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We reconsider the spectrum of the Luttinger liquid.) usually understood in terms of phonoftensity
fluctuationg, and within the context of bosonization we give an alternative representation in terms of fractional
states. This allows us to make contact with the Bethe Ansatz which predicts similar fractional states. As an
example we study the spinon operator in the absence of spin rotational invariance and derive it from first
principles: we find that it is not a semion in general; a trial Jastrow wave function is also given for that spinon
state. Our construction of the spectroscopy based on fractional states leads to several unique physical insights:
in the low-energy limit, we find that th8,=0 continuum of gapless spin chains is due to pairs of fractional
guasiparticle-quasihole states which are the one-dimensional counterpart of the Laughlin fractional Quantum
Hall effect quasiparticles. The holon operator for the Luttinger liquid with spin is also derived. In the presence
of a magnetic field, spin-charge separation is not realized any longer in a LL: the holon and the spinon are then
replaced by new fractional states that we are able to describe.

[. INTRODUCTION the computations are straightforward because the effective
Hamiltonian is that of a free bosonic field. Another perspec-
tive on the LL is provided by conformal field theofZFT)

One of the most striking properties of some strongly coryhich describes two-dimension@r 1+ 1) critical theories
related systems is fractionalization, which is the existence ofyith conformal invariance; this has allowed to identify the
elementary excitations carrying only part of the quantumyttinger liquid universality class as the setwf 1 CFT's?®
numbers of the constituent particles of the system. The mosle,, the set of all models that flow under RG towards the
famous example is probably the charge one-third LaughlirGaussian free boson Hamiltoni¥hCFT has allowed to for-
quasiparticle, which is the elementary excitation of the fracmalize the finite-size analysis of Luttinger liquids first intro-
tional quantum Hall fluid at fillings=1/3.1 Its existence was duced by Haldan&’'®® In terms of the Gaussian Hamil-
recently confirmed in a set of shot noise experiménfse  tonian, the LL theory can be described as a
earliest example of fractionalization in condensed-mattephenomenological theory characterized by the following pa-
physics is, however, found in one dimension: the exact solurameters:u which is a velocity for collective modes ari
tion of the Hubbard mod&lby the Bethe Ansafzrevealed which is proportional to the compressibility of the system.
that the charge and spin of the electron split into two excita- Yet, although the LL description is supposedly quite well
tions with independent dynamics, known as the holon anestablished through the formalisms of bosonization or CFT,
the spinor®. Faddeev and Takhtajan later showed that theand despite the fact that exact solutigBethe Ansatzshow
same spinon is also the elementary excitation of the onethe existence of fractional states in the spectrum of several
dimensional(1D) Heisenberg model: the magndtie usual  Luttinger liquids, there exists no systematic study of frac-
Goldstone bosonis replaced by two spinons generating ational excitations in the LL to the best of the authors’ knowl-
continuum forAS=1 excitations’ This property of the edge. Moreover, in the framework of the bosonization for-
Hubbard model is known as spin-charge separation and isialism, it is sometimes stated that the only physically
generic of so-called Luttinger liquidd.L): LL constitute a  relevant excitations of a LL are phonons, since the effective
universality class for gapless one-dimensional models sucHamiltonian is just that of acoustic phonons. As we show
as the Heisenberg chain, the Hubbard model, andth&  below this statement is incorrect. Conformal field theory is
model® Luttinger liquids are non-Fermi liquids: Landau an alternative to bosonization which does stress the spectro-
quasiparticleSare not elementary excitations of the LL and scopic aspects: yet, application to the study of fractional ex-
as a consequence the electron Green’s function shows ratations in a LL has been limited to the spinon in the case of
quasiparticle poldthis property is true both for the LL with SU(2) symmetry, which is the situation relevant for the
spin and for the spinless )LHaldane, who coined the name Heisenberg chaif® Fractional excitations must exist in a
of LL, conjectured that 1D gapless models would have the_uttinger liquid if the Bethe Ansatz is correct but as far as
same low-energy physics as that of the Tomonaga-Luttingeihe authors are aware, the characterization of these very un-
model. For energies smaller than the bandwidti?the lat-  conventional fractional states, through either bosonization or
ter model is a fixed point of the renormalization group CFT, is mostlyterra incognitaas the following list of issues
(RG).E In 1D, bosonization allows us to transform the may show.

Tomonaga-Luttinger model into a Gaussian acoustic Hamil- (1) AS=1 excitations for the Heisenberg chain form a
tonian describing free phonof$;the considerable success continuum of pairs of spinons. When an Ising anisotropy is
and popularity of bosonization stems from the fact that allintroduced, in the massless regiifveith obvious notations:

A. Motivations of this work
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|3,/=<Jx (=J,)] the continuum still exists and evolves (3) Spin-charge separation is an asymptotic property of
smoothly as a function of the anisotrogy=J,/J,.” The  the Hubbard model valid in the low-energy limit. When a
continuum is again ascribed to pairs of spinéhi.is intu-  Magnetic field is applied Frahm and Korepin found that spin-
itively clear that these spinons should be in some sense dghqrgzg decoupling was not realized even in the low-energy
formations of the S(®) spinon. We will derive in this paper limit.” In this paper we derive the new excitations replacing
creation operators for these non{@W spinons using the the holon and the spinon.
bosonization method. (4) In the context of the Calogero-Sutherlan€S

In the case of S(2) symmetry, trial wave functions for modef® the existence of fractional excitations similar to
these spinons can be found by making use of the exact soN-aughlin quasiparticles was suggestédn a variant of the
ability of the Haldane-Shastr§HS) chain?* The HS model standard LL known as the chiral LL used to describe edges
shares the properties of the Heisenberg chain: it is a gaple§$ & FQHE sample, Laughlin quasiparticles do appear but the
SU(Z) Symmetric Spin chain with a continuum of Spinon ex- existence of such states follows from that of the same exci-
citations. Its ground state and spinon wave funcfidrse tations in the bulk® in the CS model the proposal was trig-
remarkably similar to those one would write for bosonic gered by the similarity of the ground state with that of the
Laughlin states at filling:=1/2, two-dimensional2D) Laughlin wave functions and by spe-

cial selection rules. The ground statéis

WXy, - ,xN):iE[j (z—7)?, (1.2) W(x,, ""XN):L[J- z-2 (1.9
Vanodzo) =11 @2l @-2)% @2 2= expi S, 15

where\ is a coupling constant for the r#/ interaction po-
(1.3 tential of the CS model. The CS model is a [Ref. 18 and

the LL parameter is jusK=1/\. A pseudoparticle formal-

ism similar to that of the Bethe Ansatz can be introduced and
wherex; is the coordinate of a spin down, arglthat of the  for the restricted case of rational couplings- p/q special
spinon® We will exhibit similar wave functions for the selection rules are found for the dynamical structure fagtor:
spinon in the absence of $2) symmetry. SW2) spinons are pseudoholega pseudohole is a hole in the Fermi sea of
semioné? (anyons with a statistics intermediate between thapseudomomenjamust be accompanied in any excitation by
of fermions and bosomswe will show that the statistics is q pseudoparticle®’ For a charge 1) pseudoparticle, this
affected when an anisotropy is introduced. means one has a charge\#K for the pseudohole. In the

A continuum is also found by the Bethe ansatz &8,  interpretation of those selection rules it is proposed to view
=0 transitions* Low-lying excitations are described in that the CS model as a gas of noninteracting pseudoparticles with
approach as two-string states in the string formalism customanyonic statisticar\ and one rewrites the ground state as an
ary to the Bethe Ansatz. This description is similar to thatanyonic wave functiorﬂi<j(zi—zj)”. The pseudoholes are
given for theAS=1 continuum of the isotropic chain. In the particle hole conjugates of these anyons: the main modifica-
latter case it is quite clear that a spin-1/2 should be ascribetion with the noninteracting case being the new selection
to each of the(pseudo “hole” states in the string, which rule; a wave function for these pseudoholes consistent with
leads to the spinon interpretation since each state should cothose interpretations is theli;(z —z)Hi<j(zi—zj)’\ which
tribute symmetrically to the spin-flip.For AS,=0 transi-  has the correct charge and statistics. The pseudohole is there-
tions, the totak spin components of the excitations add up tofore identified as a Laughlin quasiparticle. It exists for ratio-
0 and the continuum results from the excitation of particle-nal couplings and carries the rational charge. 1/
hole pairs. For the isotropic chain, this continuum is gener- There are, however, several limitations to those views.
ated by spin-1/2 spinon-antispinon pairs. By contrast, for the=irstly, these considerations are only valid for rational cou-
XY chain theAS,=0 continuum is due to particle-hole pairs plings (the pseudoparticle selection rules cannot be extended
of magnonlike spir5,=1 excitations. The case of the isotro- to irrational\): the physics of the CS model is by contrast
pic Heisenberg chain for which spin-1/2 spinons are in-completely continuous with the coupling and does not dis-
volved both in theAS,=0 and theAS,=1 continuum is criminate between rational and irrational couplings. The im-
therefore incidental. The important lesson to be learned ipossibility to describe rational and irrational couplings on the
that in the presence of an Ising anisotropy, #8,=1 and  same footing means the representation is not adequate. Sec-
AS,=0 continua may involve different fractional spin states: ondly, a disymmetry between particle and hole excitations is
in the first case we have spinoffdyut in the second case the introduced.
spinon identification is not always correct. What happens in In a parallel strand of ideas, Laughlin quasiparticles were
the case of an arbitrary anisotropy will be dealt with in thisalso proposed in studies of transport in a LL. The basis of the
paper. argument is that for a LL with an impurity potential a charge
(2) The holon appearing in the exact solution of the Hub-K and not a charge unity is backscattered at the impurity

bard model is a spinless charge one excitatidie issues location(whereK is the LL parameter, i.e., the conductance
raised for the spinoroperator, wave function, statisticex-  of the LL).3° The impurity potential can be rewritten as a
tend naturally to the holon. hopping potential for a chargé state whose exchange sta-

2T
Zi=expi X,
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tistics is wK as seen from the commutation relatiofi®., B. The Luttinger liquid
anyonig. But for K=1/(2n+1) these states are just those
given by Wen for the Laughlin quasiparticles of his chiral _ ) ) _ )
LL: this suggests to identify these states as Laughlin quasi- This section will define the notations employed through-

particles. The main difficulty in that argument is that it relies Ut the paper. We exclusively deal with Luttinger liquids and
on the introduction of an impurity potential in the LL: this therefore when considering some specific models such as the

obscures the question of the existence or not of a Laughlir'f'e's‘enberg spin chain or the Hubbard model we implicitly

L : : . assume that we are working in the LL part of their phase
quasiparticle in the pure nonchiral Luttinger liquid. In Sum_diagrams The whole physicgs of the LL |ps embodied Fi)n the
mary, what is missing is a proof that states similar to Laugh-followin .Hamiltonian'
lin quasiparticles might be exact eigenstates of the LL boson 9 '

1. Notations

Hamiltonian (i.e., of the RG fixed point in the low-energy u L L ) )
limit). The existence of Laughlin quasiparticles for the non- HBZEJ dx K™ [VO(X)]*+K[VO(X)] (1.6
: ) . . 0
chiral LL for arbitrary couplings must then be considered at
this point as an unproved conjecture. supplemented by the so-called bosonization formulas. We

The long list of issues we have brought up in poifits-  work on a ring of lengtfiL. u andK are the LL parameters
(4) above should convince the reader that a thorough discugan be interpreted as a displacement field for phonons, while
sion of fractional excitations for Luttinger liquids within the © is a superfluid phase; indeed the particle and current den-
formalisms of bosonization or CFT remains to be done. Thisities are defined as
is what motivated us to re-examine in that paper the spec-

. L 1
trum_ of Luttinger liquids. We vyant to stress that although the p(X) = po=— —=Vd(x), (1.7
previous examples concern integrable models, the detailed J
physics of such integrable models is not really our main
interest: what matters for us is the universal low-energy con- ) 1
tent of these theories and of course we will be unable to tell j(x)= \/—;V@)(X)- 1.9

anything through bosonization on the high-energy physics.

