however, these methods for the complex m
ces required for otherk points.

In order to demonstrate the actual scaling properties
our DFT PBC program, we have carried out a series of c
culations for PPV with a different number of monomers
the unit cell. The results are presented in Table III. The c
culations were carried out at the LSDA/3-21G level of theo
and the number ofk points was chosen according to th
guidelines outlined in Sec. III D. The SCF took 10 cycles
converge the density to a rms deviation of 1028. The total
energies for these calculations are given in Table IV. T
case with 16 monomers in the unit cell needs only onek
point for chemical accuracy, and we tested bothG andp/2
points. Again, we see that the energy forp/2 is closer to the
converged value than for theG point ~last two entries in
Table IV!. Overall, we would like to draw the reader’s atte
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tion to the remarkable agreement of energies per unit
from different calculations: they differ only in the 10th dec
mal.

Let us discuss in more detail the timings shown in Ta
III. In the SCF part of the calculations, the CPU time r
quired for the evaluation of electrostatic and exchan
correlation terms scales linearly for all practical purpos
On the other hand, the complex diagonalizations and
DIIS procedure scale asO(N3). The relative cost of all these
O(N3) steps is such that for the largest system in Table
~224 atoms, 1344 basis functions! their total CPU time is
roughly similar to the CPU time required for the Fock matr
formation. Comparing systems with different dimensional
and band gaps, one can argue that the Fock matrix forma
step in 1D systems is fastest, making the CPU time c
sumed by theO(N3) steps look relatively large. In metallic
systems, which require a large number ofk points regardless
of dimensionality,8 the CPU time consumption by diagona
ization will be substantial.

TABLE III. IBM Power3 CPU times~sec! for PPV LSDA/3-
21G.

(C8H6)x , x 1 2 4 8 16

No. atoms 14 28 56 112 224
No. basis 84 168 336 672 1344
No. k points 16 8 4 2 1
No. FMM levels 3 4 5 6 7

Timings
FormS21 a 0.6 2.0 7 28 115
FMM, FF 1.3 2.5 5 10 20
FMM, NF 6.3 12.1 25 48 98
XC quad 13.0 26.4 54 109 223
DIIS 0.03 0.13 0.9 7.9 73
G diag 0.04 0.21 1.3 9.9 78
Diag a 0.91 3.2 12.3 52 198
Total SCF 197 416 935 2342 7285

Forces
FMM, FF 2.7 5.4 11 21 43
FMM, NF 28.4 57.4 115 232 446
XC quad 24.1 49.4 106 243 621
Total force 55 113 233 500 1123

aTimings reported include allk points.

TABLE IV. Total energies~Hartree! for the PPV LSDA/3-21G
calculations shown in Table III.

Unit cell Total Energy Energy per unit

(C8H6)1 2305.01059043175 2305.01059043175
(C8H6)2 2610.02118086376 2305.01059043188
(C8H6)4 21220.04236172718 2305.01059043180
(C8H6)8 22440.08472345487 2305.01059043186
(C8H6)16 $p/2% 24880.16944691366 2305.01059043210
(C8H6)16 $G% 24880.16944635247 2305.01059039703
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In order to achieve a small absolute cost for all mat
operations, we have employed optimized linear algebra r
tines such asDGEMM, ZGEMM, DSPEV, and ZHPEV from the
BLAS andLAPACK libraries. On the IBM RS 6000 family o
computers, these routines are included into their mach
optimized ESSL library. We note that similar preoptimiz
packages are also available for other computer architectu
Such libraries insure that the CPU intensive operations
carried out with the greatest possible efficiency.

IV. BENCHMARK CALCULATIONS

In order to demonstrate the capabilities of our Gauss
DFT PBC code, we present in this section benchmark stu
of 1D periodic systems with substantial delocalization of
bonds. Results for 2D and 3D periodic systems will be p
lished elsewhere.21 Here, we focus more on the chemical
relevant data as opposed to previous sections where our
mary concerns were methodological and computational
tails. Our first benchmark case is polyacetylene~PA!, a sys-
tem where pure DFT methods fail remarkably
quantitatively reproduce the experimental C-C bond-len
alternation.16 The second benchmark system is PPV. Th
and last, we have considered a much more demanding
tem, a~5,0! carbon nanotube. In the following subsection
we discuss our results in more detail.

