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Linear-scaling density-functional theory with Gaussian orbitals and periodic boundary
conditions: Efficient evaluation of energy and forces via the fast multipole method
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We report methodological and computational details of our Kohn-Sham density-functional method with
Gaussian orbitals for systems with periodic boundary conditions. Our approach for the Coulomb problem is
based on the direct space fast multipole method, which achieves not only linear scaling of computational time
with system size but also very high accuracy in all infinite summations. The latter is pivotal for avoiding
numerical instabilities that have previously plagued calculations with large bases, especially those containing
diffuse functions. Our program also makes extensive use of other linear-scaling techniques recently developed
for large clusters. Using these theoretical tools, we have implemented computational programs for energy and
analytic energy gradien{gorces that make it possible to optimize geometries of periodic systems with great
efficiency and accuracy. Vibrational frequencies are then accurately obtained from finite differences of forces.
We demonstrate the capabilities of our methods with benchmark calculations on polyacetylene, polyphenyl-
enevinylene, and &,0) carbon nanotube, employing basis sets of double zeta plus polarization quality, in
conjunction with the generalized gradient approximation and kinetic-energy density-dependent functionals.
The largest calculation reported in this paper contains 244 atoms and 1344 contracted Gaussians in the unit
cell.

[. INTRODUCTION to point. This limitation makes Gaussian bases better suited
to model these sparsely packed and covalently bonded sys-
Methods of density-functional theoflDFT) have become tems, especially those containing first-row atorfF),
an important tool in modern molecular quantum chemistrywhere the shortcomings of pseudopotentials are well
The best DFT functionals typically provide results compa-documented? Due to the larger size of the basis set, large-
rable in quality with those of more elaborab initio meth- ~ Scale calculations with PWs are affected ®YN®) compu-
ods at a fraction of the computational cdétThe computa- tational bottlenecks considerably earlier than GTO calcula-
tional expense of DFT is substantially less than that ofions. Consequently, some grotshave recently begun
second-order Moller-Plesset perturbation the@P2) or advocating GTOs as a way to overcome prohibitive compu-

coupled clustelCC) methods. One of the very attractive tational expenses in very large systems.

features of DFT methods is their proven capability of achiev-st I(;'IgsalSﬁggrtl:'no?gOsnIgtgemst;:;mrlénﬁggg%to(;]]mgter
ing O(N) scaling of CPU time with respect to system size, uaies w periodic sy pproxi y cld

making it possible to model molecules with thousands onOdeIS' Such an approach works fine in many cases where

. .~ chemical bonds are well localized, as, for example,
atoms? Recent developments in MP2 and CC methoomlog'eﬁeolites?5 On the other hand, there are many problems that
have reduced the scaling of these methods to near-linear

1-6 i e o) require true periodicity because the interactions in the
well."™ However, their cost prefactors are still significantly ¢y stem are long ranged and the results of cluster calculations
larger than that of state-of-the-art implementations of DFTconverge fairly slowly. Metals and systems with relatively
methods. _ _ small band gaps such as conjugated polymers are typical
The combination of DFT methods with Gaussian-type or-examples. Among the latter, there are derivatives of poly-
bitals (GTO) is very popular in calculations of molecular acetylene that have conjugation lengths of about 100
systems. There are also several periodic DFT programs denonomers? Evidently, oligomer calculations of such size
scribed in the literature that employ GTO basis $et™  would be very demanding. The technologically important de-
Some of these DFT codes are based on previous implemerivatives of polyphenylenevinylene(PPV) have much
tations of the periodic Hartree-Fo¢kF) method’®**while  smaller conjugation length, about 5—10 units. However, their
others have been written as pure DFT progratfand lack large unit cells also make cluster calculations quite expen-
the hybrid functionals which require exact HF exchange. Al-sive. Another example of slowly converging cluster calcula-
though many techniques have been employed in solid-stations are systems with long-ranged electrostatic interactions,
calculationg, plane-wave(PW) basis sets in combination such as crystals of sugars and carboxilic acids.
with effective core potentials have traditionally played a Our current research effort is aimed at bridging the gap
most important role in this field. Because the quality of thebetween DFT calculations of molecular and periodic sys-
PW basis set is uniform everywhere in space, one needstams. We present here methods to carry out calculations in
large number of PWs to properly describe “sparsely” extended systems using exactly the same tools that are cur-
packed systems, such as polymers, surfaces, or zeolitesntly available for molecules. This approach allows mean-
where the electron density changes significantly from poiningful comparisons between cluster and periodic computa-
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tions. In recent work, we have shown how to employ the fasiWe note that Eq(2.3) is valid both for HF and DFT meth-
multipole method’'8 (FMM) in calculations of periodic sys- ods. The exponent in the Bloch orbital definitith?2) intro-
tems with GTOS?® The FMM treats equally well systems duces complex factors and therefore all matrices in(E®)
with periodicity in one, two, or three dimensions. In this are, in general, complex. Matrix elements between periodic
paper, we describe our further progress in this area. Werbitals defined in Eq(2.2) can be easily computed from
present methods capable of producing energy and analytimatrix elements for localized GTOs,

energy gradients for periodic systems via the FMM ap-

proach. We also discuss their computational implementation _ ik-g_ 0g ik-

on a development version of theAUSSIAN suite of <®k|A|q,k>_zg (golAlge g_Eg Age % 24
programs’’ The FMM features lattice summations per- , .oy ,

formed entirely in direct space, as well as the ability to!" thiS quationAg, is a matrix element of operatdk be-
achieve arbitrary accuracy by controlling a single parameteffWeen the Gaussian atomic orbitaislocated in the central
High accuracy in the Coulomb problem is pivotal in avoiding ¢!l 0 and ¢ located in cellg. The Kohn-Sham Hamiltonian
numerical instabilities that have previously plagued calculaMatrix elementsor Fock matrix elements in the HF case
tions with large bases, especially those containing diffus& .7+ include several contributions:

functions. Furthermore, the FMM requires CPU time which 0g =09 . {109 1 109 1 /00

scales only linearly with respect to system size, thus permit- Fuv= Tt Un 90V, 2.9

ting simulations of very large systems. The largest calculayhere T is the electronic kinetic energy ter% is the
mv

. . . A v
tion reported in this paper contains 224 atoms and 1344 cOnsjecron-nuclear attraction terrd%d, is the electron-electron

tracted Gaussians in the unit cell. In ourformulatlon, an.‘r"lyt'crepulsion term. and/? is the contribution from the DFT
energy derivatives are available for both atomic coordinates h i lati my 419 and U % d

and cell dimensions. The latter significantly accelerates fufXchange-corre at|on. potent|. wy 8N g terggs 0 not
geometry optimizations of periodic systems. Several exdePend on the density matrix, whill2? andV,; do. An
amples of equilibrium structures are presented in this papef{nportantofea'Fure of the Kohn-Sham Hamiltonian matrix el-
We also calculate harmonic frequencies and infrared intensEMents F.5,, is their exponential decay with respect to the
ties by finite differences of forces in a benchmark systenincreasing separation between theand v GTOs. Such be-
(PPV), and report very good agreement with experimentahaV'Or arises from the |nd|V|(_juaI deca)_/ of the kinetic energy
data. The applications discussed in this paper are limited t§'mM, the exchange-correlation potential term, and the expo-
one-dimensional1D) periodic systems; examples of systemsnential decay of the combined electrostatic terms. Overall,
with two-dimensionat2D) and three-dimension#8D) peri- all terms in Eq.(2.5 are quite similar to analogous terms in

odicity will be described elsewhefé. molecular calculations. The electrostatic termsff{ and
Jfg) include interactions of a given pair of basis functions
Il. THEORY with all the other chargesor charge distributionsin the

system. The number of such interactions is infinite, and this
Our formulation is based on Gaussian orbitals of theis indeed different from the molecular case. The infinite

form?? sums can be handled using the Ewald summation

technique®2° or by the periodic fast multipole methdd.

