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Phase diagrams of the one-dimensional extended Hubbard riiecleding nearest-neighbor interactivf)
at half- and quarter-filling are studied by observing level crossings of excitation spectra using the exact
diagonalization. This method is based on the Tomonaga-Luttinger liquid theory including logarithmic correc-
tions which stem from the renormalization of the Umklapp- and the backward-scattering effects. Using this
approach, the phase boundaries are determined with high accuracy, and then the structure of the phase diagram
is clarified. At half-filling, the phase diagram consists of two Berezinskii-Kosterlitz-Tho(B§¥) transition
lines and one Gaussian transition line in the charge sector, and one spin-gap transition line. This structure
reflects the U(1p SU(2) symmetry of the electron system. Near the-2V line, the Gaussian and the
spin-gap transitions take place independently from the weak- to the intermediate-coupling region, but these two
transition lines are coupled in the strong-coupling region. This result demonstrates existence of a tricritical
point and a bond-charge-density-wal&CDW) phase between charge- and spin-density-w@&RBW, SDW)
phases. To clarify this mechanism of the transition, we also investigate effect of a correlated hopping term,
which plays a role to enlarge BCDW and bond-spin-density-wB&DW) phases. At quarter-filling, a similar
crossover phenomenon also takes place in the Mrgggion involving spin-gap and BKT-type metal-insulator
transitions.

I. INTRODUCTION Egs.(18) and(21)], which makes it difficult to determine the
phase boundaries by the conventional finite-size scaling
One-dimensional1D) electron systems have been exten-method. Especially for the transition between the CDW and
sively studied motivated not only by theoretical interest butthe SDW phases, even the property of the transition itself is
also by the discovery of quasi-1D conductors and Righ- not clear, because the transition is of the second order in the
superconductivity. In the 1D electron systems, due to theveak-coupling theory, while it is of the first order in the
charge-spin separation, the low-energy excitations in th@trong-coupling theory.
charge and the spin sectors may have gaps independently, Recently, the author has clarified the mechanism of the
and then various phases can appear. However, phenomegg.-spw transition® According to the result, the phase
caused by interplay between these two degrees of freedopy, \ngary consists of two independent transition lines, and
have not been fully understood even in simple models. Ifhe crossover of the CDW-SDW transition is related with
this paper, we turn our attention to the phase transitions ifyhether these two transition lines are separated or coupled.
the so-called extended Hubbard modeHM), The result also demonstrates the existence of the bond-
charge-density-waveBCDW)! phase in the very narrow re-
— A o gion between the CDW and the SDW states. In this paper,
Tt tiEs (CisCi 15t H'C'HUEi Mty we not only give the details of the letter, but also clarify the
entire phase diagram of the EHM at half-filling.
+VZ NN g, (1) _ _In order to clarify the above scenario for the phase tran-
i sition between the CDW and the SDW phases, we also con-

at half- and quarter-filling, where both charge and spin gaps

can open. vVl o, 2V 2V
The EHM at half-filling has been studied using various tg}{t{ CDW )4&"
approaches. In the weak-coupling limit, the phase diagram is o ,P‘

SDW Vi
analytically obtained by the-ology'™ (see Appendix A U ss I / \U
According to the result, there appear insulating charge- T8
(CDW) and spin-density-wavéSDW) phases, or metallic
phases where the singlet superconduct®® and the triplet
superconductingTS) correlation is dominartsee Fig. 1b)]. () X <0 (b) X =0 (c) X >0
On the other hand, in the strong-coupling limit, the perturba-
tion theory gives the phase boundary of the CDW-SDW FiG. 1. Weak-coupling phase diagrams of the EHM including
transitior” and of the phase separatidi® The rest of re-  the correlated hopping terrtRef. 20. The phase diagrams are
gion has been discussed by numerical anaf/5is®How-  given by combinations of a Y-shaped structure for the charge part

ever, the phase diagrams are not fully understood, becau§gvo BKT lines (solid) and one Gaussian linédashedl] and an
the charge and the spin gaps open exponentially $k®e I-shaped one for the spin part.
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sider generalizing the EHM by adding the following corre- fined by ke=7n/2, with n being the electron density. The
lated hopping interaction§204 field ¢, and the dual field®, of the charge ¢=p) and the
spin (v=o0) degrees of freedom satisfy the relation
Hx=X2 (CiCisistHO)M s=Nisa 0% () -
. _ _ _ _ [¢u(x),0,(X")]= = 56, SQrIX—X"). 4
This interaction can be derived as a site-off-diagonal element
of the Coulomb integral® Especially, the three-body part is U
justified as an effective interaction in the three-band motel.
The weak-coupling phase diagram is known by ghalogy*®
as shown in Figs. (& and Xc) (see Appendix A In these
phase diagrams, the two transition lines between the CDW {U, .Uy o}=268, 1155 . (5)
and the SDW phases do not synchronize. And a BCDW or a ’ ’ A
bond-spin-density-wa7@ (BSDW) phase appears. The  Using the formalism, the low-energy behavior of 1D elec-
analysis of the generalized model will clarify the tricritical trgn system can be described by the sine-Gordon models for
behavior in the pure EHM. The final results are shown inthe charge and the spin sectors. When(g: intege) elec-
Fig. 15. trons contribute to the Umklapp scattering, the effective