Prior to that, we would like to describe some releva
computational details. From the wide variety of curren
available DFT functionals, we have chosen for benchm
purposes the local-spin-density approximation~LSDA!,55 the
generalized gradient approximation functional, PBE,56 and
VSXC,57 the kinetic-energy-dependent functional recen
developed in our research group. We have combined th
functionals with what is considered in calculations of e
tended systems a medium-quality 3-21G basis set and a
relatively high-quality 6-31G~d! basis set. The geometries o
all periodic systems have been optimized in redundant in
nal coordinates, as briefly described above.52 Optimizations
were stopped when the rms force became smaller than 125

a.u. This criterion corresponds to theGAUSSIAN keyword
opt5t ight. The PPV vibrational frequencies were com
puted by numerical differentiation of analytic forces. The
intensities are nonzero only for vibrations that change
dipole moment of the cell in the directionsperpendicularto
the periodicity axis. The dipole derivatives with respect
the atomic positions, required for IR intensities, were a
computed numerically.

A. Polyacetylene„PA…

trans-PA @Fig. 1~a!# is a prototypical system, probabl
one of the most studied polymers because of its small
and the extreme sensitivity of the predicted bond-length
ternation~BLA ! between single and double bonds with r
spect to the theoretical method used. The latter has motiv
many researchers to apply various available methods to
quite difficult problem.11,16,24,26,58–69

Experimentally, Yannoni and Clarke have determined t
the two CC bonds intrans-PA are 1.36 and 1.44 Å,70 while
Kahlert et al.71 reported values of 1.36 Å and 1.45 Å. De
spite the good agreement between these studies, these r
cannot be relied on with total certainty because of the l
u-
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quality of the PA samples pointed out in Ref. 72. The lite
ture on PA is vast, and we do not attempt to review it he
we nevertheless briefly mention a few recent representa
studies. Using a double-zeta~DZ! basis set, Suhai64 reported
BLAs of 0.107, 0.083, and 0.084 Å at the HF, MP2, a
MP4 levels of theory, respectively. His DFT BLAs are 0.01
and 0.012 Å with the LSDA and BLYP functionals, respe
tively. Fogarasiet al.63 obtained C-C bond lengths of 1.32
and 1.462 Å, at the HF/6-31G~d! level of theory. Hirata
et al.65 computed 1.373 and 1.423 Å at the MP2/6-31G~d!
level. At the B3LYP/6-31G~d! level of theory, Hirataet al.67

reported 1.369 and 1.426 Å.
From these results, it is evident that DFT methods such

LSDA and GGAs fail to predict the BLA oftrans-PA, yield-
ing results in the 0.01–0.03 Å range,16 which are too small
compared to those calculated with the MP2 and B3L
methods,65,11 and compared to experiment. Our results, p
sented in Table V, follow the same trend. The VSXC fun
tional, which typically mimics B3LYP quality results,73–75

increases the BLA compared to PBE, but not significantl
The band gap oftrans-PA is in the 0.07–0.20 eV range

which is small. Other authors have pointed out the conn
tion between BLA and the band gap.61 DFT methods under-
estimate the band gap at the experimental geometry. S
larly, small BLAs are associated with very small band ga
In order to obtain well-converged energies and geomet
for PA, we have employed 400k points in the reciprocal
space integration. If the number ofk points is reduced sus
btantially, the predicted alternation is significantly larger. F
example, in a calculation with 21k points, the LSDA/6-
31G~d! BLA is 0.020 Å; employing just 11k points leads to
a BLA value of 0.033 Å. These BLAs are much larger th
the converged value of 0.008 Å at the same level of theo
These results seem to rationalize the very large LDA BLA
0.061 Å reported by Springborg,69 which was obtained in a
calculation with 11k points. Clearly, the latter result69 is far

FIG. 1. Isomers of polyacetylene~PA!. ~a! trans-PA, ~b! cis-PA,
~c! meta-PA.
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TABLE V. Structural parameters for polyacetylene~Å and degrees!.