¢(r)=(x—RX)'(y—Ry)m(z— Rz)ne*a(f*R)z, (2.2 The real-space density-matrix eIemem%?, required for

the construction of the Coulomb, exchange, and correlation
whereR=(R,,R,,R,) is the Gaussian centdrm,n are in-  contributions can be obtained by integrating the complex
tegers determining the orbital angular momentum, anid densityP'i(, in reciprocal space,
the Gaussian exponent. Calculations with periodic boundary

conditions (PBO) require basis functions that have proper 1 )

i P =C-| PX,e'* 9k (2.6
translational symmetry. Therefore, GTOs are transformed XARVS Ao ' .
into “crystalline orbitals” (also referred to as Bloch sujns
that have the forfh where V| is the volume of the unit cell irk space. The

matrix PX is obtained from the orbital coefficien®, which

1 are solutions to the eigenvalue Eg.3). The transformation
‘PkZE —gik-g Wy, (2.2 described by equatio(®.6) is the only coupling of different
5 [N k points during the SCF procedure. In practice, the integra-

tion is replaced by a weighted sum and the reader is referred
to Ref. 8 for detailed discussions on this topic. The energy
per unit cell can be computed as

wherek = (ky,ky ,k,) is the reciprocal-lattice vector, which
classifies periodic orbitals by their irreducible representa
tions (irreps of the infinite translation groupjg is a GTOy¥
centered in celh, andi is the imaginary unit. Orbitals be- 1
longing to different irreps do not interact directly with each E= > 2> Pffl T?,,gﬁ U?Lgﬁ E‘]ng +Eyxct Enr,
other (although they are coupled through the density matrix, nel g veg 5
see discussion belgwand this allows one to solve conven- 2.7
tional self-consistent-fieldSCH equations separately for whereE,. is the exchange-correlation energy dggk is the
eachk point, nuclear repulsion energy. In the following, triple sums like
the one in Eq(2.7) will be abbreviated by ,,4. In order to
FkCk=sSKCkEX, (2.3 avoid convergence problems and to maximize accuracy, it is
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important that electrostatic terms be grouped together intovhere a and b are Cartesian indices, ang, is the Kro-

electronic E.) and nuclear E,) terms, necker delta. For a given strain componedy,, the stress
can be calculated as
1
— 0 0 0
Ee_z 2 (U/LgV+JILLg]/) P,u%/’ SE b dE
nvg :2 Mg > (212

S lg ; a

2.9 €ab g leg drig
1 wherer?=x, y, or z, and the second sum runs over all
E,== E u%po LE . atomsl in cell 9. Let us.apply suph differenti.ation to the
2 g MU energy expressio(®.7). It is convenient to classify contribu-

tions to the total energy by the number of atomic centers

Once the converged density is available, it is possible tgarticipating in the interaction. In general, overlap, kinetic,
compute gradients of the total energy with respect to nucleaind exchange-correlation contributions are effectively two-
displacementgforces. Several authors have described in thecenter terms, nuclear attraction integrals are three-center
literature the required thedfyand implementation for the terms, and the electron repulsion contributions are four-
HF (Refs. 24 and 2band DFT(Ref. 11) methods in the 1D  center terms. Overlap derivatives occurring in E29) are
case, as well as DFT implementations for 2D and 3Dalso two-center terms. Let us examine the two-center contri-
systems*? Quite recently, Hirata and Iwata have extendedputions using as a particular example the overlap derivative
the analytic formalism even further and reported HF seconderm in Eq.(2.9) (Pulay force, denoted with a superscript
derivative4® and MP2 first derivatived for 1D systems. “ S in the following. For the sake of simplicity, we assume

We note here that the formulation of analytic energy firstthat thea and b axes are both along, and the system is

derivatives in periodic systems is quite similar to the mO|ECU-periodiC only in one dimension, with translational vector
lar case, for which we refer the reader to details in Refs. 2&nd a singldéntegercell indexg. Then,

and 29. The final result relevant to our present discussion is

SES dug dv

0 0 0 => W% (— v | X0+ —g)xy

d_EZZ POg dTMgV+ dUngll+ E d"],ugv 56XX ,u,Eyg My dX,u.O 9/ 7 u0 Ko dXVg 9

dx 5g #Y\ dx dx 2 dx
dug dvyg
g => W (_ vg | Xuot| ol 5| (X0 gt)
LS o dﬁv+ddExc+d§NR 29 P AP R dX,q
mrodx X X’ :
vy
= Fixo+ttX gFpy, (2.13
wherex is the nuclear displacement under consideraﬁﬁ], AR 9

is an overlap matrix term, and/ftg,, is the real-space energy-
weighted density matrix computed by integrati¢f. The
latter is evaluated as

where we have used that,=x,o+gt, |4 is some atomic
centerl in cell g, and F,Sé is the Pulay force due to the
displacement of this center

WK=PKEkPK, (2.10 dES d
Fh=a =2 Wﬁiﬁwolvm. (2.14
9

. . lg™
The overlap der|vat|vej§,19v/dx enters the force equation dxig  jvh

due to the incompleteness of the Gausgiéa'n basis set. Thife note that the overlap integralg| »,) and their deriva-
term is usually referred to as “Pulay force: tives decay very rapidly with increasing distance between

In periodic systems, unlike molecules, there is anothep,sis functions, so there is only a small number of nonzero
derivative of the energy related to the geometry of the SySgS 1arms. The usual atomic force due to an identical dis-

tem, namely the stress tensor, _vvhicl%describes the change ifib .o ment of the atorhand all its replicag, can be written
the system energy due to elastic straiThe stress tensor is f” terms OfF|Sg as

related to the derivative of the cell energy with respect to cel

dimensions and Teramast al?* were first to describe the s

i . : dE
required equations in the HF framework for the 1D case. FIS:_:E |:i3g_ (2.15
Later, Feibelmalf presented a GTO LSDA-based imple- dx g

mentation of stress for 1D and 2D periodic systems. Thes N .
guantities can also be computed in calculations with planeiﬁonsequently, we can simplify E@.13 into

wave (PW) basis sets! Previous formulation$*! rely on SES
calculations in reciprocal space. We, however, prefer to => F,Sx|o+t2 gF,S;. (2.16
evaluate stress contributions entirely in real space using the S€xx T Ig

FMM, and we present below the required equations.
In order to derive an expression for the stress tensor, wi
consider a uniform lattice deformation defined by

