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Density functional for short-range correlation: Accuracy of the random-phase approximation
for isoelectronic energy changes

Zidan Yan, John P. Perdew, and Stefan Kurth*
Department of Physics and Quantum Theory Group, Tulane University, New Orleans, Louisiana 70118

~Received 7 December 1999!

Within a density-functional context, the random-phase approximation~RPA! for the correlation energy
makes a short-range error that is well suited for correction by a local spin density or generalized-gradient
approximation~GGA!. Here we construct a GGA for the short-range correction, following the same reliable
procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of
the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting
density functional is nearly local and predicts a substantial correction to the RPA correlation energy of an atom
but very small corrections to the RPA atomization energy of a molecule, which may by itself come close to
‘‘chemical accuracy’’ and to the RPA surface energy of a metal. A by-product of this work is a density
functional for the system-averaged correlation hole within RPA.
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I. INTRODUCTION

Density-functional theory1,2 is widely used for electronic
structure calculations in solid-state physics and quan
chemistry. Approximations~e.g., Ref. 3! for the exchange-
correlation energy as explicit functionals of the electron d
sity may be approaching a limit of accuracy. Further ac
racy can be achieved by using the Kohn-Sham one-elec
orbitals, which are implicit functionals of the density. Man
directions are being explored, e.g., Refs. 4–12. Here we s
discuss one we call RPA1, in which only the short-range
part of the correlation energy is represented by an exp
density functional.13

The random-phase approximation~RPA! of Pines14–16

gives the simplest finite estimate for the correlation ene
per particle of the uniform electron gas, and finds a natu
extension13,17,18to inhomogeneous systems within the Koh
Sham density-functional theory.1,2 The RPA ~using Kohn-
Sham and not Hartree orbitals! is exact for exchange an
long-range correlation17,18 but a poor approximation fo
short-range correlation. For the uniform electron gas at m
tallic densities, the RPA on-top correlation hole is much t
deep,19 making the correlation energy much too negativ
The short-range correction to the correlation energy for
system is, however, only weakly dependent upon the den
parameterr s5(3/4pn)1/3 and relative spin polarizationz
5(n↑2n↓)/n ~see Figs. 13 and 14 of Ref. 20!, and tends as
r s→0 to the ‘‘second-order exchange’’ energy,10.024
hartree/electron, independent ofz.

While the short-range correction is a major part of t
total correlation energy, it could make a much smaller c
tribution to isoelectronic~electron-number-conserving! en-
ergy differences. For example, the RPA spin susceptibility
the uniform gas~Table V of Ref. 21! is very close to the true
spin susceptibility, and even diverges at a density (r s'20)
close to that at which a recent quantum Monte Ca
calculation22 found a magnetic transition~see also Ref. 23!.
The RPA also predicts a metal-insulator transition,24 possibly
a Wigner crystallization, at a density (r s'60) close to that
PRB 610163-1829/2000/61~24!/16430~10!/$15.00
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found in the Monte Carlo calculation. Another example
the second-order coefficientCc(n) in the gradient expansion

Ec@n#5E d3r @nec
uni f~n!1Cc~n!u¹nu2/n4/31•••# ~1!

of the correlation energy for a slowly varying densityn(r ).
The RPA value forCc(n) is exact in the high-density limit,
and applicable18,25 at metallic densities; this coefficient i
derived isoelectronically by imposing a long-waveleng
density oscillation upon the uniform gas.

Recently, RPA calculations have been performed for s
consistent jellium surfaces.26–28 We have argued from sev
eral perspectives13,29 that the short-range correction to th
RPA surface energy may be only a few percent of the surf
exchange-correlation energy. RPA calculations have b
performed for jellium clusters,30–32 and those for bulk crys-
talline solids are on the horizon.33,34 We are not aware of
RPA calculations for the energies of atoms and molecu
but such calculations may be feasible by simplification35 of a
coupled-cluster code36 or modification37 of a second-order
Moeller-Plesset code.38

In previous work, Kurth and Perdew13 constructed a
generalized-gradient approximation for the short-range c
relation energy of an inhomogeneous system, and sugge
that its use together with RPA might achieve chemical ac
racy ~molecular atomization energies correct to 1 kcal/m
50.0434 eV/molecule). In this work, by a more reliab
construction of the GGA, we suggest that RPA by itself m
come close to chemical accuracy, since the revised cor
tions are very small. We still follow the basic idea of Re
13: Local-spin-density1,2 ~LSD! and generalized gradien
approximations3,39,40~GGA! are most accurate for the shor
range part of the exchange-correlation energy17,41 but fail in
the long-range limit. Therefore, an accurate functional can
constructed by combining RPA with the short-range piece
LSD or GGA correlation.42

Kurth and Perdew defined the short-range correlation
ergy as
16 430 ©2000 The American Physical Society
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PRB 61 16 431DENSITY FUNCTIONAL FOR SHORT-RANGE . . .
Ec,sr5Exc2Exc
RPA5Ec2Ec

RPA, ~2!

and then used either GGA or LSD to approximate this
ergy, e.g.,

Ec,sr
GGA5Ec

GGA2Ec
GGARPA, ~3!

whereEc
GGA andEc

GGARPAare the correlation energies eval
ated in GGA beyond and within RPA, respectively.