LSDA LSDA PBE PBE VSXC VSXC
3-21G 6-31G~d! 3-21G 6-31G~d! 3-21G 6-31G~d!

trans-(C2H2)x

Gap ~eV! 0.11 0.07 0.15 0.11 0.20 0.16
Tl 2.455 2.455 2.481 2.481 2.464 2.47
RC5C 1.383 1.384 1.395 1.395 1.387 1.39
RC2C 1.394 1.392 1.411 1.408 1.408 1.40
RC2H 1.101 1.102 1.099 1.100 1.093 1.09
ACCC 124.3 124.4 124.2 124.5 123.7 124.0

cis-(C2H2)x

Gap ~eV! 0.76 0.72 0.75 0.71 0.90 0.85
Tl 2.199 2.205 2.233 2.242 2.205 2.21
RC5C 1.373 1.375 1.386 1.387 1.379 1.38
RC2C 1.413 1.412 1.430 1.427 1.429 1.42
RC2H 1.098 1.098 1.096 1.097 1.087 1.09
ACCC 125.8 126.0 126.3 126.8 125.3 125.8
ob
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from converged. According to our estimates, in order to
tain a converged BLA value one ought to use about 200–
k points, which is also in accord with the conclusions of R
67.

We have also optimized the geometry of two isomers
trans-PA, denotedcis-PA and meta-PA@Figs. 1~b! and 1~c!#.
The predicted BLA forcis-PA is around 0.04–0.05 Å, which
is significantly larger than that oftrans-PA. Hirata et al.67

B3LYP/3-21G C-C bond lengths forcis-PA are 1.366 and
1.438 Å, and B3LYP/6-31G~d! values are 1.369 and 1.435
~0.066 Å BLA!. So, in the case ofcis-PA the BLA also
seems to be underestimated by the pure DFT methods.
would also like to point out the agreement between
LSDA geometries both fortrans-PA andcis-PA with those
reported in Ref. 67. The bond lengths predicted with 3-2
and 6-31G~d! basis sets agree with each other within 0.001
and the angles within 0.1°, even though the authors of R
67 employ an auxiliary basis to expand the electron dens
which we do not use.

The other isomer,meta-PA, has nonequivalent single an
double bonds~not listed in Table V!, with BLA values
within the 0.035–0.04 Å range, depending on the particu
basis set and functional. These BLAs are much closer to
value incis-PA than intrans-PA.

The relative energies between thecis- and trans-PA iso-
mers are presented in Table VI. Again, our LSDA values
practically the same as those in Ref. 67, and agree quite
with their B3LYP/3-21G and B3LYP/6-31G~d! energy dif-
ferences of 2.0 and 2.3 kcal/mol, respectively.67 At the HF/
-
0
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f

e
r

f.
y,

r
e

e
ell

4-31G level, Teramae60 reported an energy difference of 2.
kcal/mol. So, despite the differences in calculated BLAs
the equilibirum geometries, all methods predict thecis-PA/
trans-PA energy difference in a close range.

B. Poly„paraphenylenevinylene… „PPV…

PPV ~Fig. 2! has been studied quite extensively in ma
theoretical papers because of its importance for applicat
on light-emitting diodes~LED!.76 To the best of our knowl-
edge, geometry optimizations of the PPV polymer have p
viously been carried out only at the semiempirical AM1 lev
of theory;77 other authors have also computed the LDA ba
structure without geometry optimization.78 In this work, we
have used our DFT PBC code with analytic energy gradie
to find the equilibrium geometry of PPV using three DF
functionals and two basis sets. The results can be foun
Table VII, where for comparison purposes we also pres
AM1 values from Ref. 77. The structural data agree reas
ably well with each other. Compared to AM1, the DFT r
sults indicate much larger conjugation of the vinyl unit wi
the benzene ring. For example, AM1 predicts a 0.013–0.
Å bond alternation within the ring, while DFT yields 0.027
0.031 Å. In order to produce results comparable to exp
mentally available data for PPV, we have computedk50
frequencies and their intensities by numerical differentiat
of forces and dipole moments~Table VIII!. The theoretical
results compare very well with the experimental results79
TABLE VI. Relative energies per monomer~kcal/mol! of polyacetylene isomers.

LSDA LSDA PBE PBE VSXC VSXC
3-21G 6-31G~d! 3-21G 6-31G~d! 3-21G 6-31G~d!

trans-(C2H2)x 0.00 0.00 0.00 0.00 0.00 0.00
cis-(C2H2)x 1.87 2.24 2.21 2.50 0.72 1.34
meta-(C2H2)x 0.88 1.06 1.04 1.18 0.21 0.51
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Such agreement indicates that the chosen functionals see
perform quite adequately for PPV.

