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Tricritical behavior in the extended Hubbard chains
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Phase diagrams of the one-dimensional extended Hubbard model~including nearest-neighbor interactionV)
at half- and quarter-filling are studied by observing level crossings of excitation spectra using the exact
diagonalization. This method is based on the Tomonaga-Luttinger liquid theory including logarithmic correc-
tions which stem from the renormalization of the Umklapp- and the backward-scattering effects. Using this
approach, the phase boundaries are determined with high accuracy, and then the structure of the phase diagram
is clarified. At half-filling, the phase diagram consists of two Berezinskii-Kosterlitz-Thouless~BKT! transition
lines and one Gaussian transition line in the charge sector, and one spin-gap transition line. This structure
reflects the U(1)̂ SU(2) symmetry of the electron system. Near theU52V line, the Gaussian and the
spin-gap transitions take place independently from the weak- to the intermediate-coupling region, but these two
transition lines are coupled in the strong-coupling region. This result demonstrates existence of a tricritical
point and a bond-charge-density-wave~BCDW! phase between charge- and spin-density-wave~CDW, SDW!
phases. To clarify this mechanism of the transition, we also investigate effect of a correlated hopping term,
which plays a role to enlarge BCDW and bond-spin-density-wave~BSDW! phases. At quarter-filling, a similar
crossover phenomenon also takes place in the large-V region involving spin-gap and BKT-type metal-insulator
transitions.
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I. INTRODUCTION

One-dimensional~1D! electron systems have been exte
sively studied motivated not only by theoretical interest b
also by the discovery of quasi-1D conductors and highTc
superconductivity. In the 1D electron systems, due to
charge-spin separation, the low-energy excitations in
charge and the spin sectors may have gaps independe
and then various phases can appear. However, phenom
caused by interplay between these two degrees of free
have not been fully understood even in simple models
this paper, we turn our attention to the phase transition
the so-called extended Hubbard model~EHM!,

HEHM52t(
is

~cis
† ci 11,s1H.c.!1U(

i
ni↑ni↓

1V(
i

nini 11 , ~1!

at half- and quarter-filling, where both charge and spin g
can open.

The EHM at half-filling has been studied using vario
approaches. In the weak-coupling limit, the phase diagram
analytically obtained by theg-ology1–4 ~see Appendix A!.
According to the result, there appear insulating char
~CDW! and spin-density-wave~SDW! phases, or metallic
phases where the singlet superconducting~SS! and the triplet
superconducting~TS! correlation is dominant@see Fig. 1~b!#.
On the other hand, in the strong-coupling limit, the pertur
tion theory gives the phase boundary of the CDW-SD
transition5–7 and of the phase separation.8–10 The rest of re-
gion has been discussed by numerical analysis.6,11–15 How-
ever, the phase diagrams are not fully understood, bec
the charge and the spin gaps open exponentially slow@see
PRB 610163-1829/2000/61~24!/16377~16!/$15.00
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Eqs.~18! and~21!#, which makes it difficult to determine the
phase boundaries by the conventional finite-size sca
method. Especially for the transition between the CDW a
the SDW phases, even the property of the transition itse
not clear, because the transition is of the second order in
weak-coupling theory, while it is of the first order in th
strong-coupling theory.

Recently, the author has clarified the mechanism of
CDW-SDW transition.16 According to the result, the phas
boundary consists of two independent transition lines, a
the crossover of the CDW-SDW transition is related w
whether these two transition lines are separated or coup
The result also demonstrates the existence of the bo
charge-density-wave~BCDW!17 phase in the very narrow re
gion between the CDW and the SDW states. In this pap
we not only give the details of the letter, but also clarify t
entire phase diagram of the EHM at half-filling.

In order to clarify the above scenario for the phase tr
sition between the CDW and the SDW phases, we also c

FIG. 1. Weak-coupling phase diagrams of the EHM includi
the correlated hopping term~Ref. 20!. The phase diagrams ar
given by combinations of a Y-shaped structure for the charge
@two BKT lines ~solid! and one Gaussian line~dashed!# and an
I-shaped one for the spin part.
16 377 ©2000 The American Physical Society
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sider generalizing the EHM by adding the following corr
lated hopping interactions:18–20,21

HX5X(
is

~cis
† ci 11,s1H.c.!~ni ,2s2ni 11,2s!

2. ~2!

This interaction can be derived as a site-off-diagonal elem
of the Coulomb integral.18 Especially, the three-body part i
justified as an effective interaction in the three-band mode19

The weak-coupling phase diagram is known by theg-ology20

as shown in Figs. 1~a! and 1~c! ~see Appendix A!. In these
phase diagrams, the two transition lines between the C
and the SDW phases do not synchronize. And a BCDW o
bond-spin-density-wave22 ~BSDW! phase appears. Th
analysis of the generalized model will clarify the tricritic
behavior in the pure EHM. The final results are shown
Fig. 15.

A charge-gap phase is known to appear not only at h
filling but also at quarter-filling,23–26 due to the effect of the
Umklapp scattering in the higher order.27–30 In this case, the
interplay between charge and spin instabilities is also
pected. In fact, we will conclude that a crossover pheno
enon also exists in the large-V region at quarter-filling~see
Fig. 16!.

Throughout this paper, we use the level-crossing appro
to determine the phase boundaries.16,31–37 This method is
based on the Tomonaga-Luttinger~TL! liquid theory38

~which is equivalent to thec51 conformal field theory! in-
cluding the logarithmic corrections, which stem from t
renormalization of the Umklapp- and the backwar
scattering effects. In the theoretical scheme, the transi
points are identified by the level crossing of the excitat
spectra in the finite-size ring with size dependenceO(L22),
whereL is the system size. Therefore, the phase bounda
are obtained with high accuracy, using the numerical dat
finite-size clusters.

This paper is organized as follows. In Sec. II, we revie
the level-crossing approach based on the TL liquid the
and the renormalization group, developed in Refs. 31–36
Sec. III, we discuss the discrete symmetries of wave fu
tions to connect excitation spectra and the correspond
physical states. In Sec. IV, we discuss the character of
phases that appear in the phase diagrams. In Sec. V
analyze the instabilities of the EHM at half-filling, an
clarify the phase diagram. In Sec. VI, we analyze the me
insulator transition at quarter-filling. Finally, a summary a
discussions are given in Sec. VII. In Appendix A, we brie
explain the traditionalg-ology analysis for the generalize
EHM at half-filling.

II. PHASE BOUNDARIES

First, let us perform a general argument for 1D electr
systems based on the bosonization theory.1–4,39,40The con-
tinuous fermion fields are defined bycjs /Aa→cL,s(x)
1cR,s(x) ~the lattice constanta→0, x5 ja) with

c r ,s~x!5
Ur ,s

A2pa
eirkFxei/A2[r (fr1sfs)2ur2sus] , ~3!

wherer 5R, L ands5↑, ↓ refer to1 and2 in that order.a
is a short-distance cutoff.kF is the Fermi wave number de
nt
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fined by kF[pn/2, with n being the electron density. Th
field fn and the dual fieldun of the charge (n5r) and the
spin (n5s) degrees of freedom satisfy the relation

@fm~x!,un~x8!#52
ip

2
dmn sgn~x2x8!. ~4!

Ur ,s ensures anticommutation relations of the different f
mion fields.38,40 These operators are Hermitian and satis
the relation

$Ur ,s ,Ur 8,s8%52d r ,r 8ds,s8 . ~5!

Using the formalism, the low-energy behavior of 1D ele
tron system can be described by the sine-Gordon models
the charge and the spin sectors. When 2q (q: integer! elec-
trons contribute to the Umklapp scattering, the effect
Hamiltonian for the system with lengthL is given by

H5 (
n5r,s

vn

2pE0

L

dx@Kn~]xun!21Kn
21~]xfn!2#

1
2g1'

~2pa!2E0

L

dx cos@A8fs~x!#

1
2g3'

~2pa!2E0

L

dx cos@qA8fr~x!1dx#

1
2g3i

~2pa!2E0

L

dx cos@qA8fr~x!1dx#cos@A8fs~x!#,

~6!

wherevn andKn are the velocity and the Gaussian couplin
respectively for each sector.g1' andg3' denote the ampli-
tude of the backward and the Umklapp scattering, resp
tively. The Umklapp term vanishes except for the cased
[2pp24qkF50, wherep is also an integer, andp/q is an
irreducible fraction. Thus, the electron filling that a char
gap can open is quantized to commensurate ca
n5p/q.27–29 This condition can also be derived from th
generalized Lieb-Schultz-Mattis theorem.29,30 In this paper,
we considerq51 ~half-filling! and q52 ~quarter-filling!
cases. At half-filling, in the weak-coupling limit, the cou
plings of the backward and the Umklapp scattering for
EHM are identified asg1'52g3'5U22V ~see Appendix
A!.