The first part of Eq(2.16 contains atomic gradients multi-

Slied by atomic positions. The second part can be interpreted

as the change in the system energy due to the change of the

lattice vectort, but in each cell the atoms remain fixed with

R Suct € Ry 21 respect to each other. We will refer to this second part of the
a_)% (Oav €an)Ry (213 stress as the “short-ranged solid cell stress.”
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Four-center(and three-centg¢rterms are more compli- SE dE dE
cated than the example discussed above. For illustrative pur- —— = 2 52 X +t2 95—
. . . 5EXX | dX| Ig dX|g

poses, we describe below the electronic repulsion part of the

stress. By itself, this contribution is divergent and must be 0 d{onNnint +h
considered together with the electron-nuclear attraction + Et > nP,f’V KoYyl T gy, Pox
terms. For clarity, we neglect this fact for a moment and #rgorhn "
examine how the equations look like d m,
+ 2 n_( Mol — Vg)
prgln dXn Min
SE®® 1 d
5 = E 2 P?g} Pg’{H—h (_dfo Vg O'n)\n+h)XMO + Et E ni ﬂ v
Exx uvgohhn 10 2 LShn an Mn rlo n+h
Vg d mm
o Un7\n+h)(x otgt) i
dx v +2, N0— ———1, 2.1
vg IJEn dxn |F16— "0l =19
doy, L
+| movyg dT)\“”‘ (XgotnNt) wherel and J are nuclei withm, and m; charges, respec-
on

tively. The electrostatic terms are grouped together such that

d\nin each sum in curly brackets is convergent.
+(Movg Tngx (Xyo+ht+nt) To summarize, the stress tensor can be obtained as fol-
An+h lows. First, we differentiate the energy expressi@ry) with
0g pnn+th dug respect to atomic positionk; and accumulate forceBg
= thn Py Pox dx Ve Tnlnth|Xuo separately for eaclhy. These terms allow us to compute
T wo atomic gradients and the short-ranged part of the solid cell
dvg force. At that point, the only part of the stress tensor which
+ ( Moy Un?\n+h) (X,0+9t) has not been computed yet is the four- and three-center terms
= contributing to the last part of Eq2.19. At large separa-
1 0g d{oNnint nnth tions between the interacting 0 agdcells, this becomes a
+ 2 Wgzﬂhn Puv| Koy d—xn nt Py . point multipole problem with point multipoles being nuclei

and basis function pail{siovgngy}, and such a problem was
(217 addressed in Ref. 32.
In general, a three-dimensional periodic solid will have

In Eq. (2.17), one finds terms similar to the overlap deriva- three translational vectors, and Eg.19 will have terms for _

tives encountered before in E.13. At the same time, eachgi. For example, the short-ranged solid cell force will

there is a new term representing the change in the systefﬁ‘)k like

energy due to the expansion of the lattice of charges. Effec- JE JE JE

tively, during such deformationyg,v,.y pairs in celln are

kept fixed, while the celh is displaced with respect to the Xl,zg: glﬂJer% QZWIQJF)(?’,EQ: 93W,g’

cell 0 bynt. This extra term is very similar to the Coulomb (2.20

contribution to the stress tensor in systems with point

charges recently discussed by*asnd the reader is referred whereg=t,g;+1t,9,+1t5g93, and the periodic vectors ate

to this paper for a detailed explanation. Finally, the short=(X;,Y;,Z;). Also, now one has to compute all other com-

form of Eq.(2.17) is ponents of the stress tensor, suchdSde,,, dE/de,,,
dE/de,,, dE/dey,, anddE/de,,.

5Eee
= :El Fleexmﬂ% gFss IIl. IMPLEMENTATION ISSUES
XX
A. Electrostatic terms
1 d{on\ . . . .
+Zt > P% v M nphth Electrostatic terms were extensively discussed in our pre-
2 nv Moy dx [N . . . 9 . . .
wvgohhn n vious publicatiort® and here we just want to highlight some

(2.18 important features of our method. The use of the FMM for
electrostatic interactions allows us to compute the infinite
lattice sums exactly for systems of any periodicity. The com-

Here, we emphasize again that there is only a finite numbegytational cost of the infinite periodic part is very small and
of Fjy terms contributing to this equation because of the fasbur code achieves practically perfect linear scaling for sys-
decaying nature of theyvy overlap. As mentioned above, tems containing hundreds of atofigsee also Sec. Il H
the electron-electron and electron-nuclear interactions in inFor noncubic cells, one might use the strategy described in
finite systems should be treated together, and in practice WRef. 33. Calculations of energy derivatives with the FMM in
computeF |’ together withF{f'. periodic systems are similar to those in molecules, and the
The full equation for the stress tensor with all contribu- previously developed algorithih®® can be used here with
tions included is minor modifications.
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In order for the FMM to yield high accuracy at a fixed
computational expense, it is necessary to keep the leading Exe= 2 f exc(r) Ig(r) dr
term of the multipole expansioné.e., the charge tern 19 Jrev
small. In the case of electronic-structure calculations, such an
objective is fairly easy to achieve if one merges electronic => f exc(r) Io(r) dr, (3.2
and nuclear contributions together, because, on average, the oAl
electron-nuclear charge mixture is neutral. Therefore, we

have chosen in our implementation to replace all nuclei byyhere we emphasize that in the last term the integration is
charge distributiongshell pair which are products of two  performed over alf but the sum is restricted to atoms in the
very tight Gaussians with very large exponents*{LOFor  central cell. Such integration is very similar to the integration
all practical purposes, such pairs are indistinguishable frongyer an atom in the center of a big but finite cluster of atoms.
the nuclear point charges that they replace. Consequently, Wg,e Stratmann-Scuseri®S weights® although originally
compute all electron-electron and electron-nuclear terms i’broposed for systems without periodicity, were designed to
the near-field(NF) via the regular four-center two-electron geq| exactly with this type of situation. Therefore, we have
integral evaluation code and use FMM for the far fif#).  sed them in our PBC program with minor modifications. Of
The FMM accuracy for a giveh, is here improved com- course, it is also possible to use other weight schemes in a

pared to our earlier implementation, where electron-electroppc code, and some alternatives are discussed in Ref. 8.
and electron-nuclear contributions were evaluated separately.