The approximation forExc , which we sometimes cal
RPA1, is

Exc
RPA15Exc

RPA1~Exc
GGA2Exc

GGARPA!. ~4!

In Eq. ~4!, Ec,sr
GGA5Exc

GGA2Exc
GGARPA provides a short-range

correction to RPA. But we can also write

Exc
RPA15Exc

GGA1~Exc
RPA2Exc

GGARPA!, ~5!

in which Exc
RPA2Exc

GGARPA provides a long-range correctio
to GGA exchange and correlation. Here the range is tha
the interelectronic separationu defined later.

For the GGA correlation energy, Kurth and Perdew us
the analytic form proposed by Perdew, Burke, a
Ernzerhof,3 ~PBE!

Ec
GGA@n↑ ,n↓#5E d3r n~r !@ec

uni f~r s ,z!

1H„r s ,z,t,ec
uni f~r s ,z!…#, ~6!

where r s is the local Wigner-Seitz radius@n53/(4pr s
3)

5kF
3/(3p2)#, z5(n↑2n↓)/n, wheren5n↑1n↓ is the total

electron density, andec
uni f(r s ,z),0 is the correlation energy

per particle of a uniform electron gas.21 Here t
5u“nu/(2fksn) is a dimensionless density gradient.ks

5A4kF /p is the Thomas-Fermi screening wave numb
and f5@(11z)2/31(12z)2/3#/2. ~We use atomic units in
which \5m5e251.)

The nonempirical PBE GGA of Eq.~6! was constructed to
satisfy known exact conditions, and was based largely u
a numerical real-space cutoff of the spurious long-range
of the second-order gradient expansion for the correla
hole,43 beyond RPA. Both RPA and beyond-RPA versions
ec

uni f can be readily found in Ref. 21, and the beyond-R
version ofH in Ref. 43. For the RPA version ofH, Kurth and
Perdew used the same analytic form ofH as beyond RPA,
changing only the inputec

uni f . Recently we have found tha
this expression forH is not appropriate in RPA. In this work
we will construct the RPA version ofH by fitting it to the
RPA numerical GGA results. We will then apply the ne
analytic short-range correlation functional to atoms, m
ecules, and jellium surfaces as in Ref. 13.

II. REAL-SPACE CUTOFF CONSTRUCTION OF A GGA
FOR THE SHORT-RANGE CORRELATION ENERGY

The exchange-correlation energy may be written17,18as an
integral over interelectronic separationsu:

Exc5
1

2E d3r E d3u
n~r !nxc~r ,r1u!

u
. ~7!
-

of

d

,

n
rt
n
f

-

Here nxc(r ,r1u) is the density atr1u of the exchange-
correlation hole about an electron atr , defined as

nxc~r ,r1u!5E
0

1

dlnxc
l ~r ,r1u!

5E
0

1

dl@^Cludn̂~r !dn̂~r1u!uCl&/n~r !2d~u!#,

~8!

wheredn̂(r )5n̂(r )2n(r ) is the density fluctuation operato
The integral overl is a coupling-constant integration, i
which Cl is the ground state of the Hamiltonian wit
electron-electron repulsionl/u, and with external potentia

vl(r ) adjusted to keep̂ Clun̂(r )uCl&5n(r ) fixed at the
physical orl51 density. Atl50, the system reduces to th
Kohn-Sham noninteracting reference, the correlation is co
pletely turned off, and the exchange-correlation hole
comes the exchange holenx5nxc

l50 . The correlation hole is
defined asnc5nxc2nx , and the correlation energyEc is
related to the correlation hole by

Ec5
1

2E d3r E d3u
n~r !nc~r ,r1u!

u
. ~9!

These holes satisfy the following exact conditions:

nx~r ,r1u!<0, ~10!

E d3u nx~r ,r1u!521, ~11!

and

E d3u nc~r ,r1u!50, ~12!

both beyond and within RPA~or other approximations base
upon the Dyson equation; see Appendix A!. The LSD is a
rather reliable approximation, because the LSD hole is
hole for a possible physical system~the uniform electron
gas! and thus satisfies all the above exact conditions. In
effort to improve upon LSD, one can expand the energy i
gradient expansion, and include theu“nu2 term. However,
this gradient expansion approximation~GEA! often does
worse than LSD,18,44 because the corresponding hole is n
the hole of any physical system, and so violates the ex
conditions Eqs.~10!–~12!.

