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Within a density-functional context, the random-phase approxima®A) for the correlation energy
makes a short-range error that is well suited for correction by a local spin density or generalized-gradient
approximation(GGA). Here we construct a GGA for the short-range correction, following the same reliable
procedure used earlier to construct the GGA for the whole exchange-correlation energy: real-space cutoff of
the spurious long-range contribution to the gradient expansion of the hole around an electron. The resulting
density functional is nearly local and predicts a substantial correction to the RPA correlation energy of an atom
but very small corrections to the RPA atomization energy of a molecule, which may by itself come close to
“chemical accuracy” and to the RPA surface energy of a metal. A by-product of this work is a density
functional for the system-averaged correlation hole within RPA.

[. INTRODUCTION found in the Monte Carlo calculation. Another example is
the second-order coefficieit.(n) in the gradient expansion
Density-functional theory? is widely used for electronic
structure calculations in solid-state physics and quantum .
chemistry. Approximationge.g., Ref. 3 for the exchange- Ec[n]=f d3r[ne™f(n)+C(n)|Vn|?n*3+...] (1)
correlation energy as explicit functionals of the electron den-
sity may be approaching a limit of accuracy. Further accu- . ) .
f the correlation energy for a slowly varying densitfr).

racy can be achieved by using the Kohn-Sham one-electroff . ! ) N
orbitals, which are implicit functionals of the density. Many The RPA value foiC(n) is exact in the high-density limit,

directions are being explored, e.q., Refs. 4—12. Here we shd nd applicab®?® at metallic densities; this coefficient is
discuss one we call RPA, in' whi(,:h only the short-range erived isoelectronically by imposing a long-wavelength

. . ._density oscillation upon the uniform gas.
s::]ts?t; ;Zici%r:;ﬁt'on energy is represented by an exphufj Recently, RPA calculations have been performed for self-

_— 1416 consistent jellium surfacé8~?® We have argued from sev-

_The random-phase approximatidRPA) of Pines eral perspectivéd?® that the short-range correction to the
gives the simplest finite estimate for the correlation energ\rpa sy rface energy may be only a few percent of the surface
per particle of the uniform electron gas, and finds a naturaly hange-correlation energy. RPA calculations have been
extension®!"**to inhomogeneous systems within the Kohn- performed for jellium cluster®-32and those for bulk crys-
Sham density-functional theofy. The RPA (using Kohn-  tajline solids are on the horizdi3* We are not aware of
Sham and not Hartree orbitalés exact for exchange and RPA calculations for the energies of atoms and molecules,
long-range correlatiort*® but a poor approximation for put such calculations may be feasible by simplificatfef a
short-range correlation. For the uniform electron gas at meeoupled-cluster cod® or modificatiori” of a second-order
tallic densities, the RPA on-top correlation hole is much tooMoeller-Plesset cod®.
deep!® making the correlation energy much too negative. In previous work, Kurth and Perdét constructed a
The short-range correction to the correlation energy for thigjeneralized-gradient approximation for the short-range cor-
system is, however, only weakly dependent upon the densitgelation energy of an inhomogeneous system, and suggested
parameterr ;= (3/47n)® and relative spin polarizatiod  that its use together with RPA might achieve chemical accu-
=(n;—n;)/n (see Figs. 13 and 14 of Ref. R@nd tends as racy (molecular atomization energies correct to 1 kcal/mol
r«—0 to the “second-order exchange” energy;0.024  =0.0434 eV/molecule). In this work, by a more reliable
hartree/electron, independent &f construction of the GGA, we suggest that RPA by itself may

While the short-range correction is a major part of thecome close to chemical accuracy, since the revised correc-
total correlation energy, it could make a much smaller con+tions are very small. We still follow the basic idea of Ref.
tribution to isoelectronic(electron-number-conservingen-  13: Local-spin-densify? (LSD) and generalized gradient
ergy differences. For example, the RPA spin susceptibility oapproximation$3°°(GGA) are most accurate for the short-
the uniform gagTable V of Ref. 21 is very close to the true range part of the exchange-correlation enénd¥but fail in
spin susceptibility, and even diverges at a density~(20)  the long-range limit. Therefore, an accurate functional can be
close to that at which a recent quantum Monte Carloconstructed by combining RPA with the short-range piece of
calculatiorf? found a magnetic transitiofsee also Ref. 23  LSD or GGA correlatiorf?
The RPA also predicts a metal-insulator transittoppssibly Kurth and Perdew defined the short-range correlation en-
a Wigner crystallization, at a density & 60) close to that ergy as
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Ecor=Eyc— ERPA=E,—ERPA, 2) Here n,.(r,r+u) is the density at+u of the exchange-
' correlation hole about an electronratdefined as
and then used either GGA or LSD to approximate this en-