Another recent improvement used in our PBC code is a defi-
nition of rangeS for Gaussian Chal’ge d|Str|bUt|8§]Wh|Ch C. Reaj_space_reciproca|_space transformations
achieves optimal balance between exact and approximate

terms and yields better accuracy for a given computational N 0ur DFT PBC implementation, we do as much work as
cost. possible in real space. Consequently, all matrices are stored

. . H 0g .
It is worth noting that, to the best of our knowledge, we N réal-space form, e.gh,’,, and transformed int& space
are the first to use FMM in periodic GTO-based electronic-ONly When needed. In the iterative part of the code, we first
structure calculations. Most other programs use either Ewalfonstruct the entire real-space Fock mafff , transform it
Summatioﬁ_lo or direct space CUtOﬁ'E', however the latter INnto Severalk-space matrices, dlagonallze them, obtain or-
seem to work fairly well only in the case of periodic 1D bital coefficients and energies, and then construct the
systems. We are the first to develop a genewtiust solu- reciprocal-space density matrices. The latter are integrated
tion for the infinite lattice summations for 1D, 2D, and 3D by numerical quadrature of E(.6), to yield the real-space
systems based on the FMM. High accuracy in the Coulomi§lensity matrix which is used in the following SCF cycle. At

problem is crucial to avoid numerical instability problems SCF convergence, we compukespace-dependent energy-
(see the discussion belpw weighted density matrice®/* using Eq.(2.10, and then

transform them intd/\/?ﬁ form. As a result, the gradient part
o _ of the code also deals with real-space quantities only. Over-
B. DFT numerical integration all, k-space-integration adds just a few extra steps to the

In calculations with PBC, the numerical integration of the PBC calculation when compared to the molecular case. All
DFT exchange-correlation terms has to be carried out ovéfie transformations between real and reciprocal spaces are
the volume of the unit cell including weighted computationally inexpensive and simple to implement.

contributions—in principle—from all atoms in the infinite _ An extremely important feature of our direct-space
system Gaussian PBC code is that once the real-space matrices are

available, the major cost of any additionalpoint calcula-
tion is just the transformation into an orthonormal basis set

plus the diagonalization. This is drastically different from the

Exc= freufxc(f) dr PW implementations where one computes the Fock matrix
for eachk point separately. Even though the cost of such

mig(r) matrix formation may be considerably lower for PWs than

=E J Exc(l) —————dr for our real-space Fock matrix, the relative low cost of addi-

19 Jrey ; (1) tional k-point calculations when using Gaussians permits

denserk-point meshes in reciprocal space even for systems
of medium size. Furthermore, the derivatives of the band
€xc(M) 1T 4(r) dr, (3.1 energies with respect to thevector are also rather straight-
v forward to computé® Such information may be very useful
in the Brillouin-zone integration for systems with compli-
cated band structurés.

:IEgr

€

whereU is the unit cell andl, y(r) is the normalized weight
of an atomic centet located in cellg. The sum of these
weights over all atoms in the system is 1 at any poirEach

of these weights contain pairwise contributions from all
other atoms. The translational symmetry of the system al- The number ok points required to achieve convergence
lows one to transform the integral over the unit cell into anof the real-space density matrices, and, consequently, of en
integral over all space, ergy and forces, depends on the size of the unit cell and the

D. Convergence in reciprocal space
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TABLE I. Converged SCF energyn Hartree$ as a function of E. SCF convergence

the number ok points for PPV at the LSDA/3-21G level of theory. As is the case in usual molecular calculations. SCE con-

vergence problems may arise in calculations with PBC. In

No. k Total energy Comment
order to reduce the number of SCF cycles, we have used the

1 —305.046267410 r direct inversion of the iterative subspace metkibdlS) de-

1 —305.016437317 72 veloped by Pulay>“® DIIS requires formation of error ma-

2 —305.003488239 P+ tricesR=(FPS—SPP for each SCF cycle. The matriR

2 —305.011151754 w4+ 37/4 approaches zero as the calculation proceeds toward conver-
4 —305.010605979 gence. During the DIIS procedure, one evaluates inner prod-
8 —305.010590467 ucts of the error matrices from different SCF cycl&,

16 —305.010590432 =R;-R;, and uses thes8;; products to determine the DIIS
32 —305.010590432 mixing coefficients'®

A simple way to incorporate the DIIS procedure into a
PBC code is to employ, P, and S matrices just for one

band gap of the system. The general relation here is the er%int in reciprocal space, for example the(k=0) point.
I

and forces, depends on the size of the unit cell and the ba IrSthslfegglrzlatr,eﬂlﬁz;npihaeng;nlaggﬁ ‘;2(; r:;SI’eagf rﬁglgz:eular
f th m. Th neral relation here is the following: ; O .
gap of the syste e general refation here s the following alculations. The DIIS mixing coefficients are used to form

a doubled unit-cell size in real space halves the correspon&- -
ing lattice dimension in reciprocal space and therefore rethe extrapolated real-space Fock maffg),. In summary,
quires half as mank points in this dimension. Also, the OUr strategy is to evaluate the DIIS mixing coefficients from
smaller the band gap of the system, the larger the number éhatrices atk=0, and use these coefficients to build Fock
k points that is required to achieve the same accuracy. In th@atrices in alk points through the extrapolation of the real-
limit of zero band gap, the system becomes metallic and thepaceFﬁgy matrix.
orbital occupations becomepoint dependent. Such discon-  In Table II, we present the SCF energy convergence pat-
tinuity requires more sophisticated and robust methods foterns for LSDA/3-21G calculations of PPV with varying
reciprocal space integration than just the simple rectangulaiumber ofk points used in the reciprocal-space integration.
quadrature used in this wofR#* The DIIS procedure was always carried out formatrices

An example of reciprocal-space integration convergencenly. All these calculations were performed at the same ge-
for a system with a fairly small gap is shown in Table I. ometry (starting from the same converged LSDA/STO-3G
These are LSDA/3-21G calculations for PPV, which at thisdensity for thel’ point). The SCF procedure was considered
level of theory has a band gap of 1.35 eV. For calculationgonverged when the rms change in density-matrix elements
with only onek point, one can observe that results for the between successive cycles became smaller thaf.1One
point are much worse than for the/2 point in reciprocal can see that all calculations presented in Table Il converge in
space. A similar situation occurs in calculations with two a similar manner and require roughly the same number of
points, where the case without thepoint gives much better SCF cycles. These results demonstrate that the efficiency of
energy than the case with thepoint. For the polyacetylenes thel" point DIIS does not depend on the numbekgfoints
discussed below in Sec. IV A, the band gap is usually lesemployed in the reciprocal-space integration.
than 1 eV, and those calculations required aboutlkdp0ints We have also explored the use of error matrices for points
to converge the energy to 18 Hartree accuracy. other than thd™ point. In such a case, the matrices are com-

TABLE II. SCF energy convergence for the different numberkopoints used in reciprocal space
integration for PPV at the LSDA/3-21G level. Thepoint DIIS extrapolation is used in all cases. The density
is converged to a rms deviation of 18

Cycle I' point 4k points 16k points

2 —0.224691937902 —0.189839234123 —0.189825525804
3 —0.001679363067 —0.001589740097 —0.001590495497
4 —0.010874794608 —0.010126205214 —0.010123523908
5 —0.000051023879 —0.000056762104 —0.000056803464
6 —0.000006455924 —0.000030254529 —0.000030301006
7 —0.000000136088 —0.000000075913 —0.000000075704
8 —0.000000019909 —0.000000027911 —0.000000027601
9 —0.000000000382 —0.000000000328 —0.000000000333

10 —0.000000000086 —0.000000000172 —0.000000000170

11 —0.000000000003 —0.000000000001 0.000000000000

12 —0.000000000003 —0.000000000003

E; —305.046267410044 —305.010605978591 —305.010590431688
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plex, and yield complex mixing coefficients, which are usedWhile the problems related to errors in the accuracy of the
to form linear combinations of complex matricE& from Hamiltonian matrix may happen for the smallest overlap ma-
previous SCF cycles. It turns out that while the density is fartrix eigenvalues as large as 19-10 3, true linear depen-
away from a stationary point, the imaginary part of the mix-dences do not occur until the smallest overlap matrix eigen-
ing coefficients remains small and the convergence rate is thealue becomes of order 16—10 7 (see discussion in Ref.
same as in the previous case wittmatrices. However, once 47). Needless to say, practically all references in the litera-
the stationary point is close, the imaginary parts of the coefture to “linear dependences” in calculations with PBC rep-
ficients usually become relatively large and cause oscillaresent the first kind of instabilities, which arise from numeri-
tions in energy and density. As a consequence, it was natal inaccuracies on the Hamiltonian matrix formation rather
possible to reliably achieve the required accuracy in a smalhan true linear dependences in the basis set.