A charge-gap phase is known to appear not only at halfHamiltonian for the system with lengthis given by
filling but also at quarter-filling>~?® due to the effect of the

Umklapp scattering in the higher ord€r.®In this case, the v, (L , ,
interplay between charge and spin instabilities is also ex- = sza 27 dX[K,(dx8,)"+ K, *(dx,)]
pected. In fact, we will conclude that a crossover phenom- .

r s €Nsures anticommutation relations of the different fer-
mion fields®®4° These operators are Hermitian and satisfy
the relation

enon also exists in the largé—region at quarter-fillingsee 2g;, (L
Fig. 16). + J dxcog V8¢ ,(X)]
Throughout this paper, we use the level-crossing approach (2ma)®Jo
to determine the phase boundari&3!=3" This method is
based on the Tomonaga-LuttingéL) liquid theory® n 20s1 deXCOS{q V8¢h,(x) + 8x]
(which is equivalent to the=1 conformal field theoryin- (2mwa)?J)o g
cluding the logarithmic corrections, which stem from the
renormalization of the Umklapp- and the backward- 293
scattering effects. In the theoretical scheme, the transition (Zwa)zfo dxcog 0B, (X) + Ox]cog VBeby(x)],
points are identified by the level crossing of the excitation
spectra in the finite-size ring with size dependetité ~2), (6)

wherel is the system size. Therefore, the phase boundari
are obtained with high accuracy, using the numerical data o espectively for each sectay;, andgs, denote the ampli-

finite-size clusters. tude of the backward and the Umklapp scattering, respec-

This paper is organized as follows. In Sec. I, we review,. ;
the level-crossing approach based on the TL liquid theory}lvely' The Umklapp term vanishes except for the case

2 oF ; =2p7—4qk-=0, wherep is also an integer, ang/q is an
and the renorr_nallzanon group, developed In Refs. 31-36. Iri}reducible fraction. Thus, the electron filling that a charge
Sec. lll, we discuss the discrete symmetries of wave func-a can open is quantized to commensurate cases
tions to connect excitation spectra and the correspondin :pp/q 27-29 '?his cond?tion can also be derived from the
physical states. In Sec. IV, we discuss the character of the, o 211,64 | ieb-Schultz-Mattis theor® In this paper
phases that appear in the phase diagrams. In Sec. V, We, "o qiderq=1 (halffiling) and q=2 (quarter-filling

analyze the instabilities of the EHM at half-filling, and cases. At half-filing. in the weak-coupling limit. the cou-
clarify the phase diagram. In Sec. VI, we analyze the metal- ' 9, ping '

insulator transition at quarter-filling. Finally, a summary andpIingS of the backward and the Umklapp scattering for the
discussions are given in Sec. VII. In Appendix A, we briefly =™ &r€ identified agy, =—gs, =U -2V (see Appendix

explain the traditionab-ology analysis for the generalized A)lln ddition to th term. there exists another Umk|
EHM at half-filling. addition to thegs, term, there exists anothe app

operator with coupling constamfy;, which transfers finite
spin*1228|n the weak-coupling limit, this parameter is iden-
tified asgs = —2V.In the present analysis, we will not con-
First, let us perform a general argument for 1D electronsider this term explicitly, because the scaling dimension of
systems based on the bosonization théofy®“°The con-  this term is always higher than that of the other nonlinear
tinuous fermion fields are defined bij/\/5—> YLo(x)  terms in Eq.(6). However, in the strong-coupling region, a

+ Yr<(X) (the lattice constara—0, x=ja) with charge-spin coupling effect may appear due to this term.
' If these nonlinear terms are absegt (=93, =gz =0),

the excitation spectra and their wave numbers in the finite-

U . o
Py s(X)= \/%e”ker'/“‘z“(‘ﬁPH"’“)*09*59”], (3)  size system are described by
yes

herev, andK, are the velocity and the Gaussian coupling,

Il. PHASE BOUNDARIES

wherer =R, L ands=71, | refer to+ and— in that order.« E_E :277pr n ZWUUX @)
is a short-distance cutofkg is the Fermi wave number de- 0

L °* L "
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(a) spin "’ (b) charge y”w

A,>0
(“Néel”)

2
P—PozT(sp+sg)+2mpk,:, (8)

where the scaling dimensions and the conformal spins are
given by

A,=0__ .
L(n, 2K | +N,+N. (9) " "
XV:_ _+mv v + V+ v
2\K, Ay >0
. (spin gap)
s,=n,m,+N,—N,. (10) | |
Heren, is the change of &, electrons, and, is the totalz FIG. 2. RG flow diagram foa) the spin and(b) the charge

spins St=n,. m, (m,) denotes the number of particles degrees of freedom. For the spin sector, the RG flow is fixed on the
moved from the left chargéspin Fermi point to the right y,,=vY,, line due to the S(®) symmetry, and the spin-gap transi-
one. The non-negative integels, and N, are the particle-  tion takes place & ,o=y,,=0. For the charge sector, BKT-type
hole excitations near the right and the left Fermi points, refransitions take place on thgo=*y, lines withy,,>0. When
spectively. The scaling dimensions are related to the criticafl =1+ theéY,0=+Y, line corresponds to the $2) symmetry of

