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Fractional excitations in the Luttinger liquid

K.-V. Pham, M. Gabay, and P. Lederer
Laboratoire de Physique des Solides, associe´ au Centre National de la Recherche Scientifique,

UniversitéParis–Sud, 91405 Orsay, France
~Received 10 September 1999; revised manuscript received 20 January 2000!

We reconsider the spectrum of the Luttinger liquid~LL ! usually understood in terms of phonons~density
fluctuations!, and within the context of bosonization we give an alternative representation in terms of fractional
states. This allows us to make contact with the Bethe Ansatz which predicts similar fractional states. As an
example we study the spinon operator in the absence of spin rotational invariance and derive it from first
principles: we find that it is not a semion in general; a trial Jastrow wave function is also given for that spinon
state. Our construction of the spectroscopy based on fractional states leads to several unique physical insights:
in the low-energy limit, we find that theSz50 continuum of gapless spin chains is due to pairs of fractional
quasiparticle-quasihole states which are the one-dimensional counterpart of the Laughlin fractional Quantum
Hall effect quasiparticles. The holon operator for the Luttinger liquid with spin is also derived. In the presence
of a magnetic field, spin-charge separation is not realized any longer in a LL: the holon and the spinon are then
replaced by new fractional states that we are able to describe.
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I. INTRODUCTION

A. Motivations of this work

One of the most striking properties of some strongly c
related systems is fractionalization, which is the existence
elementary excitations carrying only part of the quant
numbers of the constituent particles of the system. The m
famous example is probably the charge one-third Laug
quasiparticle, which is the elementary excitation of the fr
tional quantum Hall fluid at fillingn51/3.1 Its existence was
recently confirmed in a set of shot noise experiments.2 The
earliest example of fractionalization in condensed-ma
physics is, however, found in one dimension: the exact s
tion of the Hubbard model3 by the Bethe Ansatz4 revealed
that the charge and spin of the electron split into two exc
tions with independent dynamics, known as the holon a
the spinon.5 Faddeev and Takhtajan later showed that
same spinon is also the elementary excitation of the o
dimensional~1D! Heisenberg model: the magnon~the usual
Goldstone boson! is replaced by two spinons generating
continuum for DS51 excitations.6,7 This property of the
Hubbard model is known as spin-charge separation an
generic of so-called Luttinger liquids~LL !: LL constitute a
universality class for gapless one-dimensional models s
as the Heisenberg chain, the Hubbard model, and thet2J
model.8 Luttinger liquids are non-Fermi liquids: Landa
quasiparticles9 are not elementary excitations of the LL an
as a consequence the electron Green’s function show
quasiparticle pole~this property is true both for the LL with
spin and for the spinless LL!. Haldane, who coined the nam
of LL, conjectured that 1D gapless models would have
same low-energy physics as that of the Tomonaga-Luttin
model. For energies smaller than the bandwidth,10–12 the lat-
ter model is a fixed point of the renormalization gro
~RG!.13 In 1D, bosonization allows us to transform th
Tomonaga-Luttinger model into a Gaussian acoustic Ham
tonian describing free phonons;14 the considerable succes
and popularity of bosonization stems from the fact that
PRB 610163-1829/2000/61~24!/16397~26!/$15.00
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the computations are straightforward because the effec
Hamiltonian is that of a free bosonic field. Another perspe
tive on the LL is provided by conformal field theory~CFT!
which describes two-dimensional~or 111) critical theories
with conformal invariance; this has allowed to identify th
Luttinger liquid universality class as the set ofc51 CFT’s,15

i.e., the set of all models that flow under RG towards t
Gaussian free boson Hamiltonian.16 CFT has allowed to for-
malize the finite-size analysis of Luttinger liquids first intr
duced by Haldane.17,18,8 In terms of the Gaussian Hamil
tonian, the LL theory can be described as
phenomenological theory characterized by the following
rameters:u which is a velocity for collective modes andK
which is proportional to the compressibility of the system

Yet, although the LL description is supposedly quite w
established through the formalisms of bosonization or C
and despite the fact that exact solutions~Bethe Ansatz! show
the existence of fractional states in the spectrum of sev
Luttinger liquids, there exists no systematic study of fra
tional excitations in the LL to the best of the authors’ know
edge. Moreover, in the framework of the bosonization f
malism, it is sometimes stated that the only physica
relevant excitations of a LL are phonons, since the effect
Hamiltonian is just that of acoustic phonons. As we sh
below this statement is incorrect. Conformal field theory
an alternative to bosonization which does stress the spe
scopic aspects: yet, application to the study of fractional
citations in a LL has been limited to the spinon in the case
SU~2! symmetry, which is the situation relevant for th
Heisenberg chain.19 Fractional excitations must exist in
Luttinger liquid if the Bethe Ansatz is correct but as far
the authors are aware, the characterization of these very
conventional fractional states, through either bosonization
CFT, is mostlyterra incognitaas the following list of issues
may show.

~1! DS51 excitations for the Heisenberg chain form
continuum of pairs of spinons. When an Ising anisotropy
introduced, in the massless regime@with obvious notations:
16 397 ©2000 The American Physical Society
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uJzu<Jx (5Jy)# the continuum still exists and evolve
smoothly as a function of the anisotropyD5Jz /Jx .7 The
continuum is again ascribed to pairs of spinons.20 It is intu-
itively clear that these spinons should be in some sense
formations of the SU~2! spinon. We will derive in this pape
creation operators for these non-SU~2! spinons using the
bosonization method.

In the case of SU~2! symmetry, trial wave functions fo
these spinons can be found by making use of the exact s
ability of the Haldane-Shastry~HS! chain.21 The HS model
shares the properties of the Heisenberg chain: it is a gap
SU~2! symmetric spin chain with a continuum of spinon e
citations. Its ground state and spinon wave functions22 are
remarkably similar to those one would write for boson
Laughlin states at fillingn51/2,

Cgs~x1 , . . . ,xN!5)
i , j

~zi2zj !
2, ~1.1!

Cspinon~z0!5)
i

~zi2z0!)
i , j

~zi2zj !
2, ~1.2!

zi5expi
2p

L
xi , ~1.3!

wherexi is the coordinate of a spin down, andx0 that of the
spinon.23 We will exhibit similar wave functions for the
spinon in the absence of SU~2! symmetry. SU~2! spinons are
semions22 ~anyons with a statistics intermediate between t
of fermions and bosons!: we will show that the statistics is
affected when an anisotropy is introduced.

A continuum is also found by the Bethe ansatz forDSz
50 transitions.24 Low-lying excitations are described in tha
approach as two-string states in the string formalism cust
ary to the Bethe Ansatz. This description is similar to th
given for theDS51 continuum of the isotropic chain. In th
latter case it is quite clear that a spin-1/2 should be ascr
to each of the~pseudo! ‘‘hole’’ states in the string, which
leads to the spinon interpretation since each state should
tribute symmetrically to the spin-flip.6 For DSz50 transi-
tions, the totalz spin components of the excitations add up
0 and the continuum results from the excitation of partic
hole pairs. For the isotropic chain, this continuum is gen
ated by spin-1/2 spinon-antispinon pairs. By contrast, for
XY chain theDSz50 continuum is due to particle-hole pai
of magnonlike spinSz51 excitations. The case of the isotro
pic Heisenberg chain for which spin-1/2 spinons are
volved both in theDSz50 and theDSz51 continuum is
therefore incidental. The important lesson to be learned
that in the presence of an Ising anisotropy, theDSz51 and
DSz50 continua may involve different fractional spin state
in the first case we have spinons,20 but in the second case th
spinon identification is not always correct. What happens
the case of an arbitrary anisotropy will be dealt with in th
paper.

~2! The holon appearing in the exact solution of the Hu
bard model is a spinless charge one excitation.5 The issues
raised for the spinon~operator, wave function, statistics! ex-
tend naturally to the holon.
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~3! Spin-charge separation is an asymptotic property
the Hubbard model valid in the low-energy limit. When
magnetic field is applied Frahm and Korepin found that sp
charge decoupling was not realized even in the low-ene
limit.25 In this paper we derive the new excitations replaci
the holon and the spinon.

~4! In the context of the Calogero-Sutherland~CS!
model26 the existence of fractional excitations similar
Laughlin quasiparticles was suggested.27 In a variant of the
standard LL known as the chiral LL used to describe ed
of a FQHE sample, Laughlin quasiparticles do appear but
existence of such states follows from that of the same e
tations in the bulk.28 In the CS model the proposal was trig
gered by the similarity of the ground state with that of t
two-dimensional~2D! Laughlin wave functions and by spe
cial selection rules. The ground state is26

C~x1 , . . . ,xN!5)
i , j

uzi2zj ul, ~1.4!

zi5expi
2p

L
xi , ~1.5!

wherel is a coupling constant for the 1/r 2 interaction po-
tential of the CS model. The CS model is a LL~Ref. 18! and
the LL parameter is justK51/l. A pseudoparticle formal-
ism similar to that of the Bethe Ansatz can be introduced a
for the restricted case of rational couplingsl5p/q special
selection rules are found for the dynamical structure factop
pseudoholes~a pseudohole is a hole in the Fermi sea
pseudomomenta! must be accompanied in any excitation b
q pseudoparticles.29 For a charge (21) pseudoparticle, this
means one has a charge 1/l5K for the pseudohole. In the
interpretation of those selection rules it is proposed to vi
the CS model as a gas of noninteracting pseudoparticles
anyonic statisticspl and one rewrites the ground state as
anyonic wave function) i , j (zi2zj )

l. The pseudoholes ar
particle hole conjugates of these anyons: the main modifi
tion with the noninteracting case being the new select
rule; a wave function for these pseudoholes consistent w
those interpretations is then) i(zi2z)) i , j (zi2zj )

l which
has the correct charge and statistics. The pseudohole is th
fore identified as a Laughlin quasiparticle. It exists for rat
nal couplings and carries the rational charge 1/l.

There are, however, several limitations to those view
Firstly, these considerations are only valid for rational co
plings ~the pseudoparticle selection rules cannot be exten
to irrationall): the physics of the CS model is by contra
completely continuous with the coupling and does not d
criminate between rational and irrational couplings. The i
possibility to describe rational and irrational couplings on t
same footing means the representation is not adequate.
ondly, a disymmetry between particle and hole excitation
introduced.

In a parallel strand of ideas, Laughlin quasiparticles w
also proposed in studies of transport in a LL. The basis of
argument is that for a LL with an impurity potential a char
K and not a charge unity is backscattered at the impu
location~whereK is the LL parameter, i.e., the conductan
of the LL!.30 The impurity potential can be rewritten as
hopping potential for a chargeK state whose exchange st
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tistics is pK as seen from the commutation relations~i.e.,
anyonic!. But for K51/(2n11) these states are just tho
given by Wen for the Laughlin quasiparticles of his chir
LL: this suggests to identify these states as Laughlin qu
particles. The main difficulty in that argument is that it reli
on the introduction of an impurity potential in the LL: th
obscures the question of the existence or not of a Laug
quasiparticle in the pure nonchiral Luttinger liquid. In sum
mary, what is missing is a proof that states similar to Lau
lin quasiparticles might be exact eigenstates of the LL bo
Hamiltonian ~i.e., of the RG fixed point in the low-energ
limit !. The existence of Laughlin quasiparticles for the no
chiral LL for arbitrary couplings must then be considered
this point as an unproved conjecture.

The long list of issues we have brought up in points~1!–
~4! above should convince the reader that a thorough dis
sion of fractional excitations for Luttinger liquids within th
formalisms of bosonization or CFT remains to be done. T
is what motivated us to re-examine in that paper the sp
trum of Luttinger liquids. We want to stress that although t
previous examples concern integrable models, the deta
physics of such integrable models is not really our m
interest: what matters for us is the universal low-energy c
tent of these theories and of course we will be unable to
anything through bosonization on the high-energy phys
Although it seems to be taken for granted that the excitati
of a LL are the holon and the spinon on account of the Be
Ansatz studies of the Hubbard model, we are not aware
any existence proof of such fractional excitations whene
the model is nonintegrable: this is so because any proof m
resort to the universality hypothesis, that is to the LL a
bosonization frameworks. The theoretical formalism we w
to introduce aims at bridging that gap by focusing on
universal structure of fractional excitations of Luttinger li
uids through the bosonization method.

The structure of the paper will be as follows: Sec. I is
introduction to the topics considered in the paper. In Sec.
we give a short review of the LL physics in order to set t
notations used throughout the paper; the issues discuss
the present section will be amplified in Sec. I B 2 in whi
we present the standard view on excitations of the LL.
Sec. II we will show that an alternative eigenstate basis
be built: that quasiparticle basis allows a natural discuss
of fractional states. In Sec. III we will generalize our analy
to the LL with spin. When a magnetic field is added on to t
Hubbard model, spin-charge separation no longer occu25

The standard spin-charge separated Luttinger liquid theo
not applicable any more. We will introduce in Sec. III B
general framework related to theK topological matrix of
Wen’s chiral Luttinger liquids,28 which yields simple criteria
of spin-charge separation in terms of aZ2 symmetry: we will
be able then in Sec. III C to derive the fractional excitatio
which replace the holon and the spinon. The general
theory we have introduced will then be applied to the Hu
bard model in a magnetic field in Sec. III D in which w
explain the relation between our approach and the forma
of the dressed charge matrix due to Frahm and Korepin.
us mention that Sec. II of this paper expands on a sh
version which contained results in the case of a spin
LL,32 whereas Sec. III presents totally new material.
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B. The Luttinger liquid

1. Notations

This section will define the notations employed throug
out the paper. We exclusively deal with Luttinger liquids a
therefore when considering some specific models such as
Heisenberg spin chain or the Hubbard model we implici
assume that we are working in the LL part of their pha
diagrams. The whole physics of the LL is embodied in t
following Hamiltonian:

HB5
u

2E0

L

dx K21@¹F~x!#21K@¹Q~x!#2 ~1.6!

supplemented by the so-called bosonization formulas.
work on a ring of lengthL. u andK are the LL parameters.F
can be interpreted as a displacement field for phonons, w
Q is a superfluid phase; indeed the particle and current d
sities are defined as

r~x!2r052
1

Ap
¹F~x!, ~1.7!

j ~x!5
1

Ap
¹Q~x!. ~1.8!

Renormalized current. Actually j (x) is a bare current den-
sity which corresponds to the correct one only in the non
teracting caseK51: the continuity equation shows that th
correct current density is renormalized and is

j R~x!5uK j~x! ~1.9!