Perdew, Burke, and Wang43 proposed a real-space cuto
procedure to overcome this problem, by removing unphy
cal long-range contributions to the GEA hole, thereby rest
ing Eqs.~10!–~12!. This procedure defines a numerical GG
that retains the good features of LSD, while improving t
description of the average hole~and therefore the energy! by
including the density gradient.

The spherically averaged and coupling-constant avera
numerical GGA correlation hole is43

nc
GGA~r s ,z,t,v !5f5ks

2@Ac~r s ,z,v !

1t2Bc~r s ,z,v !#u~vc2v !, ~13!
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whereAc is the local term, andBc the second order gradien
correction.v is a reduced separation on the Thomas-Fe
screening-length scale,v5fksu, andvc(r s ,z,t) is the upper
limit satisfying the sum rule

E
0

vc
dv 4pv2@Ac~r s ,z,v !1t2Bc~r s ,z,v !#50. ~14!

Once we use Eq.~14! to find vc , we can calculate the GGA
correlation energy per electron

ec
GGA~r s ,z,t !5f3E

0

vc
dv

4pv2

2v
@Ac~r s ,z,v !

1t2Bc~r s ,z,v !#, ~15!

or the gradient correction termH

H~r s ,z,t !5ec
GGA~r s ,z,t !2ec

uni f~r s ,z!. ~16!

The local termAc consists of a long-range partf̄ 1 and a
short-range partf̄ 2:

Ac~r s ,z,v !5@ f̄ 1~v !1 f̄ 2~r s ,z,v !#/4pv2. ~17!

The beyond-RPA expressions forf̄ 1 and f̄ 2 can be found
in Ref. 45, and that forBc in Ref. 43. For the RPA version
the expressions forf̄ 1 and Bc are unchanged. Since withi
RPA the on-top (u50) correlation hole of the uniform elec
tron gas and the corresponding cusp condition are diffe
from those beyond RPA, we need to modify the express
for the short-range partf̄ 2:

f̄ 2~v !5@2a12~a22a1b1!v1c1v21c2v31c3v4

1c4v5#exp@2d~z!~kFu/f!2#, ~18!

where the coefficients$ci% are functions ofr s and z, given
by Eqs.~38!, ~39!, ~43!, and~44! of Ref. 45. In Eq.~18!, only
these four coefficients need to be modified. Forc3 and c4,
we can still use their beyond-RPA analytic forms, but no
use the RPA version ofec

uni f as the input. The other two
coefficients,c1 and c2, which are chosen to reproduce th
value of the pair distribution function of the uniform electro
gas at zero separationu50 and its corresponding cusp co
dition, respectively, require new expressions.

The pair distribution functiongl(r ,r1u) is related to the
exchange-correlation hole at coupling strengthl,

nxc
l ~r ,r1u!5n~r1u!@gl~r ,r1u!21#. ~19!

The exchange part ofgl21 is

gx~r ,r1u!215gl50~r ,r1u!21, ~20!

and the rest is correlation. We defineg5gl51, and the
coupling-constant averageḡ. For the uniform electron ga
with density parameterr s ,45

guni f~r s ,z,u!5~11r s]/]r s!ḡ
uni f~r s ,z,u!. ~21!

As in Ref. 45, we modelḡuni f and then findguni f from Eq.
~21!. The cusp condition ongl

uni f(r s ,z,u) beyond RPA
is46,47
i

nt
n

dgl
uni f

du
U

u50

5lgl
uni fuu50 . ~22!

Within RPA,48 the cusp condition ongl
uni f(r s ,z,u) is

dgl
uni f ,RPA

du
U

u50

5l, ~23!

whencedḡuni f ,RPA/duuu5051/2. Note that Eq.~23! holds
for arbitrary spin polarization. The proof of this statement
sketched in Appendix B. By applying the RPA on-top pa
distribution function for the uniform electron gas and t
corresponding cusp condition~ see Appendix B for detailed
expressions!, we obtain within RPA

c1520.001 252 910.1244p

1
0.613 86

f5r s
2 @2ḡc

uni f,RPA~r s ,z,u50!# ~24!

and

c250.003 389 420.054 388p1
0.392 70

f6r s
3/2

, ~25!

where

ḡc
uni f ,RPA~r s ,z,u50!5ḡc

uni f ,RPA~r s ,z50,u50!

1z2@ ḡc
uni f ,RPA~r s ,z51,u50!