In addition to theg3' term, there exists another Umklap
operator with coupling constantg3i , which transfers finite
spin.4,12,28In the weak-coupling limit, this parameter is iden
tified asg3i522V.In the present analysis, we will not con
sider this term explicitly, because the scaling dimension
this term is always higher than that of the other nonline
terms in Eq.~6!. However, in the strong-coupling region,
charge-spin coupling effect may appear due to this term.

If these nonlinear terms are absent (g1'5g3'5g3i50),
the excitation spectra and their wave numbers in the fin
size system are described by

E2E05
2pvr

L
xr1

2pvs

L
xs , ~7!
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P2P05
2p

L
~sr1ss!12mrkF , ~8!

where the scaling dimensions and the conformal spins
given by

xn5
1

2 S nn
2

Kn
1mn

2KnD 1Nn1N̄n , ~9!

sn5nnmn1Nn2N̄n . ~10!

Herenr is the change of 2nr electrons, andns is the totalz
spins ST

z5ns . mr (ms) denotes the number of particle
moved from the left charge~spin! Fermi point to the right
one. The non-negative integersNn and N̄n are the particle-
hole excitations near the right and the left Fermi points,
spectively. The scaling dimensions are related to the crit
exponents for the correlation functions in the large dista
as

^Oi~r !Oi~r 8!&}ur 2r 8u22(xr i1xs i ), ~11!

where the operator is given by

Oi[Onr ,mr

r Ons ,ms

s ,

Onn ,mn

n [eiA2(nnun1mnfn), ~12!

or linear combinations of these operators. Therefore, th
are one-to-one correspondences between the excitation
tra and the operators.

Now we turn our attention to the excitation spectra, wh
correspond to the following operators:

On0[2
4

Kn
]̄fn]fn , ~13a!

On1[A2 cos~qA2fn!}O0,q
n 1O0,2q

n , ~13b!

On2[A2 sin~qA2fn!}O0,q
n 2O0,2q

n , ~13c!

On3[exp~ iA2un!5O1,0
n , ~13d!

whereOn0 is the ‘‘marginal field,’’41 and the derivatives are
defined by],]̄[(vn

21]t7 i]x)/2 with imaginary timet. This
operator corresponds to particle-hole excitations near
right and the left Fermi points (Nn5N̄n51). On1 andOn2
are linear combinations of current excitations (mn56q).
On3 is an excitation accompanying variation of the numb
of electrons or spins (nn561). We have to choose antipe
riodic boundary conditionsc r ,s(x1L)52c r ,s(x) to extract
the excitation spectra forOn1 andOn2 fields, whenq is odd,
and On3 field,34–36 because the phase fields satisfy the f
lowing boundary conditions:38

fn~x1L !5fn~x!2A2pnn , ~14a!

un~x1L !5un~x!1A2pmn , ~14b!

and the Fermi operator is given by these phase fields a
Eq. ~3!.
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The effects of theg1' and theg3' terms in Eq.~6! are
renormalized in the scaling dimensionsxn as logarithmic
corrections, which are analyzed by the renormalization gro
~RG! equations derived under the change of the cutoffa
→edla ~Ref. 42!. Within the one-loop order, the RG equa
tions are given by

dyn0~ l !

dl
52ynf

2 ~ l !, ~15a!

dynf~ l !

dl
52yn0~ l !ynf~ l !, ~15b!

where yr0(0)52(q2Kr21), ys0(0)52(Ks21), yrf(0)
5g3' /pvr , ysf(0)5g1' /pvs , and we have setl 5 ln L.
These equations determine the RG flow diagrams. Note
there is a difference between the cases for the charge an
spin sectors reflecting their symmetries~see Fig. 2!. In the
following subsections, we discuss the phase transitions
each sector described by these RG flow diagrams.

A. Spin-gap transition

First, we consider the phase transition in the spin deg
of freedom (n5s). The spin sector with an SU~2! symmetry
belongs to the universality class of the level-1 SU~2! Wess-
Zumino-Novikov-Witten~WZNW! model.43 In this case, the
RG flow in Fig. 2~a! is fixed on theys0( l )5ysf( l ) line.
Then for ys0( l ).0, the exponent is renormalized asKs*
51, and the solution of Eq.~15! is obtained as

ys0~ l !5
ys0~0!

ys0~0!l 11
, ~16!

whereys0(0) is the bare coupling constant. Combining t
renormalized coupling and the operator-product-expans
coefficients, the singlet (xs1) and the triplet (xs2,3) excita-
tion spectra split as44,45,31

xs1~ l !5
1

2
1

3

4
ys0~ l !, ~17a!

FIG. 2. RG flow diagram for~a! the spin and~b! the charge
degrees of freedom. For the spin sector, the RG flow is fixed on
ys05ysf line due to the SU~2! symmetry, and the spin-gap trans
tion takes place atys05ysf50. For the charge sector, BKT-typ
transitions take place on theyr056yrf lines with yr0.0. When
q51, the yr051yrf line corresponds to the SU~2! symmetry of
the h paring. Theyr052yrf line reflects the hidden symmetry o
the sine-Gordon model. A Gaussian transition occurs on theyrf

50 line with yr0,0.
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xs2,3~ l !5
1

2
2

1

4
ys0~ l !. ~17b!

When ys0(0),0, ys0( l ) is renormalized asys0( l→`)5
2`, then a spin gap appears. At the critical point@ys0(0)
50#, there are no logarithmic corrections in the excitati
spectra. Therefore, the critical point is obtained by the in
section of the singlet and the triplet excitation spectra (xs1
5xs2,3).

31,34–36This level crossing corresponds to the con
tion for the spin-gap phase boundaryg1'5gs50 in the
standardg-ology analysis,~see Appendix A and Table I!.

The asymptotic behavior of the spin gap against a par
eter of a modell near the critical pointlc is obtained by the
two-loop RG equation and the definition of correlatio
lengthys0(lnj);21 as34,36

Ds;vs /j}Al2lc exp@2const/~l2lc!#, ~18!

where we have used a relationl2lc}uys0(0)u. Note that
this is the same behavior as that of the spin gap in the
negative-U Hubbard model at half-filling.46

B. Berezinskii-Kosterlitz-Thouless transition

1. SU(2) symmetric case

Next, we consider the instabilities in the charge sec
(n5r), which are described by the RG flow diagram giv
in Fig. 2~b!. At half-filling ( q51) andV50 ~the Hubbard
model!, the sign of the on-site interactionU in the Hamil-
tonian ~1! is reversed by the following canonica
transformation:47

cj↑→cj↑ , cj↓→~21! j cj↓
† . ~19!

This transformation also projects the spin (z-pairing! opera-
tors onto theh-pairing ones

h i
15~21! ici↑

† ci↓
† , h i

25~21! ici↓ci↑ , h i
z5

1

2
~ni21!,

~20!

without losing the SU~2! symmetry.48 It follows from Eq.~3!
this transformation corresponds to the replacement of the
dices asr↔s. Therefore, the spin part of the sine-Gord
model of Eq.~6! is mapped onto the charge part, and t
operatorsOr1 and Or2 , Or3 denote the ‘‘singlet’’ and the
‘‘triplet’’ for the charge part, respectively. Thus, the exp
nent is renormalized asKr* 51 for U,0, and the charge ga
opens forU.0.