Although it seems to be taken for granted that the excitation®enormalized currentActually j(x) is a bare current den-

of a LL are the holon and the spinon on account of the Beth&ity which corresponds to the correct one only in the nonin-
Ansatz studies of the Hubbard model, we are not aware oferacting cas& =1: the continuity equation shows that the
any existence proof of such fractional excitations whenevegorrect current density is renormalized and is

the model is nonintegrable: this is so because any proof must . .

resort to the universality hypothesis, that is to the LL and JRO)=UKj(X) (1.9
bosonization frameworks. The theoretical formalism we wish(the Fermi velocity has been set to unityWe will discuss in

to introduce aims at bridging that gap by focusing on theSec. Il the meaning of such a renormalization.

universal structure of fractional excitations of Luttinger lig-  The particle operators for bosons and right and left mov-

uids through the bosonization method. ing fermions, respectively, are given as
The structure of the paper will be as follows: Sec. | is an .
introduction to the topics considered in the paper. In Sec. | B Wg(x)=:expi V7O (X):, (1.10

we give a short review of the LL physics in order to set the

notations used throughout the paper; the issues discussed in We r(X)=:expi \/;[(x)—d)(x)]:expikFx, (1.11
the present section will be amplified in Sec. |1 B 2 in which

we present the standard view on excitations of the LL. In W L(X)=:expi \/;[®(x)+<b(x)]:exp—ikFx

Sec. Il we will show that an alternative eigenstate basis can (1.12

be built: that quasiparticle basis allows a natural discussio?in the following we will assume that these operators are
of fractional states. In Sec. Il we will generalize our analysisnormal orderell ke= 7Nq /L is the Fermi momentum where

. . . . . F_ 0
to the LL with spin. When a magnetic field is added on to theNO is the number of particles which is fixed by the chemical

Hubbard model, spin-charge separation no longer occurs. : _ : d
The standard spin-charge separated Luttinger liquid theory i otential. & and I[=V<® are canonical conjugate boson

not applicable any more. We will introduce in Sec. IlIB a elds,

general framework related to th€ topological matrix of [O(x),II(y)]=i8(x—Y). (1.13
Wen'’s chiral Luttinger liquid$® which yields simple criteria

of spin-charge separation in terms o asymmetry: we will The zero modes of the charge and current density are,

be able then in Sec. Il C to derive the fractional excitationsrespectively,

which replace the holon and the spinon. The general LL

theory we have introduced will then be applied to the Hub- . . L L1

bard model in a magnetic field in Sec. Il D in which we N=No+ Q:fo p(x)dx=No— fo \/——V(I) dx,
explain the relation between our approach and the formalism .

of the dressed charge matrix due to Frahm and Korepin. Let

us mention that Sec. Il of this paper expands on a short L L1

version which contained results in the case of a spinless j:f j(x)dx=f ——VO(x)dx. (1.15
LL,32 whereas Sec. Ill presents totally new material. 0 0\

(1.19



16 400 K.-V. PHAM, M. GABAY, AND P. LEDERER PRB 61

O has integral eigenvalues as befits a charge operator; in th E(k)
bosonization mapping, the charge quantization is taken intc
account by the topological quantization of the phase field
Similarly, sinceféj(x)dx is a closed line integralaround
the LL), it is a quantized number: this is just the topological
guantization of the superfluid phase; the normalization of the
fields have been chosen so tlds an integer. For fermions,
Q=N,+N_ andJ=N, —N_ whereN, andN_ are, re-
spectively, th€integra) number of(bare electrons added to
the ground state at the right and left Fermi points. The con-
struction we have reviewed above is due to Hald¥ne.
Integrating the Fourier expansions of the charge and cur- ' ' ' '
rent density gives -4 2 0 2 4 kikp
\/;A 1 2N FIG. 1. Spectrum of the Gaussian model with a bosonic Fock
O(X)=0y+ —Ix+—= E 0,expi—x, (1.16 space in the charg® sector. The energy at zero momentum is
L \/E n#0 L A(Q)=muQ?(2L) as a function ofQ the number of particles
added to the system. The spectrum for fermionic Fock spaces is
T 1 2an identical if Q is an even integer. The continuum is enclosed within
D(X)=Dy— TQX+ — E o expi —xX. the straight lines which are supported by the parabolic envelope
L nzo L 2
mu(k/ke)2/(2L).
(1.17

Note that these fields are not periodic: this allows for theenergies of states with nonzero charge or current with respect
above-mentioned topological excitations. We demand thalo the ground state. In reciprocal space, the Gaussian Hamil-
the boson or fermion operators are physical objects and th&@nian becomes
they are periodic on the ringVgr(X)=Wg,r(X+L); this

. . . . : A2
u u R
then implies the following §elect|9n rules on the eigenvalues Ho=o S K*1HqH,q+ Kq2®q®—q+ wu Q—+ k32|
Q andJ of the zero mode§) andJ: 2 470 2L\ K
(1.29
bosons: J even integer, 11 . L
g (1.18 We have split the Hamiltonian into the phonon part and the
fermions: Q—J even integer. (1.19 nonbosonic zero mode part. The first term can indeed be

rewritten as
Both Q and J are integers. The zero modes are sometimes

extracted from the definition of the fermion operator which _ + 1
defines theU. operators, first built by Heidenreich and HPhO”O”_q;O u|q|(bq bq+§ (1.29
Haldane for the Tomonaga-Luttinger modéf
with the phonon operators
U, =expiJm(0,+d,). (1.20
K

It will be useful to consider the commutation properties of by= ch”( 04— KLCDQ), (1.26
the following operators: al

= 1 0 — . K

V, () =:exp—iJaa®(x)— BD(x)]:. (1.2 b = / |2q|(®q— K<|1|q| cbq). 129

Using the Campbell-Haussdorf formula, one finds
. The second term in the Hamiltonian is standard in conformal
Vo sV, 6(¥) =V (Y) V4 p(x) 7 70F 5900, field theory; it corresponds to finite size corrections to the
(1.22 energy when one adds particles or creates persistent currents
where sgnX) is the sign function, which shows in particular in the Luttinger liquid. The corresponding states are built by

that Wg(x) is a fermionic operator. We define the exchangemeans of Haldane's .. operators which act as ladder opera-
statistics of an operator per tors in Fock spac.This (Q,J) part of the Hamiltonian is

often called in CFT a zero-mode part. The corresponding
O(x)O(y)=0(y)O(x)exp—ifsgny—x). (1.23  excitationsmay, however, carry momentum. A nonzedo
) ) excitation creates indeed a persistent current with momentum
For instance = for fermions. Jke . These states are therefore nondispersive since their mo-
mentum may only assume the discrete valiiks.

The spectrum of the Hamiltonian results from a convolu-
Until the work of Heidenreicht and subsequently of tion of plasmon excitations and of thes@,() excitations as
Haldane® the only excitations considered in the Gaussianis apparent in Figs. 1 and 2: two linear plasmon branches rise
model were the bosonic phondar plasmoh? modes. But from each local minimum of the energy obtained for the

the Hamiltonian contains a second part corresponding to theero-mode state<Q,J). It is important to note that there are

2. Excitations
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E(k) Il. FRACTIONAL EXCITATIONS OF THE SPINLESS
LUTTINGER LIQUID

This section is divided as follows: first, we discuss the
property of chiral separation which is central to the physics
of fractionalization; then, we exhibit fractional quasiparticles
for the bosonic LL before turning to the fermionic LL for
which we will find a different set of elementary excitations.

A. Chiral separation

1. Chiral vertex operators and fractionalization

The Gaussian model is endowed with a very basic prop-
-5 3 101 33 kkg  erty which is that of chiral separation, i.e., we can split it into
_ o two commuting parts corresponding to right or left propaga-
FIG. 2. Spectrum of the Gaussian model for fermionic FOthion of the fields. This is a property which is systematically

spaces in the case of charge sectors for whids an odd integer. seq py CFT in the analysis of conformally invariant sys-
Notice that the energy has now local minima for momekta tems. Indeed

+1,+3,%£5, ... (in units ofkg) instead ofk=0,-2,+4, ... .

u (L
_ -1 2 2
selection rules on the allowed values @,0), which refer HB—QL dx KT I(x)“+K[VO(x)]%, (2.7)

back to the quantum statistics of the particles: as reviewed in
the preceding section, the Gaussian model can be considered
either for bosons or fermions, which results in different =
bosonization formulas. For bosorkis constrained to be an
even integer while for fermion& andJ must have the same ;o6 precisely we introduce the following chiral fields:
parity. This then leads to two different spectra as can be seen
from Figs. 1 and 2: for instance, for bosons the stafe ( d(x)
=1,J=0) is available while it is forbidden for fermions; 0.()=00)F—— 2.3
conversely Q=1,J=1) is available to fermions but not to
bosons. Thus we have two different theories: the sam#hich are related to the phonon operators by
Hamiltonian leads to different properties depending on
whether we consider a Fock space of bosons or a Fock space . _ ﬂ
S g : : rob q>0: b, 0, q, (2.9
of fermions®® We will call the LL with bosonic(fermionic) 2
selection rules: the bosonifermionic) LL. For the bosonic
LL, as depicted in Fig. 1 the spectrum in arbitrary charge ) _ /K|Q|
sectors has the same form but for a shift in energies: in the 4=0: bq= T®"q' 29
charge secto® one must add the constamtiQ?/(2L) to the . I
energy. The same energies are found for the fermionic LL id" t&rms of these fields the Hamiltonian becomes
charge sectors for whic® is an even integer, but  is an Ho=H. +H (2.6)
odd integer there is a new spectrum with local minima at B * - '
momenta* ke and notk=0 (Fig. 2.
. L ukK [t
In the rest of the paper we refer to this parametrization of H. :_j dx:[3,0 . (x)]* (2.7
the spectrum in terms of phonons and zero modes as the 4 Jo
zero-mode basis; this is to be distinguished from the quasi-
particle basis that we will build later. A property which will . mu [ Q+KJ
prove crucial for the rest of the discussion is the fact that in :+§;0 ulq]:bgbg: Tkl 2
the free-fermion case a quasiparticle basis exists as an alter- -4
native to the zero-mode basis: instead of the zero-modes b&t, only contains right-moving phonons and similarly for
sis, it is indeed possible to parametrize the spectrum in terms _  with left-moving phonons. It is clear also that
of the usual Landau quasiparticles. Below we show that #H, ;H_]=0. Let us show now that these fiel@. are
similar quasiparticle basis can be built in the interacting caseghiral; they obey the equal-time commutation relations,
While fractional quasiparticles do occur in exactly solvable
models(the holon, the spindnscant contact had been made .
with the bosonization approach as mentioned earlier. In the t(x),+§ayt(y)
low-energy limit, using the bosonization formalism, we will
directly recover the fractional excitations predicted in thewhich implies that the momentum canonically conjugate to
Bethe Ansatz, with the advantage that the simplificationd? - is I1g =+ (K/2)3,0. . The equations of motions for
brought by the low-energy limit will allow a complete char- these fields are
acterization giving, for instance, easy access to statistical
phases. Ud® . . =530 .. (2.10

O(x,t)=0. (2.2

1
2 2
dy— —d
X u2t

2

(2.9

=i8(x—y), (2.9
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Thus 0. (x,t)=0 . (x+ut) which means that we have chi- which shows they carry charg€s. = (Q=KJ)/2 which are
ral fields indeed. The superfluid phase has therefore beamnintegral in general. The above operator identity means

parametrized a® (x,t) =3[0 (x—ut)+ O _(x+ut)].

that the charge is “sharp:” by “sharp” we mean that the

One may define chiral density operators as well as theharge found is not a quantum averag®y is not necessar-

corresponding chiral charges as

1 _6p(x)tKj(x)
p+(X)= ZJ;axq)i(X)_—z , (211
. 0=KJ

Those chiral densities obey the anomaldiac-Moody)
commutation relations

iK
[p-(X)p=(Y)]=F5_odx-y). (213

Let us now consider the injection @ particles with a

momentumg and current). In that case, the plasmon total

momentum is equal tq—J[kg+ (7Q/L)]. In the bosoniza-
tion formalism, the operator creating this state is

1 [t .
- (q—Jkg)x. : _ .
Va.i(Q) \/EJdeéq exp—im(QO —Jd):.
(2.19

This can also be rewritten as

1 (L .
Voa(a)= EJO dx €@ P exp—i7Q, ©  (x)

X exp—iJTQ_0_(x). (2.15

As a function of time

1
Voa(a,t)= \/_Efo dx @I Xexp—i/7Q, O, (Xx—ut)

X exp—imQ_0 _(x+ut). (2.16

ily quantized of course This is a point we want to stress
because this means that these quantum states are genuinely
fractional. This shows then that if one injed® particles
with currentJ in a LL, one should observe a char@g,
=(Q+KJ)/2 state propagating to the right at velocityand

a chargeQ_=(Q—KJ)/2 going to the left with velocity
—u. Forinstance, let us inject an electron exactly at the right
Fermi point: this is aQ=1,J=1) excitation(with no plas-
mon excited; there would then be fractionalization into a
charge (1 K)/2 state going to the right and a charge (1
—K)/2 going to the left.

The most important property of these fractional states is
that they are exact eigenstates of the Gaussian Hamiltonian.
The proof requires a proper definition of their Fourier trans-
form because they are anyons, as will be shown shortly: from
Eqg. (1.22 it is clear indeed that the commutation relations
are anyonic with an anyonic phase

2

4+
O=*m——

K7 . (2.21

Due to its anyonic charact&fa(x) does not obey periodic

boundary conditions; if we use the expressions of the fields
® and® [Eqgs.(1.17) and(1.16], we immediately find that

2
Vét(x+ L)zexptiZw%Vét(x). (2.22

The Fourier transform is then defined as

There is therefore a splitting into two counterpropagating

states. For noninteracting electrons the chiral cha@yesre
integers sinceK=1 and the operators exp\7Q. 0 . (x

Fut) are just those o). Landau quasiparticles. But in the
general case this is not true anymore: we will therefore have

states carrying fractional charges.

We now define the chiral vertex operators which appeared

in the previous expression as

Vo () =exp=iVmQ.0..(x), (2.17

where the superscript refers to the direction of propaga-

tion. They obey the following commutation rules:

[p(¥).V5 ()]=Q-8(x=y)V5, (), (218
[Q.Vg, (0]=Q. Vg, (X), (2.19
- Q. .