exponents for the correlation functions in the large distancd"® n_paring. They 0= =Y, line re.ﬂECtS the. _hidden symmetry of
the sine-Gordon model. A Gaussian transition occurs onyjhe

as ~0 line withy,,<0.
Oi()O(r")yec|r—r"| =200 T %e), 11
(GNOIr)=| =% a3 The effects of they;, and thegs, terms in Eq.(6) are
where the operator is given by renormalized in the scaling dimensions as logarithmic
. corrections, which are analyzed by the renormalization group
O=04 mOn, m, (RG) equations derived under the change of the cuteff
—eY'a (Ref. 42. Within the one-loop order, the RG equa-
or . =g 2,0, m,e,) (12)  tions are given by
or linear combinations of these operators. Therefore, there dy,o(h) 0 (154
are one-to-one correspondences between the excitation spec- dl Yogll):
tra and the operators.
Now we turn our attention to the excitation spectra, which dy,4(1)
correspond to the following operators: —ar = Ywo(Dyus(), (15D
_ 4— where ypO(O): 2(q2Kp_ 1)1 yo’O(O):Z(KU_ 1)! yp¢(0)
0=~ K—Vﬂﬁbﬁfl’w (139 =03, /m0,, ¥Y54(0)=01, /7v,, and we have sdt=InL.
These equations determine the RG flow diagrams. Note that
0,1=12 coe{q\/fcby)«(’)g’qu Ob g (13p  thereis a difference between the cases for the charge and the
spin sectors reflecting their symmetriesee Fig. 2 In the
_ . vy following subsections, we discuss the phase transitions for
02= \/Es”(q\/zd)”)xoo*q Oo-q: (139 each sector described by these RG flow diagrams.
O,5=exp(i\20,)=07,, (13d

A. Spin-gap transition
; “« . . a1 L
whereQ,, is the “marginal field,” and the derivatives are  Ejrst, we consider the phase transition in the spin degree

defined byﬁ,&E(U;l(?TI idy)/2 with imaginary timer. This  of freedom (= o). The spin sector with an S@) symmetry
operator corresponds to particle-hole excitations near thbelongs to the universality class of the level-1 (3JUNess-
right and the left Fermi pointsN,=N,=1). O0,; and©,,  Zumino-Novikov-Witten(WZNW) model* In this case, the
are linear combinations of current excitations & +q). RG flow in Fig. 2a) is fixed on they,o(1)=y,4(l) line.
0,3 is an excitation accompanying variation of the numberThen for y(I)>0, the exponent is renormalized &S,
of electrons or spinsn(,= +1). We have to choose antipe- =1, and the solution of Eq15) is obtained as
riodic boundary conditiong, s(x+L)= — s, s(X) to extract

the excitation spectra fap,, and©,, fields, whenq is odd, ()= Ys0(0)

and 0, field,**~3® because the phase fields satisfy the fol- Yool D=9 0 +1°

lowing boundary condition®®

(16)

wherey,((0) is the bare coupling constant. Combining the

b,(x+L)=¢ (xX)—2mn (143 renormalized coupling and the operator-product-expansion
Y ’ . coefficients, the singletx(,,) and the triplet ,, 2 excita-
H H 45,31
0. (x+L)=0,(x)+ 2mm, . (14p  tion spectra split &

and the Fermi operator is given by these phase fields as in

13
Eq. (3). Xg1(1)= >t Zyao(”' (173



16 380 MASAAKI NAKAMURA PRB 61

TABLE I|. Correspondence between theology and the level- In the case when the SB) symmetry in the charge sector
crossing approach at half-filling. The scaling dimensigpscorre- is broken by finiteV, (’)pl, Opz, and (’)p3 refer to “dimer,”
spond to excitation spectra of singlet,(), triplet (X, 3, “dimer” “Neel,” and “doublet,” respectively, by following Ref. 32.
(%p1), “Neel” (x,2), and “doublet” (x,3) states. Examples of Then, if the initial value of the RG flow moves across the
these level crossings are shown in Figs. 5 and 6. SU(2)-symmetric line[y,4(0)=Y,0(0)>0], a Berezinskii-

Kosterlitz-Thouless(BKT)-type transitioi*°%42 occurs be-
tween the TL liquid phase and the twofold-degenerate
Spin gap 91, (=g,)=0 Xo1=Xo2.3 gapped state. For this transition, one can show that a charge
gap opens &8

g-ology Level crossing

SU(2)BKT 93, =0,>0 Xp2=X,3<X,1
Hidden SUW2)BKT g3 =—9,<0 Xp1=X,3<X,2 Apoc exp( —constA/A —\), (21
Gaussian g3, =0g,<0 Xp1=Xp2<X)3
where |\ — N |ot, andt=|y,,(1)|/y,o(l)—1 stands for the
deviation from the BKT critical line. Note that Eq1) is a
1 1 different asymptotic behavior from that of the spin-gap tran-
Xe2d )= 5= 7Yo0(l). (170 sition described by Eq18), so that we discriminate the spin-
2 4 o . . .
gap transition from BKT-type transitions in this paper. The
Wheny,(0)<0, y,ol) is renormalized ag/ o(l —)= critical point for this BKT transition can be obtained without