~the Fermi velocity has been set to unity!. We will discuss in
Sec. II the meaning of such a renormalization.

The particle operators for bosons and right and left m
ing fermions, respectively, are given as

CB~x!5:expiApQ~x!:, ~1.10!

CF,R~x!5:expiAp@Q~x!2F~x!#:expikFx, ~1.11!

CF,L~x!5:expiAp@Q~x!1F~x!#:exp2 ikFx
~1.12!

~in the following we will assume that these operators a
normal ordered!. kF5pN0 /L is the Fermi momentum wher
N0 is the number of particles which is fixed by the chemic
potential. Q and P5¹F are canonical conjugate boso
fields,

@Q~x!,P~y!#5 id~x2y!. ~1.13!

The zero modes of the charge and current density
respectively,

N̂5N01Q̂5E
0

L

r~x!dx5N02E
0

L 1

Ap
¹F dx,

~1.14!

Ĵ5E
0

L

j ~x!dx5E
0

L 1

Ap
¹Q~x!dx. ~1.15!
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Q̂ has integral eigenvalues as befits a charge operator; in
bosonization mapping, the charge quantization is taken
account by the topological quantization of the phase fieldF.
Similarly, since*0

L j (x)dx is a closed line integral~around
the LL!, it is a quantized number: this is just the topologic
quantization of the superfluid phase; the normalization of
fields have been chosen so thatĴ is an integer. For fermions
Q̂5N11N2 and Ĵ5N12N2 where N1 and N2 are, re-
spectively, the~integral! number of~bare! electrons added to
the ground state at the right and left Fermi points. The c
struction we have reviewed above is due to Haldane.34

Integrating the Fourier expansions of the charge and
rent density gives

Q~x!5Q01
Ap

L
Ĵx1

1

AL
(
nÞ0

Qnexpi
2pn

L
x, ~1.16!

F~x!5F02
Ap

L
Q̂x1

1

AL
(
nÞ0

Fnexpi
2pn

L
x.

~1.17!

Note that these fields are not periodic: this allows for
above-mentioned topological excitations. We demand
the boson or fermion operators are physical objects and
they are periodic on the ring:CB/F(x)5CB/F(x1L); this
then implies the following selection rules on the eigenvalu
Q andJ of the zero modesQ̂ and Ĵ:

bosons: J even integer, ~1.18!

fermions: Q2J even integer. ~1.19!

Both Q and J are integers. The zero modes are sometim
extracted from the definition of the fermion operator whi
defines theU6 operators, first built by Heidenreich an
Haldane for the Tomonaga-Luttinger model,31,8

U65expiAp~Q06F0!. ~1.20!

It will be useful to consider the commutation properties
the following operators:

Va,b~x!5:exp2 iAp@aQ~x!2bF~x!#:. ~1.21!

Using the Campbell-Haussdorf formula, one finds

Va,b~x!Va,b~y!5Va,b~y!Va,b~x!e2 ipab sgn(y2x),
~1.22!

where sgn(x) is the sign function, which shows in particula
that CF(x) is a fermionic operator. We define the exchan
statistics of an operator per

O~x!O~y!5O~y!O~x!exp2 iu sgn~y2x!. ~1.23!

For instance,u5p for fermions.

2. Excitations

Until the work of Heidenreich31 and subsequently o
Haldane,8 the only excitations considered in the Gauss
model were the bosonic phonon~or plasmon14! modes. But
the Hamiltonian contains a second part corresponding to
he
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energies of states with nonzero charge or current with res
to the ground state. In reciprocal space, the Gaussian Ha
tonian becomes

HB5
u

2 (
qÞ0

K21PqP2q1Kq2QqQ2q1
pu

2L
S Q̂2

K
1KĴ2D .

~1.24!

We have split the Hamiltonian into the phonon part and
nonbosonic zero mode part. The first term can indeed
rewritten as

Hphonon5 (
qÞ0

uuquS bq
1bq1

1

2D ~1.25!

with the phonon operators

bq5AKuqu
2 S Qq2

q

Kuqu
FqD , ~1.26!

bq
15AKuqu

2 S Q2q2
q

Kuqu
F2qD . ~1.27!

The second term in the Hamiltonian is standard in conform
field theory; it corresponds to finite size corrections to t
energy when one adds particles or creates persistent cur
in the Luttinger liquid. The corresponding states are built
means of Haldane’sU6 operators which act as ladder oper
tors in Fock space.8 This (Q,J) part of the Hamiltonian is
often called in CFT a zero-mode part. The correspond
excitationsmay, however, carry momentum. A nonzeroJ
excitation creates indeed a persistent current with momen
JkF . These states are therefore nondispersive since their
mentum may only assume the discrete valuesJkF .

The spectrum of the Hamiltonian results from a convo
tion of plasmon excitations and of these (Q,J) excitations as
is apparent in Figs. 1 and 2: two linear plasmon branches
from each local minimum of the energy obtained for t
zero-mode states (Q,J). It is important to note that there ar

FIG. 1. Spectrum of the Gaussian model with a bosonic F
space in the chargeQ sector. The energy at zero momentum
D(Q)5puQ2/(2L) as a function ofQ the number of particles
added to the system. The spectrum for fermionic Fock space
identical if Q is an even integer. The continuum is enclosed with
the straight lines which are supported by the parabolic envel
pu(k/kF)2/(2L).
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selection rules on the allowed values of (Q,J), which refer
back to the quantum statistics of the particles: as reviewe
the preceding section, the Gaussian model can be consid
either for bosons or fermions, which results in differe
bosonization formulas. For bosons,J is constrained to be an
even integer while for fermions,Q andJ must have the sam
parity. This then leads to two different spectra as can be s
from Figs. 1 and 2: for instance, for bosons the stateQ
51,J50) is available while it is forbidden for fermions
conversely (Q51,J51) is available to fermions but not t
bosons. Thus we have two different theories: the sa
Hamiltonian leads to different properties depending
whether we consider a Fock space of bosons or a Fock s
of fermions.34 We will call the LL with bosonic~fermionic!
selection rules: the bosonic~fermionic! LL. For the bosonic
LL, as depicted in Fig. 1 the spectrum in arbitrary char
sectors has the same form but for a shift in energies: in
charge sectorQ one must add the constantpuQ2/(2L) to the
energy. The same energies are found for the fermionic LL
charge sectors for whichQ is an even integer, but ifQ is an
odd integer there is a new spectrum with local minima
momenta6kF and notk50 ~Fig. 2!.

In the rest of the paper we refer to this parametrization
the spectrum in terms of phonons and zero modes as
zero-mode basis; this is to be distinguished from the qu
particle basis that we will build later. A property which wi
prove crucial for the rest of the discussion is the fact tha
the free-fermion case a quasiparticle basis exists as an a
native to the zero-mode basis: instead of the zero-modes
sis, it is indeed possible to parametrize the spectrum in te
of the usual Landau quasiparticles. Below we show tha
similar quasiparticle basis can be built in the interacting ca
While fractional quasiparticles do occur in exactly solvab
models~the holon, the spinon!, scant contact had been mad
with the bosonization approach as mentioned earlier. In
low-energy limit, using the bosonization formalism, we w
directly recover the fractional excitations predicted in t
Bethe Ansatz, with the advantage that the simplificatio
brought by the low-energy limit will allow a complete cha
acterization giving, for instance, easy access to statis
phases.

FIG. 2. Spectrum of the Gaussian model for fermionic Fo
spaces in the case of charge sectors for whichQ is an odd integer.
Notice that the energy has now local minima for momentak5
61,63,65, . . . ~in units of kF) instead ofk50,62,64, . . . .
in
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II. FRACTIONAL EXCITATIONS OF THE SPINLESS
LUTTINGER LIQUID

This section is divided as follows: first, we discuss t
property of chiral separation which is central to the phys
of fractionalization; then, we exhibit fractional quasiparticl
for the bosonic LL before turning to the fermionic LL fo
which we will find a different set of elementary excitation

A. Chiral separation

1. Chiral vertex operators and fractionalization

The Gaussian model is endowed with a very basic pr
erty which is that of chiral separation, i.e., we can split it in
two commuting parts corresponding to right or left propag
tion of the fields. This is a property which is systematica
used by CFT in the analysis of conformally invariant sy
tems. Indeed,

HB5
u

2E0

L

dx K21P~x!21K@¹Q~x!#2, ~2.1!

⇒F ]x
22

1

u2
] t

2GQ~x,t !50. ~2.2!

More precisely we introduce the following chiral fields:

Q6~x!5Q~x!7
F~x!

K
~2.3!

which are related to the phonon operators by

q.0: bq5AKuqu
2

Q1,q , ~2.4!

q,0: bq5AKuqu
2

Q2,q . ~2.5!

In terms of these fields the Hamiltonian becomes

HB5H11H2 , ~2.6!

H65
uK

4 E
0

L

dx:@]xQ6~x!#2: ~2.7!

5 (
6q.0

uuqu:bq
1bq :1

pu

LK
S Q̂6KĴ

2
D 2

. ~2.8!

H1 only contains right-moving phonons and similarly fo
H2 with left-moving phonons. It is clear also tha
@H1 ,H2#50. Let us show now that these fieldsQ6 are
chiral; they obey the equal-time commutation relations,

FQ6~x!,7
K

2
]yQ6~y!G5 id~x2y!, ~2.9!

which implies that the momentum canonically conjugate
Q6 is PQ6

57(K/2)]xQ6 . The equations of motions fo
these fields are

u]xQ657] tQ6 . ~2.10!
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ThusQ6(x,t)5Q6(x7ut) which means that we have ch
ral fields indeed. The superfluid phase has therefore b
parametrized asQ(x,t)5 1

2 @Q1(x2ut)1Q2(x1ut)#.
One may define chiral density operators as well as

corresponding chiral charges as

r6~x!5
1

2Ap
]xF6~x!5

dr~x!6K j ~x!

2
, ~2.11!

Q̂65
Q̂6KĴ

2
. ~2.12!

Those chiral densities obey the anomalous~Kac-Moody!
commutation relations

@r6~x!,r6~y!#57
iK

2p
]xd~x2y!. ~2.13!

Let us now consider the injection ofQ particles with a
momentumq and currentJ. In that case, the plasmon tot
momentum is equal toq2J@kF1(pQ/L)#. In the bosoniza-
tion formalism, the operator creating this state is

VQ,J~q!5
1

AL
E

0

L

dx ei (q2JkF)x:exp2 iAp~QQ2JF!:.

~2.14!

This can also be rewritten as

VQ,J~q!5
1

AL
E

0

L

dx ei (q2JkF)xexp2 iApQ1Q1~x!

3exp2 iApQ2Q2~x!. ~2.15!

As a function of time

VQ,J~q,t !5
1

AL
E

0

L

dx ei (q2JkF)xexp2 iApQ1Q1~x2ut!

3exp2 iApQ2Q2~x1ut!. ~2.16!

There is therefore a splitting into two counterpropagat
states. For noninteracting electrons the chiral chargesQ6 are
integers sinceK51 and the operators exp2iApQ6Q6(x
7ut) are just those ofQ6 Landau quasiparticles. But in th
general case this is not true anymore: we will therefore h
states carrying fractional charges.

We now define the chiral vertex operators which appea
in the previous expression as

VQ6

6 ~x!5exp2 iApQ6Q6~x!, ~2.17!

where the superscript6 refers to the direction of propaga
tion. They obey the following commutation rules:

@r~x!,VQ6

6 ~y!#5Q6d~x2y!VQ6

6 ~x!, ~2.18!

@Q̂,VQ6

6 ~x!#5Q6VQ6

6 ~x!, ~2.19!

@ Ĵ,VQ6

6 ~x!#5
Q6

K
VQ6

6 ~x!, ~2.20!
en

e

g

e

d

which shows they carry chargesQ65(Q6KJ)/2 which are
nonintegral in general. The above operator identity me
that the charge is ‘‘sharp:’’ by ‘‘sharp’’ we mean that th
charge found is not a quantum average (^Q& is not necessar-
ily quantized of course!. This is a point we want to stres
because this means that these quantum states are genu
fractional. This shows then that if one injectsQ particles
with current J in a LL, one should observe a chargeQ1

5(Q1KJ)/2 state propagating to the right at velocityu and
a chargeQ25(Q2KJ)/2 going to the left with velocity
2u. For instance, let us inject an electron exactly at the ri
Fermi point: this is a (Q51,J51) excitation~with no plas-
mon excited!; there would then be fractionalization into
charge (11K)/2 state going to the right and a charge
2K)/2 going to the left.

The most important property of these fractional states
that they are exact eigenstates of the Gaussian Hamilton
The proof requires a proper definition of their Fourier tran
form because they are anyons, as will be shown shortly: fr
Eq. ~1.22! it is clear indeed that the commutation relatio
are anyonic with an anyonic phase

u56p
Q6

2

K
. ~2.21!

Due to its anyonic characterVQ6

6 (x) does not obey periodic

boundary conditions; if we use the expressions of the fie
F andQ @Eqs.~1.17! and ~1.16!#, we immediately find that

VQ6

6 ~x1L !5exp6 i2p
Q6

2

K
VQ6

6 ~x!. ~2.22!

The Fourier transform is then defined as

VQ6

6 ~qn!5
1

AL
E

0

L

dx exp2 i S 2p

L
n6

2p

L

Q6
2

K D x VQ6

6 ~x!,

~2.23!

with a pseudomomentumqn quantized as

qn5
2p

L
n6

2p

L

Q6
2

K
~2.24!

5qn6
2p

L

Q6
2

K
~2.25!

~where we have defined a phonon partqn of the momentum!.
The operatorsVQ6

6 (qn) are such that~1! VQ6

6 (q)uC0& is

an exact eigenstate of the chiral HamiltonianH6 with energy

E~Q6 ,qn!5Fuuqnu1
pu

2L

Q6
2

K G , ~2.26!

where uC0& is the interacting ground state~see the Appen-
dix!. It has a linear dispersion.