[3.V5, (0)]= 7 Va. (%), (2.20

27 2w Q
Q+(qn dxexp—| —n_ K VQ (x),
(2.23
with a pseudomomentum, quantized as
_277 +27'r Qi 9
©ETET K (224
— 27 Q%
= niT? (223

(where we have defined a phonon pgytof the momentum
The operators/; _(dy,) are such thatl) Vg (q)|¥o) is

an exact eigenstatefof the chiral Hamiltontan with energy

Q+

E(Q: .00 = LK

Uan|+

(2.26

where|¥ ) is the interacting ground stateee the Appen-
dix). It has a linear dispersion.
(2) The states created hy thai(qn) to which one adds

the phonon excitations form a complete set. This is obvious
because the staték, ;(x) span the full Fock spacg.
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2. The LL spectrum in terms of fractional quasiparticles trum, nevertheless the elementary constituents of our system

Let us consider Figs. 1 and 2 which show the spectrum of'® electronsthey are the high-energy elementary particles
the LL Hamiltonian in various charge sectors and ask thef Our systems this means that they alone define the struc-
following question: what happens when one a@dsarticles ture of Fock space, with 'the implication that all physical
to the systenti.e., in the charge sectd)? In the standard states must consist of an mtegrer_number of electrons. _De-
view of the LL spectrum based on the phonon and zeroSpite th_e fa_ct that there are f_ractlonal states, the previous
modes basis, the dynamics of the charge added to the LL iréemark !mplles thgt these fractional states will be c_reated in
unclear because it is concealed in the zero modes. The pgPPropriate combinations so that the total charge is always
rametrization of the spectrum in terms of the zero modes an@" INt€ger. This is the explanation of the previous selection
the phonons does not allow us to find what happens once tH&!€S we found, whiclin fineenforce the basic constraint that
chargeQ is added to the system because that choice of basi¥€ Started out with electrons. We may view these selection
involves the use of nondynamical statetaldane’sU ,, op- rules as being topological since they are directly related to
erators, which describe the zero modé&y contrast the qua- the structure of the Fock space. . .
siparticle basis only involves states that have a dynaftties It is easy t'o show that Eq2.27) |mmed|ately.follows
phonons and the fractional stat@sd we are therefore able fr_om the requirement that_aII states are ele(_:tronlc. We con-
to tell what happens to the charge, how much of it will moveSider two counterpropagating states with arbitrary chlge
to the right, and so forth: if we consider the two branches®d Q-; we make no hypothesis on the values of the
starting fromk=Jk in the charge sectd®, the right branch  charges, nor on the nature of the chiral statwe do not
corresponds to a right-moving fractional excitation with lin- 8Sume they correspond\g,, andV, ). The only assump-
ear dispersion and with charg@, =(Q+KJ)/2, while the tions we make are the followinga) the one dimensionality
left branch is due to a left-moving fractional state with which means that the eigenstates have momenta in one of
charge Q_=(Q—KJ)/2. The continuum in between the either two directions anb) that the current density operator
branches simply results from the creation of the two fracds renormalized. We then have two constraints on the values
tional excitations with both nonzero momentum , and  that the charge®. and Q- may assume: since our Fock
g_, [on the right branch, a charg@_=(Q—KJ)/2 is also  space is that of electrons, all the states contain an integer
created but it has zero momentua ,=0, and conversely number of electrons, i.eQ,+Q_=Q is an integer. The
on the left branch second constraint stems from the renormalization of the cur-

The direct way to find out how the char@ewill behave  rent density operator:
is to exhibit the quantum states which will describe the
propagation of the charge. This is what the quasiparticle ba-
sis does because it directly considers the states involved in jR(x)=qu(x)=uK(iax®(x)), (2.29
the dynamics of the charge. Of course, the two bates N
quasiparticle basis and the zero-mode baaie mathemati-

cally equivalent and therefore lead to identical physicsiyherej(x) is the current density in the noninteracting case.
therefore the charge dynamics can also in principle be detefrp;g expression can be derived from the continuity
mined in the zero-mode basis, but in the quasiparticle baSi%quatior?. Going around a ring of length in the LL we get
we have the benefit that the spectroscopy immediately tellg (persistent current which must be quantized,

us the fate of the charge added to the system. In sharp con-

trast, in the zero-mode basis, the spectroscopy is not useful
because the states used in that basis are the phgwbith
have no chargeand theU . operators(which have charge
but no dynamics We will give such an argument in the next
section: this will prove in an independent manner the frac'whereJ is an integef® but the current carried by the states

tionalization of the LL spectruntin a way which does not ith ch : _ _ Theref
depend on the explicit construction of the fractional states' " © arges, andQ- is Jp=u(Q. ~Q-). Therefore,

‘]R: fOLdeR(X):UKJ, (229}

operators

(Q.—Q_)=KJ, J integer (2.30
3. Selection rules and fractionalization
The fractional charges carried by the fractional excitationgvhile
considered above are not arbitrary: they must take on the
values (Q,+Q_)=0Q, Q integer. (2.3D)
Q+KJ
Qu=——>%—, (2.27  Solving for these constraints, one recovers the selection rules

(2.27), i.e., the spectrum of fractional charges. We observe in
where bothQ andJ are integers. We may view these con- passing that this argumedbes notdepend on our formal
straints on the allowed spectrum of fractional charges as selgebraic derivation of Sec. Il A1 and provides an alterna-
lection rules. These selection rules have, however, a cledive proof of the existence of fractional states as well as it
physical meaning which we discuss now. yields the allowed charge spectrum. In that argumiat-

Although these excitations do not carry the electron quantionalization follows from the renormalization of the current
tum numbers because of the fractionalization of the specin the presence of interactions
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B. Elementary excitations of the bosonic LL [the momenta in that expression are the phonon [gtsf
1. Elementary excitations the momentum of the operator: fové+(qn), dn=4n

We now establish a series of results concerning the el (27/L)(Q%/K) andq,=2mn/L].%’
ementary chiral excitations of a nonchiral LL. We would like  The above equation demonstrates clearly that the excita-

to find a basis of elementary excitations, i.e., identify objectsjgn VQ (q) can be built fronQ charge 1/2 stateg;;, andn

from which all the other excitations can be built. It will be harge £ K statesV=, . The whole spectrum of fractional

useful to use a spinor notation to represent the fractional ' 9 K P

states excitations is thus built by the repeated creatiorVg, and
V=« which means that they are tldementary excitations

we were seeking. These two elementary excitations will be

Q+KJ identified in the following as, respectively, the spintfor
(Q+ B 2 (2.32 spin systemsand a(1D) Laughlin quasiparticle.
Q) | Q-KI | '
2 2. Wave functions of the fractional excitations

To be complete, we compute the wave functions of all the

Equation (2. 32) should be understood as follows: the frac- chiral excitations. We will first need the ground-state wave
tional stateV, , which is an anyon propagating with veloc- function which is simply a Jastrow wave function: this is of
ity u, is created along with the fractional statg, , which ~ course expected since the Gaussian Hamiltonian is the 1D
N version of the acoustic Hamiltonian of Chester and Reatto’s

strow theory of He4Ref. 33 and is also identical to

ohm-Pines random-phase approximatidRPA) plasmon
Hamiltonian adapted to 1B% Since the Gaussian Hamil-

ticles with (persistent currentd will result in a splitting into tonian i 0 of illators. the around state is a G an
the two counterpropagating fractional stat% andVq . onian Is a sum ot osciiators, the ground state IS a t>aussia
function of the densities:

We must carefully distinguish between Bose and Fermi
statistics because of the constraints@mandJ. Let us con-

propagates in the opposite direction with the velocity.
The selection rules are encoded in the second spinor: t
equation is then read as meaning that the additio® pfr-

sider bosons first: sincé is even we can rewrite it ag ™
—2n where n is now an arbitrary integer. But then for Yogs({pq}) =€x -> 2K|q| e~ (2.36
.. . . . . q#0 q
bosons this implies that the spinor can be written in terms of
two other independent spinors:
1 ~
Q+KJ =exp2—Kf f dxdx p(x)
o) o
= w ~
Q_ Q—-KJ X In|si [ (x= p(x"). (2.37
2
} This expression is valid for the bosonic LL; for the fermionic
2 K LL, antisymmetry is recovered by observing that the fermi-
=Q 1 +n K (2.33 onic LL simply derives from the bosonic LL through a sin-
> gular gauge transformation on the bosonic (the Jordan-

Wigner transformation® this is exactly as in the composite
boson Chern-Simons theory for which the Hamiltonian is
This implies that in real space the fractional charge exciplasmonlike at the one-loop levéRPA) and whose ground

tation is state is of course symmetrithe modulus of the Laughlin
wave function; in that theory, the Laughlin state is then
* _ry* Qry= n found after undoing the Chern-Simons gauge
VQi(X) Vi Va0 239 transformatiorf® Similarly undoing the Jordan-Wigner trans-
formation amounts to multiplying the bosonic ground state
y the phase factorll;-;sgn(;—x;)=1II; ;[ (x;—X;)/|x;
—xj|] (that phase factor is found by applying the Jordan-
Wigner operator on the ground stat&he wave function is
the 1D analog of the 2D Laughlin state of FQHE if we re-
L — S write the previous expression in terms of the particles’ posi-
Vét(Q)=J f H dai[Vya(ai)] tions: p(x) ==, 8(x—x;), and by introducing the circular co-
= ordinatesz=expi(2m/L)X,

where Q and n are nowindependent integersf arbitrary
sign: (Q,n) € Z2. In reciprocal space, one has a convolution
for the exact fractional eigenstate,

n Q n
<11 dpj[ViK(p;)]ﬁ( 2 a2 pj—q)

2.39 vos((xih) =11 Iz -2™. (2:39



PRB 61 FRACTIONAL EXCITATIONS IN THE LUTTINGER LIQUID 16 405

The walve functions of Fhe expited states can now be V5+(X)\P0,B(Xlr CUXN)
computed®® Let us consider first the operator exp
—iJma®(x,); since ® is the canonical conjugate of the

~ = S _ Q4 /K 1K
field I1=g,® = — 7 p, CH (zi—2) Il;[J |zi—z]
1 s > x
@(X)Z =) (2-39) i I
iV Sp(x) xexpikF& E—) (2.44
2K\ Ng
and therefore with a similar expression foW (the bar overz denotes
. complex conjugation It is noteworthy that these wave func-
exp—1 \/;a@(xoﬂ‘l’o,B) tions are obtained by multiplying a Jastrow ground state with
a Laughlin-like prefactor;|z;—z|%+' which generalizes
=expa—A5 expif j dx dx p(x) the Laughlin quasiho_le factdt;(z,—z). We can now \_/vritle
Sp(xg) 2K down the wave functions of the two elementary excitations:
77 R V(X)) WXy, ... X
infsin” (x-x) 0 1A X)Wop(Xa, - Xy)
=cll @-2"*]] |z-z*
a ~ LT i i<j
=exp}ZJ dx p(x)In smE(x—xo) Yop
1 K[ 1K k Z X
=C|| |z—z|* zi—z;|**, 2.4 L I
i |2~ 2| B |2~z (2.40 ><exp—|2K Ng +x [, (2.45
whereC is an unessential constant. and
Similarl
y VIJ(r(X)\PO,B(Xlr ce o XN)
- — Qs _. Q.
expin/;?(b(x)expﬂ?k,:x =CH (zi—z)iE[j |zj—z;| "
. Q+ [x.
=eXp1|77fo p(y)dy > X

X exp—ikg I +x /. (2.46
_. QL (L. No
=exp+|w?f0 p(y)0(x=y)dy We see tha¥/;; (x) is nothing but the 1D counterpart of the

2D Laughlin quasihole wave function, provided we make the

10 (xj—x)| 7R/ (2.4 following correspondence between 1D and 2D wave func-
i L Ixi—x] ' tions: Ke v, z=expi2nx/Lez=x+iy (up to a Galilean
boost absorbing the factor exjke[(ZxNg)+x]): in view of
(zi—2)]7Q: K the formal analogy we will call that state a 1D Laughlin
_ I N state
l_i[ 1zi—2]
3. The spinon
Ei Xi We found an elementary excitatioN;,(x) for the
Xexpiikp—i E——— (2.42 bosonic LL carrying a charge 1/2. When we consider spins,
K No which are hard-core bosons, this result translates into having

a state carrying a spinS,=1/2 with respect to the ground
state. In spin language, adding a particle into the system
(Q=1) corresponds to flipping a spidA§,=1). But it fol-
lows from Eq.(2.33 that this excitation is a composite of
two elementary excitations, each carrying a charge 1/2.
Therefore a pair of states with sp#=1/2 is created when
one flips a spin £S,=1). We naturally identify this frac-
is the Heaviside step function. tional spin excitation as a spinon. The spinon can be gener-
The above operator can thus be seen as a generalizeted without any Laughlin quasiparticless if the spin current
Jordan-Wigner operator, since it multiplies wave functionsis zero J=0): this is a process which we termpare spin
by a singular phase factor; in this manner we recover th@rocessto be distinguished from pure spin current process
phaseHKJ-((xi—xj)/|xi—xj|) of the ground state of the fer- (S,=0) which generates Laughlin quasiparticle-quasihole
mionic LL. Finally we have that pairs (see below

where we use the definitions pfandzintroduced above and
where

X
T (2.43
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The properties of the spinon specifically depend on theand its 2D famous counterpart; first, there is no analyticity
LL parameterK. Although the spin is alway$,=1/2 the requirement in the 1D problem, since we do not have to
exchange statistics varies continuously with(i.e., when  project into the lowest Landau level: we have two chiralities

one varies the interaction and the LL Laughlin quasielectron is simply
a
aspinonzm- (2.47) q’LaughIinfqe(ZO):H (Zi_zo)71H |Zi_zj|l/K
i i<j
For instance folK =1/2 [which corresponds to S8 sym-
metric spin interactioristhe spinon is a semion. In that spe- E Xi
cial case, the spinon wave function we obtain coincides ex- X exp—ikg : +Xo/. (2,50
actly with that proposed by Haldane for the Haldane-Shastry No
spin chair??