2ḡc
uni f ,RPA~r s ,z50,u50!],

~26!

is our assumedz dependence~similar to that beyond RPA!
for the correlation contribution to the RPA pair distributio
function at zero separation for the uniform electron gas. T
z50 andz51 limits for ḡc

uni f ,RPA(r s ,z,u50) are presented
in Appendix B. The other symbols are the same as thos
the beyond-RPA version@Eqs.~38! and ~39! of Ref. 45#.

Figures 1 and 2 show the RPA analogs of Figs. 3 and F
6 of Ref. 45 for the uniform-gas pair distribution functio
guni f and its coupling-constant averageḡuni f. We evaluate
ḡuni f by using the newc1 ,c2 ,c3 ,c4 and then obtainguni f

from Eq.~21!. The accurate match of the analyticguni f curve
to the numerical RPAguni f curve ~from Appendix B! indi-
cates that our analytic model forḡuni f has been properly
constructed.

Figures 3 and 4 show our analytic model for the corre
tion contribution to the coupling-constant average of the p
distribution function divided by the density paramete
ḡc

RPA,uni f/r s , as a function ofu/r s , for the spin-unpolarized
and polarized uniform gas. Figs. 7 and 8 of Ref. 49 prov
the exact RPA results. By comparing our analytic resu
with the exact ones, we can see that the analytic mode
Ref. 45, which was originally designed for the beyond-RP
uniform gas, with a minor change of its coefficients, is als
very accurate representation for the RPA uniform gas, fo
wide range of density parametersr s .
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Figures 5 and 6 show the short-range correlation con
bution to the coupling-constant average of the pair distri
tion function divided by the density parameter,ḡc,sr

uni f/r s , as a
function ofu/r s , for the spin-unpolarized and polarized un
form gas.ḡc,sr

uni f/r s is truly short-ranged, without the positiv

u24 long-range tail ofḡc
uni f/r s . With RPA and beyond-RPA

versions of the gradient expansion for the correlation h
well defined, we can proceed to the numerical GGA cal
lation: First we use Eq.~14! to find the cutoffvc , then use
this vc in Eq. ~13! to find nc , and finally Eq.~15! to find ec
or Eq. ~16! to find H.

By fitting to the numerical GGA results, we obtain th
RPA version ofH,

HRPA5gf3

3 lnF11
b

g
t2S 11j1ARPAt

21ARPA
2 t4

11j1ARPAt
21j2ARPA

2 t41ARPA
3 t6D G ,

~27!

FIG. 1. Our analytic model for the nonoscillatory part of th
RPA pair distribution functiong ~solid curve! and its coupling-

constant averageḡ ~dashed curve!, for a uniform electron gas with
density parameterr s52 in the spin-unpolarized case (z50). Also
shown are the exact numerical results~diamonds! from Eq. ~B4!.
~For the analogous figure beyond RPA, see Fig. 3 of Ref. 45.! Our
analytic model is similarly accurate forr s55 andr s510.

FIG. 2. Same as Fig. 1, but forz51.
i-
-

e
-

where

j153.812.0@f~ks /kF!t22.17#z4, ~28!

j256.219.0z4, ~29!

and

ARPA5
b

g
@exp~2ec

uni f ,RPA/gf3!21#21. ~30!

These are the RPA analogs of Eqs.~7! and ~8! of Ref. 3.
Figure 7 shows both the numerical and analytic sho

range correlation energies per electronec,sr
GGA versus the alter-

native reduced gradients5u“nu/2kFn5f(ks /kF)t for the
spin-unpolarized casez50. For energetically important re
gions of most physical systems,s ranges from 0 to 3. This
figure is the analog of Fig. 1~b! of Ref. 13. Compared with
that figure, the new curves are flatter, i.e., the newHRPA

results in a more local short-range correlation. Figures 8
9 are the same as Fig. 7, but forz50.5 andz51, respec-

FIG. 3. Our analytic model for the RPA correlation contributio
to the pair distribution function of an unpolarized (z50) uniform
electron gas divided by the density parameterr s , gc

uni f ,RPA/r s , as
a function ofu/r s . For the exact numerical results of Eq.~B4!, see
Fig. 7 of Ref. 49.

FIG. 4. Same as Fig. 3, but forz51.0.
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tively. Note that our Eq.~27! is not the result of a direct fit to
the numericalHRPA, but rather a fit to the numericalec,sr

GGA

5(ec
uni f1H)2(ec

uni f ,RPA1HRPA).
Kurth and Perdew13 calculated the total and short-rang

correlation energies for various atoms using LSD and GG
They found that the short-range correlation energy has a
sity functional that is rather local, and we find it even mo
local.