—oo, then a spin gap appears. At the critical pdiyito(0)  calculations, because it is fixed by the @Jsymmetry of
=0], there are no logarithmic corrections in the excitationthe Hamiltonian. In the case of the EHM, the BKT transition
spectra. Therefore, the critical point is obtained by the interdine is fixed on theV=0 line for U<O.

section of the singlet and the triplet excitation specttg, ( Now, we consider the region foy,,(1)<0. The sine-
=X,2.9.213*%This level crossing corresponds to the condi-Gordon model has a symmetry under the transformation to
tion for the spin-gap phase boundagy, =g,=0 in the reverse the sign of the nonlinear term désbp. This trans-

standardg-ology analysis(see Appendix A and Table.l formation corresponds to the shift of the phase fields:
The asymptotic behavior of the spin gap against a param-
eter of a model near the critical poink . is obtained by the b,— b+ /8. (22
two-loop RG equation and the definition of correlation o
lengthy,o(In&~—1 a3 This operation interchanges the roles of the operatdys
and0,, as
A ~v lExyN—N.exd —const(A—\y)], (18 5 s
. cosy2¢,— — siny2¢,,, 23
where we have used a relation-\.x|y,o(0)|. Note that Z Z (233
this is the same behavior as that of the spin gap in the 1D .
negativet) Hubbard model at half-filling® sin2¢,— €024, (23D
o _ N Therefore, this symmetry indicates that the(8ksymmetric
B. Berezinskii-Kosterlitz-Thouless transition line in the RG flow diagram is mapped onto the opposite side

of the y,o axis, and another BKT transition may occur at

. i o Y,4(0)=—Y,0(0)<0. We call the symmetry of this BKT
pd p

Next, we consider the instabilities in the charge sectoijing “higden SU2) symmetry.” Since this symmetry origi-

(v=p), which are described by the RG flow diagram givenpates from that of the sine-Gordon model, it is not contained
in Fig. 2(b). At half-filling (q=1) andV=0 (the Hubbard  expjicitly in the original Hamiltonian. The renormalized

1. SU(2) symmetric case

modeb, the s_ign of the on-site interactidd ip the Hami!- scaling dimensions 00,;, O,,, and 0,3 near the critical
tonian (1) is reversed by the following canonical |ine of the hidden S(®) symmetry are calculated as
transformatiorf’ follows:45:32

cjj—cjr, ¢ —(—1)ef). (19) 11
This transformation also projects the spifrairing opera- Xp(D=3 = 7¥polD(1+20), (243

tors onto thexn-pairing ones

1 3 2
| . . 1 X o)==+ 2y (D 1+ =t ], (24b)
7 =(=D'chel, w=(=Deicy,  gi=5(m—1), T2 4T 3
(20 11
without losing the SI(2) symmetry*® It follows from Eq.(3) Xp3(1)= 5= 7¥,p0(D)- (249

this transformation corresponds to the replacement of the in-

dices asp« o. Therefore, the spin part of the sine-Gordon Therefore, the critical point for the hidden 8) BKT tran-
model of Eq.(6) is mapped onto the charge part, and thesition can be determined by the level crossing between the
operatorsO,; and 0,,, 0,3 denote the “singlet” and the “dimer” and the “doublet” excitation spectra Xp1=Xp3
“triplet” for the charge part, respectively. Thus, the expo- <x,) 32 This level crossing corresponds to the condition
nent is renormalized as; =1 forU<O0, and the charge gap g3, =—g,<0 in theg-ology analysissee Appendix A and
opens forU>0. Table .
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2. Non-SU(2) symmetric case where we have used the relatigp,(0)=\ —\.. The valley

We consider the BKT transition fay=2 case. This situ- ©f the gap becomes steepertsis decreased.
ation may appear in the metal-insulator transition at quarter-
filling (g=2). In this case, the critical line no longer has an lll. DISCRETE SYMMETRIES
SU(2) symmetry. However, by replacing the variables as

¢,=0ad,, 0,=0,/q, and K;=q’K,, the sine-Gordon | o heed to identify the relevant excitation spectra. For
model for the charge part of E(f) is mapped onto the case his purpose, we discuss the discrete symmetries of wave
of g=1. Then, the BKT transition between the TL liquid and ¢,ctions corresponding to the excited states. The physical
the 2g-fold-degenerate gapped state tzakes place when theeaning of these symmetries will be clarified in Sec. IV.
renormalized exponent becomk$ = 1/g®. The scaling di- The discrete symmetries are defined under particle-hole
mensions for the&,,; and theO,, fields near the BKT criti- [Cicis— (—1)icl], space-inversion §: cis— ¢, 1), and

cal line remain unchanged, while tii,; field changes as spin-reversal Ticis—C; _g) transformations. They give ei-
genvalues*1. In addition, shift operation by one site
_ (25) (S:cis—Cj115) is defined, which has an eigenvale¥. The
symmetries of wave functions can be explained by combin-
. ) ) ing those of the ground state and those of the operators for
Therefore, the BKT critical point corresponding 10,4 the excited state¥€ For the ground state of the EHM, we
:yp0>2 is given by the level-crossing point of,,  choose periodic(antiperiodid boundary conditions when
=Xp3/q"<Xp1. o N/2 is odd(even, whereN is the number of electrons. Then,
There is another excitation spectrum that can be used tgccording to the Perron-Frobenious theorem, the discrete
determine the BKT critical point. This is the “marginal symmetries of the ground state @te P=7=1 andk=0, if
fielg” (138 whose renormalized scaling dimension is givenye choose the representation for the basis and use the sym-
b metry operations defined in Ref. 36.
Next, we consider the symmetries of operators. The op-
erator of the marginal fiell.3g has the same quadratic form
of the Gaussian part of the Lagrangian density of ®g}. so
that it has the same symmetry as the ground stéte’®
In this case, the critical point can be determined by the levek 7—1 k=0). We can find the symmetries of ti@,; and

To perform the level-crossing analysis discussed in Sec.