ergy, e.g., 1
. ed nxc(r,r+u)=f dan}.(r,r+u)
0
ESSAESGA_EGGARPA 3)
1 ~ ~
whereES®# andES ®*RPAare the correlation energies evalu- = f dN[(W,]8n(r)sn(r+u)|¥,)/n(r)—48(u)],
ated in GGA beyond and within RPA, respectively. 0
The approximation forE,., which we sometimes call (8)
RPA+, is

Where5ﬁ(r) = ﬁ(r) —n(r) is the density fluctuation operator.
+(Egs A Eg o ARPA. (4)  The integral overn is a coupling-constant integration, in
which W, is the ground state of the Hamiltonian with
electron-electron repulsion/u, and with external potential
v,(r) adjusted to keeg¥,|n(r)|¥,)=n(r) fixed at the

E)F(epA+ — EGGA| (ERPA_EGGARP (5) physical orA =1 density. At\ =0, the system reduces to the
¢ xe xe xe ' Kohn-Sham noninteracting reference, the correlation is com-
in which ERPA-ESCARPA provides a long-range correction pletely turned off, and the exchange-correlation hole be-
to GGA exchange and correlation. Here the range is that ofomes the exchange hatg=n};°. The correlation hole is
the interelectronic separatiandefined later. defined asn.=n,.—n,, and the correlation energk. is
For the GGA correlation energy, Kurth and Perdew usedelated to the correlation hole by
the analytic form proposed by Perdew, Burke, and

RPA+ _ ~RPA
Exc - Exc

In Eq. (4), ESSA=Eg - Ego”RPA provides a short-range

correction to RPA. But we can also write

1 n(ryng(r,r+u
Ernzerhof (PBE) ECZEJ d3rJ ey (r) c(u ). ©
ECAN, ,n1]=f d*r n(r)[ed"(rs.0) These holes satisfy the following exact conditions:
+HOS Lt (rs, D] (8) ny(r,r +u)=<0, (10

where rg is the local Wigner-Seitz radiu§n=3/(47rr§’)
=ki/(3m%)], {=(n;—n,)/n, wheren=n,+n, is the total f d3uny(r,r+u)=-1, (11)
electron density, anél"'"(r4,£) <0 is the correlation energy
per particle of a uniform electron ga5. Here t and
=|Vn|/(2¢ksn) is a dimensionless density gradierk
=\/4kg/m is the Thomas-Fermi screening wave number,
and ¢=[(1+¢)?3+(1-¢)??)/2. (We use atomic units in
which=m=e?=1.) - o
The nonempirical PBE GGA of E¢6) was constructed to both beyond and W'th'n_ RF’/éor other approximations l:_)ased
satisfy known exact conditions, and was based largely upoHpon the_Dyson equation; see Appendix Ahe LSD is a
a numerical real-space cutoff of the spurious long-range pa'rfather reliable approximation, because the_ LSD hole is the
of the second-order gradient expansion for the correlatiOIIf'OIe for a possﬂ?le_ physical syste(the uniform _e_lectron
hole3 beyond RPA. Both RPA and beyond-RPA versions of92a9 and_thus satisfies all the above exact conditions. In an
Egnif can be readily found in Ref. 21, and the beyond-RPAefforf[ to improve upon LSI_Z), one can exzpand the energy in a
version ofH in Ref. 43. For the RPA version &f, Kurth and gradient expansion, and include tfién|* term. However,

Perdew used the same analytic formHbfas beyond RPA, this gradient exg‘ﬂ]s'on approximatid®EA) .often dqes
. i unif worse than LSO®% because the corresponding hole is not
changing only the inpué;” . Recently we have found that

this expression foH is not appropriate in RPA. In this work, ;[:T)?u;‘ig:)eng szr;)(/lg)h_y(sigf\ | system, and so violates the exact
we will construct the RPA version dfl by fitting it to the ' )
RPA numerical GGA results. We will then apply the new Perdew, Burke, and Waftijproposed a real-space cutoff

tic short laton functional to at | procedure to overcome this problem, by removing unphysi-
anaiytic short-range correlation functional to atoms, mol-q, long-range contributions to the GEA hole, thereby restor-
ecules, and jellium surfaces as in Ref. 13.