Görling and Levy50 showed that, under a uniform scalin
of the densityn(r )→ng(r )5g3n(gr ), the correlation en-
ergy of a finite system scales to a finite value asg→`, i.e.,

lim
g→`

Ec@ng#5Ec
(2)@n#, ~31!

whereEc
(2) is the second-order energy of Go¨rling and Levy

perturbation theory~GL2!. Kurth and Perdew used Eq.~9! of
Ref. 3 to evaluate this energy. Since we now use a new R
H, the analog of Eq.~9! of Ref. 3 becomes

Ec
(2),RPA5E d3r n~r !gf3 lnFZS 11j1Z1Z2

11j1Z1j2Z21Z3D G
~32!

FIG. 5. The short-range correlation contribution to the aver
over coupling constant of the pair distribution function for the u
polarized (z50) uniform electron gas divided by the density p

rameterr s , ḡc,sr
uni f/r s , as a function ofu/r s .

FIG. 6. Same as Fig. 5, but forz51.0.
.
n-

A

whereZ5xs2/f2. The definitions of all the other symbol
are the same as in Eq.~9! of Ref. 3, except that in RPAv has
a dependence onz: v50.046 64410.024 179/f3.

III. NUMERICAL RESULTS FOR ATOMS, MOLECULES,
AND JELLIUM SURFACES

Our refined results for the short-range correlation energ
of atoms in GGA and GGA GL2 are presented in Table
Compared to the old results,13 the present results are mor
local, in agreement with what we observed in Fig. 7.

For an accurate description of chemical processes, a
cise determination of molecular atomization energies is v
important. Table II displays our new results for the sho
range correlation contributionDc,sr to the atomization en-
ergy D of some small molecules in GGA and GGA GL2
The new GGA short-range contributions are significan
smaller in magnitude than the old ones. The smallness of

e
-

FIG. 7. GGA short-range correlation energy per particle,ec,sr
GGA

5ec
GGA2ec

GGARPA, as a function of the dimensionless reduced de
sity gradients5u“nu/(2kFn), for the unpolarized case (z50). s
measures how fast the density varies on the scale of the local F
wavelength. Thes→0 limit is ec,sr

LSD . The solid curves are from the
real-space cutoff procedure, while the diamonds are from the a
lytic expressions. Compare with Fig. 1~b! of Ref. 13.

FIG. 8. Same as Fig. 7, but forz50.5.
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PRB 61 16 435DENSITY FUNCTIONAL FOR SHORT-RANGE . . .
quantity suggests that RPA@or better, RPA1 of Eq. ~4!# can
accurately predict atomization energies of molecules. T
short-range contributions in GL2 are somewhat larger t
those beyond GL2. But in fact, second-order perturbat
theory, which works reasonably well for the total correlati
energy of an atom, is not nearly good enough for atomiza
energies of molecules.51

Jellium is a useful model for simple metals. In Ref. 1
Kurth and Perdew estimated jellium surface exchan
correlation energies by using the PBE GGA to make
short-range correction to the results of the full RPA calcu
tion performed by Pitarke and Eguiluz.26,27 Their RPA1 re-
sults of Eq. ~4! are extremely close to those in LSD, th

FIG. 9. Same as Fig. 7, but forz51.0.

TABLE I. Short-range correlation correctionsEc,sr5Ec

2Ec
RPA to the RPA energies of atoms and ions in LSD and in

new GGA of the present work. Also shown is the short-range p
of the Görling-Levy second-order energy, using the new GGA. A
functionals were evaluated with exchange-only optimized effec
potential~Ref. 58! densities. Energies in hartrees. For the hydrog
atom, the short-range correction to RPA is a self-interaction cor
tion. For comparison, the total GGA correlation energies for H
Ne, and Xe are20.0420, 20.3513, and22.9181 hartrees, respec
tively.

Atom Ec,sr
LSD Ec,sr

GGA Ec,sr
GGAGL2

H 0.0177 0.0169 0.0215
He 0.0367 0.0353 0.0427
Li1 0.0392 0.0373 0.0428
Be21 0.0406 0.0383 0.0428
Li 0.0541 0.0519 0.0649
Be1 0.0574 0.0549 0.0654
Be 0.0719 0.0694 0.0868
Ne61 0.0829 0.0790 0.0877
N 0.1361 0.1340 0.1598
Ne 0.2008 0.1984 0.2308
Ar 0.3654 0.3630 0.4216
Zn121 0.3929 0.3879 0.4225
Zn 0.6297 0.6293 0.7119
Kr 0.7598 0.7589 0.8569
Xe 1.1531 1.1527 1.2921
e
n
n

n

,
-

e
-

average relative deviation being within 1%. This confirm
the accuracy of the LSD approximation for the surface
ergy. In the present work, we reevaluate the short-range
relation energies for the jellium surface by using the n
RPA H @Eq. ~27!#, and combine them with the same RP
results of Refs. 26 and 27 in Table III. The new RPA1
estimates are still close to those of LSD, but are about
higher. The new estimates are also highly consistent w
those from the latest wave-vector interpolation approac29

and those predicted by the meta-GGA functional develo
by Perdew, Kurth, Zupan, and Blaha10 ~PKZB!. The surface
exchange-correlation energies from these three approa
agree among themselves to 1%.