1 1
5‘2%&”

Xp3(| ) = q2

4
Xp0(1)=2=Y,0(1)| 1+ 5t . (26)

crossing ofx,o=4X2. the ©,, operators by considering the change of the phase
fields. Since we restrict our attention to the Hilbert space
C. Gaussian transition with fixed electron number and totalspin, we do not con-

L - .__sider the change of the, fields in the symmetry operations.
In addition to these BKT-type transitions, a Gaussian - v
transition oceurs ay, ,(0)—0 A Ay A(0)=0. This 15 & AU haltfiling (ke=r/2), it follows from Eq.(3) that the
p p :

second-order transition between the two gapped stateg,h ase 1;|elds¢>v are tranﬁorme% unLder par;[:cle-holgi’:(
which corresponds to the different fixed poifitg, ,(1— ) Ur s s, space-inversion R ReL, X=X a), Spin-
— + o], and the gap vanishes just on the critical point. Thef€Versal transformations7( <), and shift operation

transition point is given by the level crossing between thelS:X—X+a) as

“dimer” and the “Néel” excitations X,1=X,2<X,3), be- ) _ _
cause the0,; and theO,, fields interchange their roles at Cho==bor b= ¢p, (293
Y,4(0)=0 as was explained in Sec. Il B 1. In tigeology, . _ _ 20b)
this level crossing corresponds to the conditipn =0 with Prbo==dor ==, (29
g,<0 (see Appendix A and Table).I Since the nonlinear T _ 29
teprm vanishes on the critical line, there is no effect of the b= bor S b (299
renormalization. Therefore, the scaling dimensions on the :
Gaussian line are given by Sbe—=der by ‘/EkFJF - (299
In this caseCP=1 is always satisfied, so that the indepen-
K, dent discrete symmetries afe 7, andS. At quarter-filling
Xp1=Xp2 =5 (273 (ke= 7/4), the phase fields change as
1 Piby—— by, b, m\B—,. (30
XP3:2_KP’ (27D Thys the discrete symmetries of the operafyy for =2

are P=—1. The relations between the operators and their
without logarithmic corrections, and,<1 is satisfied. The symmetries are summarized in Table II.
asymptotic form of the gap near the Gaussian transition point In the present numerical calculation based on the Lagsczo
can be obtained by solving E€L5b) with an approximation algorithm, the identification is performed by projecting the
ypo(l)%yfo(O) and definition of the correlation length initial vector as

Y, (N H|~1 as?

1 .
Ap~vp/§oc|)\—)\C|[1’2(1—Kp)1, (29) |Winit>:§(lip)(li7)||>y (31)
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TABLE Il. Discrete symmetries of the excitation spect@ ( o
charge conjugationP: space inversion7Z: spin reversal, and: R02,3=—In1/2(r/a), (33b
wave number BC=1 (BC=—1) stands forantjperiodic bound- r
ary conditions. The uppefiower) sign of BC denotedN/2= odd  where we have used Eq4.6), (17), and(32). Therefore, the
(even cases, wherd\ is the number of electrons. The upper 12 triplet correlation is more logarithmically dominant than the
states are “physical” ones, which appear under the same BC agjnglet one. On the other hand, when the spin gap opens
those of the ground §tgte. The Iqwer six states are the “artificial”(gL = —), the singlet excitation degenerates with the
ones extracted by twisting BC with respect to the ground state. ground state in the thermodynamic limit, so that the singlet
correlation becomes constant, while the triplet one decays