ing Eqgs.(10)—(12). This procedure defines a numerical GGA
that retains the good features of LSD, while improving the
Il. REAL-SPACE CUTOFF CONSTRUCTION OF A GGA description of the average haland therefore the energiy
FOR THE SHORT-RANGE CORRELATION ENERGY including the density gradient.
The spherically averaged and coupling-constant averaged
numerical GGA correlation hole 4%

f d3u ny(r,r+u)=0, (12)

The exchange-correlation energy may be writtéfias an
integral over interelectronic separatioms

. @)

N CA(rs, L tw) = ¢k Aclrs,{v)
Exc:lf d3rf dgun(r)nxc(r,rJru) )
2 u +1“B¢(rs,{v)]0(ve—v), (13



16 432 ZIDAN YAN, JOHN P. PERDEW, AND STEFAN KURTH PRB 61

whereA. is the local term, an@, the second order gradient
correction.v is a reduced separation on the Thomas-Fermi du

screening-length scale= ¢ksu, andv(rs,{,t) is the upper
limit satisfying the sum rule

fovcdv477v2[AC(rS,§,v)+tch(rS,§,v)]=O. (14)

Once we use Eql14) to find v, we can calculate the GGA
correlation energy per electron

A, L= [ a0 Adrao)
+12B(rs,{,v)], (15
or the gradient correction teri
H(rs. 0= ®Ars .t —eg™(rs,0). (19

The local termA. consists of a long-range paﬂ and a
short-range part,:

Alrs,Lv)=[f1(v)+fa(r,0))dm2 (A7)

The beyond-RPA expressions foy andf, can be found
in Ref. 45, and that foB. in Ref. 43. For the RPA version,

if
d9.” =20y yo (22)

u=0

Within RPA/8 the cusp condition og!"(r¢,Z,u) is
dgunif,RPA
A

T = )\, (23)

u=0

whencedg"""RPAdul,_,=1/2. Note that Eq.(23) holds
for arbitrary spin polarization. The proof of this statement is
sketched in Appendix B. By applying the RPA on-top pair
distribution function for the uniform electron gas and the
corresponding cusp conditignsee Appendix B for detailed
expressions we obtain within RPA

¢,= —0.001 252 9 0.1244

0.61386 — .
M [200""FPArg,.Lu=0)] (29
S

and

0.39270
c,=0.003 389 4-0.054 389+ e (25)
S

the expressions fof; and B, are unchanged. Since within where

RPA the on-top (=0) correlation hole of the uniform elec- o o

tron gas and the corresponding cusp condition are different  gU" RPAr_ £ u=0)=gi""RPAr, z=0u=0)
from those beyond RPA, we need to modify the expression

for the short-range palfft:

f_z(U):[_al_(az_albl)U+C]_U2+ CQU3+ 03U4

+cqu°lexd —d(9) (keu/ ¢)?], (18

where the coefficientéc;} are functions ofrg and ¢, given
by Egs.(38), (39), (43), and(44) of Ref. 45. In Eq(18), only
these four coefficients need to be modified. Egrand c,,

+ 79" A L=1u=0)

—ge" A, ¢=0u=0)],
(26)

is our assumed dependencésimilar to that beyond RPA
for the correlation contribution to the RPA pair distribution
function at zero separation for the uniform electron gas. The

we can still use their beyond-RPA analytic forms, but nowz=0 and¢=1 limits for gu""RPAr,£,u=0) are presented

use the RPA version oé'"" as the input. The other two

in Appendix B. The other symbols are the same as those in

coefficients,c,; andc,, which are chosen to reproduce the the beyond-RPA versiofEgs.(38) and(39) of Ref. 45.

value of the pair distribution function of the uniform electron

Figures 1 and 2 show the RPA analogs of Figs. 3 and Fig.

gas at zero separatian=0 and its corresponding cusp con- 6 of Ref. 45 for the uniform-gas pair distribution function

dition, respectively, require new expressions.
The pair distribution functiom, (r,r +u) is related to the
exchange-correlation hole at coupling strength

nk(r,r+u)=n(r+u)g,(r,r+u)—1]. (19
The exchange part af, —1 is
Oy(r,r+u)—1=g,_o(r,r+u)—1, (20

and the rest is correlatign. We defime=g, -4, and the

g""f and its coupling-constant averag&™'’. We evaluate

g""" by using the newc,,c,,cs,c4 and then obtairg“™'
from Eq.(21). The accurate match of the analyg¢"'’ curve
to the numerical RPAY“"" curve (from Appendix B indi-

cates that our analytic model fa'"'f has been properly
constructed.