number of SCF cycles with such an approach. After remov- In our code, kinetic and electrostatic contributions to the
ing the imaginary parts of the DIIS mixing coefficients, the Fock matrix are evaluated exactlyhe latter via FMM,
DIIS procedure worked as in the case of theoint matrices  while the DFT exchange-correlation quadrature is also car-
described above. So, in our experience DIIS gives usefulied out with high accuracy. Therefore, we might expect that
results only when the mixing coefficients are real. We havehe SCF instabilities would occur only for very small overlap
also tried to employ error matrices for sevekapoints at  matrix eigenvalues, somewhere in the $810 7 range. In-
once with the inner products formed d&;= B}j.1+ . deed, this is the behavior observed in all of our calculations.
+B;". In this particular situation, the acceleration of the For example, in the case dfanspolyacetylene, we have
SCF convergence was slightly worse than with matrices fopuccessfully carried out calculations using a 6-3@d.,@ ba-
onek point only, and the SCF usually took one extra cycle.Sis setsmallest overlap eigenvalues ef 10~ *) without any

In summary, we did not find the additional computationalProblems. Using the 6-311G(d,p) basis setsmallest over-

effort of dealing with severat matrices useful for DIIS, and 1ap eigenvalue of- 1077), we had to eliminate one orbital
settled on thd" point scheme described above. at somek points to make the SCF calculation stable. This

shows that PBC calculations are not inherently more prone to
o N have linear dependences than molecular calculations. The
F. Numerical instability problems key issue seems to be the Hamiltonian matrix evaluation,

In periodic calculations, large basis sets with diffuse func-Which needs to be done to very high accuracy, especially in
tions may cause instabilities in the SCF procedure due to thée infinite Coulomb sums. We achieve this goal by means of
limited accuracy of the Fock matrix construction, and muchthe FMM without resorting to any truncation.
more rarely due to the limited accuracy of the diagonaliza-
tion routines’’ Such problems can also be encountered in
molecular cases if the contributions to the Fock matrix ele-
ments are approximated without proper precautf§rishe As mentioned above, our analytic energy gradient code
usual prescription for restoring the stability of the SCF pro-uses only the real-space density matrix and the real-space
cedure for both types of problems is to project out the orbit-energy-weighted density matrix. This makes the evaluation
als with small overlap eigenvalues from the basis set, whiclof forces in the PBC case somewhat similar to analogous
can be done during the orthonormalization. In order to transeomputations for molecular systems, with few additions. We
form GTOs to an orthonormal basis, one may employ symwant to remind the reader that the stress ter(&ait9 re-
metric orthogonalization and use tBe*? matrix*® The lat-  quires derivatives of the unit-cell energy with respect to at-
ter is computed by diagonalizirf§to obtain a matrix/ such  oms in the neighboring cells,E/dx,4. Therefore, we simply
that VISV=s, wheres is a diagonal matrix containing the increase the size of the force array in the computer program
eigenvalues ofS The S Y2 matrix is then obtained as and accumulate contributions for eaqly separately. During
S Ye=ys YT, the differentiation of the paipo(l) v4(J), we add the com-

Another way to orthonormalize the basis set is called caputed values to the elemerd&/dx,, anddE/dx;q, respec-
nonical orthogonalization and uses the matdxVs Y2 tively. Then, the total forcel E/dx, is obtained by adding up
Columns ofU contain theith eigenvector of the overlap all dE/dx,4 terms. The short-ranged part of the solid cell
matrix divided by the square root of its eigenvakje Inthe  stress is computed from thesd/dx,q parts, and the long-
case of instabilities, one can throw away columndJofor-  ranged (electrostatit part is treated by the FMM, as de-
responding to very small eigenvalues.®® As a conse- scribed in our paper for point charg&sWe note that the
quence, during the transformatiaH FU of the Fock matrix ~ extra work required to compute the long-ranged part of the
F into an orthonormal basis, the offending orbitals are pro-solid cell force is relatively small because these computa-
jected out, and the stability is restored. In general, it is detions can be efficiently incorporated into the atomic force
sirable to check th&)TSU matrix and make sure that it is code. Having a complete set of energy derivatives with re-
sufficiently close to unity because in certain cases where thgpect to geometrical parameters, it is possible to carry out
S matrix has rather small eigenvalues, the diagonalization oéfficiently full geometry optimizations. In order to perform
S may produce inaccurate results due to numericathem, we have extended the redundant internal coordinate
problems®® If such problems appear, one may resort to themethod of Pulay* to periodic systems. The periodic vectors
more robust Gram-Schmidt orthogonalization technitfue.  are included in the procedure indirectly through internal co-

We would like to point out that the SCF instabilities due ordinates that cross cell boundaries. This allows us to use the
to any of the two above mentioned causes are usually reBERNY optimization algorithm for redundant coordinates
ferred to in the literature as “linear dependency” problems.implemented in thesAussIAN suite of programs with mini-

G. Atomic gradients and stress tensor
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mal modifications. The number of steps required to optimize TABLE Ill. IBM Power3 CPU times(se9 for PPV LSDA/3-
a given structure turns out to be very similar to the molecula21G.
case using redundant internal coordinates. A more detailed

description of the extension of molecular optimization meth-(CsHe)x, X 1 2 4 8 16
ods to PBC will be given elsewher8. No. atoms 14 28 56 112 994
No. basis 84 168 336 672 1344

H. Computational scaling and diagonalization alternatives No. k points B 8 4 2 1

No. FMM levels 3 4 5 6 7

In energy calculations, each SCF cycle requires two major
steps, the Fock matrix construction and the density—matrimmings
update. Recent research has shown that one can exploit tEgrm gla