~2! The states created by theVQ6

6 (qn) to which one adds

the phonon excitations form a complete set. This is obvio
because the statesVQ,J(x) span the full Fock space.35
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2. The LL spectrum in terms of fractional quasiparticles

Let us consider Figs. 1 and 2 which show the spectrum
the LL Hamiltonian in various charge sectors and ask
following question: what happens when one addsQ particles
to the system~i.e., in the charge sectorQ)? In the standard
view of the LL spectrum based on the phonon and ze
modes basis, the dynamics of the charge added to the L
unclear because it is concealed in the zero modes. The
rametrization of the spectrum in terms of the zero modes
the phonons does not allow us to find what happens once
chargeQ is added to the system because that choice of b
involves the use of nondynamical states~Haldane’sUpm op-
erators, which describe the zero modes!. By contrast the qua-
siparticle basis only involves states that have a dynamics~the
phonons and the fractional states! and we are therefore abl
to tell what happens to the charge, how much of it will mo
to the right, and so forth: if we consider the two branch
starting fromk5JkF in the charge sectorQ, the right branch
corresponds to a right-moving fractional excitation with li
ear dispersion and with chargeQ15(Q1KJ)/2, while the
left branch is due to a left-moving fractional state wi
charge Q25(Q2KJ)/2. The continuum in between th
branches simply results from the creation of the two fr
tional excitations with both nonzero momentumq1,n and
q2,n @on the right branch, a chargeQ25(Q2KJ)/2 is also
created but it has zero momentumq2,n50, and conversely
on the left branch#.

The direct way to find out how the chargeQ will behave
is to exhibit the quantum states which will describe t
propagation of the charge. This is what the quasiparticle
sis does because it directly considers the states involve
the dynamics of the charge. Of course, the two bases~the
quasiparticle basis and the zero-mode basis! are mathemati-
cally equivalent and therefore lead to identical physi
therefore the charge dynamics can also in principle be de
mined in the zero-mode basis, but in the quasiparticle ba
we have the benefit that the spectroscopy immediately
us the fate of the charge added to the system. In sharp
trast, in the zero-mode basis, the spectroscopy is not us
because the states used in that basis are the phonons~which
have no charge! and theU6 operators~which have charge
but no dynamics!. We will give such an argument in the ne
section: this will prove in an independent manner the fr
tionalization of the LL spectrum~in a way which does no
depend on the explicit construction of the fractional sta
operators!.

3. Selection rules and fractionalization

The fractional charges carried by the fractional excitatio
considered above are not arbitrary: they must take on
values

Q65
Q6KJ

2
, ~2.27!

where bothQ and J are integers. We may view these co
straints on the allowed spectrum of fractional charges as
lection rules. These selection rules have, however, a c
physical meaning which we discuss now.

Although these excitations do not carry the electron qu
tum numbers because of the fractionalization of the sp
f
e
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trum, nevertheless the elementary constituents of our sys
are electrons~they are the high-energy elementary partic
of our systems!: this means that they alone define the stru
ture of Fock space, with the implication that all physic
states must consist of an integrer number of electrons.
spite the fact that there are fractional states, the previ
remark implies that these fractional states will be created
appropriate combinations so that the total charge is alw
an integer. This is the explanation of the previous select
rules we found, whichin fineenforce the basic constraint tha
we started out with electrons. We may view these selec
rules as being topological since they are directly related
the structure of the Fock space.

It is easy to show that Eq.~2.27! immediately follows
from the requirement that all states are electronic. We c
sider two counterpropagating states with arbitrary chargeQ1

and Q2 ; we make no hypothesis on the values of t
charges, nor on the nature of the chiral states~we do not
assume they correspond toVQ1

1 andVQ2

2 ). The only assump-

tions we make are the following:~a! the one dimensionality
which means that the eigenstates have momenta in on
either two directions and~b! that the current density operato
is renormalized. We then have two constraints on the val
that the chargesQ1 and Q2 may assume: since our Foc
space is that of electrons, all the states contain an inte
number of electrons, i.e.,Q11Q25Q is an integer. The
second constraint stems from the renormalization of the c
rent density operator:

j R~x!5uK j~x!5uKS 1

Ap
]xQ~x!D , ~2.28!

where j (x) is the current density in the noninteracting cas
This expression can be derived from the continu
equation.8 Going around a ring of lengthL in the LL we get
a ~persistent! current which must be quantized,

JR5E
0

L

dx jR~x!5uKJ, ~2.29!

whereJ is an integer,36 but the current carried by the state
with chargesQ1 andQ2 is JR5u(Q12Q2). Therefore,

~Q12Q2!5KJ, J integer ~2.30!

while

~Q11Q2!5Q, Q integer. ~2.31!

Solving for these constraints, one recovers the selection r
~2.27!, i.e., the spectrum of fractional charges. We observe
passing that this argumentdoes notdepend on our forma
algebraic derivation of Sec. II A 1 and provides an altern
tive proof of the existence of fractional states as well as
yields the allowed charge spectrum. In that argument,frac-
tionalization follows from the renormalization of the curre
in the presence of interactions.
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B. Elementary excitations of the bosonic LL

1. Elementary excitations

We now establish a series of results concerning the
ementary chiral excitations of a nonchiral LL. We would lik
to find a basis of elementary excitations, i.e., identify obje
from which all the other excitations can be built. It will b
useful to use a spinor notation to represent the fractio
states

S Q1

Q2
D 5S Q1KJ

2

Q2KJ

2

D . ~2.32!

Equation~2.32! should be understood as follows: the fra
tional stateVQ1

1 , which is an anyon propagating with veloc

ity u, is created along with the fractional stateVQ2

2 , which

propagates in the opposite direction with the velocity2u.
The selection rules are encoded in the second spinor:
equation is then read as meaning that the addition ofQ par-
ticles with ~persistent! currentJ will result in a splitting into
the two counterpropagating fractional statesVQ1

1 andVQ2

2 .

We must carefully distinguish between Bose and Fe
statistics because of the constraints onQ andJ. Let us con-
sider bosons first: sinceJ is even we can rewrite it asJ
52n where n is now an arbitrary integer. But then fo
bosons this implies that the spinor can be written in terms
two other independent spinors:

S Q1

Q2
D 5S Q1KJ

2

Q2KJ

2

D
5QS 1

2

1

2

D 1nS K

2K D . ~2.33!

This implies that in real space the fractional charge ex
tation is

VQ6

6 ~x!5@V1/2
6 ~x!#Q@V6K

6 ~x!#n, ~2.34!

where Q and n are now independent integersof arbitrary
sign: (Q,n)PZ2. In reciprocal space, one has a convoluti
for the exact fractional eigenstate,

VQ6

6 ~ q̄!5E •••E )
i 51

Q

dqi@V1/2
6 ~qi !#

3)
j 51

n

dpj@V6K
6 ~pj !#dS (

i 51

Q

qi1(
j 51

n

pj2qD
~2.35!
l-

s

al

he

i

f

i-

@the momenta in that expression are the phonon partsq̄n of
the momentum of the operator: forVQ6

6 (qn), qn5q̄n

6(2p/L)(Q6
2 /K) and q̄n52pn/L#.37

The above equation demonstrates clearly that the exc
tion VQ6

6 (q̄) can be built fromQ charge 1/2 statesV1/2
6 andn

charge6K statesV6K
6 . The whole spectrum of fractiona

excitations is thus built by the repeated creation ofV1/2
6 and

V6K
6 which means that they are theelementary excitations

we were seeking. These two elementary excitations will
identified in the following as, respectively, the spinon~for
spin systems! and a~1D! Laughlin quasiparticle.

2. Wave functions of the fractional excitations

To be complete, we compute the wave functions of all
chiral excitations. We will first need the ground-state wa
function which is simply a Jastrow wave function: this is
course expected since the Gaussian Hamiltonian is the
version of the acoustic Hamiltonian of Chester and Reat
Jastrow theory of He4~Ref. 33! and is also identical to
Bohm-Pines random-phase approximation~RPA! plasmon
Hamiltonian adapted to 1D.38 Since the Gaussian Hamil
tonian is a sum of oscillators, the ground state is a Gaus
function of the densities:

C0,B~$rq%!5expS 2 (
qÞ0

p

2Kuqu
rqr2qD ~2.36!

5exp
1

2KE E dxdx8r̂~x!

3 lnUsin
p

L
~x2x8!Ur̂~x8!. ~2.37!

This expression is valid for the bosonic LL; for the fermion
LL, antisymmetry is recovered by observing that the ferm
onic LL simply derives from the bosonic LL through a sin
gular gauge transformation on the bosonic LL~the Jordan-
Wigner transformation!:39 this is exactly as in the composit
boson Chern-Simons theory for which the Hamiltonian
plasmonlike at the one-loop level~RPA! and whose ground
state is of course symmetric~the modulus of the Laughlin
wave function!; in that theory, the Laughlin state is the
found after undoing the Chern-Simons gau
transformation.40 Similarly undoing the Jordan-Wigner trans
formation amounts to multiplying the bosonic ground sta
by the phase factor) i , jsgn(xi2xj )5) i , j@(xi2xj )/uxi
2xj u# ~that phase factor is found by applying the Jorda
Wigner operator on the ground state!. The wave function is
the 1D analog of the 2D Laughlin state of FQHE if we r
write the previous expression in terms of the particles’ po
tions:r(x)5( id(x2xi), and by introducing the circular co
ordinatesz5expi(2p/L)x,

c0,B~$xi%!5)
i , j

uzi2zj u1/K. ~2.38!
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The wave functions of the excited states can now
computed.41 Let us consider first the operator ex
2iApaQ(x0); since Q is the canonical conjugate of th
field P5]xF52Apdr̂,

Q~x!52
1

iAp

d

dr̂~x!
, ~2.39!

and therefore

exp2 iApaQ~x0!uC0,B&

5expa
d

dr̂~x0!
exp

1

2KE E dx dx8r̂~x!

3 lnUsin
p

L
~x2x8!Ur̂~x8!

5exp
a

KE dx r̂~x!lnUsin
p

L
~x2x0!UC0,B

5C)
i

uzi2z0ua/K)
i , j

uzi2zj u1/K, ~2.40!

whereC is an unessential constant.
Similarly

exp6 iAp
Q6

K
F~x!exp7 i

Q6

K
kFx

5exp7 ip
Q6

K E
0

x

r̂~y!dy

5exp7 ip
Q6

K E
0

L

r̂~y!u~x2y!dy

5)
i

F ~xi2x!

uxi2xu G
7Q6 /K

~2.41!

5)
i

F ~zi2z!

uzi2zu G
7Q6 /K

3exp6 ikF

Q6

K
S (

i
xi

N0
1xD , ~2.42!

where we use the definitions ofr andz introduced above and
where

u~x!5
1

ip
lnF2x

uxu G , ~2.43!

is the Heaviside step function.
The above operator can thus be seen as a genera

Jordan-Wigner operator, since it multiplies wave functio
by a singular phase factor; in this manner we recover
phase) i , j„(xi2xj )/uxi2xj u… of the ground state of the fer
mionic LL. Finally we have that
e

ed
s
e

VQ1

1 ~x!C0,B~x1 , . . . ,xN!

5C)
i

~zi2 z̄!Q1 /K)
i , j

uzi2zj u1/K

3expikF

Q1

2K
S (

i
xi

N0
1xD , ~2.44!

with a similar expression forVQ2

2 ~the bar overz denotes

complex conjugation!. It is noteworthy that these wave func
tions are obtained by multiplying a Jastrow ground state w
a Laughlin-like prefactor) i uzi2zuQ6 /K which generalizes
the Laughlin quasihole factor) i(zi2z). We can now write
down the wave functions of the two elementary excitatio

V1/2
1 ~x!C0,B~x1 , . . . ,xN!

5C)
i

~zi2z!1/2K)
i , j

uzi2zj u1/K

3exp2 i
kF

2K
S (

i
xi

N0
1xD , ~2.45!

and

VK
1~x!C0,B~x1 , . . . ,xN!

5C)
i

~zi2z!)
i , j

uzi2zj u1/K

3exp2 ikF
S (

i
xi

N0
1xD . ~2.46!

We see thatVK
1(x) is nothing but the 1D counterpart of th

2D Laughlin quasihole wave function, provided we make t
following correspondence between 1D and 2D wave fu
tions: K⇔n, z5expi2px/L⇔z5x1iy „up to a Galilean
boost absorbing the factor exp2ikF@((ixiN0)1x#…: in view of
the formal analogy we will call that state a 1D Laughli
state.

3. The spinon

We found an elementary excitationV1/2
6 (x) for the

bosonic LL carrying a charge 1/2. When we consider sp
which are hard-core bosons, this result translates into ha
a state carrying a spinDSz51/2 with respect to the ground
state. In spin language, adding a particle into the sys
(Q51) corresponds to flipping a spin (DSz51). But it fol-
lows from Eq.~2.33! that this excitation is a composite o
two elementary excitations, each carrying a charge 1
Therefore a pair of states with spinSz51/2 is created when
one flips a spin (DSz51). We naturally identify this frac-
tional spin excitation as a spinon. The spinon can be ge
ated without any Laughlin quasiparticless if the spin curr
is zero (J50): this is a process which we term apure spin
process, to be distinguished from apure spin current process
(Sz50) which generates Laughlin quasiparticle-quasih
pairs ~see below!.
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The properties of the spinon specifically depend on
LL parameterK. Although the spin is alwaysSz51/2 the
exchange statistics varies continuously withK ~i.e., when
one varies the interaction!:

uspinon5
p

4K
. ~2.47!

For instance forK51/2 @which corresponds to SU~2! sym-
metric spin interactions# the spinon is a semion. In that sp
cial case, the spinon wave function we obtain coincides
actly with that proposed by Haldane for the Haldane-Sha
spin chain,22

Cspinon~z!5)
i

~zi2z!)
i , j

uzi2zj u2

3exp2 ikF
S (

i
xi

N0
1xD . ~2.48!

In this expression the coordinates are those of the do
spins. ForK51/2 the spinon and the spinK Laughlin quasi-
particles are identical. Although we have discussed fractio
excitations for spin systems, the previous considerations
ply of course to bosons: the ‘‘spinon’’ is then acharge1/2
excitation. For convenience we will call the excitation
spinon even when we consider bosons.

4. The LL Laughlin quasiparticle

The second elementary excitation we found has the
lowing wave function:

CLaughlin2qp~z0!5)
i

~zi2z0!)
i , j

uzi2zj u1/K

3exp2 ikF
S (

i
xi

N0
1x0

D ,

~2.49!

which leads us to identify it with a Laughlin quasiparticle
The parallels which can be drawn between the 2D Laug
quasihole and the Luttinger liquid Laughlin quasipartic
are indeed very strong. For instance, as in 2D one can us
plasma analogy to find the fractional charge:

uCLaughlin2qp~z0!u25U)
i

~zi2z0!)
i , j

Uzi2zj u1/Ku2

5exp
1

KE E dx dx8@ r̂~x!