Figures 3 and 4 show our analytic model for the correla-
tion contribution to the coupling-constant average of the pair
distribution function divided by the density parameter,

. _ —RPAunIf : : :
coupling-constant averagg For the uniform electron gas Jc " /s, as a function ofu/r, for the spin-unpolarized

with density parameters,*

gumf(rs,{,U)Z(1+r30/<9l’s)amif(rsv§’u)' (21)

As in Ref. 45, we modet""f and then findg""'f from Eq.

(21). The cusp condition org'"'(rs,Z,u) beyond RPA
iS46,47

and polarized uniform gas. Figs. 7 and 8 of Ref. 49 provide

the exact RPA results. By comparing our analytic results

with the exact ones, we can see that the analytic model of
Ref. 45, which was originally designed for the beyond-RPA

uniform gas, with a minor change of its coefficients, is also a
very accurate representation for the RPA uniform gas, for a
wide range of density parameters.
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FIG. 1. Our analytic model for the nonoscillatory part of the

RPA pair distrib_ution functiong (solid curvg and its coupling- FIG. 3. Our analytic model for the RPA correlation contribution
constant averagg (dashed curve for a uniform electron gas with 4 the pair distribution function of an unpolarized=0) uniform
density parameters=2 in the_ spln-unp(_)Iarlzed casé=£0). Also electron gas divided by the density parameter ggnif,RPA/rSl as
shown are the exact numerical resultsamonds from Eq. (B4). 5 fnction ofulr,. For the exact numerical results of H&4), see
(For the analogous figure beyond RPA, see Fig. 3 of Rej. @&r Fig. 7 of Ref. 49.
analytic model is similarly accurate fog=5 andr¢ = 10.
i _ ‘where

Figures 5 and 6 show the short-range correlation contri-

bution to the coupling-constant average of the pair distribu- £,=3.8+ 2.0 p(ks/kp)t—2.17| 2%, (28

tion function divided by the density parametgffy,/rs, as a
function ofu/rg, for the spin-unpolarized and polarized uni-

form gas.gg’r‘sirf/rS is truly short-ranged, without the positive gnd
u~* long-range tail og.""/r. With RPA and beyond-RPA p
versions of the gradient expansion for the correlation hole _P _ _unif,RPA/ _ 43\ _ 47-1
well defined, we can proceed to the numerical GGA calcu- Arpa y[exp( €c vy =11 (30
lation: First we use Eq(14) to find the cutoffv., then use
thisv, in Eq. (13) to find n., and finally Eq.(15) to find €,
or Eqg.(16) to find H.

By fitting to the numerical GGA results, we obtain the
RPA version ofH,

£,=6.2+9.00%, (29

These are the RPA analogs of E¢8). and(8) of Ref. 3.
Figure 7 shows both the numerical and analytic short-
range correlation energies per electztfr‘frA versus the alter-
native reduced gradierg=|Vn|/2ken= ¢(ks/kg)t for the
spin-unpolarized casé=0. For energetically important re-
gions of most physical systemsranges from 0 to 3. This

HRPA= y 3 SN . :
figure is the analog of Fig.(h) of Ref. 13. Compared with
B ( 1+ & Appat2+ Aot )] that figure, the new curves are flatter, i.e., the ne®F A
XIn| 1+ —t2 , results in a more local short-range correlation. Figures 8 and
Y\ 1+ & Arpa®+ EARp A+ ARp A 9 are the same as Fig. 7, but f6=0.5 and{=1, respec-

(27)

gzm' f,RPA /,,.8
0.1 T T T T T T T T T

Pair Distribution Function

1 I 1 1 I I 1 I N 0.6 I 1 1 I 1 L

o 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
Scaled Distance ufrs Scaled Distance ufrs