TABLE I. Correspondence between theg-ology and the level-
crossing approach at half-filling. The scaling dimensionsxn i corre-
spond to excitation spectra of singlet (xs1), triplet (xs2,3), ‘‘dimer’’
(xr1), ‘‘Néel’’ ( xr2), and ‘‘doublet’’ (xr3) states. Examples o
these level crossings are shown in Figs. 5 and 6.

g-ology Level crossing

Spin gap g1'(5gs)50 xs15xs2,3

SU~2!BKT g3'5gr.0 xr25xr3,xr1

Hidden SU~2!BKT g3'52gr,0 xr15xr3,xr2

Gaussian g3'50,gr,0 xr15xr2,xr3
r-

-

-

D

r

n-

In the case when the SU~2! symmetry in the charge secto
is broken by finiteV, Or1 , Or2, andOr3 refer to ‘‘dimer,’’
‘‘Néel,’’ and ‘‘doublet,’’ respectively, by following Ref. 32.
Then, if the initial value of the RG flow moves across t
SU~2!-symmetric line@yrf(0)5yr0(0).0#, a Berezinskii-
Kosterlitz-Thouless~BKT!-type transition49,50,42 occurs be-
tween the TL liquid phase and the twofold-degener
gapped state. For this transition, one can show that a ch
gap opens as42

Dr} exp~2const/Al2lc!, ~21!

where ul2lcu}t, and t[uyrf( l )u/yr0( l )21 stands for the
deviation from the BKT critical line. Note that Eq.~21! is a
different asymptotic behavior from that of the spin-gap tra
sition described by Eq.~18!, so that we discriminate the spin
gap transition from BKT-type transitions in this paper. T
critical point for this BKT transition can be obtained witho
calculations, because it is fixed by the SU~2! symmetry of
the Hamiltonian. In the case of the EHM, the BKT transitio
line is fixed on theV50 line for U,0.

Now, we consider the region foryrf( l ),0. The sine-
Gordon model has a symmetry under the transformation
reverse the sign of the nonlinear term cosA8fr . This trans-
formation corresponds to the shift of the phase fields:

fr→fr1p/A8. ~22!

This operation interchanges the roles of the operatorsOr1
andOr2 as

cosA2fr→2 sinA2fr , ~23a!

sinA2fr→ cosA2fr . ~23b!

Therefore, this symmetry indicates that the SU~2!-symmetric
line in the RG flow diagram is mapped onto the opposite s
of the yr0 axis, and another BKT transition may occur
yrf(0)52yr0(0),0. We call the symmetry of this BKT
line ‘‘hidden SU~2! symmetry.’’ Since this symmetry origi-
nates from that of the sine-Gordon model, it is not contain
explicitly in the original Hamiltonian. The renormalize
scaling dimensions ofOr1 , Or2, and Or3 near the critical
line of the hidden SU~2! symmetry are calculated a
follows:45,32

xr1~ l !5
1

2
2

1

4
yr0~ l !~112t !, ~24a!

xr2~ l !5
1

2
1

3

4
yr0~ l !S 11

2

3
t D , ~24b!

xr3~ l !5
1

2
2

1

4
yr0~ l !. ~24c!

Therefore, the critical point for the hidden SU~2! BKT tran-
sition can be determined by the level crossing between
‘‘dimer’’ and the ‘‘doublet’’ excitation spectra (xr15xr3
,xr2).32 This level crossing corresponds to the conditi
g3'52gr,0 in theg-ology analysis~see Appendix A and
Table I!.
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2. Non-SU(2) symmetric case

We consider the BKT transition forq>2 case. This situ-
ation may appear in the metal-insulator transition at quar
filling ( q52). In this case, the critical line no longer has
SU~2! symmetry. However, by replacing the variables
fr85qfr , ur85ur /q, and Kr85q2Kr , the sine-Gordon
model for the charge part of Eq.~6! is mapped onto the cas
of q51. Then, the BKT transition between the TL liquid an
the 2q-fold-degenerate gapped state takes place when
renormalized exponent becomesKr* 51/q2. The scaling di-
mensions for theOr1 and theOr2 fields near the BKT criti-
cal line remain unchanged, while theOr3 field changes as

xr3~ l !5q2F1

2
2

1

4
yr0~ l !G . ~25!

Therefore, the BKT critical point corresponding toyrf
5yr0.0 is given by the level-crossing point ofxr2
5xr3 /q2,xr1.

There is another excitation spectrum that can be use
determine the BKT critical point. This is the ‘‘margina
field’’ ~13a! whose renormalized scaling dimension is giv
by33

xr0~ l !522yr0~ l !S 11
4

3
t D . ~26!

In this case, the critical point can be determined by the le
crossing ofxr054xr2.

C. Gaussian transition

In addition to these BKT-type transitions, a Gauss
transition occurs atyrf(0)50 and yr0(0),0. This is a
second-order transition between the two gapped sta
which corresponds to the different fixed points@yrf( l→`)
56`#, and the gap vanishes just on the critical point. T
transition point is given by the level crossing between
‘‘dimer’’ and the ‘‘Néel’’ excitations (xr15xr2,xr3), be-
cause theOr1 and theOr2 fields interchange their roles a
yrf(0)50 as was explained in Sec. II B 1. In theg-ology,
this level crossing corresponds to the conditiong3'50 with
gr,0 ~see Appendix A and Table I!. Since the nonlinear
term vanishes on the critical line, there is no effect of t
renormalization. Therefore, the scaling dimensions on
Gaussian line are given by

xr15xr25
Kr

2
, ~27a!

xr35
1

2Kr
, ~27b!

without logarithmic corrections, andKr,1 is satisfied. The
asymptotic form of the gap near the Gaussian transition p
can be obtained by solving Eq.~15b! with an approximation
yr0( l )'yr0(0) and definition of the correlation lengt
uyrf(ln j)u;1 as32

Dr;vr /j}ul2lcu [1/2(12Kr)] , ~28!
r-
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where we have used the relationyrf(0)}l2lc . The valley
of the gap becomes steeper asKr is decreased.

III. DISCRETE SYMMETRIES

To perform the level-crossing analysis discussed in S
II, we need to identify the relevant excitation spectra. F
this purpose, we discuss the discrete symmetries of w
functions corresponding to the excited states. The phys
meaning of these symmetries will be clarified in Sec. IV.

The discrete symmetries are defined under particle-h
@C:cis→(21)icis

† #, space-inversion (P:cis→cL2 i 11,s), and
spin-reversal (T:cis→ci ,2s) transformations. They give ei
genvalues61. In addition, shift operation by one sit
(S:cis→ci 11,s) is defined, which has an eigenvalueeik. The
symmetries of wave functions can be explained by comb
ing those of the ground state and those of the operators
the excited states.36 For the ground state of the EHM, w
choose periodic~antiperiodic! boundary conditions when
N/2 is odd~even!, whereN is the number of electrons. Then
according to the Perron-Frobenious theorem, the disc
symmetries of the ground state areC5P5T51 andk50, if
we choose the representation for the basis and use the
metry operations defined in Ref. 36.

Next, we consider the symmetries of operators. The
erator of the marginal field~13a! has the same quadratic form
of the Gaussian part of the Lagrangian density of Eq.~6!, so
that it has the same symmetry as the ground state (C5P
5T51, k50). We can find the symmetries of theOn1 and
the On2 operators by considering the change of the ph
fields. Since we restrict our attention to the Hilbert spa
with fixed electron number and totalz spin, we do not con-
sider the change of theun fields in the symmetry operations
At half-filling ( kF5p/2), it follows from Eq. ~3! that the
phase fieldsfn are transformed under particle-hole (C:
c r ,s↔c r ,s

† ), space-inversion (P: R↔L, x→x1a), spin-
reversal transformations (T: ↑↔↓), and shift operation
(S:x→x1a) as

C:fs→2fs , fr→2fr , ~29a!

P:fs→2fs , fr→2fr , ~29b!

T:fs→2fs , fr→fr , ~29c!

S:fs→fs , fr→A2kF1fr . ~29d!

In this case,CP51 is always satisfied, so that the indepe
dent discrete symmetries areP, T, andS. At quarter-filling
(kF5p/4), the phase fields change as

P:fs→2fs , fr→p/A82fr . ~30!

Thus the discrete symmetries of the operatorOr1 for q52
are P521. The relations between the operators and th
symmetries are summarized in Table II.