C. „5,0… single wall carbon nanotube„SWNT…

The unit cell of the~5,0! SWNT contains 20 carbon at
oms. We have worked, however, with a doubled 40 at
unit cell whose periodic dimension is larger than the perp
dicular ones. We note that the~5,0! SWNT is substantially
‘‘denser’’ than, for example, PPV, and therefore the Fo
matrix formation CPU times were substantially larger th
for the former. For reciprocal space integration, 32 poi
were sufficient to obtain the desired 1028 Hartree accuracy
in energy of the final~distorted! structures.

Our first attempt was to optimize the tube geometry p
serving the C5 rotational axis. Our starting structure for g
ometry optimizations contained double bonds along the

FIG. 2. Poly~paraphenylenevinylene! ~PPV!.
to

-

k

s

-

e-

riodicity axis and single bonds perpendicular to it. Howev
in the course of geometry optimization, the alternation b
tween these parallel and perpendicular bonds to the tube
was reduced considerably at all levels of theory, yielding
small band gap, and ultimately, metallic tubes. These res
are similar to those obtained by Blaseet al.,80 where~6,0!-
~9,0! SWNTs were studied at the LDA level of theory. Th
authors predicted the~6,0! SWNT with cylindrical symmetry
(Cn axis! to be a metallic structure. Bigger tubes such
~7,0!-~9,0! were found to be insulators due to the larger se
ration of the bands located near the Fermi level and the
sulting avoided crossings. Since the~5,0! tube studied here
has an even smaller surface curvature than the~6,0! tube, it is
not surprising that it also has a zero band gap if the5
symmetry axis is preserved.

On the other hand, a full unconstrained geometry optim
zation of the~5,0! SWNT led to structures with a C2 screw
axis and a mirror plane perpendicular to the periodicity ax
at all levels of theory. Such symmetry, together with o
translation, yields only five unique atoms in the 40-atom u
cell used in our calculations. The geometries of the low
energy structures together with their band gap are reporte
Table IX. We also found other minima with geometrie
slightly different from those shown in Table IX, but the e
ergy differences with the lowest structures were of the or
of 831025 eV per atom.

FIG. 3. ~5,0! carbon nanotube:~a! side view,~b! front view of
structures obtained in LSDA and PBE calculations, and~c! front
view of structures obtained in VSXC calculations.
44
51
03
90
06
TABLE VII. Geometrical parameters~in Å and degrees! of PPV.

LSDA LSDA PBE PBE VSXC VSXC AM1
3-21G 6-31G~d! 3-21G 6-31G~d! 3-21G 6-31G~d!

R1 1.351 1.353 1.364 1.365 1.358 1.361 1.3
R2 1.441 1.438 1.460 1.456 1.456 1.455 1.4
R3 1.409 1.406 1.423 1.420 1.417 1.417 1.4
R4 1.379 1.378 1.392 1.391 1.388 1.389 1.3
R5 1.407 1.405 1.421 1.418 1.416 1.416 1.4
RH1 1.100 1.101 1.097 1.098 1.092 1.095
RH2 1.096 1.098 1.095 1.096 1.087 1.091
RH3 1.095 1.097 1.093 1.095 1.085 1.089
A1 126.3 126.6 126.6 127.1 125.9 126.6
A2 119.1 119.1 118.9 119.0 118.3 118.1
A3 121.5 121.8 121.7 122.0 121.5 121.9
A4 120.9 120.9 121.0 121.1 120.4 120.4
A5 117.6 117.3 117.3 116.9 118.1 117.7
Gap ~eV! 1.35 1.26 1.38 1.30 1.48 1.38
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From the data in Table IX, we note that the LSDA a
PBE bond lengths for the optimized~5,0! tube geometry are
similar, and the deviations from the cylindrical form are n
large @Fig. 3~b!#. On the other hand, the VSXC function
leads to a significantly more distorted geometry@Fig. 3~c!#,
where one benzene ring out of five is fairly close to be
planar, while the others are bent~see the ring angles in Tabl

TABLE VIII. PPV harmonic frequencies (cm21) and their IR
intensities~km/mol! calculated with DFT methods and a 6-31G~d!
basis set.

LSDA PBE VSXC Expt.
Sym Freq. Int. Freq. Int. Freq. Int. Freq.