FIG. 2. Same as Fig. 1, but f@gr=1. FIG. 4. Same as Fig. 3, but f@gr=1.0.
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0.05 .
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FIG. 5. The short-range correlation contribution to the average FIG. 7. GGA short-range correlation energy per partiefeS,*

over coupling constant of the pair distribution function for the un- = g M- FCGGARPA, as a function of the dimensionless reduced den-

polarized ¢=0) uniform electron gas divided by the density pa- Sity gradients=|Vn|/(2ken), for the unpolarized case/£0). s

rameterr . Emif/rs as a function ofu/r measures how fast the density varies on the scale of the local Fermi
’ c,sr ’ N

wavelength. Thes—O0 limit is e53°. The solid curves are from the
tively. Note that our Eq(27) is not the result of a direct fit to real-space cutoff procedure, while the diamonds are from the ana-
the numericaHRPA, but rather a fit to the numericalS”  Iytic expressions. Compare with Fig(t of Ref. 13.
:(eunif+H)_(Eunif,RPA+HRPA) ’
C Cc )
Kurth and Perdew calculated the total and short-range whereZ= ys? 2. The definitions of all the other symbols

correlation energies for various atoms using LSD and GGAare the same as in E(®) of Ref. 3, except that in RP& has

They found that the short-range correlation energy has a derr dependence oft w=0.046 644+ 0.024 1794°.
sity functional that is rather local, and we find it even more

local.
Gorling and Levy® showed that, under a uniform scaling Ill. NUMERICAL RESULTS FOR ATOMS, MOLECULES,
of the densityn(r)ﬂny(r)zy3n(yr), the correlation en- AND JELLIUM SURFACES

ergy of a finite system scales to a finite valueyas«, i.e., . . .
9y Y Our refined results for the short-range correlation energies

lim E¢[n,]=E@[n], (31) of atoms in GGA and GGA GL2 are presented in Table I.

Yo Compared to the old resultd the present results are more
whereE? is the second-order energy of ffing and Levy local, in agreement with what we observed in Fig. 7.
perturbation theoryGL2). Kurth and Perdew used E€@) of ~FOr an accurate description of chemical processes, a pre-
Ref. 3 to evaluate this energy. Since we now use a new RPAISE determination of.molecular atomization energies is very
H, the analog of Eq(9) of Ref. 3 becomes important. Table Il displays our new results for the short-

range correlation contributiol; s, to the atomization en-
ergy A of some small molecules in GGA and GGA GL2.
The new GGA short-range contributions are significantly
32 smaller in magnitude than the old ones. The smallness of this

E(Cz)’RPA=fd3rn(r)y¢3ln

. 1+ &,72+ 272
14+ &7+ 6,2%2+7°

gest fr. %A (hartree)
0.3 T T T T T T T T T 0.0258 T T T T T
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FIG. 6. Same as Fig. 5, but f@gr=1.0. FIG. 8. Same as Fig. 7, but f@g=0.5.
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€564 (hartree) TABLE II. Short-range correlation contributiond s, to the
0.025 T T T T atomization energieA of some small molecules in LSD and in the
@@ooo@Oéeao =00 .
r, =05 Ceeol® Ts =0 new GGA of the present work. Also shown is the short-range part

of the Galing-Levy second order energy, using the new GGA. All
functionals were evaluated with self-consistent PBE GGA densities
for the atoms and for the molecules at experimental geometries. The
calculations were performed with a modified version of thepPac
program (Ref. 60. Energies in kcal/mol. (1 kcal/mel1.594
X102 hartree) The mean atomization energy for these 8 mol-
ecules is 198 kcal/mol.

0.02

0.0158

0.01

Mol | ALSD AGGA AGGAGLZ
0.005 | . olecule C,sr c,sr c,sr

H, 0.5 0.3 0.3

0 s \ . \ . N 0.1 -0.2 -1.4

0 0.5 1 15 2 2.5 3 0o, -0.7 -13 —-25

§ F, -05 -1.3 -26

FIG. 9. Same as Fig. 7, but f@gr=1.0. CH, —-0.8 —26 —4.0

NH3 —-0.1 —-1.3 —2.6

quantity suggests that RAAr better, RPA- of Eq. (4)] can H,0 —04 —1.4 -24
accurately predict atomization energies of molecules. The HF —-04 -1.0 -14