1Kd~x2x0!# lnUsin
p

L
~x2x8!U

3@ r̂~x8!1Kd~x82x0!#. ~2.50!

The above expression clearly shows that the charge ca
by the excitation isK in agreement with the direct algebra
determination~using the operatorVK). There are, however
several differences between the LL Laughlin quasipartic
e

x-
ry

n

al
p-

l-

.
n

the

ed

s

and its 2D famous counterpart; first, there is no analytic
requirement in the 1D problem, since we do not have
project into the lowest Landau level: we have two chiraliti
and the LL Laughlin quasielectron is simply

CLaughlin2qe~z0!5)
i

~zi2z0!21)
i , j

uzi2zj u1/K

3exp2 ikF
S (

i
xi

N0
1x0

D . ~2.51!

Second, while topological quantization forces the 2
FQHE Laughlin quasiparticles to have arational charge, the
charge of the 1D LL Laughlin quasiparticles can take
arbitrary real positive values, in particularirrational. This is
a very startling property: irrational spin had already be
proposed for solitons in coexisting charge-density-wave
spin-density-wave~CDW-SDW! systems by Horowitz,42 but
in a sense this is perhaps less surprising since in one dim
sion there is no quantization axis for spin which can the
fore take a continuum of values. We show below that
Laughlin quasiparticles also exist for the fermionic LL; fu
thermore, we will find that for the fermionic LL there i
another elementary excitation which may have an irratio
charge.

How are Laughlin quasiparticles created in a LL? Th
are generated wheneverJÞ0; they are always created a
quasiparticle-quasihole pairs. In particular in pure curr
processes (Q50) no ‘‘spinon’’ is created and we have onl
Laughlin quasiparticle-quasihole~qp-qh! pairs. For a persis-
tent currentJ excitation withQ50 it follows from the ex-
pressionQ65(Q6KJ)/2 that J/2 quasiparticle-quasihole
pairs are generated.

From the above analysis we now can give a physical
terpretation to the renormalization of the current density
erator in the presence of interactions:

j ~x!5
1

Ap
]xQ~x!, ~2.52!

→ j R~x!5
uK

Ap
]xQ~x!. ~2.53!

The velocityu has been normalized to the Fermi velocity
that u51 in the absence of interactions for fermions (K
51). We have found that current excitations were due
Laughlin quasiparticles. The natural explanation of t
renormalization is therefore that the current is no longer c
ried by Landau quasiparticles but by Laughlin quasipartic
with velocity u and chargeK.

5. The bosonic LL spectrum in terms of fractional elementary
excitations

For the bosonic LL we can now add the following prec
sions to the description of the spectrum. ForQ50 excita-
tions ~see Fig. 1!, the continuum is due to multiple Laughli
quasiparticle-quasihole pairs: the right branch starting atk
52kF corresponds to the propagation of a 1D Laugh
quasielectron while the left branch is due to a Laugh
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quasihole; in between the two lines, we have a continu
generated by these two excitations. More generally ak
52nkF where n is an arbitrary integer, the two branche
create a continuum ofn Laughlin quasiparticle-quasihol
pairs.~Note that forn50, which is an exceptional case, w
have multiphonon processes.! Therefore the spectrum in th
zero charge sector isnot a Landau quasiparticle-quasiho
pair continuum except at the special valueK51 which de-
scribes indeed in the low-energy limit a gas of hard-c
bosons.

In the charge sectorQ51, pairs of charge one-half exc
tations are created: they correspond to the spinons of
chains; the pairs are superimposed on the previous Laug
quasiparticle continuum: for instance a 2kF excitation gener-
ates a Laughlin quasiparticle-quasihole pair in addition to
spinon pair.

The Laughlin quasiparticle and the spinon are dual sta
for the bosonic LL; by duality we mean electromagnetic d
ality which exchanges charge and current processes. In
the spinon is associated with charge processes while
Laughlin quasiparticles is due to current excitations. The
ality operation which maps a bosonic LL onto anoth
bosonic LL is K51/(4K8) with Q52F8 and F5Q8/2;
zero modes then transform asJ52Q8 and Q5J8/2. With
these relations, the selection rule remains bosonic (J8 even!
while the HamiltonianHB@K,Q,F#5HB@K8,Q8,F8# re-
tains a Gaussian form. It is clear then thatK51/2 is a self-
dual point whileVK andV1/2 create dual quasiparticles. Th
is not true for the fermionic LL.

6. The XXZ spin chain

Let us illustrate these results on the specific example
the anisotropic HeisenbergXXZ spin chain. The Hamil-
tonian of theXXZ spin chain with anisotropyD, after a
bipartite rotation, is

H@J,D#5J(
i

H 2
1

2
~Si

1Si 11
2 1Si

2Si 11
1 !1DSi

zSi 11
z J .

~2.54!

As D is varied, one finds three phases:~i! for D.1 one gets
an Ising antiferromagnet, the twofold degenerate grou
state of which leads to solitonic excitations with spin-1
domain walls;~ii ! for D,1 one has an Ising ferromagne
~iii ! for 21<D<1 we have the so-calledXY phase: this is
the Luttinger liquid phase we are interested in. The isotro
Heisenberg chain with SU~2! invariance corresponds toD
51. The Luttinger liquid parameter was determined exac
by Luther and Peschel on the basis of a comparison with
Baxter model,43

K~D!5
p

2 arccos~2D!
. ~2.55!

The spectrum in the sectorDSz51 is shown in Fig. 3 for the
Heisenberg model; its linearization through bosonization
also shown in the figure.

Given that a spin-1/2 can be mapped onto a hard-c
boson,44 through the Holstein-Primakov transformation w
can transpose the results we found for the bosonic LL to
XXZ spin chain.
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If we want to compare the bosonization linearized sp
trum to the exact one there are, however, two provisos:~a!
we have to shift the bosonization spectrum by a momen
p: this is due to the bipartite transformation one makes
the bosonization of theXXZ spin chain~in order to change
the sign of theXY term! and ~b!, there is a Brillouin zone,
therefore, we have to identify momenta modulo 2p and
since the Fermi vector iskF5p/2, excitations withJ/2 odd
~resp. even! correspond to the same harmonicsk5p1JkF
[0 ~respectively,p). Taking ~a! and ~b! into account, we
can use the results of the previous section pertaining to
bosonic LL to recover the linearized spectrum of theXXZ
chain.

We first consider the spin sectorDSz50. In Fig. 3 start-
ing from momentump we have two straight lines corre
sponding to left and right moving phonons, bounding a co
tinuum; due to the folding of the continuum spectrum of t
bosonic LL, one superimposes on these lines the lines du
the creation of any even number of Laughlin qp-qh pairs~the
qp dispersion being given by one line, and that of the qh
the other; if the qp is right-handed, its dispersion is that
the right line, etc. . . . ). Similarly the lines starting from mo-
mentum zero or 2p correspond to the creation of an od
number of Laughlin qp-qh pairs. The continuum is therefo
seen to be parametrized entirely in terms of the phonons
Laughlin quasiparticle-quasihole pairs while the zero mo
basis relies on phonons and zero modes. TheDSz51 con-
tinuum is described in a similar manner but for the subst
tion of the phonons by a pair of counterpropagating spino
In the special case of SU~2! symmetry, the Laughlin quasi
particle and the spinon become identical operators. The
vious parametrization reduces then to one involving o
pairs of spinons because a pair of counterpropagating sp
plus a pair of counterpropagating spinon-antispinon
equivalent to a pair of spinons propagating in arbitrary dir
tions. One then recovers the Bethe Ansatz result.

FIG. 3. Spectrum of theXXZ spin chain for a transverse ex
changeJ and anisotropyD; the continuum is enclosed within th
curvesE(k)5(pa/2)usin(k)u and E(k)5pa sin(k/2). The param-
eter a is related to the anisotropyD5cosu by a5sinu/u. The
linearized spectrum found by bosonization is also shown.
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In the low-energy limit, we can now answer the vario
questions raised in the introduction about the spectrum of
XXZ chain.

~i! What is the nature of theDSz51 continuum? It is
indeed a spinon pair continuum; but superimposed on th
Laughlin quasiparticle-quasihole pairs can exist. The spi
changes when the anisotropy is varied: it acquires a sta
cal phasep/4K5arccos(2D)/2. Therefore the spinons a
different anisotropy are not adiabatically connected: they
orthogonal states;45 this is consistent with numerical compu
tations of the spectral density of the SU~2! spinon, where it is
found that the SU~2! spinon has a zero quasiparticles weig
for the XY chain.46

~ii ! What is the nature of theDSz50 continuum? It is a
Laughlin qp-qh pair continuum with an unquantized sp
Sz56K56p/@2 arccos(2D)#; in the SU~2! symmetric
case, they are identical to the spinons. In theXY limit, one
recovers the standard spin-one continuum predicted thro
a Jordan-Wigner transformation (K51, Sz561). But in be-
tween these two points, the elementary excitation is neith
spinon nor a Jordan-Wigner fermion.

C. The fermionic Luttinger liquid

1. Elementary excitations: the Laughlin quasiparticles and the
‘‘hybrid state’’

We now turn to fermions; the analysis of the element
excitations will differ from that found for the bosonic LL
because the allowed (Q,J) states obey different selectio
rules, namelyJ is not constrained any more to be an ev
integer, but must have the same parity asQ. We may there-
fore write Q2J52n. Then forfermionsusing Eq.~2.27!,

~Q1 ,Q2!5QS 11K

2
,
12K

2 D2n~K,2K !. ~2.56!

The most general excitation once again is built by app
ing Q timesV(16K)/2

6 and/orn timesV6K
6 to the ground state

this means that we have identified a set of elementary e
tations for the fermionic LL. Here too we find Laughlin qu
siparticlesV6K

6 , but instead of the spinon we get a ‘‘hybri
state:’’ this is a consequence of statistics; as we will sh
below, that hybrid state is self-dual and is intermediate
tween the Laughlin quasiparticle and its dual state.

The Laughlin quasiparticle is created by current exc
tions: for a pure current process (Q50,JÞ0) one indeed
generates Laughlin qp-qh pairs as the above equation sh
The continuum for zero charge excitations (Q50) is often
depicted as a~Landau! particle-hole continuum as in the non
interacting system (K51): this is incorrect; we have instea
a Laughlin quasiparticle-quasihole continuum. The lat
does reduce to the standard Landau quasiparticle contin
when K51. For k5JkF there is a local minimum of the
energy from which two linear branches rise corresponding
J/252n pairs of Laughlin quasiparticles and quasihole
For the fermionic LL, the Laughlin quasiparticle is not th
only state which may have an irrational charge: this is a
possible for the hybrid state.

The hybrid state is created in mixed charge and curr
processes: this is the main difference with the bosonic LL
which the decoupling between charge and current proce
e
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is complete. As reviewed in the Introduction, there are ev
odd effects in the fermionic spectrum: the spectra obtai
by adding an even or an odd number of particles are qu
tatively different for the fermionic LL. TheQ51 continuum
is understood as follows: the two branches atkF correspond
to a pair of hybrid excitations carrying a charge (12K)/2
and (11K)/2, and propagating with velocities, respective
2u and u. At 2kF the correspondence is reversed. Mo
generally atJkF ~J is an odd integer ifQ51), in addition to
the hybrid quasiparticles, one also createsJ/22Q pairs of
Laughlin quasiparticles and quasiholes. WhenK51 the hy-
brid states reduce to Landau quasiparticles. It is interestin
note an evidence for these states in the work of Safi
Schulz who considered the evolution of a charge 1 wa
packet injected atkF in a LL: they found that there was
splitting with an average charge^Q&5(11K)/2 propagating
to the right and an average charge^Q&5(12K)/2 going to
the left.47 This is exactly what we predict. Note, however,
crucial difference: the charge they find is a quantum aver
while we deal with elementary excitations~exact eigen-
states!; this has an important consequence: while it is cle
that on average a charge may assume irrational values
result goes beyond that observation since it proves that t
may exist in condensed matter systems a genuine good q
tum state with sharp irrational charge.

In this section we have found that for the fermionic L
there are two elementary excitations. One is the Laugh
quasiparticle already found for the bosonic LL. The seco
one is a hybrid state intermediate between the spinon and
Laughlin quasiparticle. The excitations corresponding toQ
50 transitions~they are particle-hole excitations in the no
interacting case!, form a Laughlin quasiparticle-quasihol
pair continuum whenKÞ1.

2. Dual basis and the dual quasiparticles

The elementary excitations we have derived form a ba
from which all the LL spectrum is recovered; by no means
this choice of basis unique: other bases of elementary e
tations are generated with matrices associated with a b
change having integer entries whose inverses are
integer-valued: this ensures that all excitations are inte
linear combinations of the elementary excitations.@The ma-
trices belong toSL(2,Z).# For instance for fermions, anothe
basis of elementary excitations consists of statesV(16K)/2

6

andV1
6 ,

~Q1 ,Q2!5JS 11K

2
,
12K

2 D1n~1,1!. ~2.57!

It is actually a dual basis to the previous one: for fermio
the electromagnetic duality which exchanges charge and
rent excitations is expressed byK↔1/K andF↔Q. This is
a canonical transformation; it results inHB@K,Q,F#
5HB@1/K,F,Q#. The fermionic selection ruleQ2J even is
obviously preserved: the transformation is therefore a dua
operation for the fermionic LL. Observe that the transform
tions differ from those for the bosonic LL.

What is the nature of the elementary excitationV1
6? Un-

der the duality transformationVK
6→V21

6 and V2K
6 →V1

6 .
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ThereforeV1
6 is an excitation dual to the Laughlin quasipa

ticle. It carries a charge unity and its wave function is

V1
1~z0!CF5)

i
~zi2z0!1/K)

i , j
uzi2zj u1/K)

i , j

~zi2zj !

uzi2zj u
.

~2.58!

We stress that althoughV1
6 carries a unit charge, it isnot an

electron: the statistical exchange phase isp/K which means
V1

6 is an anyon@it can be a fermion, in the special caseK
51/(2n11)#. The difference with the electron is quite cle
since the electron creation operator is

C~x!5(
n

expi ~2n11!kFx

3expi @ApQ~x!2Ap~2n11!F~x!#,

~2.59!

while

V1
1~x!5:expiApS Q~x!2

F~x!

K D :. ~2.60!