. . . . . : 0.6 2.0 7 28 115
locality of the interactions in a physical system and build the
. . . 53 . FMM, FF 1.3 2.5 5 10 20
Fock matrix inO(N) CPU time operation$> We fully in-
. EMM, NF 6.3 12.1 25 48 98
corporate these recent developments in our PBC code. The;(eC d 130 6.4 c4 109 93
are three major contributions to the Fock matrix formation:”. - 942 : :
the kinetic energy term, the electrostatic term, and théD”S, 0.03 0.13 0.9 7.9 73
exchange-correlation contribution. In large systems, the kir.c’“""ag 0.04 0.21 13 9.9 8
netic energy matrix is sparse, computed only once, and ther&ad 091 32 123 52 198
fore easy to deal with. The electrostatic part of our code use§etal SCF 197 416 935 2342 7285
the periodic FMM, so its scaling is very close to linear, as we
have shown befor® Our periodic exchange-correlation Forces
quadrature is a straightforward extension of the one used ihMM, FF 2.7 5.4 11 21 43
molecular calculations whose linear scaling has also beeRMM, NF 28.4 574 115 232 446
demonstrated’? Furthermore, the analytic gradient code re- XC quad 241 494 106 243 621
sembles the Fock matrix formation, and, therefore, the forc&otal force 55 113 233 500 1123

calculation has als®(N) computational cost. — _ _
In the applications carried out in this paper, the density-1/mings reported include ak points.
matrix update is done in the conventional way, by diagonal-
izing the Kohn-Sham Hamiltonian matrix and constructingtion to the remarkable agreement of energies per unit cell
the density matrix from its eigenvectors. Although this pro-from different calculations: they differ only in the 10th deci-
cedure scales @3(N?), it has such a small scaling prefactor mal.
that the diagonalization cost for systems with up to a few et us discuss in more detail the timings shown in Table
thousand Gaussian basis functions is rather small compared. In the SCF part of the calculations, the CPU time re-
to other steps in the PBC code. The DIIS procedure containguired for the evaluation of electrostatic and exchange-
matrix multiplications with regula®(N?) matrices, and this correlation terms scales linearly for all practical purposes.
step also scales @(N?). Millam and Scuserid were first  On the other hand, the complex diagonalizations and the
to demonstrate that in DFT calculations with Gaussians on®|IS procedure scale @3(N?). The relative cost of all these
can replace the diagonalization step by@{N) alternative  O(N?®) steps is such that for the largest system in Table IV
such as conjugate gradient density-matrix sea@BDMS). (224 atoms, 1344 basis functiongheir total CPU time is
This method works very well for systems with large bandroughly similar to the CPU time required for the Fock matrix
gaps as demonstrated befdr&:> For very large systems, formation. Comparing systems with different dimensionality
the DIIS procedure uses sparse matrices and therefore ithd band gaps, one can argue that the Fock matrix formation
cost also becomes close to linear. Aopoint calculations, step in 1D systems is fastest, making the CPU time con-
we can use in our PBC code all the sparse matrix multipli-sumed by theD(N®) steps look relatively large. In metallic
cation routines developed previousfyWe have not imple-  systems, which require a large numbeikgsoints regardless
mented yet, however, these methods for the complex matrif dimensionality’ the CPU time consumption by diagonal-
ces required for othek points. ization will be substantial.
In order to demonstrate the actual scaling properties of
our DFT PBC program, we have carried out a series of C.al_ TABLE |IV. Total energiesHartreg for the PPV LSDA/3-21G
culations for PPV with a different number of monomers N _lculations shown in Table Il
the unit cell. The results are presented in Table Ill. The cal- ’
culations were carried out at the LSDA/3-21G level of theory

and the number ok points was chosen according to the unit cel Total Energy Energy per unit
guidelines outlined in Sec. Il D. The SCF took 10 cycles to

converge the density to a rms deviation of $0The total ~ (CzH6), —305.01059043175 —305.01059043175
energies for these calculations are given in Table IV. ThgCgHq), —610.02118086376 —305.01059043188
case with 16 monomers in the unit cell needs only &ne (CgHg), —1220.04236172718 —305.01059043180
point for chemical accuracy, and we tested bbtland 7/2  (CgHg)g —2440.08472345487 —305.01059043186
points. Again, we see that the energy fof2 is closer to the  (CgHg) 6 {7/2} —4880.16944691366 —305.01059043210
converged value than for thE point (last two entries in (CgHg) 16 {T'} —4880.16944635247 —305.01059039703

Table IV). Overall, we would like to draw the reader’s atten-
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In order to achieve a small absolute cost for all matrix
operations, we have employed optimized linear algebra rou-
tines such a®GEMM, ZGEMM, DSPEV, and zHPEV from the N X N N N
BLAS andLAPACK libraries. On the IBM RS 6000 family of
computers, these routines are included into their machine
optimized ESSL library. We note that similar preoptimized
packages are also available for other computer architectures.
Such libraries insure that the CPU intensive operations are
carried out with the greatest possible efficiency.

H H H H

H H H H trans-(CoHy)

IV. BENCHMARK CALCULATIONS

In order to demonstrate the capabilities of our Gaussian
DFT PBC code, we present in this section benchmark studies
of 1D periodic systems with substantial delocalization of the
bonds. Results for 2D and 3D periodic systems will be pub-
lished elsewher&: Here, we focus more on the chemically
relevant data as opposed to previous sections where our pri-
mary concerns were methodological and computational de-
tails. Our first benchmark case is polyacetyléRd), a sys- - .
tem where pure DFT methods fail remarkably to
quantitatively reproduce the experimental C-C bond-length FIG. 1. Isomers of polyacetyleri®A). (a) trans-PA, (b) cis-PA,
alternation'® The second benchmark system is PPV. Third(C) metaPA.
and last, we have considered a much more demanding sys-
tem, a(5,0) carbon nanotube. In the following subsections,quality of the PA samples pointed out in Ref. 72. The litera-
we discuss our results in more detail. ture on PA is vast, and we do not attempt to review it here;

Prior to that, we would like to describe some relevantye nevertheless briefly mention a few recent representative
computational details. From the wide variety of currently ¢t gies. Using a double-zetBiZ) basis set, SuhHireported
available DFT fUnCtiOﬂalS, we have chosen for benChmarlBLAS of 0.107, 0.083, and 0.084 A at the HF, MP2, and
purposes the local-spin-density approximatib§DA) > the V1o jevels of theory, respectively. His DFT BLAs are 0.016

generasli72ed gradient approximation functional, PBEnd and 0.012 A with the LSDA and BLYP functionals, respec-
VSXC,” the kinetic-energy-dependent functional recentlytively. Fogarasiet al%® obtained C-C bond lengths of 1.325

developed in our research group. We have combined these .
functionals with what is considered in calculations of ex-and 1.462 A, at the HF/6-31G) level of theory. Hirata

: : : & A at the MP2/6-3dG
t t _quality 3-21 t and also€i @l computed 1.373 and 1.423 A a
ended systems a medium-quality 3-21G basis set and a SOIevel. At the B3LYP/6-31@&) level of theory, Hirataet al®’

relatively high-quality 6-31@l) basis set. The geometries of A
all periodic systems have been optimized in redundant inter€POrted 1.369 and 1.426 A.

nal coordinates, as briefly described abd¥@ptimizations From these results, it is evident that DFT methods such as
were stopped when the rms force became smaller thaf 10 LSDA and GGAs fail to predict the BLA afransPA, yield-

a.u. This criterion corresponds to th@aussiAN keyword  ing results in the 0.01-0.03 A ranggwhich are too small
opt=tight. The PPV vibrational frequencies were com- compared to those calculated with the MP2 and B3LYP
puted by numerical differentiation of analytic forces. The IR methods,>**and compared to experiment. Our results, pre-
intensities are nonzero only for vibrations that change theented in Table V, follow the same trend. The VSXC func-
dipole moment of the cell in the directioperpendicularto  tional, which typically mimics B3LYP quality results; "

the periodicity axis. The dipole derivatives with respect toincreases the BLA compared to PBE, but not significantly.
the atomic positions, required for IR intensities, were also The band gap ofransPA is in the 0.07-0.20 eV range,

meta-(CoHy)y

computed numerically. which is small. Other authors have pointed out the connec-
tion between BLA and the band g&bDFT methods under-
A. Polyacetylene(PA) estimate the band gap at the experimental geometry. Simi-

transPA [Fig. 1(a)] is a prototypical system, probably larly, small BLAs are associated with very small band gaps.