Bg 124 0 115 0 104 0
Au 225 0.2 222 0.1 225 0.2
Bg 327 0 317 0 318 0
Ag 321 0 319 0 323 0
Au 397 0 393 0 388 0.05
Bu 421 0.01 419 0.04 412 0.01 429
Au 555 12 550 11 549 9 558(s) a

Ag 629 0 627 0 617 0
Ag 657 0 655 0 651 0
Bg 696 0 689 0 681 0
Bu 799 0.1 786 0.06 799 0 785
Bg 802 0 798 0 808 0
Au 824 30 816 31 820 33 837(s)
Bg 867 0 851 0 852 0
Ag 905 0 887 0 898 0
Au 910 0.4 910 0.2 920 2
Bg 935 0 927 0 936 0
Au 957 35 961 31 971 32 966(s)
Bu 1005 0 1000 0 1016 0.1 1013
Bu 1108 7 1114 4 1104 5 1108
Ag 1168 0 1169 0 1171 0
Ag 1224 0 1209 0 1215 0
Bu 1215 3 1226 2 1233 1 1211
Bu 1313 2 1295 2 1309 1 1271
Ag 1291 0 1297 0 1308 0
Ag 1313 0 1327 0 1338 0
Bu 1413 2 1386 0.1 1398 0.2 1339
Bu 1474 3 1442 4 1458 4 1424(s)
Bu 1548 0.01 1524 0.01 1548 0.1 1518(s)
Ag 1572 0 1533 0 1558 0
Ag 1609 0 1573 0 1597 0
Ag 1681 0 1644 0 1666 0
Ag 3068 0 3080 0 3118 0
Bu 3076 14 3088 15 3127 15
Bu 3106 2 3107 7 3142 14
Ag 3108 0 3108 0 3145 0
Bu 3125 16 3131 28 3182 22
Ag 3127 0 3133 0 3184 0

a‘‘( s)’’ denotes strong banks.
t

IX !. With respect to the electronic structure, LSDA and PB
with both basis sets and VSXC with the 3-21G basis pred
the tube to be an insulator, whereas VSXC/6-31G~d! pro-
duces a metallic solution even at the distorted geometry.

Our findings suggest that the metallic solution for t
~5,0! tube with C5 symmetry is unstable. The same shou
probably be true for the~6,0! tube with the C6 axis which
was found to be metallic80 as well. The energy difference
between the C5 and C2 structures for the~5,0! tube are rather
small, about 0.003 eV per carbon atom. Nevertheless,
change in geometry and electronic structure is substantia

V. CONCLUSIONS

In this paper, we have described an efficient implemen
tion of a periodic DFT method for electronic-structure calc
lations with Gaussian basis sets. Energy derivatives with
spect to geometrical parameters~atomic forces and stres
tensor! are computed analytically to high accuracy usi
techniques based on the FMM. This allows for the accur
evaluation of harmonic frequencies using finite differenc
of analytic forces. The high accuracy achieved by FMM
the lattice summations seems to be crucial for avoiding
merical instabilities in calculations with large Gaussi
bases. Our implementation extensively uses theO(N) DFT
methodology developed recently for molecular calculatio
and forms the Hamiltonian matrix inO(N) CPU time.
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TABLE IX. Predicted geometrical parameters~Å and degrees!
for the ~5,0! carbon nanotube~see Fig. 3!.

LSDA LSDA PBE PBE VSXC VSXC
3-21G 6-31G~d! 3-21G 6-31G~d! 3-21G 6-31G~d!

R1 1.426 1.430 1.444 1.444 1.427 1.426
R2 1.458 1.448 1.474 1.465 1.503 1.489
R3 1.432 1.429 1.444 1.444 1.425 1.435
R4 1.459 1.454 1.477 1.470 1.489 1.470
R5 1.461 1.454 1.477 1.471 1.487 1.479
r 1 1.424 1.422 1.439 1.436 1.443 1.444
r 2 1.387 1.394 1.400 1.406 1.379 1.390
r 3 1.396 1.398 1.411 1.411 1.405 1.407
r 4 1.401 1.398 1.411 1.411 1.403 1.415
r 5 1.389 1.394 1.400 1.406 1.379 1.390
D1 153.3 151.4 153.4 151.4 165.8 161.3
D2 139.8 141.5 140.1 141.5 131.3 134.5
D3 142.4 142.9 143.2 142.9 146.4 142.7
D4 144.4 142.8 143.3 142.9 145.3 148.0
D5 140.2 141.4 140.0 141.4 131.2 133.5
Gap ~eV! 0.30 0.24 0.31 0.24 0.09 0.00
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