Operators ¢c P 7T k BC exponentially. In this way, the triplet correlation is sup-
Ground state 1 1 1 1 0=1 pressed in the spin-gap region. - N
Marginal — 4K Tap,0d, 1 1 1 0 =1 For the charge par't, at half—ﬂlllng,. epr|C|t formg of the
_ correlation functions including logarithmic corrections are
CDbw siny2¢p, cgsﬁ% 1 -1 1 & =1 hot obtained except for the BKT or the Gaussian lines. On
SDW, co8\2¢,sim2¢,  ~1 ~1 =1 2ke 1 yhe BKT [ine, the exponent is renormalizedkis= 1, so that
SDW.. c0s\2¢, expiy26, * 1 * 2ke *1  kx—1 s always satisfied in the gapless regiagt (=0),
BCDW c08/2¢, €082, 1 1 1 2 *1 434 then the correlation for the “doublet’d,s) is domi-
. ) 3
BSDW, sinV2¢, sinV2¢,, 11 -1 2 =1 pant In the charge-gap region witi, ==, the “Néel”
BSDW. sinV2¢, exp*iy20,  * -1 * 2k *1 (0,,) state degenerates with the ground state, and the
SS expiy26, cosy2¢, * 110 =1 “dimer’ ( 0,) and the “doublet” correlations decay expo-
TS expiy26,sin2¢, * =1 -1 0 %1 npentially. On the other hand, fay}, = —, the “dimer”
TS., expiv26,exp*iy2¢, * 1 * 0 =*1  state degenerates with the ground state, and thesl'Nend
4ke-CDW cos zﬁqsp * -1 * 4kg *1 the “doublet” correlations decay exponentially.
singlet cosy2 1 1 1 0 =1 Next, we discuss. the physical states thqt consjst of the
triplet sinﬁd;g 1 -1 -1 o0 =71 charge and the spin parts. In the metallic regiag, (
ol to +.\/§" s 1 o+ 0 a1 =0K?*=1), the triplet superconducting'S) correlation is
IpTEt-cg exp=iv20, M dominant when the spin part is gapless. The operators for the
dimer c0s/24, 11 " 2k 1 75 phase consist of the “doublet” and the triplet ones,
“Neel” siny2¢, -1 -1 * 2ke ¥1
“doublet” exp+iy26 * 1 1 0 =1
p=iy26, OTSO=§S‘, chelir s
where the signs in front of the operators correspond to their o exp[+i\/§0p(x)]sir'{ V2,1, (349
eigenvalues, andi) is a configuration that satisfieB, 7i)
#|i). Furthermoreli) is classified by the wave numbeks (’)T31=CJTTCJT+M,
=0,7.
o expl +iv26,(x) Jexd +iv260,(x)]. (34D
IV. PHASES On the other hand, the singlet superconducti®§ correla-

. . : tion whose operator is given by the “doublet” and the sin-
In this section, we discuss the character of each phase thgfat ones P g y

appears in the phase diagrams. In general, there are no long-

range ordersLRO’s) in 1D systems due to strong quantum Ogs= C]'TTCJ'TLOC exr[+i\/§0p(x)]co$ V2¢,(x)], (35
fluctuations, so that, in such cases, the phases are character-

ized by the dominant correlation functions. The correlationiS dominant when the spin part has a gap.

functions (11) including the logarithmic corrections are  In the insulating region, which corresponds to the fixed
given by integrating the renormalized scaling dimensiongoint g3 =+«, the bond-spin-density-wave(BSDW)
over the RG trajectory as phasé” characterized by

_ ' t_a t
Ogspwa=(— 1)12 (CjsTsg Cj+1s" T C; +157sg Cis’ )

In(r/a)
R = exp{—fo dI2[x, (1) +Xgi(1)]|. (32) S

Opspw,* SIMV2¢,(x)IsiMV2¢,(0)], (363
First, we consider Eq32) for the spin and charge degrees
of freedom independently. For the spin part which has the Obspw== SITV2¢,(x)Jexd =iv26,(x)],  (36b
SU(2) symmetry, the singlet®,,) and the triplet O, 3
correlation functions with logarithmic corrections are ob-
tained explicitly in the gapless regiog, =0K*=1) ag®

appears when the spin sector is gapless. On the other hand,
the charge-density-wavw€€DW) phase

OCDW=<—1>'ES cliCis si \2¢,(x)cod V2¢,(X)],

Rﬂ:%ln*’%r/a), (333 37)
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TABLE l1ll. Correspondence between six possible phases at 4 ° o PY Fo S
half-filling and fixed points in the RG analysis. Foij, = —»
(g7, =0), the spin sector is gappédapless Forgj, =+« (g3, (a) CDW
=0), the charge sector is gappéghpless ¥ o é é
g3 =0 g3 =+ g3 =—% —e o & o—
g5, =0 TS BSDW SDw (b) SDW;
gy =— SS CDW(LRO) BCDW (LRO) o Py _ & &—
—Q O—
appears when the spin gap opens. In the CDW phase, both BB
charge and spin gaps open, so that a LRO exists. ©
In the insulating region for the opposite fixed pogi;, ) ©
==, the spin-density-wavéSDW) correlation character- @ @
ized by
(d) BSDW:
OSDWa:(_l)jEI C}-ST;XS’C]'S’ ) —‘Q t
S,S
FIG. 3. Schematic illustration for the four charge-gapped states
Ospwz*Cog \/§¢p(x)]sir{ V26,01, (389 inup and down spin subsystems. The enclosed two sités iand

(d) stand for electron-hole dimers. The electrons polarize on sites
Ospws* C0S\26 (x)]exd £iv26,(x)], (38h  (C=P=-1) for COW and SDW states, while they polarize on
. ] Sow= $ (ép( ! ] 1 o(X)] bonds C(=P=+1) for BCDW and BSDW states. The two sub-
is dominant when the spin part is gapless. The bond-charg&ystems are synchronized= +1) for CDW and BCDW states,

density-wave(BCDW) phase characterized by while they are displaced by one sité&=< — 1) for SDW and BSDW
states.
Oscow=(—1) 2 (¢lsCj+ 15+l 15C56),
BCDW 5\ isTitls T Ej+ls¥is where the CDW and the BCD\¢the SDW, and the BSDW)
operators refer to the uppéower) signs in the right-hand
0§ V26, (X)]cod V2¢,(X)], (39  sides, and sin2¢<) and cos(2¢.) fields denote Nel and

appears when the spin gap opens. In the BCDW phase, bo 'me_r states of th&=1/2 spin chains, respectivel_y. In addi-
cﬁgrge and spin ga[:?s o?)epr)], s?o that a LRO exists.pThe corrggm it follows from Eqs.(29d) and(41) that the shift opera-
spondence between the above six phases at half-filling arigP™ Py one site gives

the fixed points are summarized in Table III.