For KÞ1/(2n11) the dual excitation appears to be a no
linear soliton of the electron. This excitation is interesting
many respects. IfK51/(2n11) ~the Laughlin fractions! the
excitation is fermionic and the exchange statistics of the
erator isp(2n11). The dual quasiparticle corresponds th
to a subdominant harmonic of the electron Fourier expans
aroundk.(2n11)kF . If one attaches 2n flux tubes to the
electron~i.e., multiplies the electron operator by the Jorda
Wigner phase expiAp2nF) the dual state becomes th
dominantk5kF harmonics: this is exactly the composite fe
mion construction and it may then be more fitting to speak
a composite fermion@indeed, the statistics of the operator
(2n11)p and notp#. Because of the similar long distanc
behavior of their Green functions, Stone proposed to iden
such a subdominant operator—which he calls
hyperfermion—with Wen’s electron operator introduced
the chiral LL.48 This hyperfermion is identical to the dua
state forK51/(2n11). In general the dual state and th
electron are, however, orthogonal: this is quite clear wh
one considers the LL with spin. The dual state is then g
eralized to a state with the same quantum numbers as
electron ~carrying a unit charge and a spin-1/2!, but with
again anyonic statistics. But due to spin-charge separa
that state is not stable and decays into a spinless charge
quasiparticle, which is none other than the holon, and a s
1/2 excitation, which is just the spinon. The dual excitati
we have found is therefore the analog of the spinon and
holon for the spinless LL and has nothing to do~in general!
with an electron. In the following, in accordance with th
previous remarks, we will call these states holons~for the
spinless LL! or dual states.

These dual holon states also occur in Haldane’s inter
tation of the Calogero-Sutherland model: he proposed th
natural interpretation of such a model was not in terms
electrons or bosons but as a gas of noninterac
anyons.22,27 The basis for that interpretation is the findin
that for rational values of the couplingl5p/q ~l is related
to the LL parameter by the simple relationl51/K), the
-
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dynamical structure factor obeys simple selection rulesq
‘‘charge 21 bare particles’’~the anyon—it has anyonic sta
tistics pl5p/K) are created withp ‘‘holes’’ which there-
fore carry a charge 1/l. The particles and holes appear
pseudoparticles in a pseudomomenta parametrization of
spectrum. There are, however, difficulties with that interp
tation: it is not clear how the selection rules are generali
when the couplingl is irrational; the physics is indeed com
pletely continuous with the coupling while the selection ru
are only valid for rational couplings; besides, an asymme
is introduced between particles and holes. This means
this parametrization which relies on pseudoparticles is pr
ably inadequate. In the low-energy limit, the Caloger
Sutherland model has the properties of a Luttinger liquid
is therefore possible to describe its quasiparticle spectrum
terms of the fractional excitations we have found in this p
per: we do find the charge-1 anyon proposed~this is our dual
state!; however, our selection rules are quite different. Fir
they depend on the statistics~electrons or bosons!: in con-
trast the pseudoparticle-based selection rules do not inv
spinons; this runs contrary to results on the bosonic LL
which the dual state must actually be seen as a compo
state made out of two spinons. Second, our selection r
are valid even for irrational couplings, i.e., they imply th
existence of quantum states with sharp irrational charg
Third, our selection rules respect particle-hole duality: th
exist both a charge-1 anyon with statisticsp/K ~the dual
holon! and a similar charge21 anyon; the same applies t
the Laughlin quasiparticle for which we have both qua
holes and quasielectrons. Our selection rules involve the
brid state and the Laughlin quasiparticles, and the holon o
appears in the dual basis where it is accompanied again
the hybrid quasiparticle.

Finally, a symmetric basis can be associated with the
brid excitation

S Q1

Q2
D 5mS 11K

2

12K

2

D 1nS 12K

2

11K

2

D , ~2.61!

where m5(Q1J)/2 and n5(Q2J)/2; m and n are again
independent integers. They physically correspond to
number of electrons added to the system at the right and
Fermi points, respectively. That self-dual basis reduces
Landau quasiparticles whenK51. The physical processe
generated in that symmetric basis are not charge or cur
excitations but addition of electrons at the Fermi surfa
Note that the arbitrariness in the choice of a basis sim
reflects the possibility to stress various specific physical p
cesses as elementary. But experiments probeQ1 and Q2 ;
for a given set ofQ andJ, Q6 assume the same value irre
spective of the basis choice.

III. THE LUTTINGER LIQUID WITH SPIN

In this section we generalize the construction of fractio
excitations developed in Sec. II to the full Luttinger liqu
with spin. One of the main properties exhibited by the effe
tive theory is spin-charge separation, the complete dec
pling of spin and charge dynamics. In the exact solution
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the Hubbard model by the Bethe Ansatz, excitations disp
such a spin-charge separation: one state, the holon, is a
less particle carrying the charge of the electron, while
other, the spinon, is a neutral spin-1/2 state.5 This is an
asymptotic property only valid in the low-energy limit~the
Hubbard model in the largeU limit is an exception becaus
spin-charge separation is realized at all energy scales!. How-
ever, this property is not obtained for all the gapless itiner
1D models in the low-energy limit. According to the unive
sality hypothesis they should be described by the Luttin
liquid framework if the interaction is not too long range
One such example is the Hubbard model in a magnetic fi
which does not display spin-charge separation even in
low-energy limit, although it is a short-range gapless mod
This model was analyzed by Frahm and Korepin in
framework of the Bethe Ansatz plus conformal fie
theory:25 they were able to compute the anomalous ex
nents for the correlation functions. Several issues remain
clear for such models in a magnetic field: in particular wh
the excitations are. Since spin-charge separation does
occur, the holon and the spinon cannot be the elemen
excitations of the system anymore. To answer the ques
we have to turn to the low-energy effective theory. Frah
and Korepin’s results imply that an effective description
terms of the Gaussian model should be possible since
formal invariance is realized. We will find a generalization
the spin-charge separated Gaussian Hamiltonian suitabl
a description of the Hubbard model in a magnetic field. O
formalism is very similar to Wen’sK matrix approach to
edge states of the FQHE. This will enable us to characte
very precisely, in the low-energy limit, the properties of 1
gapless models with or without spin-charge separation s
as the Hubbard model in a magnetic field: we will find that
the latter case, although there is no spin-charge separa
there is still a generalized decoupling. The excitations
again fractional; as expected the holon and the spinon ar
longer present in the spectrum and we will give the gene
framework allowing the description of the fractional stat
which replace them.

A. Spin-charge separated Luttinger liquid

We start with the standard case when spin-charge sep
tion exists. Although fractional excitations are clear
present in the Bethe Ansatz, no description of these spe
states was attempted in the low-energy limit throu
bosonization. In the following we answer several questio
how does the holon evolve with interaction? What would
an effective wave function for it? Is it a semion? First, w
consider the ground state of the two-component Gaus
model because it will suggest to us a possible generaliza
of the Gaussian model that will prove to be the correct o
for the description of gapless models without spin-cha
separation, such as the Hubbard model in a magnetic fie

1. Ground state of the Gaussian Hamiltonian

We consider a two-component model by introducing
internal quantum number such as the SU~2! spin. We con-
sider the charge and spin densities as well as their assoc
phase fields

rc5r↑1r↓ ; rs5r↑2r↓ , ~3.1!
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rs52
1

Ap
]xFs , s5↑,↓, ~3.2!

@Qs~x!,]xFs8~y!#5 idss8d~x2y!, ~3.3!

Fc/s5
F↑6F↓

A2
, ~3.4!

@Qt~x!,]xFt8~y!#5 idtt8d~x2y!; t5c,s. ~3.5!

The effective Hamiltonian derived, for instance, from t
Hubbard model in the absence of a magnetic field is

H5Hc1Hs , ~3.6!

Ht5
ut

2 E0

L

dx Kt
21~¹Ft!

21Kt~¹Qt!
2, t5c,s.

~3.7!

¹Ft5Pt is canonically conjugate to the fieldQt . One eas-
ily extracts the ground state which is simply a product
Gaussians,

C0~$Pt,qn
%!5 )

t5c,s
expS 2

1

2Kt
(
nÞ0

1

uqnu
Pt,qn

Pt,2qnD .

~3.8!

In terms of charge and spin densities

C0~$rt,qn
%!5 )

t5c,s
expS 2

1

4Kt
(
nÞ0

p

uqnu
rt,qn

rt,2qnD .

~3.9!

The ground state displays of course a complete decouplin
spin and charge as is apparent from the previous expres
This is also a Jastrow wave function. In real space

C0~rt!5 )
t5c,s

exp
1

4Kt
F E E dx dx8rt~x!

3 lnUsin
p~x2x8!

L Urt~x8!G . ~3.10!

We define the charge and spin parts of the ground state

Cc/s5exp
1

4Kc/s
F E E dx dx8rc/s~x!

3 lnUsin
p~x2x8!

L Urc/s~x8!G . ~3.11!

The previous ground state may be rewritten in terms of
densities of each species,

C0~$rs%!5exp
1

2 F E E dx dx8rs~x!gss8

3 lnUsin
p~x2x8!

L Urs8~x8!G , ~3.12!

where we have introduced the followingĝ matrix:
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gss85S Kc
211Ks

21

2

Kc
212Ks

21

2

Kc
212Ks

21

2

Kc
211Ks

21

2

D . ~3.13!

The eigenvalues of that matrix are simply the inverses of
Luttinger-liquid parametersKc

21 and Ks
21 . If one rewrites

the wave function in terms of individual electron coordina
rs(x)5( i ,sd(x2xi) ~the sum is restricted to particles wit
spin s) and if one setsz5expi(2p/L)x, one easily finds

C0~$xi ,s i%!5)
i , j

uzi2zj ugs is j. ~3.14!

The wave function is bosonic; for the fermionic LL, on
undoes the Jordan-Wigner transformation which leads to

CF,0~$xi ,s i%!5)
i , j

uzi2zj ugs is j)
i , j

H S ~zi2zj !

uzi2zj u
D ds is j

3expi
p

2
sgn~s i2s j !J . ~3.15!

~The antisymmetrizing factor consists of two parts, o
which ensures that particles of the same species antic
mute, and a second part known as a Klein factor which
lows antisymmetry for particles of different spin.! Let us
redefine the matrix elements ofĝ per

gss85S l m

m l
D , ~3.16!

Kc
215l1m, ~3.17!

Ks
215l2m. ~3.18!

If we denote the coordinates of particles with spin↑ and↓,
respectively, byu andv, then the ground state can be rewr
ten as~for convenience the antisymmetrizing factor is om
ted!

C0~$ui ,v i%!5)
i , j

uui2uj ul)
i , j

uv i2v j ul)
i , j

uui2v j um,

~3.19!

Cc5F)
i , j

uui2uj uuv i2v j uuui2v j uG1/2Kc

5)
i , j

uzi2zj u1/2Kc, ~3.20!

Cs5F)
i , j

uui2uj uuv i2v j u/uui2v j uG1/2Ks

5)
i , j

uzi2zj us is j /2Ks. ~3.21!
e

s

e
m-
l-

For the fermionic LL the charge part gets an additional fac
@(xi2xj )/uxi2xj u#1/2 and the spin part, a factor@(xi
2xj )/uxi2xj u#s is j /2expi(p/2)sgn(s i2s j ).

These are 1D Laughlin multicomponent wave function
In 2D they are known as Halperin wave functions whi
describe multicomponent systems of the FQHE.49 In that
context the ĝ matrix is known as Wen’s topologicalK
matrix.28 The main difference between the two matrices
that the entries of theK matrix are integers whileĝ matrix
elements are arbitrary real numbers~only constrained to
yield positive and real eigenvalues!. The ĝ matrix does not
allow for a topological interpretation either since there is
topological quantization as in the FQHE. We will call theĝ
matrix thecharge matrixbecause it corresponds to the co
plings between particles in the plasma analogy@see Eq.
~3.12!#.50

2. Elementary excitations: The holon, the spinon,
and Laughlin quasiparticles

We generalize the approach followed for the spinless L
There is a decoupling of the dynamics at two levels: ch
separation as well as spin-charge separation. In particu
both the charge and the spin Hamiltonians—Hc and
Hs—display chiral separation:Hc5Hc11Hc2 and Hs
5Hs11Hs2 where the four Hamiltonians all commut
(@Hc/s6 ,Hc/s6#50). The following operators create the e
act eigenstates of the relevant chiral Hamiltonians:

Vt
6~Qt,6 ,q!5E dx expiqx exp2 iAp/2Qt,6Qt,6 ,

~3.22!

Qt,65Qt7Ft /Kt , t5c,s, ~3.23!

q5
2pn

L
7

2p

L

Qt,6
2

Kt
, ~3.24!

Qt,65
Q↑1tQ↓

2
6Kt

J↑1tJ↓
2

. ~3.25!

~The square rootA2 in the exponential comes from the no
malization of the charge and spin fields;c ands index charge
and spin, respectively;t561 for charge and spin, respec
tively.! One easily checks that

@Q̂↑1tQ̂↓ ,V6~Qt8,6!#5dtt8Qt,6V6~Qt8,6!.
~3.26!

This implies that these excitations either carry a chargeQ
5Qc,6 but then have no spin~the operatorsVc

6), or that
they have a spinSz5S65Qs,6/2 but no charge~operators
Vs

6). As expected the fractional states come in two bran
the first corresponds to charge excitations and the secon
spin excitations. Hereafter we will note the charge and
spins of these excitations as
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Q65Qc6 , ~3.27!

S65
Qs,6

2
. ~3.28!

Because of the obvious relevance to physical systems
focus first on elementary excitations for a fermionic LL; w
will consider the case of a bosonic LL later in Sec. III
Solving the constraints on the charge and current wh
again obey the selection ruleQ↑2J↑52n↑ and Q↓2J↓
52n↓ ~the n are integers!, we find

S Q1

Q2

S1

S2

D 5n↑S 1

1

1/2

1/2

D 1n↓S 1

1

21/2

21/2

D 1J↑S 11Kc

2

12Kc

2

11Ks

4

12Ks

4

D
1J↓S 11Kc

2

12Kc

2

2
11Ks

4

2
12Ks

4

D . ~3.29!

This compact equation must be read as follows. Each e
represents a fractional excitation; the first two lines
charge spinless excitations, while the last two lines repre
spin excitations. For instance, the entryQ1 is associated
with a fractional excitation with chargeQ5Q1 which car-
ries no spin, and propagates in the right direction: theref
(11Kc)/2 in the first line means a spinless state with cha
Q5(11Kc)/2 going to the right. Likewise the second lin
characterizes charge excitations propagating to the left.
line S1 means that the states have no charge, a spin com
nentSz5S1 and propagate to the right: for instance, 1/2 is
spin-1/2 fractional state. Each line gives the decomposi
of a given fractional excitation into elementary excitation
for instance, theQ1 excitation is made up ofn↑1n↓ excita-
tions Vc

1(Q51), and J↑1J↓ excitations Vc
1@Q5(1

1Kc)/2#. The previous equation summarizes the select
rules which are obeyed by the elementary excitations.