We have found small,negativeshort-range corrections to
RPA atomization energies~Table II! and surface energie
~Table III!. An alternative short-range correction to RPA, t
time-dependent local-density approximation~TDLDA !, pro-
vides largerpositivecorrections26 to jellium surface energies

e
rt

e
n
c-
,

TABLE II. Short-range correlation contributionsDc,sr to the
atomization energiesD of some small molecules in LSD and in th
new GGA of the present work. Also shown is the short-range p
of the Görling-Levy second order energy, using the new GGA. A
functionals were evaluated with self-consistent PBE GGA densi
for the atoms and for the molecules at experimental geometries.
calculations were performed with a modified version of theCADPAC

program ~Ref. 60!. Energies in kcal/mol. (1 kcal/mol51.594
31023 hartree.! The mean atomization energyD for these 8 mol-
ecules is 198 kcal/mol.

Molecule Dc,sr
LSD Dc,sr

GGA Dc,sr
GGAGL2

H2 0.5 0.3 0.3
N2 0.1 20.2 21.4
O2 20.7 21.3 22.5
F2 20.5 21.3 22.6
CH4 20.8 22.6 24.0
NH3 20.1 21.3 22.6
H2O 20.4 21.4 22.4
HF 20.4 21.0 21.4

TABLE III. Estimates of the jellium surface exchange
correlation energysxc ~in erg/cm2) for realistic LSD density pro-
files of the jellium surface.r s is the bulk density parameter, in boh
Shown are the results in LSD, in RPA, in TDLDA~Ref. 26!, and in
the RPA1 approximation of Eq.~4!, which combines the RPA
results of Refs. 26 and 27 with our new GGA short-range corr
tion. (1 hartree/bohr251.5573106 erg/cm2.)

r s sxc
LSD sxc

RPA sxc
TDLDA sxc

RPA1

2.00 3354 3467 3533 3413
2.07 2961 3064 3125 3015
2.30 2019 2098 - 2060
2.66 1188 1240 - 1214
3.00 764 801 840 781
3.28 549 579 - 563
4.00 261 278 295 268
5.00 111 119 130 113
6.00 53 58 65 54
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~Table III!. However, TDLDA fails badly for the correlation
energies of the uniform electron gas, where it gives ab
twice the needed correction to RPA.27,52By construction, our
RPA1 of Eq. ~4! is exact for the uniform gas.

The surface energies in Table III were computed fro
realistic LSD electron densities for the jellium surface. Al
of interest are the more rapidly varying density profiles
the infinite barrier model53 ~IBM !. Table IV shows surface
exchange-correlation energies for the IBM, evaluated
RPA ~Ref. 27! and RPA1.

IV. CONCLUSIONS

In this work, by constructing a new GGA within RPA, w
have improved the accuracy of the generalized-gradient
proximation for the short-range correlation energy. While
RPA is not a good approximation for the total correlati
energy, it seems to be a surprisingly good approximation
certain changes in correlation energy, such as those that
in atomization or surface energies. We believe that there
useful synergy between the RPA, which is valid for e
change and long-range correlation, and the GGA, wh
should be accurate for the short-range correction to RPA

The equilibrium properties of solids~lattice constant, bulk
modulus, etc.! also sample isoelectronic energy differenc
and can be given accurately by the RPA. For example,
stabilized jellium model with effective valencez* 51,54 a
useful zero-order model for simple metals with 1.6<r s<6,
shows that the short-range correction to RPA probably
pands the lattice constant by only 0.7% or less.

It may be possible7 to implement Kohn-Sham RPA o
RPA1 @Eq. ~4!# self-consistently; the resulting electron sp
densitiesn↑(r ) andn↓(r ) are expected to be highly accurat

Let us write the short-range correction to RPA as

Ec,sr@n↑ ,n↓#5E d3r n~r !ec,sr~@n↑ ,n↓#;r !. ~33!