Second, while topological quantization forces the 2D
FQHE Laughlin quasiparticles to haveational charge, the

Wopinod 2) =11 (Zi—Z)l;[ z,-z|? charge of the 1D LL Laughlin quasiparticles can take on
' = arbitrary real positive values, in particulé&rational. This is

a very startling property: irrational spin had already been

Z X proposed for solitons in coexisting charge-density-wave and
X exp—ikg +x|. (2489  spin-density-wavéCDW-SDW) systems by Horowit4? but
No in a sense this is perhaps less surprising since in one dimen-

In this expression the coordinates are those of the dowfion there is no quantization axis for spin which can there-
spins. ForK = 1/2 the spinon and the spka Laughlin quasi- fore take a continuum of values. We show below that the
particles are identical. Although we have discussed fractiond+aughlin quasiparticles also exist for the fermionic LL; fur-
excitations for spin systems, the previous considerations aghermore, we will find that for the fermionic LL there is
ply of course to bosons: the “spinon” is thencharge1/2  another elementary excitation which may have an irrational

excitation. For convenience we will call the excitation acharge.

spinon even when we consider bosons. How are Laughlin quasiparticles created in a LL? They
are generated whenevde£0; they are always created as
4. The LL Laughlin quasiparticle guasiparticle-quasihole pairs. In particular in pure current

processes@=0) no “spinon” is created and we have only
Laughlin quasiparticle-quasiholgp-gh pairs. For a persis-
tent current] excitation withQ=0 it follows from the ex-
pressionQ. =(Q*KJ)/2 that J/2 quasiparticle-quasihole
W Laugnin-qp(20) =11 (zi—20)[] 1zi—7|* pairs are generated.

' =l From the above analysis we now can give a physical in-

terpretation to the renormalization of the current density op-
Z X erator in the presence of interactions:

Xexp—ikg N_+X° ,
0

The second elementary excitation we found has the fol
lowing wave function:

1

(2.49 100="T=®(x), (252
which leads us to identify it with a Laughlin quasiparticles.

The parallels which can be drawn between the 2D Laughlin , uK
quasihole and the Luttinger liquid Laughlin quasiparticles _’JR(X):\/_;
are indeed very strong. For instance, as in 2D one can use the

plasma analogy to find the fractional charge: The velocityu has been normalized to the Fermi velocity so

that u=1 in the absence of interactions for fermions (

PALE =1). We have found that current excitations were due to
o Laughlin quasiparticles. The natural explanation of the
L renormalization is therefore that the current is no longer car-
_ ~ ried by Landau quasiparticles but by Laughlin quasiparticles
_eXpIZf f dx dxp(x) with velocity u and charge.

3,0 (). (253

|‘PLaughIin—qp(ZO)|2: ‘ 1_|[ (z— ZO)L[]_

- . . .
+K 8(x—Xg) ]In| sine (x—x") 5. The bosonic LL spectrum |n_terms of fractional elementary
L excitations
~y , For the bosonic LL we can now add the following preci-
X[p(x")+KS(X' —xg)]. (250 gp

sions to the description of the spectrum. K@+=0 excita-
The above expression clearly shows that the charge carrigibns (see Fig. 1, the continuum is due to multiple Laughlin
by the excitation i in agreement with the direct algebraic quasiparticle-quasihole pairghe right branch starting d
determination(using the operato¥y). There are, however, =2kg corresponds to the propagation of a 1D Laughlin
several differences between the LL Laughlin quasiparticlesjuasielectron while the left branch is due to a Laughlin
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guasihole; in between the two lines, we have a continuum E(k)J
generated by these two excitations. More generallyk at
=2nkr wheren is an arbitrary integer, the two branches
create a continuum oh Laughlin quasiparticle-quasihole om 22
pairs.(Note that forn=0, which is an exceptional case, we
have multiphonon processg3.herefore the spectrum in the
zero charge sector isot a Landau quasiparticle-quasihole
pair continuum except at the special vakie=1 which de-
scribes indeed in the low-energy limit a gas of hard-core
bosons. om /4

In the charge sectd@=1, pairs of charge one-half exci- om o
tations are created: they correspond to the spinons of spin
chains; the pairs are superimposed on the previous Laughlin
quasiparticle continuum: for instance B2excitation gener-
ates a Laughlin quasiparticle-quasihole pair in addition to the
spinon pair.

The Laughlin quasiparticle and the spinon are dual states ' '
for the bosonic LL; by duality we mean electromagnetic du- 0 T on k
ality which exchanges charge and current processes. Indeed _ _
the spinon is associated with charge processes while the FIG. 3. Spectrum of th&XXZ spin chain for a transverse ex-
Laughlin quasiparticles is due to current excitations. The du"2ngeJ and anisotropya; the continuum is enclosed within the
ality operation which maps a bosonic LL onto anotherCUVesE(K) = (mal2)|sin@] and E(k) = ma sin(2). The param-
bosonic LL is K=1/(4K') with ©=2d" and d=0"'/2; lgtera_ |sdrelated to fthe gnblsogropys_:cqse _by Ia:s:: 6/6. The
zero modes then transform ds 2Ql and QZJ//Z. With Inearize spectrum oun Yy osonization Is also shown.
these relations, the selection rule remains bosadicegen
while the HamiltonianHg[K,®,&]=Hg[K',0',®'] re- If we want to compare the bosonization linearized spec-
tains a Gaussian form. It is clear then tiat 1/2 is a self-  trum to the exact one there are, however, two provisas:
dual point whileVy andV,,, create dual quasiparticles. This we have to shift the bosonization spectrum by a momentum

on/2 A

is not true for the fermionic LL. 7. this is due to the bipartite transformation one makes in
the bosonization of th&XZ spin chain(in order to change
6. The XXZ spin chain the sign of theXY term) and (b), there is a Brillouin zone,

Let us illustrate these results on the specific example ofherefore, we have to identify momenta moduler Znd
the anisotropic Heisenber¥XZ spin chain. The Hamil- Since the Fermi vector ik:= /2, excitations with]/2 odd

tonian of theXXZ spin chain with anisotropyA, after a  (résp. evepcorrespond to the same harmonics 7+ Jkg
bipartite rotation, is =0 (respectively,r). Taking (a) and (b) into account, we
can use the results of the previous section pertaining to the

1, . e bosonic LL to recover the linearized spectrum of KXZ
HIJAT=02 | = 5(S'S 1+ S S ) +ASS . chain.
' (2.54 We first consider the spin sectdrS,=0. In Fig. 3 start-

ing from momentums we have two straight lines corre-
As A is varied, one finds three phasésg:for A>1 one gets sponding to left and right moving phonons, bounding a con-
an lIsing antiferromagnet, the twofold degenerate groundinuum; due to the folding of the continuum spectrum of the
state of which leads to solitonic excitations with spin-1/2bosonic LL, one superimposes on these lines the lines due to
domain walls;(ii) for A<1 one has an Ising ferromagnet; the creation of any even number of Laughlin qp-gh péiis
(iii) for —1<A<1 we have the so-calledY phase: this is qp dispersion being given by one line, and that of the gh by
the Luttinger liquid phase we are interested in. The isotropidhe other; if the gp is right-handed, its dispersion is that of
Heisenberg chain with S@) invariance corresponds ta the right line, etc. . . ). Similarly the lines starting from mo-
=1. The Luttinger liquid parameter was determined exactlynentum zero or z correspond to the creation of an odd
by Luther and Peschel on the basis of a comparison with theumber of Laughlin gp-gh pairs. The continuum is therefore

Baxter modef' seen to be parametrized entirely in terms of the phonons and
Laughlin quasiparticle-quasihole pairs while the zero mode
T basis relies on phonons and zero modes. Alsg=1 con-
K(4)= 2 arccos—A) (2.59  tinuum is described in a similar manner but for the substitu-

tion of the phonons by a pair of counterpropagating spinons.

The spectrum in the sectdrS,=1 is shown in Fig. 3 for the In the special case of SB) symmetry, the Laughlin quasi-
Heisenberg model; its linearization through bosonization igarticle and the spinon become identical operators. The pre-
also shown in the figure. vious parametrization reduces then to one involving only

Given that a spin-1/2 can be mapped onto a hard-coreairs of spinons because a pair of counterpropagating spinon
boson?* through the Holstein-Primakov transformation we plus a pair of counterpropagating spinon-antispinon is
can transpose the results we found for the bosonic LL to thequivalent to a pair of spinons propagating in arbitrary direc-
XXZ spin chain. tions. One then recovers the Bethe Ansatz result.
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In the low-energy limit, we can now answer the variousis complete. As reviewed in the Introduction, there are even-
guestions raised in the introduction about the spectrum of thedd effects in the fermionic spectrum: the spectra obtained
XXZ chain. by adding an even or an odd number of particles are quali-

(i) What is the nature of thdS,=1 continuum? It is tatively different for the fermionic LL. Th&@=1 continuum
indeed a spinon pair continuum; but superimposed on thens understood as follows: the two branchekatcorrespond
Laughlin quasiparticle-quasihole pairs can exist. The spinomo a pair of hybrid excitations carrying a charge-(K)/2
changes when the anisotropy is varied: it acquires a statistand (1+K)/2, and propagating with velocities, respectively,
cal phasew/4K=arccos(-A)/2. Therefore the spinons at —u andu. At —kg the correspondence is reversed. More
different anisotropy are not adiabatically connected: they argenerally atlke (J is an odd integer iQ=1), in addition to
orthogonal state$; this is consistent with numerical compu- the hybrid quasiparticles, one also creak®—Q pairs of
tations of the spectral density of the @Yspinon, where itis  Laughlin quasiparticles and quasiholes. Whes 1 the hy-
found that the S(2) spinon has a zero quasiparticles weightbrid states reduce to Landau quasiparticles. It is interesting to
for the XY chain?® note an evidence for these states in the work of Safi and

(i) What is the nature of thAS,=0 continuum? It is a Schulz who considered the evolution of a charge 1 wave
Laughlin gp-gh pair continuum with an unquantized spinpacket injected akg in a LL: they found that there was a
S,=*K==*m/[2arccos(-A)]; in the SU2) symmetric  splitting with an average chard®) = (1+ K)/2 propagating
case, they are identical to the spinons. In ¥ limit, one  to the right and an average char@@)=(1—K)/2 going to
recovers the standard spin-one continuum predicted throughe left*’ This is exactly what we predict. Note, however, a
a Jordan-Wigner transformatiok & 1, S,=*+1). Butin be-  crucial difference: the charge they find is a quantum average
tween these two points, the elementary excitation is neither hile we deal with elementary excitationgxact eigen-

spinon nor a Jordan-Wigner fermion. state$; this has an important consequence: while it is clear
that on average a charge may assume irrational values, our
C. The fermionic Luttinger liquid result goes beyond that observation since it proves that there

may exist in condensed matter systems a genuine good quan-
tum state with sharp irrational charge.

In this section we have found that for the fermionic LL

We now turn to fermions; the analysis of the elementarythere are two elementary excitations. One is the Laughlin
excitations will differ from that found for the bosonic LL quasiparticle already found for the bosonic LL. The second
because the allowedQ,J) states obey different selection one is a hybrid state intermediate between the spinon and the
rules, namelyJ is not constrained any more to be an evenLaughlin quasiparticle. The excitations correspondinglto
integer, but must have the same parityasWe may there- =0 transitionsthey are particle-hole excitations in the non-
fore write Q—J=2n. Then forfermionsusing Eq.(2.27), interacting case form a Laughlin quasiparticle-quasihole

pair continuum wherkK # 1.

1. Elementary excitations: the Laughlin quasiparticles and the
“hybrid state”

14K 1-K
—)—n(K,—K). (2.56

(Q+1Qf)=Q T! 2

2. Dual basis and the dual quasiparticles

The most general excitation once again is built by apply- The glementary excitations we have deriyed form a ba§is
ing Q timeSV(il:K)/z and/orn timesV= to the ground state: from which all the LL spectrum is recovered; by no means is

this means that we have identified a set of elementary exct—h;.s choice of ba3|? lén'q.l:ﬁ: otr:e_r bases of_e:e?enttﬁry EXC'.'
tations for the fermionic LL. Here too we find Laughlin qua- "a1'ons are generaied with matrices associated with a basis

siparticlesV ., but instead of the spinon we get a “hybrid _change ha"'”_g Integer entries whose_ Inverses are also
e T L . integer-valued: this ensures that all excitations are integral
state:” this is a consequence of statistics; as we will sho

below, that hybrid state is self-dual and is intermediate b:ﬁlnear combinations of the elementary excitatiojhe ma-

tween the Laughlin quasiparticle and its dual state. trices belong t&SL(2,2).] For instance for fermions, another

The Laughlin quasiparticle is created by current excita-?aSIS Of elementary excitations consists of Stafgs. ),

tions: for a pure current procesQ€0,J#0) one indeed andVy,

generates Laughlin gp-gh pairs as the above equation shows.