one of the most studied polymers because of its small sizlf! order to obtain well-converged energies and geometries
and the extreme sensitivity of the predicted bond-length alfor PA, we have employed 40R points in the reciprocal
ternation(BLA) between single and double bonds with re- SPace integration. If the number kfpoints is reduced sus-
spect to the theoretical method used. The latter has motivatdfantially, the predicted alternation is significantly larger. For
many researchers to apply various available methods to thigxample, in a calculation with 2k points, the LSDA/6-
quite difficult problemt!:16:24:26.58-69 31G(d) BLA is 0.020 A; employing just 1k points leads to
Experimentally, Yannoni and Clarke have determined thag BLA value of 0.033 A. These BLAs are much larger than
the two CC bonds irransPA are 1.36 and 1.44 R while  the converged value of 0.008 A at the same level of theory.
Kahlert et al.” reported values of 1.36 A and 1.45 A. De- These results seem to rationalize the very large LDA BLA of
spite the good agreement between these studies, these resit861 A reported by Springbofg,which was obtained in a
cannot be relied on with total certainty because of the lowcalculation with 11k points. Clearly, the latter resfitis far
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TABLE V. Structural parameters for polyacetyletf® and degrees

LSDA LSDA PBE PBE VSXC VSXC

3-21G 6-31Gd) 3-21G 6-31Gd) 3-21G 6-31Gd)
trans-(C,H,)
Gap(eV) 0.11 0.07 0.15 0.11 0.20 0.16
T 2.455 2.455 2.481 2.481 2.464 2471
Re-c 1.383 1.384 1.395 1.395 1.387 1.391
Re-c 1.394 1.392 1.411 1.408 1.408 1.407
Rc_n 1.101 1.102 1.099 1.100 1.093 1.097
Accc 124.3 124.4 124.2 124.5 123.7 124.0
Cis-(CoHy)
Gap(eV) 0.76 0.72 0.75 0.71 0.90 0.85
T, 2.199 2.205 2.233 2.242 2.205 2.219
Re-c 1.373 1.375 1.386 1.387 1.379 1.382
Rc-c 1.413 1.412 1.430 1.427 1.429 1.429
Rc-n 1.098 1.098 1.096 1.097 1.087 1.091
Acce 125.8 126.0 126.3 126.8 125.3 125.8

from converged. According to our estimates, in order to ob4-31G level, Teram&8 reported an energy difference of 2.1
tain a converged BLA value one ought to use about 200—40@cal/mol. So, despite the differences in calculated BLAs at
k points, which is also in accord with the conclusions of Ref.the equilibirum geometries, all methods predict tiePA/

67. trans-PA energy difference in a close range.
We have also optimized the geometry of two isomers of

trans-PA, denotectis-PA and meta-PAFigs. 1b) and Xc)].
The predicted BLA forcis-PA is around 0.04-0.05 A, W2i70h B. Poly(paraphenylenevinylend (PPV)
is . . . . . . .
o o onaie e - ond PPV (. 2 s e st ute extnsiey i ray
1.438 A, and B3LYP/6-31@l) values are 1.369 and 1.435 A theqretlcal papers because o;6|ts importance for applications
(0.066 A BLA). So, in the case otisPA the BLA also ©" light-emitting dlo_de_s{LED). To the best of our knowl-
seems to be underestimated by the pure DFT methods. WeH9€, geometry optimizations of the PPV polymer have pre-
would also like to point out the agreement between oupviously been carried out only at the semiempirical AM1 level
LSDA geometries both fotransPA andcis-PA with those  Of theory!” other authors have also computed the LDA band
reported in Ref. 67. The bond lengths predicted with 3-21Gstructure without geometry optimizatidfiin this work, we
and 6-31Gd) basis sets agree with each other within 0.001 Ahave used our DFT PBC code with analytic energy gradients
and the angles within 0.1°, even though the authors of Refto find the equilibrium geometry of PPV using three DFT
67 employ an auxiliary basis to expand the electron densityfunctionals and two basis sets. The results can be found in
which we do not use. Table VII, where for comparison purposes we also present
The other isomennetaPA, has nonequivalent single and AM1 values from Ref. 77. The structural data agree reason-
double bonds(not listed in Table V, with BLA values ably well with each other. Compared to AM1, the DFT re-
within the 0.035-0.04 A range, depending on the particulasults indicate much larger conjugation of the vinyl unit with
basis set and functional. These BLAs are much closer to ththe benzene ring. For example, AM1 predicts a 0.013-0.016
value incis-PA than intrans-PA. A bond alternation within the ring, while DFT yields 0.027—
The relative energies between this- andtrans-PA iso-  0.031 A. In order to produce results comparable to experi-
mers are presented in Table VI. Again, our LSDA values aranentally available data for PPV, we have compuked0
practically the same as those in Ref. 67, and agree quite weltequencies and their intensities by numerical differentiation
with their B3LYP/3-21G and B3LYP/6-31@) energy dif- of forces and dipole momentJable VIII). The theoretical
ferences of 2.0 and 2.3 kcal/mol, respectiV&iyit the HF/  results compare very well with the experimental res{fts.

TABLE VI. Relative energies per monomékcal/mo) of polyacetylene isomers.

LSDA LSDA PBE PBE VSXC VSXC

3-21G 6-31Gd) 3-21G 6-31Gd) 3-21G 6-31Gd)
trans(C,H,) 0.00 0.00 0.00 0.00 0.00 0.00
Cis-(CoHy), 1.87 2.24 2.21 2.50 0.72 1.34

meta(C,H,), 0.88 1.06 1.04 1.18 0.21 0.51
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a b c

FIG. 3. (5,0) carbon nanotubdi) side view,(b) front view of
structures obtained in LSDA and PBE calculations, &rydfront
view of structures obtained in VSXC calculations.

riodicity axis and single bonds perpendicular to it. However,
in the course of geometry optimization, the alternation be-
tween these parallel and perpendicular bonds to the tube axis
was reduced considerably at all levels of theory, yielding a
small band gap, and ultimately, metallic tubes. These results
are similar to those obtained by Blaseal.,?® where (6,0)-
FIG. 2. PolyparaphenylenevinylepgPPV). (9,0 SWNTS_ were studied at the_LDA I_eve_l of theory. The
authors predicted th@,00 SWNT with cylindrical symmetry
(C, axis) to be a metallic structure. Bigger tubes such as
Such agreement indicates that the chosen functionals seem{6,0)-(9,0) were found to be insulators due to the larger sepa-
perform quite adequately for PPV. ration of the bands located near the Fermi level and the re-
sulting avoided crossings. Since tf®0 tube studied here
has an even smaller surface curvature thar(@@ tube, it is
not surprising that it also has a zero band gap if the C
The unit cell of the(5,00 SWNT contains 20 carbon at- symmetry axis is preserved.
oms. We have worked, however, with a doubled 40 atom On the other hand, a full unconstrained geometry optimi-
unit cell whose periodic dimension is larger than the perpenzation of the(5,00 SWNT led to structures with aCscrew
dicular ones. We note that th&,00 SWNT is substantially axis and a mirror plane perpendicular to the periodicity axis,
“denser” than, for example, PPV, and therefore the Fockat all levels of theory. Such symmetry, together with one
matrix formation CPU times were substantially larger thantranslation, yields only five unique atoms in the 40-atom unit
for the former. For reciprocal space integration, 32 pointscell used in our calculations. The geometries of the lowest
were sufficient to obtain the desired TOHartree accuracy energy structures together with their band gap are reported in
in energy of the finaldistorted structures. Table IX. We also found other minima with geometries
Our first attempt was to optimize the tube geometry pre-slightly different from those shown in Table IX, but the en-
serving the G rotational axis. Our starting structure for ge- ergy differences with the lowest structures were of the order
ometry optimizations contained double bonds along the peef 8x107° eV per atom.