In the present numerical calculation based on the Lanc¨s
algorithm, the identification is performed by projecting th
initial vector as

uC init&5
1

2
~16P!~16T!u i &, ~31!
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where the signs in front of the operators correspond to t
eigenvalues, andu i & is a configuration that satisfiesP,T u i &
Þu i &. Furthermore,u i & is classified by the wave numbersk
50,p.

IV. PHASES

In this section, we discuss the character of each phase
appears in the phase diagrams. In general, there are no
range orders~LRO’s! in 1D systems due to strong quantu
fluctuations, so that, in such cases, the phases are chara
ized by the dominant correlation functions. The correlat
functions ~11! including the logarithmic corrections ar
given by integrating the renormalized scaling dimensio
over the RG trajectory as

Ri5 expF2E
0

ln(r /a)

dl2@xr i~ l !1xs i~ l !#G . ~32!

First, we consider Eq.~32! for the spin and charge degree
of freedom independently. For the spin part which has
SU~2! symmetry, the singlet (Os1) and the triplet (Os2,3)
correlation functions with logarithmic corrections are o
tained explicitly in the gapless region (g1'

* 50,Ks* 51) as45

Rs15
a

r
ln23/2~r /a!, ~33a!

TABLE II. Discrete symmetries of the excitation spectra (C:
charge conjugation,P: space inversion,T: spin reversal, andk:
wave number!. BC51 (BC521) stands for~anti!periodic bound-
ary conditions. The upper~lower! sign of BC denotesN/25 odd
~even! cases, whereN is the number of electrons. The upper 1
states are ‘‘physical’’ ones, which appear under the same BC
those of the ground state. The lower six states are the ‘‘artifici
ones extracted by twisting BC with respect to the ground state

Operators C P T k BC

Ground state 1 1 1 1 0 61
Marginal 24Kn

21]̄fn]fn
1 1 1 0 61

CDW sinA2fr cosA2fs 21 21 1 2kF 61
SDWz cosA2fr sinA2fs 21 21 21 2kF 61
SDW6 cosA2fr exp6iA2us * 1 * 2 kF 61
BCDW cosA2fr cosA2fs 1 1 1 2kF 61
BSDWz sinA2fr sinA2fs 1 1 21 2kF 61
BSDW6 sinA2fr exp6iA2us * 21 * 2kF 61
SS expiA2ur cosA2fs * 1 1 0 61
TS0 expiA2ur sinA2fs * 21 21 0 61
TS61 expiA2ur exp6iA2us * 1 * 0 61
4kF-CDW cos 2A2fr * 21 * 4kF 61

singlet cosA2fs 1 1 1 0 71
triplet0 sinA2fs 21 21 21 0 71
triplet61 exp6iA2us * 1 * 0 71
‘‘dimer’’ cosA2fr 1 1 * 2kF 71
‘‘Néel’’ sinA2fr 21 21 * 2kF 71
‘‘doublet’’ exp6iA2ur * 1 1 0 71
ir

at
ng-

ter-
n

s

e

Rs2,35
a

r
ln1/2~r /a!, ~33b!

where we have used Eqs.~16!, ~17!, and~32!. Therefore, the
triplet correlation is more logarithmically dominant than th
singlet one. On the other hand, when the spin gap op
(g1'

* 52`), the singlet excitation degenerates with t
ground state in the thermodynamic limit, so that the sing
correlation becomes constant, while the triplet one dec
exponentially. In this way, the triplet correlation is su
pressed in the spin-gap region.

For the charge part, at half-filling, explicit forms of th
correlation functions including logarithmic corrections a
not obtained except for the BKT or the Gaussian lines.
the BKT line, the exponent is renormalized asKr* 51, so that
Kr* >1 is always satisfied in the gapless region (g3'

* 50),
and then the correlation for the ‘‘doublet’’ (Or3) is domi-
nant. In the charge-gap region withg3'

* 5`, the ‘‘Néel’’
(Or2) state degenerates with the ground state, and
‘‘dimer’’ ( Or1) and the ‘‘doublet’’ correlations decay expo
nentially. On the other hand, forg3'

* 52`, the ‘‘dimer’’
state degenerates with the ground state, and the ‘‘Ne´el’’ and
the ‘‘doublet’’ correlations decay exponentially.

Next, we discuss the physical states that consist of
charge and the spin parts. In the metallic region (g3'

*
50,Kr* >1), the triplet superconducting~TS! correlation is
dominant when the spin part is gapless. The operators for
TS phase consist of the ‘‘doublet’’ and the triplet ones,

OTS0
5(

s
cjs

† cj 11,2s
† ,

} exp@1 iA2ur~x!#sin@A2fs~x!#, ~34a!

OTS1
5cj↑

† cj 11,↑
† ,

} exp@1 iA2ur~x!#exp@1 iA2us~x!#. ~34b!

On the other hand, the singlet superconducting~SS! correla-
tion whose operator is given by the ‘‘doublet’’ and the si
glet ones

OSS5cj↑
† cj↓

† } exp@1 iA2ur~x!#cos@A2fs~x!#, ~35!

is dominant when the spin part has a gap.
In the insulating region, which corresponds to the fix

point g3'
* 51`, the bond-spin-density-wave~BSDW!

phase22 characterized by

OBSDWa5~21! j(
s,s8

~cjs
† tss8

a cj 11,s81cj 11,s
† tss8

a cjs8!,

OBSDWz} sin@A2fr~x!#sin@A2fs~x!#, ~36a!

OBSDW6} sin@A2fr~x!#exp@6 iA2us~x!#, ~36b!

appears when the spin sector is gapless. On the other h
the charge-density-wave~CDW! phase

OCDW5~21! j(
s

cjs
† cjs} sin@A2fr~x!#cos@A2fs~x!#,

~37!

as
’’



bo

-

rg

bo
or
a

el

r-

we
ar
in

c
le

i-

o

ne
the
ed

the
the
and
like

rize
om
to

po-

e
y

the
re

a

tes

ites
n
-

PRB 61 16 383TRICRITICAL BEHAVIOR IN THE EXTENDED . . .
appears when the spin gap opens. In the CDW phase,
charge and spin gaps open, so that a LRO exists.

In the insulating region for the opposite fixed pointg3'
*

52`, the spin-density-wave~SDW! correlation character
ized by

OSDWa5~21! j(
s,s8

cjs
† tss8

a cjs8 ,

OSDWz}cos@A2fr~x!#sin@A2fs~x!#, ~38a!

OSDW6} cos@A2fr~x!#exp@6 iA2us~x!#, ~38b!

is dominant when the spin part is gapless. The bond-cha
density-wave~BCDW! phase characterized by

OBCDW5~21! j(
s

~cjs
† cj 11,s1cj 11,s

† cjs!,

} cos@A2fr~x!#cos@A2fs~x!#, ~39!

appears when the spin gap opens. In the BCDW phase,
charge and spin gaps open, so that a LRO exists. The c
spondence between the above six phases at half-filling
the fixed points are summarized in Table III.

At quarter-filling (q52), the 4kF-charge-density wave
(4kF-CDW! appears when the Umklapp scattering is r
evant. The operator is given by theOr1 field with q52,

O4CDW5(
r

c r↑
† ~x!c r↓

† ~x!c2r↓~x!c2r↑~x!,

} cos@A8fr~x!#. ~40!

In the rest of this section, we further clarify the diffe
ences among the four charge-gapped states~CDW, SDW,
BCDW, and BSDW! discussed above. For this purpose,
change the basis of the bosonized operators from the ch
and spin picture to the spin up and down one by introduc
the following new phase fields:

fs5fr6fs , ~41!

where s5↑,↓ refer to the upper and lower signs, respe
tively. Then, the system is interpreted as coupled spin
fermion systems (S51/2 spin chains!. In this case, the
~B!CDW and z-components of the~B!SDW operators are
given by

OCDW,OSDWz
} sin~A2f↓!6 sin~A2f↑!, ~42!

OBCDW,OBSDWz
} cos~A2f↑!6 cos~A2f↓!, ~43!