We have argued thatec,sr(@n↑ ,n↓#;r ) depends only weakly
upon the spin densitiesn↑ andn↓ . For qualitative purposes
we can regardec,sr as a positive constant of order 0.5 e
Then Eq.~33! contributesonly to those energy changes
that the electron number changes, such as ionization ene
or work functions which are decreased by the amountec,sr
from their RPA values. The correlation potentialvc,s(r )
5dEc /dns(r ) is shifted up by the constantec,sr , and the
linear response kerneld2Exc /dns(r )dns8(r 8) is unaffected.

TABLE IV. Surface exchange-correlation energiessxc ~in
erg/cm2) for the infinite-barrier-model density profile of the jellium
surface.r s is the bulk density parameter, in bohr. Shown are
results in LSD, in RPA~Refs. 26 and 27!, and in the RPA1 ap-
proximation of Eq.~4!, using our new GGA short-range correctio
For analytic parametrizations of ther s dependence within LSD and
RPA1, see Eq.~26! of Ref. 59.

r s sxc
LSD sxc

RPA sxc
RPA1

2.07 1226 1331 1294
4.00 180 198 189
6.00 56 62 58
ut

f

n

p-
e

r
ise
a

-
h

,
e

-

ies

A by-product of our work is a density functional for th
spherically and system-averaged exchange-correlation h

^nxc~u!&5
1

NE d3r n~r !E dVu

4p
nxc~r ,r1u! ~34!

within RPA, whereN5*d3r n(r ). A similar density func-
tional beyond RPA was presented in Ref. 43. The RPA h
has been employed already in the wave-vector interpola
approach to the metal surface energy.29

An alternative to the LSD or GGA short-range correctio
to RPA is the use of an exchange-correlation ker
f xc

l (r ,r 8;v), as in Ref. 52.
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APPENDIX A: PROOF OF THE SUM RULE FOR THE
EXCHANGE-CORRELATION HOLE WITHIN

AND BEYOND RPA

The exchange-correlation hole can be expressed in te
of the density-density response function as18

nxc~r ,r 8!5E
0

1

dlS 2
1

pn~r !
E

0

`

dv Im@xl~r ,r 8!#

2d~r2r 8! D . ~A1!

The response functionxl of the interacting system is relate
to the Kohn-Sham response functionxs via a Dyson-type
equation56 @see also Eq.~3! of Ref. 13# which can formally
be solved for

xl~r ,r 8,v!5E d3xGl
21~r ,x,v!xs~x,r 8,v!, ~A2!

whereGl
21 is the inverse of the integral operator

Gl~r ,r 8,v!5d~r2r 8!2E d3xxs~r ,x,v!

3S l

ux2r 8u
1 f xc

l ~x,r 8,v!D . ~A3!

Here, f xc
l (r ,r 8,v) is the exchange-correlation kernel at fr

quencyv.56 In the RPA, f xc
l vanishes identically.

To derive the sum rule on the exchange-correlation ho
we insert Eqs.~A2! and ~A3! into Eq. ~A1! and integrate

E d3r 8nxc~r ,r 8!

5212
1

pn~r !
E

0

1

dlE d3r 8E
0

`

dv

3ImE d3xGl
21~r ,x,v!xs~x,r 8,v!. ~A4!

e



a

e

e
a

at

t

y

ty-

of

s

of

cu-

er-

s

ry

g

or

PRB 61 16 437DENSITY FUNCTIONAL FOR SHORT-RANGE . . .
The second term on the right-hand side of this equation v
ishes because

E d3r 8xs~r ,r 8,v!50, ~A5!

which can easily be shown from the representation ofxs in
terms of the~orthonormal! Kohn-Sham orbitals@see Eq.~2!
of Ref. 13#. This proves the sum rule for the exchang
correlation hole,

E d3r 8nxc~r ,r 8!521, ~A6!

for any approximation for the exchange-correlation kern
as long as the density-density response function in this
proximation can be written in the form of Eq.~A2!. The sum
rule for the correlation hole then follows from the fact th
xl to zeroth order in the coupling constantl is just the
Kohn-Sham response functionxs , which leads to the exac
exchange hole~which integrates to21). From a physical
perspective, Eq.~A5! follows from the fact that the densit
response dn(r ,v)5*d3r 8xs(r ,r 8,v)dvs(r 8,v) of non-
interacting electrons to a potentialdvs(r 8,v)5c(v) must
vanish.

APPENDIX B: RPA ON-TOP CORRELATION HOLE AND
CUSP CONDITION FOR THE SPIN-UNPOLARIZED

UNIFORM ELECTRON GAS

We focus first on the spin-unpolarized case (z50). The
correlation part of the pair distribution functiongl(r ,r 8) at
interaction strengthl can be expressed in terms of densi
density response functions:

gc,l~r ,r 8!5
1

n~r !n~r 8!
F2

1

pE0

`

dv

3Im@xl~r ,r 8,v!2xs~r ,r 8,v!#G . ~B1!