Let us give an example. Suppose one adds a spin-up e
tron at the Fermi level in the Luttinger liquid. This is aQ↑
515J↑ andQ↓505J↓ excitation or in terms ofn↑ andn↓ ,
this is a (n↑50, n↓50, J↑51, J↓50) state. Equation~3.29!
shows that the spinor
e

h

ry
e
nt

e,
e

he
o-

n
:

n

c-

S Q1

Q2

S1

S2

D 5S 11Kc

2

12Kc

2

11Ks

4

12Ks

4

D ~3.30!

is created; this means that the spin-up electron added a
Fermi level kF splits into four fractional states: a charg
(11Kc)/2 anyon propagating at velocityuc ; this state has
no spin; a second charge anyon with charge (12Kc)/2 and
velocity 2uc and then two spin anyons with velocitiesus
and 2us and respective spinSz5(16Ks)/4. In the special
case of spin-rotational invariance (Ks51) there is only one
spin anyon: the spinon with spinSz51/2 which propagates
to the right with velocityus ~or to the left with velocity
2us if the electron had been added at the left Fermi poi
2kF). Likewise, if Kc51, there is a single charge stat
which has chargeQ51. In the noninteracting case, th
charge velocityuc and the spin velocityus are equal and
therefore the spinon and the charge 1 state subsume in
single state since they move in the same direction with
same velocity: we have just recovered the spin-up electr

(a) Holon and spinon. Let us identify the content of the
elementary excitations, starting withVc

6(Q51) andVs
6(Sz

51/2). The charge and the spin carried by these fractio
excitations make it reasonable to interpret them as the ho
and the spinon, respectively.

The physical processes involved in the creation of each
these states confirms this identification. Indeed the minim
operation which involvesVc

6(Q51) is obtained whenJ↑
505J↓ and setn↑515n↓ in Eq. ~3.29!. This is an excita-
tion for whichQ↑515Q↓ andJ↑505J↓ which means that
this is a pure charge process~no spin variationSz5(Q↑
2Q↓)/250, no spin current nor charge current!. Vc

6(Q
51) is an excitation associated with the addition of cha
in the LL. All the transitions in Fock space that occur aft
adding a charge to the ground state therefore invo
Vc

6(Q51). It is then consistent to identifyVc
6(Q51) as the

holon.51

Likewise the minimal excitation generatingVs
6(Sz51/2)

is a spin-1 transition which is a pure spin process. All ex
tations for which there is a spin flip will therefore crea
Vs

6(Sz51/2) ~in pairs!. This is what we expect from a
spinon.

Notice that both for the holon and spinon there are ev
odd effects arising in the low-energy Gaussian theory.
deed, Eq.~3.29! shows that an excitation with includes
spin-1/2 transition will not create a spinon~we have instead
a ‘‘hybrid9 spin excitation!: one needs at least a spin-1 tra
sition to crate a spinon. This means that adding a sin
electron does not create a spinon: an even number of e
trons are required. This makes sense since for a spin c
the minimal spin excitation is also a spin-flip which involve
two electrons and not just one. The same behavior is
served with the holon: the minimal process which create
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adds two electrons (Q52 sinceQ↑515Q↓). These even-
odd effects are a direct consequence of statistics and w
not be observed with a bosonic two component LL.

With Eq. ~3.11!, we find that the wave functions for th
holon and the spinon are simply@with z5expi(2p/L)x#:

Cholon~z0!5Vc
1~Qc51,z0!Cc

5)
i

S ~xi2x0!

uxi2x0u D
1/2Kc

)
i

uzi2z0u1/2Kc

3)
i , j

uzi2zj u1/2Kc )
x0 ,i , j

H ~xi2xj !

uxi2xj u
J 1/2

~3.31!

5)
i

~zi2z0!1/2Kc)
i , j

uzi2zj u1/2Kc

3exp2 i
2kF

Kc

S (
i

xi

N
1x0

D
3 )

x0 ,i , j
H ~xi2xj !

uxi2xj u
J 1/2

, ~3.32!

and

Cspinon~s0 ,z0!5Vs
1~Sz5s0/2,z0!Cs

5)
i

S ~xi2x0!

uxi2x0u D
s0s i /2Ks

3)
i

uzi2z0us0s i /2Ks)
i , j

uzi2zj us is j /2Ks

3 )
x0 ,i , j

H ~xi2xj !

uxi2xj u
J s is j /2

. ~3.33!

The holon and the spinon are both anyons with excha
statistics:

uc5
p

2Kc
, ~3.34!

us5
p

2Ks
~3.35!

~the statistics were computed in Sec. I B!. Except for the
special caseKt51, these objects are not semions; in ad
tion, for holons we must also requirevcÞvs to ensure spin-
charge separation. Contrast our results@Eqs. ~3.31! and
~3.33!# with the commonly used but incorrect charge-sp
decoupling of the electron operator.52 The holon and the
spinon generalize the dual excitation found for the spinl
LL; in the same way, duality transforms the holon and t
spinon into the two-component generalizations of the Lau
lin quasiparticles. This is a most remarkable yet simple re
because it shows that two seemingly unrelated fractio
excitations—the holon ~or spinon! and the Laughlin
quasiparticle—occurring in two very different contexts a
actually deeply connected.
ld

e

-

s
e
-
lt
al

Similarly to the spinless LL, in addition to the holon an
to the spinon, hybrid excitations complete the basis of fr
tional excitations. Their charge and spin are intermediate
tween those of the holon and spinon and those of their d
excitations, the Laughlin quasiparticles which we discu
now.

(b) Laughlin quasiparticles. We can choose another bas
of elementary excitations dual to the previous one which w
parametrize the excitations in terms of current processes
electron addition at the Fermi surface. This basis, empha
ing Laughlin quasiparticles as elementary excitations rea

S Q1

Q2

S1

S2

D 5n↑S Kc

2Kc

Ks/2

2Ks/2

D 1n↓S Kc

2Kc

2Ks/2

Ks/2

D
1Q↑S 11Kc

2

12Kc

2

11Ks

4

12Ks

4

D 1Q↓S 11Kc

2

12Kc

2

2
11Ks

4

2
12Ks

4

D ,

~3.36!

where againQ↑2J↑52n↑ andQ↓2J↓52n↓ . In addition to
the hybrid quasiparticlesVc

6@Q5(16Kc)/2# and Vs
6@Sz

5(16Ks)/4# which already existed in the previous basis, w
have two excitations associated with pure charge curren
spin current processes:Vc(Qc5Kc) andVs(Sz5Ks/2). Un-
der electromagnetic duality the latter are conjugate to
holon and spinon, respectively. Actually they are obtained
spin-charge separation of the two-component Laughlin q
siparticles, and we may call them a Laughlin holon and
Laughlin spinon. Let us compute the wave functions of the
two excitations; one finds

Vc~Qc5Kc ,z0!Cc5)
i

~zi2z0!1/2

3exp2 i2kF
S ( xi

N
1x0

D Cc ,

~3.37!

Vs~Sz5s0Ks/2,z0!Cs

5)
i

~zi2z0!s is0/2exp2 i2s0~k↑2k↓!

3S ( xi↑2xj↓

M
1x0

D Cs . ~3.38!

In the previous expressions0 takes on the values61 and
k↑ ,k↓ are the Fermi vectors associated with particles of s
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up and down: ks5(p/L)Ns and N5N↑2N↓ , M5N↑
2N↓ . Cc and Cs are given for the bosonic LL in Eqs
~3.20! and ~3.21!; for the fermionic LL, there are additiona
phase factors given in the text following Eqs.~3.20! and
~3.21!. Plasma analogy allows us to get the charge and s
of the Laughlin holon Eq.~3.37! and spinon Eq.~3.38!. The
Laughlin holon and spinon are the stable excitations i
which the Laughlin quasiparticle decays as a result of sp
charge separation; in the localized Wannier basis that
have considered throughout, the product of the wave fu
tions of the two excitations yields indeed

Cqp~z0 ,s0!5)
i

~zi2z0!ds0s i)
i , j

uzi2zj ugs is j,

~3.39!

which is just the generalization of the Laughlin quasiparti
to two-component systems: when we add spin, the Laug
quasiparticle comes in two flavours~up or down! and the
Laughlin correlation hole acts only on particles of the sa
kind. It therefore carries both fractional charge and fractio
spin. @It would be spinless if the Laughlin prefactor we
) i(zi2z0) instead of) i(zi2z0)ds0s i.#

The Laughlin holon and spinon have statistical pha
uc5pKc andus5pKs/2. For a spin-rotational invariant sys
tem, the Laughlin spinon and its dual conjugate—t
spinon—are identical states (Ks51 is the self-dual point for
spin excitations!.

B. Luttinger liquid without spin-charge separation

1. The general LL and the charge matrix

We now generalize the standard LL theory to include s
ations with no spin-charge separation. We start from
ground state of the Gaussian Hamiltonian:

C0@ ĝ#5exp
1

2E E dx dx8rs~x!gss8

3 lnUsin
p~x2x8!

L Urs8~x8!, ~3.40!

gss85S l m

m l
D , ~3.41!

Kc
215l1m, ~3.42!

Ks
215l2m, ~3.43!

and relax the constraintg↑↑5g↓↓ ~while ĝ is kept symmet-
ric!. We consider the charge matrixgss85(m

l
l8
m ) and the

associated wave functionC0@ ĝ#. We introduce for conve-
nience the eigenvalues of the charge matrix and the uni
matrix P,

P21ĝP5D̂5S 1/K1 0

0 1/K2
D , ~3.44!

PstPs8t8gss85
dtt8
Kt

, t51,2. ~3.45!
in

o
-
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s

e
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ry

The normal modes of the charge matrix are simply

rt5Pstrs⇔rs5Pstrt t51,2, ~3.46!

(
ss8

rs~x!gss8rs8~x8!5(
t

rt~x!
1

Kt
rt~x8!. ~3.47!

If the charge matrix obeys aZ2 symmetry then the norma
modes are just the charge and spin density~up to a normal-
ization factor! r15rc /A2 andr25rs /A2). The wave func-
tion now reads

C0@ ĝ#5exp
1

2K1
E E dx dx8r1~x!

3 lnUsin
p~x2x8!

L Ur1~x8!

3exp
1

2K2
E E dx dx8r2~x!

3 lnUsin
p~x2x8!

L Ur2~x8!. ~3.48!

We have expressed the ground state in this decou
form because this allows us to directly write down a Gau
ian Hamiltonian with ground stateC0@ ĝ#. This generalizes
the spin-charge decoupled Gaussian theory. We introd
the phase fields associated with the normal densitiesr1 and
r2

rt52
1

Ap
]xFt , j t5

1

Ap
]xQt , ~3.49!

@Ft~x!,]xQt8~y!#5 idtt8d~x2y!. ~3.50!

It is then clear thatC0@ ĝ# is the exact ground state of th
following family of two-component Gaussian Hamiltonian
for arbitrary velocitiesu1 ,u2:

H@ ĝ,u1 ,u2#5HB@u1 ,K1#1HB@u2 ,K2#

5 (
t51,2

ut

2 E0

L

dx@Kt
21~]xFt!

21Kt~]xQt!
2#.

~3.51!

The two HamiltoniansHB@u1 ,K1# andHB@u2 ,K2# commute
by construction. The next section will be devoted to t
properties of that generalized LL theory. Let us stress h
the main property of this general LL now: by constructio
that theory corresponds toa generalized separation: the nor-
mal modes will not be charge and spin modes but mix cha
and spin in a proportion fixed in time. This will translate fo
the fractional excitations to states with both fractional cha
and fractional spin.

2. Main properties

The compressibility and spin susceptibility are eas
computed and one finds
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k215
1

L

]2E0

]r0
2

5
p

4 (
t

ut

Kt
S (

s
PstD 2

, ~3.52!

xs
215

1

L

]2E0

]rs
2

5
p

4 (
t

ut

Kt
S (

s
sPstD 2

. ~3.53!

r0 andrs are the charge and spin mean densities, whileE0 is
the ground-state energy. The Drude peak is

D5
1

L

]2E0

]f2
5(

t
utKtS (

s
PstD 2

, ~3.54!

wheref is a flux threading the LL ring of lengthL. This
expression can also be recovered using the Kubo form
one then needs the expression of the current density w
one finds with the continuity equation. The current is ren
malized as for the spinless LL and the LL with spin-char
separation. In contrast to the case of the LL with spin-cha
separation, here the expression involves bothK1 andK2 be-
cause both modes one and two involve charge,

j R~x!5(
s S (

s8,t

utKtPstPs8tD ]xQs

Ap
. ~3.55!

Anomalous exponents are easily computed as function
the charge matrixĝ which leads to compact expressio
valid both for the LL with spin-charge separation or for t
more general LL; one introduces the Fermi vectors:kFs

5pNs /L. For instance, density-density correlators are
tained withH@ ĝ# and with the bosonization formulas yield
ing the static structure factor; the dominant Fourier com
nents arek50, k52kF↑ , k52kF↓ , and k52kF↑12kF↓ .
Neark50,

^drs~0!drs8~x!&k505
g21̂

ss8

2~px!2
, ~3.56!

^dr~0!dr~x!&5
Ak50

~px!2
; Ak505(

ss8

g21̂
ss8

2
.

~3.57!

For the higher harmonics one includes a mode at 2kF↑
12kF↓52pr ~which appears in the Hubbard model in
magnetic field!:

^dr~0!dr~x!&5
Ak50

~px!2
1a↑

cos~2kF↑x!

x21a(2kF↑)
1a↓

cos 2kF↓x

x21a(2kF↓)

1b
cos~2kF↑12kF↓!x

x21a(2kF↑12kF↓)
, ~3.58!

21a~2kFs!52ĝss
21 , ~3.59!

21a~2kF↑12kF↓!52(
ss8

g21̂
ss8 . ~3.60!

Ak50 is fixed in the low-energy limit but the other con
stantsa↑ ,a↓ ,b are nonuniversal and depend on high-ene
a;
ch
-

e

of

-

-

y

processes. When there is spin-charge separation, the e
nent for 4kF oscillations and the constantAk50 are related by
the equation 21a(4kF)54Ak50; in the general case, we
find

21a~2kF↑12kF↓!54Ak50 .