The continuum for zero charge excitation@=0) is often

depicted as &_.anday particle-hole continuum as in the non- (Q4 ,Q_)=J<

interacting systemi =1): this is incorrect; we have instead

a Laughlin quasiparticle-quasihole continuum. The latter

does reduce to the standard Landau quasiparticle continuuthis actually a dual basis to the previous one: for fermions

when K=1. For k=Jkg there is a local minimum of the the electromagnetic duality which exchanges charge and cur-

energy from which two linear branches rise corresponding tdéent excitations is expressed Ky—1/K and®+« ©. This is

J/2=—n pairs of Laughlin quasiparticles and quasiholes.2 canonical transformation; it results ikg[K,0,d]

For the fermionic LL, the Laughlin quasiparticle is not the =Hg[ 1/K,®,®]. The fermionic selection rul®@—J even is

only state which may have an irrational charge: this is als@bviously preserved: the transformation is therefore a duality

possible for the hybrid state. operation for the fermionic LL. Observe that the transforma-
The hybrid state is created in mixed charge and currentions differ from those for the bosonic LL.

processes: this is the main difference with the bosonic LL for What is the nature of the elementary excitat¥n? Un-

which the decoupling between charge and current processeer the duality transformatiov, —V=; and V=, —V; .

1+K 1-K

> 5 ) +n(1,1). (2.57
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ThereforeV; is an excitation dual to the Laughlin quasipar- dynamical structure factor obeys simple selection rutes:

ticle. It carries a charge unity and its wave function is “charge —1 bare particles’(the anyon—it has anyonic sta-
tistics w\ = w/K) are created witlp “holes” which there-
(zi—z) fore carr h i/ Th ticl d hol
+ _ 1K K ] y a charge 4/ The particles and holes appear as
Vi(20)¥e H (zi=20) .1;[, 12—z .1;[1 lzi—z]" pseudoparticles in a pseudomomenta parametrization of the

(2.58 spectrum. There are, however, difficulties with that interpre-
. . . - tation: it is not clear how the selection rules are generalized
We stress that althoug¥t; carries a unit charge, itisotan o the coupling. is irrational; the physics is indeed com-
electron: the statistical exchange phaser /& which means  yiately continuous with the coupling while the selection rules
Vi is an anyor{it can be a fermion, in the special cale  gre only valid for rational couplings; besides, an asymmetry
=1/(2n+1)]. The difference with the electron is quite clear s introduced between particles and holes. This means that

since the electron creation operator is this parametrization which relies on pseudoparticles is prob-
ably inadequate. In the low-energy limit, the Calogero-
W(x)= >, expi(2n+1)kex Sutherland model has the properties of a Luttinger liquid. It

n

is therefore possible to describe its quasiparticle spectrum in
. terms of the fractional excitations we have found in this pa-
xexpl[\/FG)(x)— \/;(2n+ D], per: we do find the charge-1 anyon propoéthis is our dual
(2.59  statg; however, our selection rules are quite different. First,
they depend on the statisti¢slectrons or bosomsin con-
trast the pseudoparticle-based selection rules do not involve
spinons; this runs contrary to results on the bosonic LL for
(2.60  which the dual state must actually be seen as a composite
state made out of two spinons. Second, our selection rules
For K#1/(2n+1) the dual excitation appears to be a non-are valid even for irrational couplings, i.e., they imply the
linear soliton of the electron. This excitation is interesting in€Xistence of quantum states with sharp irrational charges.
many respects. IK=1/(2n+1) (the Laughlin fractionsthe  Third, our selection rules respect particle-hole duality: there
excitation is fermionic and the exchange statistics of the op€Xist both a charge-1 anyon with statistiegK (the dual
erator ism(2n+1). The dual quasiparticle corresponds thenholon) and a similar charge-1 anyon; the same applies to
to a subdominant harmonic of the electron Fourier expansiofhe Laughlin quasiparticle for which we have both quasi-
aroundk=(2n+1)kg . If one attaches i flux tubes to the holes and quasielectrons. Our selection rules involve the hy-
electron(i.e., multiplies the electron operator by the Jordan-brid state and the Laughlin quasiparticles, and the holon only
Wigner phase exp/m2n®) the dual state becomes the @ppears in the dual basis where it is accompanied again by
dominantk= ke harmonics: this is exactly the composite fer- the_hybrid quasiparticle. _ _
mion construction and it may then be more fitting to speak of Finally, a symmetric basis can be associated with the hy-
a composite fermiofindeed, the statistics of the operator is brid excitation
(2n+1)7 and notw]. Because of the similar long distance 14K 1-K
behavior of their Green functions, Stone proposed to identify - -
such a subdominant operator—which he calls a Q- 2 2
hyperfermion—with Wen'’s electron operator introduced in Q. Mok +n 1+K | (2.6
the chiral LL#® This hyperfermion is identical to the dual —— ——
state forK=1/(2n+1). In general the dual state and the
electron are, however, orthogonal: this is quite clear whenhere m=(Q+J)/2 andn=(Q—J)/2; m and n are again
one considers the LL with spin. The dual state is then genindependent integers. They physically correspond to the
eralized to a state with the same quantum numbers as th&umber of electrons added to the system at the right and left
electron (carrying a unit charge and a spin-L/dut with  Fermi points, respectively. That self-dual basis reduces to
again anyonic statistics. But due to spin-charge separation.andau quasiparticles whei=1. The physical processes
that state is not stable and decays into a spinless charge ogenerated in that symmetric basis are not charge or current
quasiparticle, which is none other than the holon, and a spirexcitations but addition of electrons at the Fermi surface.
1/2 excitation, which is just the spinon. The dual excitationNote that the arbitrariness in the choice of a basis simply
we have found is therefore the analog of the spinon and thgeflects the possibility to stress various specific physical pro-
holon for the spinless LL and has nothing to @ general  cesses as elementary. But experiments p@heand Q_ ;

with an electron. In the following, in accordance with the for a given set ofQ andJ, Q. assume the same value irre-
previous remarks, we will call these states holdfts the  spective of the basis choice.

spinless L1 or dual states.

These dual holon states also occur in Haldane’s interpre-
tation of the Calogero-Sutherland model: he proposed that a
natural interpretation of such a model was not in terms of In this section we generalize the construction of fractional
electrons or bosons but as a gas of noninteractingxcitations developed in Sec. Il to the full Luttinger liquid
anyons’>?’ The basis for that interpretation is the finding with spin. One of the main properties exhibited by the effec-
that for rational values of the coupling=p/q (\ is related tive theory is spin-charge separation, the complete decou-
to the LL parameter by the simple relation=1/K), the  pling of spin and charge dynamics. In the exact solution of

while

V7 (X)=:expi \/;((x)—y .

[ll. THE LUTTINGER LIQUID WITH SPIN
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the Hubbard model by the Bethe Ansatz, excitations display

such a spin-charge separation: one state, the holon, is a spin- Po=— i<9X<I>(,, o=1,], (3.2
less particle carrying the charge of the electron, while the N

other, the spinon, is a neutral spin-1/2 stafhis is an

asymptotic property only valid in the low-energy linthe [0 4(X),0xP 5/(Y)]=1 046 6(X—Y), (3.3
Hubbard model in the largg limit is an exception because

spin-charge separation is realized at all energy statsn- R i}

ever, this property is not obtained for all the gapless itinerant (Pc/s:T, (3.9

1D models in the low-energy limit. According to the univer-
sality hypothesis they should be described by the Luttinger . . ) B
liquid framework if the interaction is not too long ranged. [0,(x),0xP 1 (y)]=18,~8(x=y); 7=c.s. (3.9
One such example is the Hubbard model in a magnetic fieldhe effective Hamiltonian derived, for instance, from the

which does not display spin-charge separation even in theyuppard model in the absence of a magnetic field is
low-energy limit, although it is a short-range gapless model.

This model was analyzed by Frahm and Korepin in the H=H.+Hs, (3.6)
framework of the Bethe Ansatz plus conformal field

theory? they were able to compute the anomalous expo- u, (L

nents for the correlation functions. Several issues remain un- HF;f dx K;Y(V®,)?+K (V0,2 r=c,s.
clear for such models in a magnetic field: in particular what 0 3
the excitations are. Since spin-charge separation does not 37
occur, the holon and the spinon cannot be the elementaryd =11 is canonically conjugate to the fiefdl.. One eas-
excitations of the system anymore. To answer the questiofly extracts the ground state which is simply a product of
we have to turn to the low-energy effective theory. FrahmGaussians,

and Korepin’s results imply that an effective description in

terms of the Gaussian model should be possible since con- 1 1

formal invariance is realized. We will find a generalization of oIl g, )= Tgs ex% T oK. go mHT,anT,—qn) :

the spin-charge separated Gaussian Hamiltonian suitable for ’ T " (3.9

a description of the Hubbard model in a magnetic field. Our

formalism is very similar to Wen'& matrix approach to In terms of charge and spin densities

edge states of the FQHE. This will enable us to characterize

very precisely, in the low-energy limit, the properties of 1D _ _ i T
gapless models with or without spin-charge separation such Yo({pra,}) T[L ex 4K, Z‘o ldnl Pr.aPr—a, |-
as the Hubbard model in a magnetic field: we will find that in (3.9

the latter case, although there is no spin-charge separationh . )
there is still a generalized decoupling. The excitations ard "€ ground state displays of course a complete decoupling of

again fractional; as expected the holon and the spinon are PN @nd charge as is apparent from the previous expression.
longer present in the spectrum and we will give the general NS IS also a Jastrow wave function. In real space
framework allowing the description of the fractional states

: 1
which replace them. Vo(p,)= H eX|o4K f fdxdx’pf(x)
7=C,S T
A. Spin-charge separated Luttinger liquid m(X=x')
We start with the standard case when spin-charge separa- XInjsin———p(x")|. (3.10

tion exists. Although fractional excitations are clearly
present in the Bethe Ansatz, no description of these specigle define the charge and spin parts of the ground state per
states was attempted in the low-energy limit through

bosonization. In the following we answer several questions: 1

how does the holon evolve with interaction? What would be Weis= expm[f f dx dX pe/s(X)
an effective wave function for it? Is it a semion? First, we s

consider the ground state of the two-component Gaussian
model because it will suggest to us a possible generalization
of the Gaussian model that will prove to be the correct one
for the description of gapless models without spin-chargelhe previous ground state may be rewritten in terms of the
separation, such as the Hubbard model in a magnetic fielddensities of each species,

~aw(x—x")
si——

X
In L

pers(X') | (3.11

1. Ground state of the Gaussian Hamiltonian

1
Vo(lpoh) =expy f f dx dX py(X)Ger

We consider a two-component model by introducing an
internal quantum number such as the(3Uspin. We con-
sider the charge and spin densities as well as their associated < In
phase fields

Ca(x—=x")
Sln?

P (X)), (312

pc=pPitpP Ps=pPi—P), (3.1)  where we have introduced the followimgmatrix:
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Kol+Kot KoP-KJ! For the fermionic LL the charge part gets an additional factor

5 5 [(xi—x)/|xi—x;|]¥? and the spin part, a factof(x;

oor=| 1 -1 -1 1]l 3.13 X/ xi—x;|1771"%expi(w/2) sgni; — o). _
Ko —Kg™ Ko +Kg These are 1D Laughlin multicomponent wave functions.
2 2 In 2D they are known as Halperin wave functions which

describe multicomponent systems of the FQHHN that
The eigenvalues of that matrix are simply the inverses of thegniext theg matrix is known as Wen’s topologicak
Luttinger-liquid parameter&, = and Ky ~. If one rewrites  matrix2® The main difference between the two matrices is
the wave function in terms of individual electron coordlnatesthat the entries of thé& matrix are integers Wh”@ matrix
po(X) =Zi ,6(x—x;) (the sum is restricted to particles with giements are arbitrary real numbefsnly constrained to

i dif tg=expi(27/L)X, ily find . . . - .
spin o) and if one set=expi(2m/L)x, one easily finds yield positive and real eigenvalueShe g matrix does not
allow for a topological interpretation either since there is no
Wo({X; -Ui})=H |Zi_zj|90iaj. (3.14 topological quantization as in the FQHE. We will call tﬁe
i<j matrix thecharge matrixbecause it corresponds to the cou-

The wave function is bosonic; for the fermionic LL, one E)3I|nlgz)s] S%Gtwee” particles in the plasma analdgge Eq.

undoes the Jordan-Wigner transformation which leads to

s 2. Elementary excitations: The holon, the spinon,
(Zi_zj)) 7% and Laughlin quasiparticles
|zi—zj]

Ve o {xi, o) =11 |1z—z]9% ] 1 {
=] =] We generalize the approach followed for the spinless LL.