At quarter-filling (q=2), the &g-charge-density wave b5 dst V2, (44)
(4ke-CDW) appears when the Umklapp scattering is rel-so that both CDW and SDWstates are described by two
evant. The operator is given by tid,, field with q=2, Neel ordered spin chains, where the two secters {,|) are
synchronized in the former, while they are displaced by one
site in the latter. On the other hand, the BCDW and the
BSDW, states are given by synchronized and displaced
dimer-ordered spin chains, respectivébee Fig. 3 There-

 co§ \8h,(X)]. (40)  fore, in the BCDW phase, the charge is polarized on the
) ) ) ) bonds alternatively, and the spins are dimerized. In the

In the rest of this section, we further clarify the differ- ggp state, the charge is polarized on the each bond, and
ences among the four charge-gapped sté@W, SDW,  the spins are located on the bonds and remain gapless like
BCDW, and BSDW discussed above. For this purpose, Weine Spw staté?
change the basis of the bosonized operators from the charge The giscrete symmetries discussed in Sec. Il characterize
and spin picture to the spin up and down one by introducinghe differences among these physical states. It follows from
the following new phase fields: Eq. (29), that the spin reversal symmetry corresponds to

b=+ b 41) whethers=1,| sectors are synchronized= +1) or dis-

s e Fon placed by one sitef=—1). Similarly, the parity and the
wheres=1,| refer to the upper and lower signs, respec-charge conjugation distinguish whether the electrons are po-
tively. Then, the system is interpreted as coupled spinleskrized on the sitesd="=—1) or on the bonds{="P=
fermion systems $=1/2 spin chaing In this case, the +1). This interpretation for the parity is consistent with the
(B)CDW and z-components of théB)SDW operators are fact that the 4-CDW with a site LRO has the odd parity
given by (P=—1) at quarter-filling.

04CDW=Z Ph OOU! 0P ()1 (X),

OcowOspw,” SiN(V2¢)) + sin(\2¢,), (42) V. HALF-FILLING

Using the method explained in Sec. Il, we analyze the
Oscow Osspw,™ COX \/§¢T)i cog \/§¢l)' (43 phase diagram of the EHM at half-filling. Since there are
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0.886 r -
~ 0885 Un=2 ] 20 L (a) Ult=-1
= 0.884 | ] “Neel” ——
“dimer”” ——
0.883 h vy _ 13 [“doubler” 1
/50 9.0l
FIG. 4. Size dependence of the critical point for the spin-gap
transition atU/t=2. The system sizes ate=8,10,12,14. From Ref. 05t
16.
0.0 SU2) BKT
many instabilities, we consider the phase diagram separately ™ : :

in the charge and the spin parts by assuming the charge-spin
separation. However, for the CDW-SDW transition, there is 2.5 . .
a possibility that the charge and the spin degrees of freedom (b) Ult=1

are coupled. So we discuss two cases where the two degrees
of freedom are separated and coupled. And then we identify
the valid scenario from the comparison with the result of the .
strong-coupling perturbation theory. For the phase separa- = |- [ Hidden SU(2) BKT
tion, which is considered to be a first-order transition, we

need an approach different from the one applied to the 1.0
charge- and the spin-gap phases. We discuss the way to de-
termine the phase-separation boundary and check the validity ¢5
of the result by the strong-coupling theory. Using the above
strategy, we also analyze the EHM with the correlated hop- 00 , ,
ping term[Eq. (2)]. The results are summarized in Fig. 15. "0 05 0.0 0.5

Vit

FIG. 6. “Dimer”(x,), “Néel”(xpz), and “doublet”(x,3) ex-

First, we determine the spin-gap phase boundary followcitation spectra in the charge sector V& in L=8 system a{a)
ing the method explained in Sec. Il A. By observing theU/t=—1 and(b) U/t=1. In theU/t<0 region, a BKT-type tran-
singlet-triplet level crossing, the phase boundary is found t&ition takes place a¢/t=0 reflecting the S(2) symmetry of the
be near theU=2V line. Since the critical point is almost 7-Pairing. In theU/t>0 region, two level crossings occur d_u_e to
independent of the system si@ee Fig. 4, we can determine the hidden S(R) symmetrlc I_3KT and the Gaussian trgnsmons.
the phase boundary without any extrapolations. In order ta’hese three level crossings give the Y-shaped structure in the phase
check the consistency of our argument, we calculate scalin§29ram-
dimensions of the singlet and the triplet excitations from Eq.
(7), and confirm the ratios of the logarithmic corrections. v = lim E(L.N,S=1k=27/L)—Eo(L,N)
Here the spin-wave velocity is given by the excitation spec- 7 2m/L '

—_ Lo
tra for N,(N,)=1 or |n,|=|m,|=1 as

Gaussian

1.0

A. Spin sector

(49

where the extrapolation is performed by the functigy{L)
0.7 , . =v,()+A/L2+B/L* which is explained by,=4 irrel-
' B evant fields°? Physically, this correction is related to the
Ult=2 o ; : : . . .
- deviation from the linearized dispersion relation assumed in