TABLE III. Correspondence between six possible phases
half-filling and fixed points in the RG analysis. Forg1'

* 52`
(g1'

* 50), the spin sector is gapped~gapless!. For g3'
* 56` (g3'

*
50), the charge sector is gapped~gapless!.

g3'
* 50 g3'

* 51` g3'
* 52`

g1'
* 50 TS BSDW SDW

g1'
* 52` SS CDW~LRO! BCDW ~LRO!
th

e-

th
re-
nd

-

ge
g

-
ss

where the CDW and the BCDW~the SDWz and the BSDWz)
operators refer to the upper~lower! signs in the right-hand
sides, and sin(A2fs) and cos(A2fs) fields denote Ne´el and
dimer states of theS51/2 spin chains, respectively. In add
tion, it follows from Eqs.~29d! and~41! that the shift opera-
tion by one site gives

fs→fs1p/A2, ~44!

so that both CDW and SDWz states are described by tw
Néel ordered spin chains, where the two sectors (s5↑,↓) are
synchronized in the former, while they are displaced by o
site in the latter. On the other hand, the BCDW and
BSDWz states are given by synchronized and displac
dimer-ordered spin chains, respectively~see Fig. 3!. There-
fore, in the BCDW phase, the charge is polarized on
bonds alternatively, and the spins are dimerized. In
BSDW state, the charge is polarized on the each bond,
the spins are located on the bonds and remain gapless
the SDW state.22

The discrete symmetries discussed in Sec. III characte
the differences among these physical states. It follows fr
Eq. ~29!, that the spin reversal symmetry corresponds
whethers5↑,↓ sectors are synchronized (T511) or dis-
placed by one site (T521). Similarly, the parity and the
charge conjugation distinguish whether the electrons are
larized on the sites (C5P521) or on the bonds (C5P5
11). This interpretation for the parity is consistent with th
fact that the 4kF-CDW with a site LRO has the odd parit
(P521) at quarter-filling.

V. HALF-FILLING

Using the method explained in Sec. II, we analyze
phase diagram of the EHM at half-filling. Since there a

t

FIG. 3. Schematic illustration for the four charge-gapped sta
in up and down spin subsystems. The enclosed two sites in~c! and
~d! stand for electron-hole dimers. The electrons polarize on s
(C5P521) for CDW and SDW states, while they polarize o
bonds (C5P511) for BCDW and BSDW states. The two sub
systems are synchronized (T511) for CDW and BCDW states,
while they are displaced by one site (T521) for SDW and BSDW
states.
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many instabilities, we consider the phase diagram separa
in the charge and the spin parts by assuming the charge
separation. However, for the CDW-SDW transition, there
a possibility that the charge and the spin degrees of free
are coupled. So we discuss two cases where the two deg
of freedom are separated and coupled. And then we iden
the valid scenario from the comparison with the result of
strong-coupling perturbation theory. For the phase sep
tion, which is considered to be a first-order transition,
need an approach different from the one applied to
charge- and the spin-gap phases. We discuss the way to
termine the phase-separation boundary and check the va
of the result by the strong-coupling theory. Using the abo
strategy, we also analyze the EHM with the correlated h
ping term@Eq. ~2!#. The results are summarized in Fig. 15

A. Spin sector

First, we determine the spin-gap phase boundary follo
ing the method explained in Sec. II A. By observing t
singlet-triplet level crossing, the phase boundary is found
be near theU52V line. Since the critical point is almos
independent of the system size~see Fig. 4!, we can determine
the phase boundary without any extrapolations. In orde
check the consistency of our argument, we calculate sca
dimensions of the singlet and the triplet excitations from E
~7!, and confirm the ratios of the logarithmic correction
Here the spin-wave velocity is given by the excitation sp
tra for Ns(N̄s)51 or unsu5umsu51 as

FIG. 5. Extrapolated scaling dimension given by Eq.~46! near
the spin-gap critical point atU/t52. The TL liquid theory predicts
the numerical values are 1/2 in the gapless region (V,Vc). This
result shows the existence of the spin-gap transition. The sca
dimensions for the singlet (xs1) and the triplet (xs2,3) excitation
spectra in theL512 system are also shown.

FIG. 4. Size dependence of the critical point for the spin-g
transition atU/t52. The system sizes areL58,10,12,14. From Ref.
16.
ly
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vs5 lim
L→`

E~L,N,S51,k52p/L !2E0~L,N!

2p/L
, ~45!

where the extrapolation is performed by the functionvs(L)
5vs(`)1A/L21B/L4, which is explained byxn54 irrel-
evant fields.51,52 Physically, this correction is related to th
deviation from the linearized dispersion relation assumed
the TL model. Thus, the ratio of the logarithmic correctio
can be checked as 3:21 for the singlet and the triplet state
by using the following relation near the critical point,

xs113xs2,3

4
5

1

2
. ~46!

Here we use the numerical data ofL58,10,12 systems to
check the scaling dimensions, and extrapolate them by
form A1BL221CL24 as in the same way of the spin ve
locity. As shown in Fig. 5, the extrapolated data become
in the gapless region. Thus, the universality of the transit
is identified as the level-1 SU~2! WZNW model.

B. Charge sector

Due to the SU~2! symmetry of theh-pairing ~20!, a BKT
transition takes place on theV50 line for theU,0 region.

FIG. 6. ‘‘Dimer’’( xr1), ‘‘Néel’’( xr2), and ‘‘doublet’’(xr3) ex-
citation spectra in the charge sector vsV/t in L58 system at~a!
U/t521 and~b! U/t51. In theU/t,0 region, a BKT-type tran-
sition takes place atV/t50 reflecting the SU~2! symmetry of the
h-pairing. In theU/t.0 region, two level crossings occur due
the hidden SU~2! symmetric BKT and the Gaussian transition
These three level crossings give the Y-shaped structure in the p
diagram.
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This phase boundary is fixed on this line for any strength
U,0. In Fig. 6~a!, the degeneracy of the ‘‘Ne´el’’ ( xr2) and
the ‘‘doublet’’ (xr3) excitation spectra onV50 corresponds
to this SU~2! symmetry. On the other hand, for theU.0
region, there appear two relevant level crossings as show
Fig. 6~b!. The one corresponds to the BKT transition due
the hidden SU~2! symmetry, and the other corresponds to t
Gaussian transition, as was explained in Sec. II. The res
the three level crossings in Fig. 6 do not correspond to
phase transitions, because they correspond to the
6yrf(0)5yr0(0),0 and the lineyrf(0)50 with yr0(0)
.0 ~Gaussian fixed line!, in the RG flow diagram of Fig.
2~b!.

The hidden SU~2! BKT transition obtained by the
‘‘dimer’’-‘‘doublet’’ level crossing (xr15xr3) appears nea
the U522V line as was predicted by theg-ology. The size
dependence of this transition atU/t51 is shown in Fig. 7. In
order to check the consistency of our argument, we calcu
the scaling dimensions ofxr i using Eq.~7!. Here, we calcu-
late the charge velocity using the excitation spectra
Nr(N̄r)51 as

vr5 lim
L→`

E~L,N,S50,k52p/L !2E0~L,N!

2p/L
. ~47!

Using Eqs.~24!, we check the following relation on the criti
cal line,

xr11xr212xr3

4
5

1

2
. ~48!

FIG. 7. Size dependence of the critical point of the BKT tran
tion due to the hidden SU~2! symmetry atU/t51. The system sizes
areL58,10,12,14.

FIG. 8. Extrapolated scaling dimension given by Eq.~48! on the
BKT critical line. The TL liquid theory predicts the numerical va
ues are 1/2. This result shows the existence of the BKT-type t
sition.
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As shown in Fig. 8, the extrapolated data become 1/2. H
the extrapolation is performed as in the same way of
spin-gap transition. Thus, the universality class of this tr
sition is identified as a BKT type. The deviation from th
expected value 1/2 in Fig. 8 stands for the effect of the ph
separation where the TL liquid theory breaks down.

The Gaussian transition takes place along theU52V line
as was predicted by theg-ology. The size dependence of th
transition atU/t53 is shown in Fig. 9. It follows from Eq.
~27!, the following relation should be satisfied just on th
Gaussian transition line,

xr11xr2

2
xr35

1

4
. ~49!

The result is shown in Fig. 10. The extrapolated data beco
1/4 from the weak- to the intermediate-coupling regio
Thus, the transition is identified as a Gaussian type exc
for the strong-coupling region.