- There is a decoupling of the dynamics at two levels: chiral
xexpigsgr(oi—oj)}. (3.195 separation as well as spin-charge separation. In particular,

both the charge and the spin Hamiltoniand-— and

(The antisymmetrizing factor consists of two parts, oneHs—display chiral separationHc=H., +Hc_ and Hs
which ensures that particles of the same species anticon=Hs+ +Hs- where the four Hamiltonians all commute
mute, and a second part known as a Klein factor which al{[Hec/s=,Heis=1=0). The following operators create the ex-
|0WS antisymmetry for partic'es Of different S@i”_et us act EIgenStateS Of the I‘e|evant Ch|ra| Hamlltor“ans:

redefine the matrix elements @fper

VI(Q, ,q)=f dxexpigx exp—iVm/2Q, .0 .,

Noou 3
P = 1
900 N (3.19 (3.22
Kol=N\+u, (3.17) 0,..=0,5b, /K,, 7=c5, (3.23
Ks'=\—p. (3.18 2mn 27 Q2.
If we denote the coordinates of particles with spimnd |, T
respectively, by andv, then the ground state can be rewrit-
ten as(for convenience the antisymmetrizing factor is omit- 4 I+ 7]
ted) Q,izQT QliKT L= (3.25
' 2 2
Vol{ui,oh=11 |ui—u,-|}‘H |vi—vj|XH lui—v|*, (The square root/2 in the exponential comes from the nor-
<] <] [

malization of the charge and spin fieldsands index charge
(3.19 and spin, respectivelyr= =1 for charge and spin, respec-

tively.) One easily checks that
}UZKC

‘PCZ[L[ lui—ujl[vi—vjl|ui—v;] i i

: [Q+7Q, .V (Q, 2)]=8,7Q, =V (Qu ).

(3.26

=11 zi—z|¥*, (3.20

) This implies that these excitations either carry a chapge
=Qc,+ but then have no spifthe operatorsV, ), or that
they have a spir5,=S. =Q, /2 but no charggoperators
V§). As expected the fractional states come in two brands:
the first corresponds to charge excitations and the second to
=H |Zi_zj|aioj/2KS_ (3.21) sp?n excitations. H_ergafter we will note the charge and the

i<j spins of these excitations as

12K

‘I’SZ[L[J_ [ui—ujllvi—v;|/|ui—v]
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Q-=Q¢-, (3.27 1+K,.
2
Q4 1-K,
P (3.29 Q- 2
= . = (3.30
S 4
Because of the obvious relevance to physical systems we 1-Kq

focus first on elementary excitations for a fermionic LL; we
will consider the case of a bosonic LL later in Sec. Il C.

Solving the constraints on the charge and current which ) )
again obey the selection rul®,—J;=2n; and Q,—J, is created; this means that the spin-up electron added at the

=2n, (the n are integers we find Fermi level kg splits into four fraction_al §tat_es: a charge
(1+K¢)/2 anyon propagating at velocity, ; this state has
no spin; a second charge anyon with charge-Kl)/2 and
velocity —u. and then two spin anyons with velocitieg
and —ug and respective spifs,= (1x£Kg)/4. In the special
2 case of spin-rotational invarianc&{=1) there is only one
Q4 1 1 1-K, spin anyon: the spinon with spi,=1/2 which propagates
Q. 1 1 2 to the right with velocityug (or to the left with velocity
=n; +n, +J; — Uy if the electron had been added at the left Fermi point
S+ 1/2 —12 1+Ks —kg). Likewise, if K;=1, there is a single charge state,
S 1/2 -1/2 4 which has chargeQ=1. In the noninteracting case, the
1- K charge velocityu, and the spin velocityug are equal and
therefore the spinon and the charge 1 state subsume into a
single state since they move in the same direction with the
14K, same velocity: we have just recovered the spin-up electron.
(a) Holon and spinonLet us identify the content of the
elementary excitations, starting witty, (Q=1) andV, (S,
1-K, =1/2). The charge and the spin carried by these fractional
2 excitations make it reasonable to interpret them as the holon
+J, : (3.29  and the spinon, respectively.
The physical processes involved in the creation of each of
4 these states confirms this identification. Indeed the minimal
1-K operation which involves/; (Q=1) is obtained whenJ;

4 =0=J, and setn;=1=n_ in Eq. (3.29. This is an excita-
tion for whichQ,=1=Q, andJ;=0=J, which means that
this is a pure charge proce¢so spin variationS,=(Q;

This compact equation must be read as follows. Each entry-Q)/2=0, no spin current nor charge currgn¥/; (Q
represents a fractional excitation; the first two lines are=1) is an excitation associated with the addition of charge
charge spinless excitations, while the last two lines represernin the LL. All the transitions in Fock space that occur after
spin excitations. For instance, the ent®, is associated adding a charge to the ground state therefore involve
with a fractional excitation with charg@=Q, which car- V_(Q=1). Itis then consistent to identify, (Q=1) as the
ries no spin, and propagates in the right direction: thereforeholon®!
(1+K¢)/2 in the first line means a spinless state with charge Likewise the minimal excitation generating; (S,= 1/2)
Q=(1+K,)/2 going to the right. Likewise the second line is a spin-1 transition which is a pure spin process. All exci-
characterizes charge excitations propagating to the left. Theations for which there is a spin flip will therefore create
line S, means that the states have no charge, a spin compvsi(szz 1/2) (in pair9. This is what we expect from a
nentS,=S, and propagate to the right: for instance, 1/2 is aspinon.
spin-1/2 fractional state. Each line gives the decomposition Notice that both for the holon and spinon there are even-
of a given fractional excitation into elementary excitations:odd effects arising in the low-energy Gaussian theory. In-
for instance, th& . excitation is made up af;+n, excita-  deed, Eq.(3.29 shows that an excitation with includes a
tions V{(Q=1), and J;+J, excitations V/[Q=(1  spin-1/2 transition will not create a spinéwe have instead
+K¢)/2]. The previous equation summarizes the selectiora “hybrid” spin excitation: one needs at least a spin-1 tran-
rules which are obeyed by the elementary excitations. sition to crate a spinon. This means that adding a single
Let us give an example. Suppose one adds a spin-up eleelectron does not create a spinon: an even number of elec-
tron at the Fermi level in the Luttinger liquid. This isQy trons are required. This makes sense since for a spin chain
=1=J, andQ =0=J, excitation or in terms ofi; andn,  the minimal spin excitation is also a spin-flip which involves
thisisa ,=0,n,=0,J,=1,J,=0) state. Equatiof3.29  two electrons and not just one. The same behavior is ob-
shows that the spinor served with the holon: the minimal process which creates it
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adds two electrons@=2 sinceQ;=1=Q,). These even- Similarly to the spinless LL, in addition to the holon and
odd effects are a direct consequence of statistics and would the spinon, hybrid excitations complete the basis of frac-
not be observed with a bosonic two component LL. tional excitations. Their charge and spin are intermediate be-
With Eq. (3.1, we find that the wave functions for the tween those of the holon and spinon and those of their dual
holon and the spinon are simplwith z=expi(2#/L)x]: excitations, the Laughlin quasiparticles which we discuss
now.
Wholon(Zo) = V¢ (Qe=120) V. (b) Laughlin quasiparticlesWe can choose another basis
_ UK, of elementary excitations dual to the previous one which will
=11 (M) I |zi—zo| Ve parametrize the excitations in terms of current processes and
o\ Xl [ electron addition at the Fermi surface. This basis, emphasiz-
12 ing Laughlin quasiparticles as elementary excitations reads
12K (Xi - X])
XH |Zi_zj|1 ¢ H K K
i<j X0 1 <] |Xi_Xj| Q+ c c
Q_ -K -K
S, K2 —K¢/2
=II -z V%[] |z,—z| Ve s — K2 K2
i i<j
1+K, 1+K,
ok | 2 % ? ?
xexp—iK—F —IN +Xo 1-K, 1-K,
¢ 2 2
_ 1/2 + + '
< TI [(Xi Xj)] ' (3.32 Qi 1+Kq Q 14K
xai<i L 1Xi=% 4 4
and 1-Kg 1-Ks
+ 4 4
\Ilspinon(o'o 120) =V (S;=00/2,29) Vs
(3.3
(X —Xg) | 707iKs . »
=1 W where agairQ; —J;=2n; andQ,—J;=2n, . In addition to
! Y the hybrid quasiparticles/;[Q=(1*K.)/2] and V_[S,
=(1=K,)/4] which already existed in the previous basis, we
XIT |zi—2o| 707" | |z, zj| 713/ have two excitations associated with pure charge current or
! = spin current processe¥,(Q.=K,) andV(S,=K4/2). Un-
(X — X)) aiojl2 der electromagnetic duality the latter are conjugate to the
1 ( X — x| ] (3.33  holon and spinon, respectively. Actually they are obtained by
ool =l LI spin-charge separation of the two-component Laughlin qua-

iparticles, and we may call them a Laughlin holon and a

The holon and the spinon are both anyons with exChang%aughlin spinon. Let us compute the wave functions of these

statistics: two excitations; one finds
a
GC_ZKC’ (3.34 Ve(Qc= KCIZO)\IIC:]:[ (Zi_zo)l/2
a
Os= 5 (3.39 > X
° X exp—i2kg +Xo | W,
(the statistics were computed in Sec. )l EExcept for the
special cas& ,=1, these objects are not semions; in addi- (3.37)
tion, for holons we must also requitg# v to ensure spin-
charge separation. Contrast our resylEgs. (3.31) and V(SP=0K/2,25) Vs
(3.33] with the commonly used bﬁl%t incorrect charge-spin
decoupling of the electron operattr.The holon and the _ S \ojogl2 ; _
spinon generalize the dual excitation found for the spinless _l_i[ (21~ 20) 70 exp=i2oo(k; —ky)
LL; in the same way, duality transforms the holon and the
spinon into the two-component generalizations of the Laugh- 2 X — X
lin quasiparticles. This is a most remarkable yet simple result T
because it shows that two seemingly unrelated fractional X M X0 | ¥s. (3.38

excitations—the holon(or spinon and the Laughlin
quasiparticle—occurring in two very different contexts are In the previous expressian, takes on the values 1 and
actually deeply connected. k; ,k, are the Fermi vectors associated with particles of spin
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up and down:k,=(m/L)N, and N=N;—N;, M=N; The normal modes of the charge matrix are simply
—N,. ¥, and ¥, are given for the bosonic LL in Egs.

(3.20 and(3.21); for the fermionic LL, there are additional p=Pops2p,=Ps.p, =12, (3.46
phase factors given in the text following Eq®.20 and

(3.21). Plasma analogy allows us to get the charge and spin , 1 ,
of the Laughlin holon Eq(3.37 and spinon Eq(3.38. The E, Po(X)yorpor(X) =2 pX)ipAX"). (3.47)
Laughlin holon and spinon are the stable excitations into 77 T T

which the Laughlin quasiparticle decays as a result of spinif the charge matrix obeys &, symmetry then the normal
charge separation; in the localized Wannier basis that wWg,qdes are just the charge and spin dengity to a normal-

have considered throughout, the product of the wave funcy ation factoy py=p 12 andp,=p /\/5)_ The wave func-
tions of the two excitations yields indeed tion now reads S

= . — 6(7’ T; . — . g(r'(f' ~ 1
Vap(20.0) H (zi~20) 0.1;[, 2=z |8, \Ifo[g]=exp—2Kdexd>(pl(X)

(3.39
which is just the generalization of the Laughlin quasiparticle «In Sinw(x—x’) pr(x)
to two-component systems: when we add spin, the Laughlin L

quasiparticle comes in two flavoufsip or down and the 1
Laughlin correlation hole acts only on particles of the same Xexp—f J dx dX p,(X)
kind. It therefore carries both fractional charge and fractional 2K,

spin. [It would be spinless if the Laughlin prefactor were

. m(x—x'
I1;(z — 2o) instead offl;(z; — zo) >oe. ] XIn Sin¥ pa(Xx"). (3.48
The Laughlin holon and spinon have statistical phases L

0.= 7K. and ;= 7K 2. For a spin-rotational invariant sys- ] ]
tem, the Laughlin spinon and its dual conjugate—the We have expressed the ground state in this decoupled
spinon—are identical state (=1 is the self-dual point for form because this allows us to directly write down a Gauss-

spin excitations ian Hamiltonian with ground statd,[g]. This generalizes
the spin-charge decoupled Gaussian theory. We introduce
B. Luttinger liquid without spin-charge separation the phase fields associated with the normal densitieand
p2

1. The general LL and the charge matrix

We now generalize the standard LL theory to include situ- ]
ations with no spin-charge separation. We start from the pTI—\/—;&XCI)T, ]7:\/_;07x®71 (3.49
ground state of the Gaussian Hamiltonian:

~ 1 [(I)T(X)vax®f’(y)]=i5ﬂ" 5(X_Y) (35@
\Ifo[g]=exr5f fdx dX p,(X)Ggo A
It is then clear thatV([g] is the exact ground state of the

Ca(x—x") following family of two-component Gaussian Hamiltonians
XInjsin————1py(X'), (3.40  for arbitrary velocitiesuy ,u,:
N H[g,u1,Us]=Hgl[uy, K]+ Hg[uz K5
Joor = ’ (34])
moA u- [t -1 2 2
=2 5| dKI 0P )2 +K(50,)°).
Kol=N+p, (3.42) ke 20
(3.50
Kl=\—u, (3.43

The two Hamiltoniangdg[u,,K;] andHg[ u,,K,] commute
by construction. The next section will be devoted to the
fic). We consider the charge matrg,, = (\ £ and the propert!es of that gene(allzed LL theory. Let us stress here
. ) - _ B the main property of this general LL now: by construction
associated wave functioWo[g]. We introduce for conve- that theory corresponds togeneralized separatiothe nor-
nience the eigenvalues of the charge matrix and the unitar5| modes will not be charge and spin modes but mix charge
matrix P, and spin in a proportion fixed in time. This will translate for
the fractional excitations to states with both fractional charge

and relax the constrairg;; =g, (while g is kept symmet-

1K, O ; !
P-lgPp=D= 34 and fractional spin.
J (o 1/K2)’ (344
2. Main properties
P,.P, .0 ,=5”' r=1,2. (3.45 The compressibility and spin susceptibility are easily

K,’ computed and one finds
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po andpg are the charge and spin mean densities, Whjlés
the ground-state energy. The Drude peak is

1 9°E,

2
- L (9¢2 :27 uTKT(; P(rr) ’

where ¢ is a flux threading the LL ring of length. This

D

(3.59

expression can also be recovered using the Kubo formula;
one then needs the expression of the current density which
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processes. When there is spin-charge separation, the expo-
nent for &g oscillations and the constaft ., are related by

the equation # a(4kg)=4A(—o; in the general case, we
find

2+ a’(2k|:T+2k|:L):4Ak:0.