short-range contributions in GL2 are somewhat larger thamn
those beyond GL2. But in fact, second-order perturbation
theory, which works reasonably well for the total correlationaverage relative deviation being within 1%. This confirmed
energy of an atom, is not nearly good enough for atomizatioithe accuracy of the LSD approximation for the surface en-
energies of molecule¥. ergy. In the present work, we reevaluate the short-range cor-
Jellium is a useful model for simple metals. In Ref. 13, relation energies for the jellium surface by using the new
Kurth and Perdew estimated jellium surface exchangeRPA H [Eq. (27)], and combine them with the same RPA
correlation energies by using the PBE GGA to make thgesults of Refs. 26 and 27 in Table Ill. The new RPA
short-range correction to the results of the full RPA calcula-estimates are still close to those of LSD, but are about 2%
tion performed by Pitarke and Eguild%?” Their RPA+ re-  higher. The new estimates are also highly consistent with
sults of Eq.(4) are extremely close to those in LSD, the those from the latest wave-vector interpolation apprddch,
and those predicted by the meta-GGA functional developed
TABLE I. Short-range correlation correction€, ,=E, Py Perdew, Kurth, Zupan, and BlafidPKZB). The surface
—ERPAto the RPA energies of atoms and ions in LSD and in theeXxchange-correlation energies from these three approaches
new GGA of the present work. Also shown is the short-range parBgree among themselves to 1%.
of the Guling-Levy second-order energy, using the new GGA. All  We have found smalhegativeshort-range corrections to
functionals were evaluated with exchange-only optimized effectiveRPA atomization energieéTable 1l) and surface energies
potential(Ref. 58 densities. Energies in hartrees. For the hydrogen(Table Ill). An alternative short-range correction to RPA, the
atom, the short-range correction to RPA is a self-interaction correctime-dependent local-density approximatigfbDLDA), pro-

tion. For comparison, the total GGA correlation energies for He,vides largempositivecorrectioné® to jellium surface energies
Ne, and Xe are-0.0420, —0.3513, and-2.9181 hartrees, respec-

tvely. TABLE Ill. Estimates of the jellium surface exchange-

Atom ELSD EGGA EGGAGL2 correlation energyr, (in erg/cn?) for realistic LSD density pro-
c.sr st c.st files of the jellium surfacer is the bulk density parameter, in bohr.

H 0.0177 0.0169 0.0215 Shown are the results in LSD, in RPA, in TDLD®Ref. 26, and in
He 0.0367 0.0353 0.0427 the RPA+ approximation of Eq.4), which combines the RPA
Li* 0.0392 0.0373 0.0428 results of Refs. 26 and 27 with our new GGA short-range correc-
B2+ 0.0406 0.0383 0.0428 tion. (1 hartree/boRe=1.557x 10° erg/cnt.)
T R A T N (N R
Be 0.0719 0.0694 0.0868 2.00 3354 3467 3533 3413
Neb+ 0.0829 0.0790 0.0877 2.07 2961 3064 3125 3015
N 0.1361 0.1340 0.1598 2.30 2019 2098 - 2060
Ne 0.2008 0.1984 0.2308 2.66 1188 1240 - 1214
Ar 0.3654 0.3630 0.4216 3.00 764 801 840 781
Znt?* 0.3929 0.3879 0.4225 3.28 549 579 - 563
Zn 0.6297 0.6293 0.7119 4.00 261 278 295 268
Kr 0.7598 0.7589 0.8569 5.00 111 119 130 113

Xe 1.1531 1.1527 1.2921 6.00 53 58 65 54
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TABLE IV. Surface exchange-correlation energieg. (in A by-product of our work is a density functional for the

erg/cnt) for the infinite-barrier-model density profile of the jellium spherically and system-averaged exchange-correlation hole
surface.rg is the bulk density parameter, in bohr. Shown are the

results in LSD, in RPARefs. 26 and 27 and in the RPA- ap- 1 3 dQ,
proximation of Eq.(4), using our new GGA short-range correction. (Nye(U)) = Nj d°r n(r)f Enxc(r'r+ u) (34)
For analytic parametrizations of tig dependence within LSD and
RPA+, see Eq(26) of Ref. 509. within RPA, whereN= [d3r n(r). A similar density func-
tional beyond RPA was presented in Ref. 43. The RPA hole
rs o’ ore A oRPAT has been employed already in the wave-vector interpolation
approach to the metal surface enefgy.
2.07 1226 1331 1294 An alternative to the LSD or GGA short-range corrections
4.00 180 198 189 to RPA is the use of an exchange-correlation kernel
6.00 o6 62 o8 f*.(r,r';w), as in Ref. 52,
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of interest are the more rapidly varying density profiles of

the infinite barrier modéf (IBM). Table IV shows surface ~ APPENDIX A: PROOF OF THE SUM RULE FOR THE

exchange-correlation energies for the IBM, evaluated in EXCHANGE-CORRELATION HOLE WITHIN