C. Transition between CDW and SDW phases

We have determined the spin-gap and Gaussian trans
lines near theU52V line assuming the charge-spin sepa
tion, however, if theg3i term in Eq. ~6! is relevant, the
charge-spin coupling may take place. Therefore, we sho
consider the possibility that the charge and the spin deg
of freedom are not separated, and that a direct transi
between the CDW and the SDW phases takes place. To
amine this possibility, we also observe the level crossing
excitation spectra of the CDW and the SDW operators~see

FIG. 9. Size dependence of the critical point for the Gauss
transition atU/t53. The system sizes areL58,10,12,14. The data
agrees with the result of Cannonet al.13 thatVc /t51.6520.05

10.10, from
Ref. 16.

FIG. 10. Extrapolated scaling dimension given by Eq.~49! on
the Gaussian critical line. The TL liquid theory predicts the nume
cal values are 1/4. This result shows the existence of the Gaus
transition.
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Table II!, which consist of both charge and spin componen
These spectra can be obtained under conditions give
Table II.

The level-crossing points for the three assumed transi
lines are close to theU52V line, but slightly deviate~see
Fig. 11!. The deviations fromU50 to U5` are shown in
Fig. 12. These three lines coincide in the weak- and
strong-coupling limits. For the Gaussian line, the finite-s
effect is small for all regions. For the spin-gap phase bou
ary, the finite-size effect is small in the weak-coupling r
gion, but it becomes large in the strong-coupling region. T
direct CDW-SDW level-crossing point has large size eff
for all regions.

In order to identify the actual transition lines from the
three lines, we use the strong-coupling perturbation the
following Hirsch6 and van Dongen.7 The energy of the SDW
state in the strong-coupling region of the EHM are analy
cally obtained up to the fourth order. If we include the co
related hopping term~2! in the EHM, the energies of the
CDW and the SDW states are given by

FIG. 11. Six excitation spectra vsV/t in L58 system atU/t
53 near theU52V line.

FIG. 12. Three possible transitions~Gaussian, spin-gap, and d
rect CDW-SDW transitions! along theU52V line of the EHM
calculated inL58,10,12,14 systems. The result of the stron
coupling expansion@Eq. ~53! with j50] agrees with the Gaussia
transition. This means that the actual transitions are the Gaus
and the spin-gap transitions, and a BCDW state exists betw
them, from Ref. 16.
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ECDW

L
5

U

2
2

2~12j!2t2

~3v21!U

1
~12j!2@~36v225v21!~12j!228~3v21!v#t4

v~3v21!3~4v21!U3
,

~50!

ESDW

L
5V2

4~12j!2t2 ln 2

~12v !U

19z~3!
~12j!2@2~12j!2211v#t4

~12v !3U3
, ~51!

wherev[V/U and j[X/t. In Eq. ~51!, we have used the
Bethe-ansatz result of theS51/2 Heisenberg spin chain:53,54

^Si•Si 11&2
1

4
52 ln 2, ~52a!

^Si•Si 12&2
1

4
524 ln 21

9

4
z~3!. ~52b!

The phase boundary between the CDW and the SDW ph
is given by the equation55

ECDW5ESDW. ~53!

The strong-coupling theory shows a good agreement with
Gaussian transition in the charge part, among the three t
sition lines that we have considered. We should also n
that the present Gaussian critical point agrees with Can
et al.’s result obtained by the direct evaluation of the CD
order parameter:13 Vc /t51.6520.05

10.10 for U/t53, and Vc /t
52.9260.04 forU/t55.5 ~see Figs. 9 and 12!.

From the above results, we conclude that the actual tr
sition near theU52V line is not a direct CDW-SDW tran-
sition, but two independent Gaussian and spin-gap tra
tions, at least from the weak- to the intermediate-coupl
region. In the strong-coupling region, these two bounda
approach and appear to be coupled at finiteU andV. Unfor-
tunately, in the present analysis, we cannot determine
tricritical point, but it is considered to be identical to th
crossover point between the second- and the first-order t
sitions. This phenomenon is considered to be an effect of
charge-spin coupling term@the g3i term in Eq.~6!# as was
discussed by Voit in Ref. 4. In this way, our analysis su
gests that the crossover along theU52V line is closely re-
lated to the validity of the charge-spin separation. Our res
also demonstrates that there is a finite region of a charge-
spin-gapped state between the Gaussian and the spin
transition lines. It follows from the discussion in Sec. IV th
the third phase is identified as a BCDW state.

In order to clarify the above interpretation for the CDW
SDW transition, we analyze the EHM including the corr
lated hopping term@Eq. ~2!#. This term is known to enlarge
the BCDW phase forX/t,0 even in theU,V→0 limit,
without disturbing the Y- and the I-shaped structure of t
phase diagram for the charge and the spin parts~see Fig. 1!.
Because this term makes the magnitude of the backward
the Umklapp scattering couplings different@g1'5U22V
14X/p,g3'52(U22V24X/p)# conserving the SU(2)
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^ SU(2) symmetry of the Hubbard model.20 As was pre-
dicted by theg-ology, the BCDW phase appears from th
weak- to the intermediate-coupling region.56 On the other
hand, in the strong-coupling region, the two transition lin
are coupled, and the direct CDW-SDW transition tak
place. The strong-coupling theory also agrees with
Gaussian line as is shown in Fig. 13~a!. This is the same
behavior as in the case of the pure EHM. Therefore,
tricritical point in the pure EHM is considered to have t
same property of the one that separates the CDW, the S
and the BCDW phases in the case ofX/t,0.

For X/t.0, the order of the Gaussian and the spin-g
transitions becomes vice versa, so that the BSDW phase
pears. However, in Fig. 13~b!, we find that the two transition
lines cross in the intermediate-coupling region, and a fin
BCDW phase appears. This BCDW region becomes n
rower as the system size is increased. In the present ana
we cannot conclude whether this BCDW phase remains
vanishes in the thermodynamic limit. We will consider th
phenomenon again in Sec. VII.

D. Phase separation

Here, we determine the phase-separation boundary f
the numerical data of the exact diagonalization.57 Usually,
the phase boundary is determined by the divergence of
compressibility.58 However, for theU/t@1 region of the
EHM, the phase separation can take place in the SDW s
where the compressibility cannot be defined. Conseque
the method of observing the divergence of the compress
ity is no longer valid. In this paper, we determine the pha
boundary by comparing the energy of the ground state
that of the phase-separated state. In the phase-separated
at half-filling, the system is separated into doubly occup
sites and a vacuum. In this case, the energy in the ther
dynamic limit is exactly obtained as

EPS5
U14V

2
L. ~54!

FIG. 13. The Gaussian~G! and the spin-gap~S! transitions in
the strong-coupling region for~a! X/t521/4 and ~b! X/t51/4 .
The strong-coupling theory@Eq. ~53!# agrees with the Gaussia
lines. Note that a BCDW phase appears not only in~a! but also in
~b!.
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Therefore, we use the relationE5EPS as a criterion for the
phase separation.59 We show in Fig. 14 the ground-state e
ergy of the EHM measured from the fully phase separa
state. The zero point gives the critical point for the pha
separation. The finite-size effect of the phase boundar
sufficiently small.

In order to check the validity of the numerical results, w
compare our result with the asymptotic phase boundary
the strong-coupling limit. ForU/t@1 region, using Eqs.~51!
and ~54!, the phase boundary is given by10

EPS5ESDW. ~55!

On the other hand, forU/t!21 region, the system can b
mapped onto theS51/2 XXZ spin chain with antiferromag-
netic couplingJxy54t2/uUu and Jz5Jxy14V, by using the
h-pairing operators~20! and the second-order perturbatio
theory. Then, the phase boundary is given byJxy52Jz,
which corresponds to the first-order transition between
XY and the ferromagnetic phases in the spin system.8,9 If the
effect of the correlated hopping term~2! is included, the
phase boundary is given by

V52
2t2

uUu ~12j!2. ~56!

The numerical result given byE5EPSwell agrees with these
asymptotic phase boundaries~see Fig. 15!.