The derivation of the exponents is done in exactly the
same manner as in the spin-charge separated LL.
Spin-spin correlation functions are

Z] (0’0”5;\10_"_,)
(S,0)S,(x))= =

cos X, x

I |x|2é;¢: ’

2(mx)?
(3.61)

one finds with the continuity equation. The current is renor-

malized as for the spinless LL and the LL with spin-charge
separation. In contrast to the case of the LL with spin-charge

separation, here the expression involves B6thandK, be-
cause both modes one and two involve charge,

00,
R0 =2 (2 uTKTPWPw)—. (3.59

o o7 \/7_7

Anomalous exponents are easily computed as functions of

the charge matrixg which leads to compact expressions
valid both for the LL with spin-charge separation or for the

more general LL; one introduces the Fermi vectdts;

=N, /L. For instance, density-density correlators are ob-

tained WithH[@] and with the bosonization formulas yield-
ing the static structure factor; the dominant Fourier compoEq, posons the exponent is modified as dg(o)=

Neark=0,

—
-1
oo’

_9
(3p(0) 005 (X))-0=, 55, (350
Ak:O_ _ a}lmr'
(3p(005p00)= %1 Aco=2 “5
(3.57)

For the higher harmonics one includes a mode lgt, 2

+2kg =2mp (which appears in the Hubbard model in a

magnetic fielgk

Av=o cOg 2KgX) COS XK X
(0p(0)8p(x))= (7TX)2+aT w2+ al(2ke ) + L2+ a(2ke))

cog 2Kg +2Kg )X
X2 (kg +2Kg ) ! (3'58)
2+ a(2Kes) =29, (3.59
2+ a(2Ke; +2Ke ) =2 G oo (3.60

!
oo

cog kg +Kg )X

(87(0)S™ (%)=
x|

: (3.62

1 - -
Y=o -91+5 2 (@ .| (363
Electronic Green functions decay as
R — B expik ,x
(¥,(0) ”(X)>_|X|1Tw)’
1 q-1
1+ ar(0)=5(9+9 Voo (3.69
%éaa'

These exponents are derived with the bosonization formulas
but can also be found by plasma analogy.

3. The charge matrix: a summary

For the two-component LL there are three interesting situ-
ations that we summarize below.

(i) In the general case, tHeymmetrig (::] matrix has arbi-
trary entries; there is no spin-charge separation but a more
general two-mode separation,

N
7N

g= . (3.65

As will be shown below, the Hubbard model in a magnetic
field can be described by such a theory.

(i) the g matrix has aZ, symmetry; this case pertains to
spin-charge separation

~ [N ou
Q—M)\

Indeed the symmetry under the exchange of up and down
spins implies that the normal modes of the charge matrix are
just the charge and spin modes. The LL parameters are then
the eigenvalues of the inverse of the charge matrix. This

situation describes models with spin-charge separation but

1

’ Kp:)\+ﬂ’

Ke=3—pr (3.66

Ao is fixed in the low-energy limit but the other con- with a spin anisotropy, for instance a Hubbard model to
stantsa; ,a, ,b are nonuniversal and depend on high-energywhich one would add some Ising tert,S,(n)S,(n+1).
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(iii) Thenj matrix corresponds to a §B) symmetric case
(Ky=1):

mtl o
M putl

This situation describes the low-energy limit of the Hubbard
model. It is noteworthy that the wave functioﬂs[é] for

that subcase were used in a variational approach of the 1
t—J model giving very good results although it was not

9= K,=1. (3.67)

Ko=2ur1’

, AND P. LEDERER PRB 61
Q=Qr,i(2 P) (3.76

1
SZ=QT,+(§ > oPm). (3.77)

Thus for an arbitrary charge matrix, fractional excitations
garry both charge and spin. However, the ratio of charge to

spin is constant for each given mode-1,2: (3= ,0P,,)Q

realized they were the exact ground states of the GaussianSAZ.P.,); of course, the phonons associated with each

model®® The reason why it is so is now transparent.

C. Elementary excitations for the generalized LL

We now consider the excitations of the general bosonic

and fermionic LL with or without spin-charge separation. Let
us inject particles in the Luttinger liquid. In real space this is
described by the operator

V(x)=exp—iVrY, [Q,0,(x)—J,P,(x)]. (3.6

Fractionalization stems from two decouplings: chiral separa

tion and a separation for the internal quantum number gen-
eralizing spin-charge separation. In terms of the normal

modes field®) , and® . (7=1,2),

V=exp-iVr2 (E PWQU)T—(E PWJ(,)@T}
' ' ’ (3.69
The chiral fields are
0, +(X)=0,(x)F P (X)/K_, (3.70
and therefore
veo=11 exp-iVaQ,.6,.00. (371

This expression explicitly shows a decoupling into four com-
ponents. We have defined in the above the chiral charges

(E PUTQJ) +K,

_1
Qr,i_z

> PMJ(,”. (3.72

The following operators are exact eigenstates of each chiral

HamiltonianH .. , 7=1,2:
V$<Qf,t,q>=f dxexpigx exp-iymQ, .0, .(x),
(3.73

_27Tn_2’7TQit
T K

(3.79

mode mix charge and spin in exactly the same proportions
since

=

B} E O-P(TT

(o8

N

pAX)= EZ Por|pc(X)+ ps(X)
2

1
= ( E 20; PG’T) pc(x) +

wheres,(x) is a spin density.
It is convenient to define the charge to spin ratio

_Q
- 5=

for each mode. Unitary implies that if for the first mode

> Pm) s,(x), (3.78

r

(3.79

Q
r= E—p, (38@
then for the second mode
Q 1
r=-—=——, 3.8
7S, 0 (3.80

wherep is arbitrary. Note that for a Fermi liquid these ratios
arer==1 [we are characterizing Landau quasipartidies
holes of either spif and when spin-charge separation is re-
alized the ratio is either=0 orr= * .

Let us give the elementary excitations. The simplest case
is that of bosons,

P,
2

P, 3
Qf,i:QT 7 +Ql +E(iPTTK7)

J
+§l(tPlTKT). (3.82

To simplify the notation, we have only written a single
line, butQ, . and the other entries should be read as four
vectors. Q, and J, /2 are arbitrary independent integers,
which shows that the state¥;(Q,.,q) where Q, -
=P,/2,P /2, P, K., or =P /K, are elementary exci-
tations. As an illustration let us consider the simple case of a

The chiral charges correspond to the charge and spin carrieg symmetric charge matrix for bosons that have a pseu-

by each of these excitations up to a normalization factor:

[Q, V7 (Q, . 0]=Q,+P,. V7 (Q,~.a), (379
which implies that the charge and spin\tzﬂ‘(QTVi ,q) are

dospin index. The unitary matriR is

5 ( 12 12

12 —1n2 (383

|
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Then it follows from Eqs.(3.76) and (3.77) that for mode This is to be compared with

7=1 (the charge modeQ=2Q, . andS,=0; for mode ( )\
= = = iza- Z—z) ) %o,

=2 Q=0 butSZ—QT,i/\/E. If we take these normaliza qf:!‘;'[j |Z‘_Zi|l/2Kci1;[j |Zi_zj|0'i0'j/2KSH [( i 4 ) i

tions into account: i<j |\ zi—z]
Q. 1/2 1/2 e _ﬂ's . )] (3.88
Xpi=sgno;— o). .
Q. 1/2 1/2 Pisanai=a;
= +
S, Ql 14 T —1sa Or if we separate spin and charge,
S_ 1/4 —1/4 1/2
(zi—z)
Vo= S 1/2Kc( j ! 38
K, K. c .HJ ams 1zi—zj] (389
‘JT - Kc ‘Jl - Kc /
4+ — 4+ — . . =, ojoil2
2 | K2 2| —Ky2 (3.89 V=11 ||z-1 aiaj/sz<%) :
—K/2 K2 = b
o
Once again we find a charge 1/2 particle and a ch&rge X expi Esgr{ agi—aj)|. (3.90

Laughlin quasiparticle as for the bosonic spinless LL. But, in
addition, we find new states resulting from a fractionalizationThe spin part of the Laughlin ground state is just the
of “pseudospiri for the bosonghalf-spinons, for instange  Haldane-Shastry wave function if,=1 (rotational invari-

For the fermionic LL the elementary excitations are Ob-ance which has the same large-distance physics as the
tained by the equation Heisenberg ground state. We can also deterrfipgvithout
any computation by just reading off its value from the wave

_ = K, = 1xK, functions: the charge parts of the two wave functions coin-
Qf,i QT Tr + Ql 7 . . _ A . .
2 2 cide if K,=1/2, which indeed is the known value of the LL
0 (FPLK )0 (FPLK,), (3.89 parameter for largéJ.

The Bethe Ansatz gives the spectrum and the eigenstates;
where we have resolved the constrai@f;—J,=2n,. This  however, it is very difficult to compute correlation functions.
fully characterizes the low-energy elementary excitations ofAn important advance came, however, with the works of

a LL in a magnetic fieldsee below. Frahm and Korepin who used CFT in conjunction with the
Bethe Ansatz to compute critical exponefisf a theory is
D. Application to the Hubbard model conformally invariant, one can show that the finite-size en-

) ) ) ergies of excitations are directly related to their operator di-
To illustrate the previous results we discuss the HUbbar‘#nension(which is one-half of the anomalous dimension of

model in one dimension. The model was solved exactly byheir correlation function By using Woynarovich's Bethe
the Bethe Ansatz by Lieb and Wu. In zero magnetic field, forapsatz calculations for the finite-size spectrum to ordér 1/
repulsive (J>0) interactions, a LL metallic phase exists \yhich he computed within a so-called “dressed charge ma-
both for weak and strong coupling, except at half-filling. For iy formalism,”55 Frahm and Korepin were able to extract
very largeU the spin-charge decoupling is valid at all energy critical exponents for the correlation functions of the Hub-
scales. This was shown by Ogata and Shiba who also founglyrq model. In particular, they found that in the presence of
that the Bethe Ansatz ground state then took a remarkablg magnetic field, spin-charge separation was not realized.
factorized forme* it is the product of a charge pai Slater Penc and Solyom later showed that ih e same spectrum
determinant for fr_ee fgrmions involving all el_ectr()rand a  derived by Woynarovich could be expressed in terms of a
Bethe wave function similar to that of the Heisenberg modelyaneralized Tomonaga-Luttinger model with interactions de-
on a reduced lattice from which one has removed the holegcriped in theg-ology framework: using equation of motion
- methods they also derived the anomalous expor&isese
HubbardXi  01) two approaches give little insight into the nature of the el-
= detexpik;r, K| <ke) ¥ heisenber§Yi 1 i) ementary excitations: how are the holon and spinon modified
as a function of microscopic parameters? The description of
(3.8 spin-charge separatidior its absenceis not transparent ei-
(y; is the coordinate in the reduced lattice of particlehose  ther: the dressed charge matrix tell us little about spin-charge
real position isx;). separation; its changes are not easy to relate to that property.
It is instructive to compare it to the tWO_Component Ja_ThiS is to be contrasted with our Charge matrix formalism in
strow wave functions which are also explicitly spin-chargeWhich spin-charge separation is directly connected to a sym-
decoupled. The Slater determinant is rewrittetfimserms of ~ metry of the charge matrig (Z, symmetry. We will show
the circular coordinates) that the “dressed charge matrix” of the Bethe Ansatz and
the charge matrixg are in fact related: the inverse of the
— symmetric charge matrix is roughly the square of thma-
W Hupbard X ’0')_i1;[j (2= 2) W eisennerdYi»71)- trxi/x. We will progeed in the follogvin); manr?er: we will show
(3.87  that Woynarovich'’s finite-size spectrum is identical to that of
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our generalized LL. This yields the charge matj;ixkn terms L. 2w N N

of the dressed charge matixand gives us both the anoma- E(QsJs N7 )= [or=1(Nr—y# N )
lous exponents and the fractional excitations since we al-

ready derived them for the generalized LL. The relation of +0,-2(N_,+N__,)]

our charge matrix formalism to Penc and Solyagrology 2
approach is the following: it can be understood as a m E v %+K Jz)
bosonization of their generalized Tomonaga-Luttinger 2L 5, T\ K, =T

model; it is much simpler, however, to work directly within
the Gaussian Hamiltonian framework. Our approach has sev-
eral advantages in addition to making an explicit contact o
with the seemingly unrelated physics of Laughlin states: P(Q,,J, N)=——[(N_;=N_)+(N/_,—N_,)]
we avoid an ambiguity in the determination of anomalous L

exponents in Frahm’s and Korepin approdttih) we can

give the nature of elementary excitatidamd show that they + 2 J +Kepdy - (3.95
are fractional states in the first placand(c) we are able to o=1]
give a clear criterion of spin-charge separation. +