The derivation of the exponents is done in exactly t
same manner as in the spin-charge separated LL.

Spin-spin correlation functions are

^Sz~0!Sz~x!&5

(
ss8

~ss8g21̂
ss8!

2~px!2
1(

s

cos 2ksx

uxu2ĝss
21 ,

~3.61!

^S1~0!S2~x!&5
cos~kF↑1kF↓!x

uxug
, ~3.62!

g5Fg↑↓
212g↑↓1

1

2 (
s

~ ĝ211ĝ!ssG . ~3.63!

Electronic Green functions decay as

^Cs~0!Cs
1~x!&5

expiksx

uxu11a(s)
,

11aF~s!5
1

2
~ ĝ1ĝ21!ss . ~3.64!

For bosons the exponent is modified as 11aB(s)5 1
2 ĝss .

These exponents are derived with the bosonization form
but can also be found by plasma analogy.

3. The charge matrix: a summary

For the two-component LL there are three interesting s
ations that we summarize below.

~i! In the general case, the~symmetric! ĝ matrix has arbi-
trary entries; there is no spin-charge separation but a m
general two-mode separation,

ĝ5S l m

m l8
D . ~3.65!

As will be shown below, the Hubbard model in a magne
field can be described by such a theory.

~ii ! the ĝ matrix has aZ2 symmetry; this case pertains t
spin-charge separation

ĝ5S l m

m l
D , Kr5

1

l1m
, Ks5

1

l2m
. ~3.66!

Indeed the symmetry under the exchange of up and do
spins implies that the normal modes of the charge matrix
just the charge and spin modes. The LL parameters are
the eigenvalues of the inverse of the charge matrix. T
situation describes models with spin-charge separation
with a spin anisotropy, for instance a Hubbard model
which one would add some Ising term(nSz(n)Sz(n11).
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~iii ! The ĝ matrix corresponds to a SU~2! symmetric case
(Ks51):

ĝ5S m11 m

m m11D , Kr5
1

2m11
,Ks51. ~3.67!

This situation describes the low-energy limit of the Hubba
model. It is noteworthy that the wave functionsC@ ĝ# for
that subcase were used in a variational approach of the
t2J model giving very good results although it was n
realized they were the exact ground states of the Gaus
model.53 The reason why it is so is now transparent.

C. Elementary excitations for the generalized LL

We now consider the excitations of the general boso
and fermionic LL with or without spin-charge separation. L
us inject particles in the Luttinger liquid. In real space this
described by the operator

V~x!5exp2 iAp(
s

@QsQs~x!2JsFs~x!#. ~3.68!

Fractionalization stems from two decouplings: chiral sepa
tion and a separation for the internal quantum number g
eralizing spin-charge separation. In terms of the norm
modes fieldsQt andFt (t51,2),

V5exp2 iAp(
t

F S (
s

PstQsDQt2S (
s

PstJsDFtG .
~3.69!

The chiral fields are

Qt,6~x!5Qt~x!7Ft~x!/Kt , ~3.70!

and therefore

V~x!5)
t,6

exp2 iApQt,6Qt,6~x!. ~3.71!

This expression explicitly shows a decoupling into four co
ponents. We have defined in the above the chiral charge

Qt,65
1

2 F S (
s

PstQsD 6KtS (
s

PstJsD G . ~3.72!

The following operators are exact eigenstates of each ch
HamiltonianH6,t t51,2:

Vt
6~Qt,6 ,q!5E dx expiqx exp2 iApQt,6Qt,6~x!,

~3.73!

q5
2pn

L
7

2p

L

Qt,6
2

Kt
. ~3.74!

The chiral charges correspond to the charge and spin ca
by each of these excitations up to a normalization factor

@Q̂s ,Vt
6~Qt,6 ,q!#5Qt,6PstVt

6~Qt,6 ,q!, ~3.75!

which implies that the charge and spin ofVt
6(Qt,6 ,q) are
D

an

ic
t

-
n-
l

-

al

ed

Q5Qt,6S (
s

PstD , ~3.76!

Sz5Qt,6S 1

2 (
s

sPstD . ~3.77!

Thus for an arbitrary charge matrix, fractional excitatio
carry both charge and spin. However, the ratio of charge

spin is constant for each given modet51,2: (1
2 (ssPst)Q

5Sz((sPst); of course, the phonons associated with ea
mode mix charge and spin in exactly the same proporti
since

rt~x!5S 1

2 (
s

PstD rc~x!1S 1

2 (
s

sPstD rs~x!

5S 1

2 (
s

PstD rc~x!1S (
s

PstD sz~x!, ~3.78!

wheresz(x) is a spin density.
It is convenient to define the charge to spin ratio

r 5
Q

2Sz
~3.79!

for each mode. Unitary implies that if for the first mode

r 5
Q

2Sz
5p, ~3.80!

then for the second mode

r 5
Q

2Sz
52

1

p
, ~3.81!

wherep is arbitrary. Note that for a Fermi liquid these ratio
are r 561 @we are characterizing Landau quasiparticles~or
holes! of either spin# and when spin-charge separation is r
alized the ratio is eitherr 50 or r 56`.

Let us give the elementary excitations. The simplest c
is that of bosons,

Qt,65Q↑S P↑t

2 D1Q↓S P↓t

2 D1
J↑
2

~6P↑tKt!

1
J↓
2

~6P↓tKt!. ~3.82!

To simplify the notation, we have only written a sing
line, but Qt,6 and the other entries should be read as fo
vectors. Qs and Js/2 are arbitrary independent integer
which shows that the statesVt

6(Q̃t,6 ,q) where Q̃t,6

5P↑t/2, P↓t/2, 6P↑tKt , or 6P↓tKt are elementary exci-
tations. As an illustration let us consider the simple case o
Z2 symmetric charge matrix for bosons that have a ps
dospin index. The unitary matrixP is

Pst5S 1/A2 1/A2

1/A2 21/A2
D . ~3.83!
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Then it follows from Eqs.~3.76! and ~3.77! that for mode
t51 ~the charge mode! Q5A2Qt,6 and Sz50; for mode
t52 Q50 but Sz5Qt,6 /A2. If we take these normaliza
tions into account:

S Q1

Q2

S1

S2

D 5Q↑S 1/2

1/2

1/4

1/4

D 1Q↓S 1/2

1/2

21/4

21/4

D
1

J↑
2 S Kc

2Kc

Ks/2

2Ks/2

D 1
J↓
2 S Kc

2Kc

2Ks/2

Ks/2

D . ~3.84!

Once again we find a charge 1/2 particle and a chargeKc
Laughlin quasiparticle as for the bosonic spinless LL. But
addition, we find new states resulting from a fractionalizat
of ‘‘pseudospin9 for the bosons~half-spinons, for instance!.

For the fermionic LL the elementary excitations are o
tained by the equation

Qt,65Q↑S P↑t

16Kt

2 D1Q↓S P↓t

16Kt

2 D
1n↑~7P↑tKt!1n↓~7P↓tKt!, ~3.85!

where we have resolved the constraint:Qs2Js52ns . This
fully characterizes the low-energy elementary excitations
a LL in a magnetic field~see below!.

D. Application to the Hubbard model

To illustrate the previous results we discuss the Hubb
model in one dimension. The model was solved exactly
the Bethe Ansatz by Lieb and Wu. In zero magnetic field,
repulsive (U.0) interactions, a LL metallic phase exis
both for weak and strong coupling, except at half-filling. F
very largeU the spin-charge decoupling is valid at all ener
scales. This was shown by Ogata and Shiba who also fo
that the Bethe Ansatz ground state then took a remark
factorized form:54 it is the product of a charge part~a Slater
determinant for free fermions involving all electrons! and a
Bethe wave function similar to that of the Heisenberg mo
on a reduced lattice from which one has removed the ho

CHubbard~xi ,s i !

5det~expik j r i ,ukj u<kF!CHeisenberg~yi ,s i !

~3.86!

(yi is the coordinate in the reduced lattice of particlei whose
real position isxi).

It is instructive to compare it to the two-component J
strow wave functions which are also explicitly spin-char
decoupled. The Slater determinant is rewritten as~in terms of
the circular coordinatesz)

CHubbard~xi ,s i !5)
i , j

~zi2zj !CHeisenberg~yi ,s i !.

~3.87!
n

-

f

d
y
r

r

nd
le

l
s

-

This is to be compared with

C5)
i , j

uzi2zj u1/2Kc)
i , j

uzi2zj us is j /2Ks)
i , j

H S ~zi2zj !

uzi2zj u
D ds is j

3expi
p

2
sgn~s i2s j !J . ~3.88!

Or if we separate spin and charge,

Cc5)
i , j

FUzi2zjU1/2KcS ~zi2zj !

uzi2zj u
D 1/2G , ~3.89!

Cs5)
i , j

FUzi2zjUs is j /2KsS ~zi2zj !

uzi2zj u
D s is j /2

3expi
p

2
sgn~s i2s j !G . ~3.90!

The spin part of the Laughlin ground state is just t
Haldane-Shastry wave function ifKs51 ~rotational invari-
ance! which has the same large-distance physics as
Heisenberg ground state. We can also determineKc without
any computation by just reading off its value from the wa
functions: the charge parts of the two wave functions co
cide if Kc51/2, which indeed is the known value of the L
parameter for largeU.

The Bethe Ansatz gives the spectrum and the eigensta
however, it is very difficult to compute correlation function
An important advance came, however, with the works
Frahm and Korepin who used CFT in conjunction with t
Bethe Ansatz to compute critical exponents.25 If a theory is
conformally invariant, one can show that the finite-size e
ergies of excitations are directly related to their operator
mension~which is one-half of the anomalous dimension
their correlation function!. By using Woynarovich’s Bethe
Ansatz calculations for the finite-size spectrum to order 1L
which he computed within a so-called ‘‘dressed charge m
trix formalism,’’55 Frahm and Korepin were able to extra
critical exponents for the correlation functions of the Hu
bard model. In particular, they found that in the presence
a magnetic field, spin-charge separation was not realiz
Penc and Solyom later showed that in 1/L the same spectrum
derived by Woynarovich could be expressed in terms o
generalized Tomonaga-Luttinger model with interactions
scribed in theg-ology framework; using equation of motio
methods they also derived the anomalous exponents.56 These
two approaches give little insight into the nature of the
ementary excitations: how are the holon and spinon modi
as a function of microscopic parameters? The description
spin-charge separation~or its absence! is not transparent ei-
ther: the dressed charge matrix tell us little about spin-cha
separation; its changes are not easy to relate to that prop
This is to be contrasted with our charge matrix formalism
which spin-charge separation is directly connected to a s
metry of the charge matrixĝ (Z2 symmetry!. We will show
that the ‘‘dressed charge matrix’’ of the Bethe Ansatz a
the charge matrixĝ are in fact related: the inverse of th
symmetric charge matrix is roughly the square of theZ ma-
trix. We will proceed in the following manner: we will show
that Woynarovich’s finite-size spectrum is identical to that
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our generalized LL. This yields the charge matrixĝ in terms
of the dressed charge matrixZ and gives us both the anoma
lous exponents and the fractional excitations since we
ready derived them for the generalized LL. The relation
our charge matrix formalism to Penc and Solyomg-ology
approach is the following: it can be understood as
bosonization of their generalized Tomonaga-Lutting
model; it is much simpler, however, to work directly with
the Gaussian Hamiltonian framework. Our approach has
eral advantages in addition to making an explicit cont
with the seemingly unrelated physics of Laughlin states:~a!
we avoid an ambiguity in the determination of anomalo
exponents in Frahm’s and Korepin approach;57 ~b! we can
give the nature of elementary excitations~and show that they
are fractional states in the first place!, and~c! we are able to
give a clear criterion of spin-charge separation.

Woynarovich’s finite-size spectrum in Frahm and Kor
pin’s notations is the following:

E~DN,D,Nc
6 ,Ns

6!2E0

5
2p

L
@vc~Nc

11Nc
2!1vs~Ns

11Ns
2!#

1
2p

L F1

4
DNT~Z21!TVZ21DN1DTZVZTDG

1OS 1

L D , ~3.91!

P~DN,D,Nc
6 ,Ns

6!2P0

5
2p

L
@vc~Nc

12Nc
2!1vs~Ns

12Ns
2!#

1
2p

L
@DNTD#12DckF↑12~Dc1Ds!kF↓ .

~3.92!

kF↑5(2p/L)N↑ andkF↓5(2p/L)N↓ are the Fermi momen
tum for particles of spin up and spin down. The energy a
the momentum are those of a state with the~integer! quan-
tum numbers (DN,D,Nc

6 ,Ns
6); there are two modes in

dexed byc ands: these two modesdo not in general corre-
spond to charge and spin.Z is a 2 by 2 matrix

Z5S Zcc Zcs

Zsc Zss
D ~3.93!

and DN and D are two-vectors:DN5(Nc5N↑1N↓ ,Ns

5N↓) andD5(Dc ,Ds).
58 In these expressionsNc/s

12 are in-
tegers: they are simply the modulus of phonon momenta
units of 2p/L for the two modesc ands; the index6 refers
to the sign of the momentum. The phonon velocities for
two modes are (vc ,vs).

The spectrum of the general Gaussian modelH@ut ,ĝ# is
l-
f

a
r

v-
t

s

-

d

in

e

E~Qs ,Js ,Nt
6!5

2p

L
@vt51~Nt51

1 1Nt51
2 !

1vt52~Nt52
1 1Nt52

2 !#

1
p

2L (
t51,2

vtS Qt
2

Kt
1KtJt

2D ,

~3.94!

P~Qs ,Js ,Nt
6!5

2p

L
@~Nt51

1 2Nt51
2 !1~Nt52

1 2Nt52
2 !#

1 (
s5↑↓

pQs

L
Js1kFsJs . ~3.95!

Nt51
6 ,Nt52

6 are again the moduli of phonon momenta. T
charges and currents (Qt ,Jt) are related to (Qs ,Js) by Qt
5PstQs andJt5PstJs . We can now identify the param
eters of both theories,

J↑52Dc , J↓52~Dc1Ds!, ~3.96!

Q↑5N↑ , Q↓5N↓ , Nt
65Nc/s

6 , ~3.97!

vt5vc/s . ~3.98!