VI. QUARTER-FILLING

Finally, we analyze the phase diagram of the EHM
quarter-filling23–25 by the level-crossing approach. In th
case, the metal-insulator transition is considered as a B
transition due to the higher-order Umklapp scatteringq
52). Then, the phase boundary should be given by the le
crossing between the marginal and four times of
4kF-CDW spectraxr054xr1 or 4xr25xr3, as was discussed
in Sec. II B 2. In the present numerical analysis, we use
former level crossing, becausexr3 needs larger Hilbert spac
than xr0 and xr2. Based on this assumption, we obtain t
result shown in Fig. 16. Since the level-crossing point for
transition is higher (xr52) than the case of the half-filling

FIG. 14. Ground-state energy of the EHM forL56 –14 systems
at U/t58 measured from the fully phase separated stateE PS5(U
14V)L/2 @Eq. ~54!#. The zero point gives the critical point for th
phase separation.
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(xr51/2), the finite-size effect from the irrelevant field~the
deviation from the linearized dispersion relation! becomes
larger. In this case, we need an extrapolation of the crit
point to make the phase diagram. In theU/t→` limit, the
transition point for the charge-gap phase is given byVc /t
52, because it corresponds to the XY-Ne´el transition in the
S51/2 XXZ spin chain.60,61 For theU/t@1 region, the ex-
trapolated phase boundary flows into the point (U,V)
5(`,2t) as we expected. In order to check the consiste
in the finite-U region, we calculate the following average
scaling dimension:

FIG. 15. Phase diagram of the 1D EHM determined by the d
of the L512 system at half-filling for~a! X/t521/4, ~b! X/t50,
and ~c! X/t51/4 @CDW ~SDW!, charge ~spin!-density wave;
BCDW ~BSDW!, bond-charge~spin!-density wave; SS~TS!, sin-
glet ~triplet! superconducting phase; PS, phase-separated state#. The
asymptotic phase boundaries for the PS are given by Eqs.~55! and
~56!.
l

y

xr113xr2

4
5

1

2
. ~57!

Except for the large-V region, the extrapolated value be
comes 1/2 with error less than 4%, as shown in Fig.
Thus, the universality class of the transition is considered
be a BKT-type.

On the other hand, forV/t@1 region, since the finite-size
effect is too large, it is hard to perform the systematic e
trapolation. However, the phase boundary appears to fl
into the exact transition pointUc54t in theV/t→` limit as
the system size is increased. Now let us review how
critical point of the charge-gap phase in theV/t→` limit is
derived.23 The charge gap is defined by

Dr5E~N11!1E~N21!22E~N!. ~58!

At quarter-filling, E(L/2)50. If one electron is add to this
then the energy isE(L/211)5U. Conversely, if one elec-
tron is removed, two free holes appear, then they hav
kinetic energy E(L/221);24t cos(p/L). Therefore, the
critical point for the charge-gap phase is given byUc54t in
the thermodynamic limit. We should note that the critic
point in theU/t→` andV/t→` limits are given by a com-

FIG. 16. Phase diagram of the 1D EHM at quarter-filling for t
V/t.0 region. The phase boundary between the TL liquid and
4k F-CDW phases is determined by the level crossing ofxr0

54xr2 in L58,12,16 systems. The critical points in the stron
coupling limits areVc /t52 andUc /t54, respectively.

FIG. 17. Scaling dimensions given by Eq.~57! on the BKT line.
The extrapolated value becomes 1/2 with error less than 4%.
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pletely different argument. Therefore, we expect that a t
ritical behavior may also be seen along the BKT transit
line.

In a similar way as the half-filling, we consider the effe
of a charge-spin coupling operator, which is derived from
q52 Umklapp scattering between three parallel spins
one antiparallel spin@the g3i term in Eq.~6!#. This operator
may cause the synchronization of the BKT transitionq
52) in the charge part and the spin-gap transition. In or
to examine this possibility, we determine the spin-gap ph
boundary by the singlet-triplet level crossing in the largeV
region. Then, the phase boundary of the spin gap appea
be coupled with that of the charge gap, and flows into
point (U,V)5(4t,`), as the system size is increased. The
fore, this result suggests that the crossover in the me
insulator transition also takes place by the mechanism s
lar to the case of half-filling. In the large-V region, there are
phase-separated states,26 but that has not been studied in th
present analysis. We should also consider the effect of
phase separation in the future.

VII. SUMMARY AND DISCUSSION

Let us summarize the results obtained in this paper.
have determined the phase diagrams of the 1D EHM at h
and quarter-filling using the level-crossing approach, wh
is based on the TL liquid theory and the renormalizat
group. The metal-insulator transitions in half-~quarter-! fill-
ing are classified as BKT-type transitions due to the fir
~second-! order Umklapp scattering. This fact reflects t
‘‘fractional quantization’’ discussed by the bosonizatio
theory27–30 and the generalized Lieb-Schultz-Matt
theorem.29,30

In the case of half-filling, for the charge sector, there
two BKT lines reflecting the SU~2! and hidden SU~2! sym-
metries, and one Gaussian line. These three critical l
meet at the multicritical point (U/t,V/t)5(0,0), and they
form a Y-shaped structure. Note that the same structur
also known in the phase diagram of theS51/2 frustrated
XXZ-spin chain.62,32 For the spin sector, a spin-gap trans
tion occurs due to the attractive backward scattering. Si
the transition takes place at the origin of the RG flow d
gram, the phase boundary has an I-shaped structure. T
the entire phase diagram is given by the combination of
‘‘Y’’ and the ‘‘I.’’

The transition between the CDW and the SDW phases
been considered by assuming the following two scenar
one is the independent Gaussian and spin-gap transition
der the charge-spin separation, the other is a direct CD
SDW transition under the charge-spin coupling. By check
the relations between the scaling dimensions, and by c
paring the numerical results with the strong-coupling theo
we have concluded that the first scenario is realized from
weak- to the intermediate-coupling (U;4t) region, and the
second scenario is realized in the strong-coupling region
the former case, a BCDW phase exists between the C
and the SDW phases. Thus, the crossover of the CDW-S
transitions from the second order to the first order turned
to be a phenomenon that reflects the validity of the char
spin separation.

To clarify the mechanism of the crossover in more det
-
n

e
d

r
e

to
e
-
l-
i-

e

e
lf-
h

-

e

s

is

e
-
us,
e

as
s:
n-
-

g
-

,
e

In
W
W
ut
e-

l,

we have investigated the phase diagram of the EHM incl
ing the correlated hopping term~2!. In this case, there appea
BCDW and BSDW phases, depending on the order of
Gaussian and the spin-gap transitions. Note that the di
CDW-SDW transition also takes place in the strong-coupl
region.

Therefore, we can understand the crossover of the CD
SDW transition in the EHM as a kind of these generaliz
cases. The reason why the mechanism of the CDW-S
transition has been left ambiguous for long times is that
analytical solutions both in weak- and strong-coupling lim
give the same phase boundaryU52V, and the numerical
analysis for the intermediate-coupling region does not h
enough precision to distinguish the Gaussian and the s
gap transition lines. Recently, the similar mechanism of tr
sition was reported in studies of the Hubbard chain w
periodic potential, which has the transition between Mott a
band insulators.63,64

At quarter-filling, the phase boundary of the meta
insulator transition has also been determined by assum
that it is the BKT-type transition of the higher-order Um
klapp scattering. The obtained phase boundary is consis
with the known exact results in theU→` and theV→`
limits. In the present parameter space, there are neith
BKT transition with the hidden symmetry, nor a Gaussi
transition. Although the finite-size effect inV/t@1 region is
large, the phase boundaries of the charge- and the spin
phases appear to be coupled as the system size is incre
Therefore, there may be a crossover from the BKT to
first-order transitions in this region.