C. (5,0 single wall carbon nanotube(SWNT)

TABLE VII. Geometrical parameterén A and degreesof PPV.

LSDA LSDA PBE PBE VSXC VSXC AM1
3-21G 6-31Gd) 3-21G 6-31Gd) 3-21G 6-31Gd)

Ry 1.351 1.353 1.364 1.365 1.358 1.361 1.344
R» 1.441 1.438 1.460 1.456 1.456 1.455 1.451
R3 1.409 1.406 1.423 1.420 1.417 1.417 1.403
Ry 1.379 1.378 1.392 1.391 1.388 1.389 1.390
Rs 1.407 1.405 1.421 1.418 1.416 1.416 1.406
Ru1 1.100 1.101 1.097 1.098 1.092 1.095
Rhu2 1.096 1.098 1.095 1.096 1.087 1.091
Rus 1.095 1.097 1.093 1.095 1.085 1.089
A 126.3 126.6 126.6 127.1 125.9 126.6
A, 119.1 119.1 118.9 119.0 118.3 118.1
Az 121.5 121.8 121.7 122.0 121.5 121.9
A, 120.9 120.9 121.0 121.1 120.4 120.4
Ag 117.6 117.3 117.3 116.9 118.1 117.7

Gap(eV) 1.35 1.26 1.38 1.30 1.48 1.38
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TABLE VIII. PPV harmonic frequencies (cnl) and their IR
intensities(km/mol) calculated with DFT methods and a 6-3t5
basis set.

LSDA PBE VSXC Expt.
Sym  Freq. Int. Freg. Int. Freq. Int. Freq.
By 124 0 115 0 104 O
A, 225 0.2 222 0.1 225 0.2
By 327 0 317 0 318 0
Ag 321 0 319 0 323 0
A, 397 0 393 0 388 0.05
B, 421 0.01 419 0.04 412 0.01 429
A, 555 12 550 11 549 9 558) 2
Ag 629 0 627 0 617 0
Ag 657 0 655 0 651 0
By 696 0 689 0 681 0
B, 799 0.1 786 0.06 799 0 785
By 802 0 798 0 808 0
A, 824 30 816 31 820 33 833)
By 867 0 851 0 852 0
Ay 905 0 887 0 898 0
A, 910 0.4 910 0.2 920 2
By 935 0 927 0 936 0
A, 957 35 961 31 971 32 966)
B, 1005 0 1000 0 1016 0.1 1013
B, 1108 7 1114 4 1104 5 1108
Aq 1168 0 1169 0 1171 0
Ag 1224 0 1209 0 1215 0
B, 1215 3 1226 2 1233 1 1211
B, 1313 2 1295 2 1309 1 1271
Ay 1291 0 1297 0 1308 0
Ag 1313 0 1327 0 1338 0
B, 1413 2 1386 0.1 1398 0.2 1339
By 1474 3 1442 4 1458 4 1424\
B, 1548 0.01 1524 0.01 1548 0.1 1588(
Ag 1572 0 1533 0 1558 0
Ag 1609 0 1573 0 1597 0
Ay 1681 0 1644 0 1666 0
Ay 3068 0 3080 0 3118 0
B, 3076 14 3088 15 3127 15
B, 3106 2 3107 7 3142 14
Ag 3108 0 3108 0 3145 0
By 3125 16 3131 28 3182 22
A 3127 0 3133 0 3184 0

«Q

& s)” denotes strong banks.

From the data in Table IX, we note that the LSDA and
PBE bond lengths for the optimiz€8,0) tube geometry are
similar, and the deviations from the cylindrical form are not
large [Fig. 3(b)]. On the other hand, the VSXC functional
leads to a significantly more distorted geomdtfyg. 3(c)],
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TABLE IX. Predicted geometrical parametei and degrees
for the (5,0) carbon nanotubésee Fig. 3.

LSDA LSDA PBE PBE VSXC VSXC
3-21G 6-31Gd) 3-21G 6-31Gd) 3-21G 6-31Gd)

R; 1426 1430 1444 1444 1427 1.426
R, 1.458 1.448 1474 1465 1503 1.489
Rs 1432 1429 1444 1444 1425 1.435
Ry 1.459 1.454 1477 1470 1489 1.470
Rs 1.461 1454 1477 1471 1487 1.479
ry 1.424 1422 1439 1436 1443 1.444
ro 1.387 1394 1400 1406 1.379 1.390
rs 1.396 1398 1411 1411 1405 1.407
Iy 1.401 1398 1411 1.411 1403 1.415
Is 1.389 1394 1400 1406 1.379 1.390
D, 153.3 1514 1534 1514 1658 161.3
D, 139.8 1415 1401 1415 1313 1345
Ds 142.4 1429 1432 1429 1464 1427
Dy 1444 142.8 143.3 1429 1453 148.0
Ds 140.2 1414 1400 1414 131.2 1335
Gap(eV) 0.30 0.24 0.31 0.24 0.09 0.00

IX). With respect to the electronic structure, LSDA and PBE
with both basis sets and VSXC with the 3-21G basis predict
the tube to be an insulator, whereas VSXC/6-81)Gpro-
duces a metallic solution even at the distorted geometry.
Our findings suggest that the metallic solution for the
(5,0 tube with G symmetry is unstable. The same should
probably be true for th€6,0) tube with the G axis which
was found to be metallf as well. The energy differences
between the €and G structures for th€5,0) tube are rather
small, about 0.003 eV per carbon atom. Nevertheless, the
change in geometry and electronic structure is substantial.

V. CONCLUSIONS

In this paper, we have described an efficient implementa-
tion of a periodic DFT method for electronic-structure calcu-
lations with Gaussian basis sets. Energy derivatives with re-
spect to geometrical parametef@tomic forces and stress
tensoj are computed analytically to high accuracy using
techniques based on the FMM. This allows for the accurate
evaluation of harmonic frequencies using finite differences
of analytic forces. The high accuracy achieved by FMM in
the lattice summations seems to be crucial for avoiding nu-
merical instabilities in calculations with large Gaussian
bases. Our implementation extensively uses@{®&l) DFT
methodology developed recently for molecular calculations
and forms the Hamiltonian matrix i@(N) CPU time.
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