Here,xs(r ,r 8,v) is the density-density response function
the noninteracting Kohn-Sham system, andxl(r ,r 8,v) is the
corresponding response function for the interacting system
coupling strengthl.

In the RPA, the Fourier transform

xl
uni f ,RPA~q,v!5E d3~r2r 8!exp@2 iq•~r2r 8!#

3xl
uni f ,RPA~r2r 8,v! ~B2!

of the density-density response function is given by

xl
uni f ,RPA~q,v!5

xs~kF ,q,v!

12~4pl/q2!xs~kF ,q,v!
, ~B3!

wherexs(kF ,q,v) is the Lindhard function, which depend
parametrically on the Fermi wave numberkF . By Eq. ~B1!,
the correlation part of the RPA pair distribution function
the uniform electron gas is then
n-

-

l,
p-

at

gc,l
uni f ,RPA~r s ,u!52

18p2l

kF
6u

E
0

`

dq
sin~qu!

q E
0

`

dv

3ImS xs~kF ,q,v!2

12~4pl/q2!xs~kF ,q,v!
D .

~B4!

By numerical integration of this expression, we have cal
lated the RPA pair distribution function at full coupling (l
51). The frequency integration is most conveniently p
formed on the imaginary axis~see, e.g., Ref. 15!. The results
are shown forr s52 as the diamonds in Fig. 1.

For the on-top value, gc
uni f ,RPA(r s ,z50,u50)

5gc,l51
uni f ,RPA(r s ,z50,u50), we fitted the numerical result

to the form

gc
uni f ,RPA~r s ,z50,u50!52

crs1ar s
21dr s

3

11br s1gr s
2

, ~B5!

where c50.7317, a50.890 58, d50.050 420, b
51.504 19, andg50.168 970. Herec is not a fit parameter,
but arises from the small-r s expansion of Eq.~3.9! of Ref.
55.

Integrating Eq.~B5! over r s , we obtain

ḡc
uni f ,RPA~r s ,z50,u50!5

1

r s
E

0

r s
drs8

3gc
uni f ,RPA~r s8 ,z50,u50!

52
1

r s
F~r s!, ~B6!

where

F~r s!50.149 20r s
212.614 28r s124.950 26

210.354 13 ln~111.504 19r s10.168 97r s
2!

110.288 79 lnS r s10.723 62

r s18.178 49D . ~B7!

To obtain the RPA pair correlation function for arbitra
spin polarizationz, one has to make the replacement

xs~kF ,q,v!→ 1

2
@xs„kF~11z!1/3,q,v…

1xs„kF~12z!1/3,q,v…# ~B8!

in Eq. ~B4!. Making use of the explicit form of the Lindhard
function ~see, e.g., Ref. 57!, one can deduce the spin scalin
relationship

gc
uni f ,RPA~r s ,z51,u50!52gc

uni f ,RPA~r s/2
4/3,z50,u50!

~B9!

by appropriate substitution of the integration variables. F
the coupling-constant average, one then obtains

ḡc
uni f ,RPA~r s ,z51,u50!52

2

r s/2
4/3

F~r s/2
4/3!.

~B10!
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The proof of the RPA cusp condition for arbitrary sp
polarization follows the lines of the original proof forz50
of Ref. 47. The cusp is related to the structure factorSl(q)
by

dgl
uni f

du
U

u50

5
3p

8kF
3

lim
q→`

$q4@12Sl~q!#%. ~B11!

In the RPA, the structure factor for arbitrary spin polarizati
z is given by

Sl
RPA~q!215212

3q2

4kF
3E0

`

dv

3ImF S 12
2pl

q2
@xs„kF~11z!1/3,q,v…

1xs„kF~12z!1/3,q,v…# D 21G . ~B12!

The integrand is nonzero only for those frequencies
which at least one of the two response functions has a n
r
n-

vanishing imaginary part. For largeq, this is the case only if
at least one of the two following conditions is satisfied f
0<z<1:

q2

2
2kFq~11z!1/3<v<

q2

2
1kFq~11z!1/3, ~B13!

q2

2
2kFq~12z!1/3<v<

q2

2
1kFq~12z!1/3. ~B14!

The frequency integral can then be split into three integr
one for which both of the above conditions are satisfied
multaneously, and two for which only one of the conditio
is true. For largeq, the integrands of these integrals can
expanded in a power series in 1/q2 and the frequency inte
grals up to order 1/q4 can be performed. The final result fo
the structure factor in the RPA for largeq is then

Sl
RPA~q!2152

8kF
3l

3pq4
1O~1/q6!, ~B15!

independent ofz. Insertion into Eq.~B11! then leads to Eq.
~23!.
.
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