RPA (Ref. 27 and RPAt. AND BEYOND RPA

The exchange-correlation hole can be expressed in terms
IV. CONCLUSIONS of the density-density response functiort®as

In this work, by constructing a new GGA within RPA, we 1 1 -
have improved the accuracy of the generalized-gradient ap- nxc(r,r')zf d)\( - —f do Im[ x,(r,r")]
proximation for the short-range correlation energy. While the 0 mn(r) Jo
RPA is not a good approximation for the total correlation
energy, it seems to be a surprisingly good approximation for — 5(r—r’)>. (A1)
certain changes in correlation energy, such as those that arise

in atomization or surface energies. We believe that there is gy,o response functiog, of the interacting system is related
useful synergy between the RPA, which is valid for eX-iy the Kohn-Sham response functiqn via a Dyson-type

change and long-range correlation, and the' GGA, Whic}bquatioﬁs [see also Eq(3) of Ref. 13 which can formally
should be accurate for the short-range correction to RPA. 5 «i1ved for

The equilibrium properties of solidfattice constant, bulk
modulus, etg.also sample isoelectronic energy differences, , 3 1 )
and can be given accurately by the RPA. For example, the xn(r.r ,w)ZJ d°XGy (X, 0) xs(X, 1", @),  (A2)
stabilized jellium model with effective valencg =1,>* a e . .
useful zero-order model for simple metals with £6<6,  WhereG, ~ is the inverse of the integral operator
shows that the short-range correction to RPA probably ex-

pands the lattice constant by only 0.7% or less. G, (r,r', )= 5(r_r')_f d3Xxs(r,X, )
It may be possibleto implement Kohn-Sham RPA or

RPA+ [Eqg. (4)] self-consistently; the resulting electron spin

densitiesn; (r) andn,(r) are expected to be highly accurate. x( + fic(x,r',w)) . (A3)
Let us write the short-range correction to RPA as Ix—r']

Here,fﬁc(r,r’,w) is the exchange-correlation kernel at fre-
Ecoln ’ni]:f drn(r)eco([n.nin). (33 quencyw.”® In the RPA,f} vanishes identically.
' ' To derive the sum rule on the exchange-correlation hole,

We have argued that, «,([n; .n, :r) depends only weakly we insert Eqs(A2) and (A3) into Eq.(Al) and integrate

upon the spin densities, andn, . For qualitative purposes, 5
we can regarce. i, as a positive constant of order 0.5 eV. d7r"ny(r,r’)

Then Eq.(33) contributesonly to those energy changes in

that the electron number changes, such as ionization energies 1 (1 s, [

or work functions which are decreased by the amagny, =1 wn(r)fo d)‘f d*r fo dev
from their RPA values. The correlation potential ,(r)
=0E;/on,(r) is shifted up by the constar, ., and the

linear response kerne&PE,./on,(r)én,. (r') is unaffected.

xlmj d3x G H(r,X,0) xs(X,I', 0). (A4)
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The second term on the right-hand side of this equation van- _ 1872\ (= sin(qu) (=
ishes because gunitRPAY Uy =— f dq J’ dw
‘ kéu Jo a Jo
J dsrlxs(ryr’vw)zoa (AS) le XS(kFaqaw)z )
1- (47N G%) xs(Ke 0, @) |

which can easily be shown from the representatiory oin

terms of the(orthonormal Kohn-Sham orbital§see Eq.(2) (B4)
of Ref. 13. This proves the sum rule for the exchange-By numerical integration of this expression, we have calcu-
correlation hole, lated the RPA pair distribution function at full coupling. (
=1). The frequency integration is most conveniently per-
d3r ry=—1, A6 formed on the imaginary ax(see, e.g. Ref. 15The results
f "Nl (A6) are shown for =2 as the diamonds in Fig. 1.

unif,RP — —
for any approximation for the exchange-correlation kernel, E?irf'Rpa(h? f%tuofo) V?\llltjaef’ittga the Arflr;riliric?;{r recs)ZJIts
as long as the density-density response function in this ap- Ye =1 s:{=0u=0),

proximation can be written in the form of EGA2). The sum to the form

rule for the correlation hole then follows from the fact that 2 3
Crgtarg+org

X, to zeroth order in the coupling constantis just the guMtRPAY . r=0u=0)=— , (B5)
Kohn-Sham response functigp,, which leads to the exact ¢ 1+ Brg+ yr§
exchange holdwhich integrates to—1). From a physical where c=0.7317, a=0.89058, 5=0.050420, 3

perspective, Eq(A5) follows from the fact that the density
response on(r,w)= [d3 " xs(r,r',®)dv(r’,w) of non-
interacting electrons to a potentidb4(r',w)=c(w) must
vanish.