N__,,N__, are again the moduli of phonon momenta. The
charges and current§)(,J,) are related toQ,,J,) by Q,
=P,.Q, andJ =P, J, . We can now identify the param-
eters of both theories,

Woynarovich’s finite-size spectrum in Frahm and Kore-
pin’s notations is the following:

E(AN,D,Ng ,NJ)—Eq

J;=2D,, J;=2(D.+Dy), (3.99
m - - + +
= [ve(Ng+Ng) +og(Ng+Ng)] Q;=N;, Q,=N;, N;=Ng, (3.97
w1 L= Ug/s. 3.9

T[ZANT(ZI)TvzlANJrDTZVZTD Ol (398
The zero modes can be identified term by term; it is suffi-
1 cient to consider the current terms to uniquely determine the
+0 E)’ (3.92 charge matrix. The charge zero modes yield extra relations

which lead to the very same expression fprlndeed ex-
panding the squares gives

P(AN,D,N; ,NJ)—P
( c s ) 0 KlP%1=(ZCC—ZSC)2,

= [oa(NS = NG ) +og(NS = N3] 2 (7.7
L UclNe c ) TUsNg s KlPllz(Zsc) )
2 — _
+T[ANTD]+2DCkFT+2(DC+Ds)kFl. KiP11P11=(Zee™ 260 Zsc (3.99
(392 KoP%=(Zos=Zeo?,
Kep=(27/L)N; andkg| =(27/L)N, are the Fermi momen- K2Pf2=(ZSS)2,
tum for particles of spin up and spin down. The energy and
the momentum are th0§e o+f a state with threege) quan- KoP 2P 2=(Z¢s— Zs9) Zss.
tum numbers 4N,D,N; ,Ng); there are two modes in- _
dexed byc ands: these two modedo notin general corre- Since
spond to charge and spid.is a 2 by 2 matrix
g_la'a" = 2 KTPO'TPO"T’ (310()
ZCC ZCS . . ..
Z= (3.93 it follows that the inverse of the charge matrix is
ZSC ZSS

g_lTT:(ch_ Zsc)2+(zcs_ Zss)za
and AN and D are two-vectors:AN=(N;=N;+N,Ng —
=N,) andD=(D,Ds).*® In these expressmnstc/s are in- 1 =(Zs02+ (2592 (3.100
tegers: they are simply the modulus of phonon momenta in
units of 2z/L for the two modeg ands; the index* refers g’—‘l :g"—l —(z )Zoot (Zes— Zod Z
to the sign of the momentum. The phonon velocities for the H 117 (Zee™ Zsd Zsc ssiTss”
two modes areyc,vs). i We define the matriX obtained from the dressed charge
The spectrum of the general Gaussian mddlgl;,g] is matrix Z by subtracting the second line from the first:
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[ Zee—Zse Zes—Zss and since@UU,=ETK;1PUTPU,T one recovers Eq(3.104.

Z= Ze. Zes : (8102  Asit should be, one can check that the anomalous exponents
predicted forH[uT,é] agree then completely with Frahm
and Korepin’s results.

R Let us illustrate these results in two situations, one with

g =47 (3.103  spin-charge separation, the other without. From these, we

can exhibit the criterion for spin-charge separation within the

This is the most important result of the present sectiony ~+rix formalism.

the Iow-_energy properties of the Hubbard model are ex- = y,q presence of spin-charge separation, Frahm and Ko-
prgssed in terms of quantities thqt can be compute_d fror_n th pin find that the dressed charge matiss

microscopic parameters and spin-charge separation simply
follows from theZ, symmetry of our charge matrix. In the
framework of the dressed charge matimpproach, the sec- Zee=¢  Zes=0

ond feature is not easily decoded from the structureZ of 7z —¢2 Z.=1N\2)
which is then triangular with some relations between its ma- s¢ ss
trix elements whose physical interpretation is quite

Then

unclear?®®*We can use the results of the previous sectiongThis implies thaty and its inversey™* are
on the elementary excitations and those on the various prop-
erties of the charge matrix Hamiltonian such as the Drude £ 1 £ 1
peak, the susceptibility, and the anomalous exponents. In AT
particular, the new modes replacing the spin and charge o1l 4 2 4 2 (3.106
modes are simply the eigenvectors of the charge matrix. 9 £ 1 £ 1| '
The charge matrix is obtained by inversion, V) ZJF 2
- 1 9/_\1u _9/_\1u
9= (detZ)z( —~ —~ } (3.109 1 1 1 1
—9 1 9 ) ?sz 2 2
Term by term identification of the charge zero modgs 9= 1 1 1 1 (3.107
would lead to exactly the same expressiondorindeed, ? 3 ? + 5
1, (Zs? : . e .
w Pli=——, The charge matrix explicitly exhibits spin-charge separation
Ky (detZ) and takes the form characteristic of @) symmetry. The
, eigenvalues off ! areK = £2/2 andK =1.
1, (Zes—Zs The Z matrix can also be explicitly computed in the limit
Ki 1 (detz)? of infinite repulsion with a magnetic field close to the critical
field h, for which all the spins are polarizdde., close to the
ferromagnetic phageln terms of the parameter
1 _(ch_ Zss)zss
w PP =—r—>—,
K1 (detz)? —
, (3.109 5=/ Ch (3.109
1, (2 ¢
Ky 12 (detz)? ’ the dressed charge matrix is
i 2 (ch_zsc)2 1 0
2™ '
Ka (detz)? z=| 2 1 (3.109
-5 1-—=6
a a
iP P .= _(ch_zsc)zsc
K, 12712 (detz)2 which implies that theinverse of thg charge matrixg is
2 2 \? 2 \[(2 1\
1-—6| +|{1——6 1-—46||=d6|—-|1—=6
a a v K K

I I R -
1-=6|(=8]-[1-=68] |1-=05| +|=6
a aa
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This expression shows explicitly the breakdown of spin-chargeK LL Laughlin quasiparticles are precisely generated
charge separatiotexcept foré=m/4). by current excitations. These might thus be detected in any
physical realization of the Luttinger liquid: quantum wires or
possibly nanotubes. An intriguing possibility is also sug-
IV. CONCLUSIONS AND PERSPECTIVES gested by recent experiments of tunneling at the edge of a

The main goal of our paper was to establish and descripvo-dimensional gas in a magnetic fiéld.-v chqracteristics _
fractional excitations for the Luttinger liquid within the Measured at the edge showed very surprising non-Fermi-
bosonization scheme. The Bethe Ansatz gives exact eigefjduid behavior compatible with a chiral LL with unquan-
states and shows the existence of some fractional excitationdz€d LL parameteK; thel-V curves evolve smoothly when
however, their description is quite complex in that frame-ON€ varies the filling fraction and do not show a plateau

work and it is unclear how to generate systematically a comStructure. There seems to be a continuum of Luttinger liquids
plete set of excitations. In the low-energy limit, the living at the edge: this caused quite a stir because the chiral

Luttinger-liquid approach allows a very precise characterizakL theory can presumably be derived only for incompress-

tion of the fractional states already known from exact soluIPl€ filling fractions. These puzzling results are so far unex-
tions, and even allows us to discover novel fractional exciPlained, but if an interpretation in terms of a single-boson
tations which may carry irrational chargéise 1D Laughlin ~Mode chiral LL with unquantized paramettr can be in
quasiparticle, the hybrid stateln Sec. Il the low-energy SOM€e manner Juspfled, acc_ordlng to the result_s given in the
spectrum of Luttinger liquids can be reinterpreted in terms of€S€nt paper, this would imply that there exists chatge
fractional states: for instance, the particle-hole continuun@ughlin quasiparticles in that experimental setting: such a
consists of a Laughlin quasiparticles-quasihole continuumchiral LL is identical to the chiral half of the nonchiral
The quasiparticle perspective clarifies many properties of th&aussian Hamiltonian considered throughout our paper.

LL: the renormalization of the current operator is a direct

consequence of fractionalization; for spin chains, we present ACKNOWLEDGMENTS

the correct description of the spinon excitation in the generic
case of a violation of S(2) invariance. We also show that
the S,=0 continuum of spin chains involves the analogs of
Laughlin quasiparticles. In Sec. Ill we describe fractional
excitations such as the holon or the spinon for the Luttinge
liquid with spin; we also present a generalization of the

Gaussian theory valid for Luttinger liquids without spin- )
charge separation and display in that situation the new fracAPPENDIX' DISPERSION OF THE FRACTIONAL STATES

tional states replacing the holon and spirisae Sec. Ill ¢ We show here thaya(q)mf()) (where|W,) is the inter-

A? “np(ortant test_, o{lcoulrIS(tar,] WOUI? b?.to olbsctar;/e e)(Xler"acting ground stajeis an exact eigenstate of the chiral
mentally (or numerically a ese fractional states. Al- HamiltonianH... with energy

though the existence of the holon and the spinon was ascer-
tained theoretically quite a long time aguo experiment has -
yet allowed their detection: in fact, the property of spin- E(Q-.qn)=
charge separation itself is not yet established experimentally.
The observation of two of the fractional states discussed in | ot ;s rewrite the state consider\z’é (9.)|Wo) in terms
this paper would be particularly important: the LL Laughlin =m0
quasiparticle and the hybrid state. Indeed they may assunf Z€r0 modes and phonon operatgvee use Eqs(1.16),
irrational charges. The precise spectroscopy of fractional ex(1-17)' (1.26, and(1.27)]

citations we have done in this paper allows us to determine 20 @,

which processes are involved in their creation: for the vé (x)|\IIO>:expiQ+[i—Q+x— \/;((%I—”
Laughlin states, current probes are needed, while the hybrid K K

particle is created by the addition of an odd number of elec-

The authors wish to acknowledge the late Heinz Schulz
for insightful remarks on the results of this paper. We also
thank Vincent Pasquier for a discussion on the Calogero-
Sutherland model. Bernard Jancovici gave us information on
bne-dimensional plasmas for which we are grateful.

ulgy| + (A1)

2L K

mu Qi}

2mn
trons. For Laughlin quasiparticles shot noise is likely an ad- ><exp—i\/;Qi 2 @i’nexpiTfoo).
equate probe: the shot noise coefficient for Luttinger liquids n#0
can be computed exactly and is predicted to be equiit%b (A2)
in the two-dimensional electron gas at filling=1/3 this
yields a charge 1/3.The latter situation involves Wen’s chi-  Taking into account the fact that the operatbgsannihi-

ral Luttinger liquid. The identification of the shot noise co- late the ground state, it follows that
efficient with the charge of a carrier has been debated be-
cause the coefficient one measures might actually be the ,+ _ :

; . X)|W o) = expi
conductance rather than a quasiparticle chéage= 1/3 the Q+( )I¥o) PIQ
conductance also assumes the value 1/3). For the nonchiral
Luttinger liquid our spectroscopy of fractional states allows < exp—i
us to resolve that ambiguity: the shot noise coefficient is P \/;Qﬂgo
indeed identical to the conductanée of the LL but the 5

- : ; ; _ . emin
(backs_catterm);] current-current correlatu_)n .functlon mea X expi x| W o), (A3)
sured in shot noise involves char@eexcitations, because L

27 A (I)O
s for

L
Kar|n|

by
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with a similar expression fov(sf(x)|\lfo> (the sum is then one expands the phonon exponential, the integral over posi-

over negative momentum phonon&oing back to recipro-  tion will select the configuration of phonons with identical

cal space total momentumg,=2n/L. All these configurations con-
sist of phonons of identical chirality and total momentum

. which means that they are eigenstates with the same eigen-
Vo, (an)|[Wo>= \/—f dxexp—|—nx value of the appropriate chiral Hamiltoniatd { or H_).
This is enough to prove thMé+(qn)|\Ifo> is an exact eigen-
, _CDO state ofH.. ,
XexpiQ.| — +?
mu Q2
L H.VS (9,)|%o)=| 2 ulglaiag+ =— — (A5)
Xexp_l\/—Q+2 b+ Q. qn| 0> &0 |q| a9 " o K
Kar|p| P
2mp X Vg (An)|¥o) (AB)
X expi ——x| W), (A4) -
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