The zero modes can be identified term by term; it is su
cient to consider the current terms to uniquely determine
charge matrix. The charge zero modes yield extra relati
which lead to the very same expression forĝ. Indeed ex-
panding the squares gives

K1P↑1
2 5~Zcc2Zsc!

2,

K1P↓1
2 5~Zsc!

2,

K1P↑1P↓15~Zcc2Zsc!Zsc ,

~3.99!

K2P↑2
2 5~Zcs2Zss!

2,

K2P↓2
2 5~Zss!

2,

K2P↑2P↓25~Zcs2Zss!Zss.

Since

g21̂
ss85(

t
KtPstPs8t , ~3.100!

it follows that the inverse of the charge matrix is

g21̂↑↑5~Zcc2Zsc!
21~Zcs2Zss!

2,

g21̂↓↓5~Zsc!
21~Zss!

2, ~3.101!

g21̂↑↓5g21̂↓↑5~Zcc2Zsc!Zsc1~Zcs2Zss!Zss.

We define the matrixZ̃ obtained from the dressed charg
matrix Z by subtracting the second line from the first:
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Z̃5S Zcc2Zsc Zcs2Zss

Zsc Zss
D . ~3.102!

Then

ĝ215Z̃Z̃ T. ~3.103!

This is the most important result of the present secti
the low-energy properties of the Hubbard model are
pressed in terms of quantities that can be computed from
microscopic parameters and spin-charge separation sim
follows from theZ2 symmetry of our charge matrix. In th
framework of the dressed charge matrixZ approach, the sec
ond feature is not easily decoded from the structure oZ
which is then triangular with some relations between its m
trix elements whose physical interpretation is qu
unclear.59–61 We can use the results of the previous sectio
on the elementary excitations and those on the various p
erties of the charge matrix Hamiltonian such as the Dru
peak, the susceptibility, and the anomalous exponents
particular, the new modes replacing the spin and cha
modes are simply the eigenvectors of the charge matrix.

The charge matrix is obtained by inversion,

ĝ5
1

~detZ!2 S g21̂↓↓ 2g21̂↑↓

2g21̂↑↓ g21̂↑↑
D . ~3.104!

Term by term identification of the charge zero modesQs

would lead to exactly the same expression forĝ; indeed,

1

K1
P↑1

2 5
~Zss!

2

~detZ!2
,

1

K1
P↓1

2 5
~Zcs2Zss!

2

~detZ!2
,

1

K1
P↑1P↓15

2~Zcs2Zss!Zss

~detZ!2
,

~3.105!
1

K2
P↑2

2 5
~Zsc!

2

~detZ!2

2

,

1

K2
P↓2

2 5
~Zcc2Zsc!

2

~detZ!2
,

1

K2
P↑2P↓25

2~Zcc2Zsc!Zsc

~detZ!2
,

:
-

he
ly

-

s
p-
e
In
e

and sinceĝss85(tKt
21PstPs8t one recovers Eq.~3.104!.

As it should be, one can check that the anomalous expon
predicted forH@ut ,ĝ# agree then completely with Frahm
and Korepin’s results.

Let us illustrate these results in two situations, one w
spin-charge separation, the other without. From these,
can exhibit the criterion for spin-charge separation within
matrix formalism.

In the presence of spin-charge separation, Frahm and
repin find that the dressed charge matrixZ is

Z5S Zcc5j Zcs50

Zsc5j/2 Zss51/A2
D .

This implies thatĝ and its inverseĝ21 are

ĝ215S j2

4
1

1

2

j2

4
2

1

2

j2

4
2

1

2

j2

4
1

1

2

D , ~3.106!

ĝ5S 1

j2
1

1

2

1

j2
2

1

2

1

j2
2

1

2

1

j2
1

1

2
D . ~3.107!

The charge matrix explicitly exhibits spin-charge separat
and takes the form characteristic of SU~2! symmetry. The
eigenvalues ofĝ21 areKc5j2/2 andKs51.

The Z matrix can also be explicitly computed in the lim
of infinite repulsion with a magnetic field close to the critic
field hc for which all the spins are polarized~i.e., close to the
ferromagnetic phase!. In terms of the parameter

d5Ahc2h

hc
~3.108!

the dressed charge matrix is

Z5S 1 0

2

p
d 12

1

p
dD ~3.109!

which implies that the~inverse of the! charge matrixĝ is
ĝ215S S 12
1

p
d D 2

1S 12
2

p
d D 2 S 12

2

p
d D S 2

p
d D2S 12

1

p
d D 2

S 12
2

p
d D S 2

p
d D2S 12

1

p
d D 2 S 12

1

p
d D 2

1S 2

p
d D 2 D . ~3.110!
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This expression shows explicitly the breakdown of sp
charge separation~except ford5p/4).

IV. CONCLUSIONS AND PERSPECTIVES

The main goal of our paper was to establish and desc
fractional excitations for the Luttinger liquid within th
bosonization scheme. The Bethe Ansatz gives exact ei
states and shows the existence of some fractional excitat
however, their description is quite complex in that fram
work and it is unclear how to generate systematically a co
plete set of excitations. In the low-energy limit, th
Luttinger-liquid approach allows a very precise characteri
tion of the fractional states already known from exact so
tions, and even allows us to discover novel fractional ex
tations which may carry irrational charges~the 1D Laughlin
quasiparticle, the hybrid state!. In Sec. II the low-energy
spectrum of Luttinger liquids can be reinterpreted in terms
fractional states: for instance, the particle-hole continu
consists of a Laughlin quasiparticles-quasihole continuu
The quasiparticle perspective clarifies many properties of
LL: the renormalization of the current operator is a dire
consequence of fractionalization; for spin chains, we pres
the correct description of the spinon excitation in the gene
case of a violation of SU~2! invariance. We also show tha
the Sz50 continuum of spin chains involves the analogs
Laughlin quasiparticles. In Sec. III we describe fraction
excitations such as the holon or the spinon for the Luttin
liquid with spin; we also present a generalization of t
Gaussian theory valid for Luttinger liquids without spi
charge separation and display in that situation the new f
tional states replacing the holon and spinon~see Sec. III C!.

An important test, of course, would be to observe exp
mentally ~or numerically! all these fractional states. Al
though the existence of the holon and the spinon was as
tained theoretically quite a long time ago5 no experiment has
yet allowed their detection: in fact, the property of spi
charge separation itself is not yet established experiment
The observation of two of the fractional states discussed
this paper would be particularly important: the LL Laughl
quasiparticle and the hybrid state. Indeed they may ass
irrational charges. The precise spectroscopy of fractional
citations we have done in this paper allows us to determ
which processes are involved in their creation: for t
Laughlin states, current probes are needed, while the hy
particle is created by the addition of an odd number of el
trons. For Laughlin quasiparticles shot noise is likely an
equate probe: the shot noise coefficient for Luttinger liqu
can be computed exactly and is predicted to be equal toK;61

in the two-dimensional electron gas at fillingn51/3 this
yields a charge 1/3.2 The latter situation involves Wen’s ch
ral Luttinger liquid. The identification of the shot noise c
efficient with the charge of a carrier has been debated
cause the coefficient one measures might actually be
conductance rather than a quasiparticle charge~at n51/3 the
conductance also assumes the value 1/3). For the nonc
Luttinger liquid our spectroscopy of fractional states allo
us to resolve that ambiguity: the shot noise coefficient
indeed identical to the conductanceK of the LL but the
~backscattering! current-current correlation function mea
sured in shot noise involves chargeK excitations, because
-

e

n-
s:

-
-

-
-
i-

f

.
e

t
nt
ic

f
l
r

c-

i-

er-

ly.
in

e
x-
e

id
-
-
s

e-
he

iral

s

chargeK LL Laughlin quasiparticles are precisely generat
by current excitations. These might thus be detected in
physical realization of the Luttinger liquid: quantum wires
possibly nanotubes. An intriguing possibility is also su
gested by recent experiments of tunneling at the edge
two-dimensional gas in a magnetic field.61 I -V characteristics
measured at the edge showed very surprising non-Fe
liquid behavior compatible with a chiral LL with unquan
tized LL parameterK; the I -V curves evolve smoothly when
one varies the filling fraction and do not show a plate
structure. There seems to be a continuum of Luttinger liqu
living at the edge: this caused quite a stir because the ch
LL theory can presumably be derived only for incompre
ible filling fractions. These puzzling results are so far une
plained, but if an interpretation in terms of a single-bos
mode chiral LL with unquantized parameterK can be in
some manner justified, according to the results given in
present paper, this would imply that there exists chargeK
Laughlin quasiparticles in that experimental setting: suc
chiral LL is identical to the chiral half of the nonchira
Gaussian Hamiltonian considered throughout our paper.
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APPENDIX: DISPERSION OF THE FRACTIONAL STATES

We show here thatVQ6

6 (q)uC0& ~whereuC0& is the inter-

acting ground state! is an exact eigenstate of the chir
HamiltonianH6 with energy

E~Q6 ,qn!5Fuuqnu1
pu

2L

Q6
2

K G . ~A1!

Let us rewrite the state consideredVQ6

6 (qn)uC0& in terms

of zero modes and phonon operators@we use Eqs.~1.16!,
~1.17!, ~1.26!, and~1.27!#

VQ6

6 ~x!uC0&5expiQ6F7
2p

K
Q̂6x2ApS Q07

F0

K D G
3exp2 iApQ6 (

nÞ0
Q6,nexpi

2pn

L
xuC0&.

~A2!

Taking into account the fact that the operatorsbq annihi-
late the ground state, it follows that

VQ1

1 ~x!uC0&5expiQ1F2
2p

K
Q̂1x2ApS Q02

F0

K D G
3exp2 iApQ1 (

n.0
A L

Kpunu
bn

1

3expi
2pn

L
xuC0&, ~A3!
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with a similar expression forVQ2

2 (x)uC0& ~the sum is then

over negative momentum phonons!. Going back to recipro-
cal space

VQ6

6 ~qn!uC0.5
1

AL
E

0

L

dx exp2 i
2p

L
nx

3expiQ1F2ApS Q07
F0

K D G
3exp2 iApQ1 (

6p.0
A L

Kpupu
bp

1

3expi
2pp

L
xuC0&, ~A4!

which shows thatVQ6

6 (qn)uC0& only spans chiral phonon

with momentum6n.0; in other words this state is obtaine
by the action of the zero mode of the chiral field plus t
creation of phonons withmomenta of the same sign. When
ev

ua

l.

e,

e

v.
one expands the phonon exponential, the integral over p
tion will select the configuration of phonons with identic
total momentumqn52pn/L. All these configurations con
sist of phonons of identical chirality and total momentu
which means that they are eigenstates with the same ei
value of the appropriate chiral Hamiltonian (H1 or H2).
This is enough to prove thatVQ6

6 (qn)uC0& is an exact eigen-

state ofH6 ,

H6VQ6

6 ~qn!uC0&5F (
q.0

uuquaq
1aq1

pu

2L

Q̂6
2

K G ~A5!

3VQ6

6 ~qn!uC0& ~A6!

5FuU2pn

L U1 pu

2L

Q6
2

K GVQ6

6 ~qn!uC0&,

~A7!

whereqn52pn/L is the momentum due to phonons.
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17H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Re
Lett. 56, 742 ~1986!.

18N. Kawakami and S. K. Yang, Phys. Rev. Lett.67, 2493~1991!.
19P. Bouwknegt, A. Ludwig, and K. Scoutens, Phys. Lett. B338,

448 ~1994!; K. Schoutens, Phys. Rev. Lett.79, 2608~1997!.
.

-

s

20O. Babelon, H. de Vega, and C. M. Viallet, Nucl. Phys. B220, 13
~1983!; K. Sogo, Phys. Lett.104A, 51 ~1984!.

21F. D. M. Haldane, Phys. Rev. Lett.60, 635~1988!; B. S. Shastry,
ibid. 60, 639 ~1988!.

22F. D. M. Haldane, inProceedings of the 16th Taniguchi Symp
sium on Condensed Matter Physics, Kagoshima, Japan, 1,
edited by A. Ojiki and N. Kawakami~Springer, Berlin, New
York, 1994!.

23We omitted a phase factor corresponding to a momentump
boost. It can be ignored after a bipartite transformation.

24F. Woynarowich, J. Phys. A15, 2985~1982!.
25H. Frahm and V. E. Korepin, Phys. Rev. B42, 10 553~1990!; 43,

5653 ~1991!.
26F. Calogero, J. Math. Phys.10, 2191~1969!; B. Sutherland, Phys.

Rev. A 4, 2019~1971!.
27M. R. Zirnbauer and F. D. M. Haldane, Phys. Rev. B52, 8729

~1995!.
28X. G. Wen, Phys. Rev. B41, 12 838~1990!; X. G. Wen, Adv.

Phys.44, 405 ~1995!.
29Z. N. C. Ha, Phys. Rev. Lett.73, 1574~1994!.
30M. P. A. Fisher and L. I. Glazman, inMesoscopic Electron

Transport, edited by L. Kovenhoven, G. Schoen, and L. So
~Kluwer, Dordrecht, 1997!.

31R. Heidenreich, R. Seiler, and A. Uhlenbrock, J. Stat. Phys.22,
27 ~1980!.

32K-V. Pham, M. Gabay, and P. Lederer, Eur. Phys. J. B9, 573
~1999!.

33G. V. Chester and L. Reatto, Phys. Lett.22, 3 ~1966!; R. P.
Feynman, Statistical Physics~Addison-Wesley, New York,
1972!.

34F. D. M. Haldane, Phys. Rev. Lett.47, 1840~1981!.
35The zero-mode basis~phonons andU6 operators! forms a com-

plete family of states: this was proved by Haldane in his co
putation of the grand canonical partition function of th
Tomonaga-Luttinger model~Ref. 8!. ThereforeVQ,J operators
span the Fock space sinceVQ,J operators are products o



s

e
so

lac

a
bo

ub

on
l b

b

m
n
ec

i

e

b
t

e
e
o
th

th

not
airs

the
the

ce

per
. So

s a
be

use

re

of
eir
to

the
cita-

,

16 422 PRB 61K.-V. PHAM, M. GABAY, AND P. LEDERER
Haldane’s U6 operators and of an exponential of phonon
Since the fractional statesVQ6

6 come from the decay of theVQ,J

operators they, along with the phonons, span the Fock spac
36This is just the quantization of the superfluid phase: the bo

operator isCB}expiApQ and thereforeAp@Q(L)2Q(0)#
must be an integer multiple ofp. The total current around the

ring is defined as the integral*0
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