=1.504 19, andy=0.168970. Here is not a fit parameter,
but arises from the smatl; expansion of Eq(3.9) of Ref.
55.

Integrating Eq.(B5) overrg, we obtain

APPENDIX B: RPA ON-TOP CORRELATION HOLE AND — i 1(rs
unlf,RPArr (=0u=0)=— dr!
CUSP CONDITION FOR THE SPIN-UNPOLARIZED 9c s ! redo S
UNIFORM ELECTRON GAS

unif,RP ’ — —
We focus first on the spin-unpolarized cage=Q). The *Ge A(rs §=0u=0)

correlation part of the pair distribution functiag (r,r’) at
interaction strengti. can be expressed in terms of density- =— k), (B6)
density response functions: s

where
g, () — _Erdw F(rg)=0.149 202+ 2.614 28+ 24.950 26
' n(ryn(r’) mJo )
~10.35413 101+ 1.504 19+ 0.168 979)
XImLx(r,r’, )= xs(r,r',o)]|{. (Bl 1028879 r<+0.7236 .
' (o +8.17849" B7)

Here, x<(r,r'’, ) is the density-density response function of
the noninteracting Kohn-Sham system, andr,r’, o) is the
corresponding response function for the interacting system
coupling strength.

To obtain the RPA pair correlation function for arbitrary
Spin polarization, one has to make the replacement

1
In the RPA, the Fourier transform Xs(Ke .0, 0)— S [xs(Ke(1+ 0Y3.q,w)
. _ 1113
X;nlf,RP%q’w):fd3(r_rr)exn:_iq.(r_rr)] +XS(kF(1 g) 1q1(1))] (Bg)
. in Eq. (B4). Making use of the explicit form of the Lindhard
X Y UNERPAT — 1 ) (B2)  function(see, e.g., Ref. 370one can deduce the spin scaling
relationship

of the density-density response function is given by , ,
g™ AT (= 1u=0)= 29" " *PATy2*, (= 0u=0)
unif,RP _ XS(kFiqvw) (Bg)
o Ng.0)= 1— (47N G?) xo(k w) (B3) by appropriate substitution of the integration variables. For
RRECA R the coupling-constant average, one then obtains
where xs(kg ,g,w) is the Lindhard function, which depends
parametrically on the Fermi wave number. By Eq. (B1), Emif,RP/Yr (=1u=0)=—
the correlation part of the RPA pair distribution function of ¢ s ' r2%3
the uniform electron gas is then (B10

F(rg2*3).
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The proof of the RPA cusp condition for arbitrary spin vanishing imaginary part. For largg this is the case only if
polarization follows the lines of the original proof f@=0 at least one of the two following conditions is satisfied for
of Ref. 47. The cusp is related to the structure fa8giq) 0=7¢<1:

by q2 q2
g™’ 3 ?—qu(1+ HP<w= 7+qu(1+ O3 (B13)
o =0z im{a1-S(@1)}.  (B1Y
U lu—o 8Bkf q-= o o
1/3 1/3
In the RPA, the structure factor for arbitrary spin polarization o kKea(1—- ) s o= o +keq(1-0)™  (B14)
{ is given by

The frequency integral can then be split into three integrals,
392 (= one for which both of the above conditions are satisfied si-
SPPAq) —1=—1- —3f do multaneously, and two for which only one of the conditions
4kgJo is true. For largey, the integrands of these integrals can be
expanded in a power series ingi/and the frequency inte-
(1_ ZL;‘[XS(kF(lJF O3 q,0) grals up to order ]f_ can be performed. The final result for
the structure factor in the RPA for larggis then

X1m

3

8k
(B12) S ) - 1= Fﬁ +O(1/9°), (B15)
37q

-1
+Xs(kF(1—£)”3.q.w)]) -

The integrand is nonzero only for those frequencies foindependent of. Insertion into Eq(B11) then leads to Eq.
which at least one of the two response functions has a non23).
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