The rest of the section is devoted to discussions. We h
clarified the mechanism of the CDW-SDW transition of t
EHM at half-filling. However, we have not revealed the re
son why the intermediate state in Figs. 12 and 15~b! is not a
BSDW but a BCDW. We can interpret the appearance of
BCDW phase considering roles of theg3i term in Eq.~6!.
When the charge gap opens in theU.2V region (g3'

* 5

2`), the phase field is locked asfr52np/A8 with n being
an integer, which minimize the classical potential energy
sociated with theg3' term. In this case, the charge part
the g3i term is also locked, so thatg1'5U22V is reduced
as

g1'→g1'1g3i^cos@A8fr#&, ~59!

whereg3i522V. Thus, if we estimate the spin-gap pha
boundary in the weak-coupling region using Eq.~59!, it
shifts toward theU.2V side of theU52V line. Similarly,
we can estimate the shift of the Gaussian line. In theU
,2V region, the spin gap opens (g1'

* 52`), then g3'5
2U12V shifts as

g3'→g3'1g3i^cos@A8fs#&, ~60!

where the phase field is locked asfs52np/A8. Therefore,
the Gaussian line shifts toward the opposite side of the s
gap phase boundary. Consequently, the BCDW phase
pears between the CDW and the SDW phases. Thus, it t
out that theg3i term enhances the BCDW phase when it
irrelevant, and it couples the Gaussian line and the spin-
phase boundary when it is relevant. The deviations from
U52V line may be analyzed quantitatively in the wea
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coupling region by the renormalization group analysis
cluding g3i . The above explanation may also be applica
to the phenomenon that a BCDW phase appears forX/t.0
in the strong-coupling region@see Fig. 13~b!#.

We should consider the reason why the size depende
of the Gaussian transition line is smaller than that of
spin-gap phase boundary, in the strong-coupling region
Figs. 12 and 13. The reason is considered to be the differe
between the behavior of the charge and the spin gaps. As
discussed in Sec. II, the spin gap opens exponentially s
~18!, while the valley of the charge gap near the Gauss
transition becomes steeper as the strength of the intera
is increased~28!. In the present analysis based on the
liquid theory, we have assumed that both charge and
parts are gapless, so that the Gaussian~spin-gap! transition
line may be affected by the spin~charge! gap in the strong-
coupling region. In the present case, magnitude and varia
of the charge gap are considered to be much larger than t
of the spin gap near theU52V line in the strong-coupling
region, so that the Gaussian line has less size depend
than the spin-gap phase boundary.

In the present paper, we have not determined the tricrit
point. This problem has been discussed by ma
authors.6,11–13,4Recently, the tricritical point is explored b
the density-matrix-renormalization-group method,15,65 but
we may also determine the tricritical point by comparing t
numerical result of the Gaussian transition line and
strong-coupling perturbative expansions in the higher ord
It may also be worth studying the level crossing for the
critical point by considering the logarithmic corrections
the excitation spectra, which stem from theg3i term. In ad-
dition to the tricritical point between the CDW and the SD
phases, there is another tricritical point that separates the
the SDW, and the PS states. In Fig. 15, the phase bound
between the SDW and the PS states obtained by the str
coupling theory seem to be bent near the tricritical po
This tricritical point may also be identified by the furth
strong-coupling calculation.

Finally, we discuss the effect of site-off-diagonal intera
tions. In this paper, we have considered the correlated h
ping term given by Eq.~2!, however the generalized form o
this term is given by19

HX5X(
is

~cis
† ci 11,s1H.c.!~ni ,2s1ni 11,2s!, ~61a!

HX85X8(
is

~cis
† ci 11,s1H.c.!ni ,2sni 11,2s . ~61b!

In the present paper, we have setX52X8/2 to keep the
particle-hole symmetry and the SU(2)^ SU(2) symmetry of
the Hubbard model. If this relation is not chosen, these s
metries are lost, so that theV50 line is no longer the phas
boundary of the metal-insulator transition at half-filling. B
sides, an additional Umklapp term sinA8fr appears in the
effective Hamiltonian.4,20 The analysis for this situation (X
Þ2X8/2) is the subject of future research.

There are other types of site-off-diagonal interactions.
example, the bond-bond interaction term is given by18
-
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HW5W(
iss8

~cis
† ci 11,s1H.c.!~cis8

† ci 11,s81H.c.!. ~62!

This term also makes the difference in the magnitude of
g parameters for the backward and the Umklapp scatterin
the weak-coupling limit @g1'5U22V18W,g3'52(U
22V28W)# ~Ref. 4! conserving the symmetries of th
Hubbard model. Therefore, we expect that this term pla
role similar to the correlated hopping terms@Eq. ~2!#. On the
other hand, since this term can be rewritten as the excha
of the spins and of the pseudospins~20!, it may affect the
first-order transition to a ferromagnetic state18 or the phase
separation. Besides, in a parameter region of the EHM
cluding this term, the BSDW state is shown to be the ex
ground state.66 The analysis of the effect of this term by th
level-crossing approach will be reported elsewhere.67
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APPENDIX A: WEAK-COUPLING LIMIT

In the weak-coupling limit, the parameters of the sin
Gordon model~6! can be identified in terms of the bare co
pling constants of the original model, and consequently
phase boundaries are obtained analytically.1–4,20 This ap-
proach is often called theg-ology.

The parameters of Eq.~6! are given by theg parameters
defined in Refs. 2, 3, and 4 as follows:

vn5Aun
22S gn

2p D 2

, Kn5A2pun1gn

2pun2gn
,

un[vF1
g4i6g4'

2p
, gn[g1i2g2i7g2' , ~A1!

where the upper~lower! sign corresponds ton5r (n5s),
and vF52t sin(kF) is the Fermi velocity. For the EHM in-
cluding theX @Eq. ~2!# andW @Eq. ~62!# terms at half-filling,
the g parameters can be identified as follows:

g1'5gs5U22V1dg,

g3'52~U22V2dg!,
~A2!

gr52~U16V2dg!,

dg54X/p18W.

This calculation can be performed straightforwardly exc
for the X term. For theX term, which contains a three-bod
term, the operator-product-expansion technique is neede
identify theg parameters.20

The instabilities for the charge and the spin gaps are
cussed based on the renormalization group~RG! analysis as
explained in Sec. II. SinceKn is approximated asKn'1
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1gn/2pvn , the parameter in the RG flow diagram~Fig. 2! is
given by y0n( l )5gn /pvn . Then, the spin-gap opens whe
g1'5gs,0, and the phase boundary is

U52V2dg. ~A3!

On the other hand, the charge gap opens wheng3'.ugru.
The conditiong3'52gr,0 is the BKT-type transition due
to the SU~2! symmetry in the charge sector. Then, the ph
boundary is obtained as

V50, U,dg. ~A4!

The conditiong3'5gr.0 is the BKT-type transition due to
the hidden SU~2! symmetry in the charge sector. Then, w
obtain the phase boundary as

U522V1dg, U.dg. ~A5!

The Gaussian-type transition takes place atg3'50, for gr

,0. Thus, we obtain the Gaussian line for the charge se
as

U52V1dg, V,0. ~A6!

Thus, we obtain the phase diagrams in the weak-coup
limit as is shown in Fig. 1, which have the Y- and th
I-shaped structures in the charge and the spin degree
freedom, respectively. In the presentg-ology analysis, the
parametersX and W appear only throughdg, so that theX
andW terms play similar roles in respect of the enhancem
of the BCDW (dg,0) or the BSDW (dg.0) phases. The
correspondence between theg-ology and the level-crossing
approach is summarized in Table I.
e

or

g

of

t

In this paper, we have takenUr ,s into account in the iden-
tification of g1' andg3' by following Ref. 40. The Clifford
algebra forUr ,s ~5! can be expressed by tensor products
the Pauli matrices, which are chosen so the effective Ham
tonian ~6! is to be diagonal in the space ofUr ,s . For ex-
ample, the following representation is possible:

UR↑5tx
^ tx, UR↓5tz

^ tx,

UL↑5ty
^ tx, UL↓51^ ty. ~A7!

These operators contribute to theg1' and theg3' terms as
61^ tz, and one eigenvalue of the matrix is chosen. Con
quently, the signs ofg1' andg3' become opposite as in Eqs
~A2!. When we consider the bosonization of a physical o
erator, it should be diagonalized simultaneously with t
Hamiltonian. Therefore, if the physical operator cannot
diagonalized by Eq.~A7!, we should choose other represe
tations forUr ,s . In the derivation of the physical operators
Sec. IV, we need one more representation such as

UR↑5tz
^ tx, UR↓5tx

^ tx,

UL↑5ty
^ tx, UL↓51^ ty. ~A8!

In this case, the contribution to theg1' and theg3' terms is
71^ tz. If the contribution ofUr ,s is neglected, the sign o
the g3' term is reversed, and the roles ofOr1 andOr2 are
interchanged.
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