Te L X (L=12) the TL model. Thus, the ratio of the logarithmic corrections

. ,,,Vc/f E can be checked as 3:1 for the singlet and the triplet states
" o by using the following relation near the critical point,

tos

e
o

x
x °

.A¢’X><X o"o X”l+3X0213 1

S P ] tol Te2d_ 2 (46)
wox X ~ 4 2

Xxxxxxxxxx

x +

X3 (L=12) . Here we use the numerical data lof=8,10,12 systems to
check the scaling dimensions, and extrapolate them by the

0-400 0‘5 1'0 L form A+BL 2+ CL™* as in the same way of the spin ve-
) ’ Vit ‘ ’ locity. As shown in Fig. 5, the extrapolated data become 1/2
in the gapless region. Thus, the universality of the transition

FIG. 5. Extrapolated scaling dimension given by E4f) near s identified as the level-1 @) WZNW model.
the spin-gap critical point dt/t=2. The TL liquid theory predicts

the numerical values are 1/2 in the gapless regiérc¥{/.). This

result shows the existence of the spin-gap transition. The scaling
dimensions for the singletx(,;) and the triplet ,,2) excitation Due to the SW2) symmetry of then-pairing (20), a BKT
spectra in the.=12 system are also shown. transition takes place on thé=0 line for theU <0 region.

(x01+3x(,2,3)/4
@
(9]

B. Charge sector
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0586 Leso b
0588 Loas |
0590 1 1646 |
> 0592 = 1644 |
-0.594 1 1.642 |
0596 | 1640 |
0598 ) — 0 2 O
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FIG. 9. Size dependence of the critical point for the Gaussian
FIG. 7. Size dependence of the critical point of the BKT transi- transition atU/t=3. The system sizes ate=8,10,12,14. The data

tion due to the hidden S@) symmetry atU/t=1. The system sizes agrees with the result of Cannen al*® thatV,/t=1.65"332, from
areL=8,10,12,14. Ref. 16.

This phase boundary is fixed on this line for any strength ofAs shown in Fig. 8, the extrapolated data become 1/2. Here,
U<O0. In Fig. a), the degeneracy of the “Ng”’ (X,2) and  the extrapolation is performed as in the same way of the
the “doublet” (x,3) excitation spectra ol'=0 corresponds spin-gap transition. Thus, the universality class of this tran-
to this SU2) symmetry. On the other hand, for thé>0 sition is identified as a BKT type. The deviation from the
region, there appear two relevant level crossings as shown iexpected value 1/2 in Fig. 8 stands for the effect of the phase
Fig. 6b). The one corresponds to the BKT transition due toseparation where the TL liquid theory breaks down.
the hidden S(2) symmetry, and the other corresponds to the The Gaussian transition takes place alonguhe2V line
Gaussian transition, as was explained in Sec. Il. The rest ais was predicted by tlgpology. The size dependence of this
the three level crossings in Fig. 6 do not correspond to anyransition atU/t=3 is shown in Fig. 9. It follows from Eq.
phase transitions, because they correspond to the lingg7), the following relation should be satisfied just on the
*Y,4(0)=Y,0(0)<0 and the liney,,(0)=0 with y,,(0) Gaussian transition line,
>0 (Gaussian fixed lineg in the RG flow diagram of Fig.
Z(b) Xpl+ sz 1

The hidden SR) BKT transition obtained by the 2 XP3:Z' (49)
“dimer”-“doublet” level crossing (x,1=X,3) appears near _ o
theU=—2V line as was predicted by thology. The size  The resultis shown in Fig. 10. The extrapolated data become
dependence of this transitionldft=1 is shown in Fig. 7. In  1/4 from the weak- to the intermediate-coupling region.
order to check the consistency of our argument, we calculat&hus, the transition is identified as a Gaussian type except
the scaling dimensions of,; using Eq.(7). Here, we calcu- for the strong-coupling region.
late the charge velocity using the excitation spectra for

Np(ﬁp) =1 as C. Transition between CDW and SDW phases

We have determined the spin-gap and Gaussian transition
» = lim E(L,N,S=0k=27/L)—Eq(L,N) (47 lines near the)=2V line assuming the charge-spin separa-
? e 27/l ' tion, however, if thegs term in Eq.(6) is relevant, the
charge-spin coupling may take place. Therefore, we should
Using Egs.(24), we check the following relation on the criti- consider the possibility that the charge and the spin degrees
cal line, of freedom are not separated, and that a direct transition
between the CDW and the SDW phases takes place. To ex-

Xp1 X+ 2X3 1 amine this possibility, we also observe the level crossing of
4 T2 (48 excitation spectra of the CDW and the SDW operatsee
: : 0.30
< 0.6 .
- ]
:?0_5 5 Q].0.25 O
H 04} o ] 2020 |
¥ 0.3 1 to 15
- UO I (). I
S Na)
02 ' , 0.10 -
0 1 2 0 1 2 3 4
Uit Uht
FIG. 8. Extrapolated scaling dimension given by E) on the FIG. 10. Extrapolated scaling dimension given by Etp) on

BKT critical line. The TL liquid theory predicts the numerical val- the Gaussian critical line. The TL liquid theory predicts the numeri-
ues are 1/2. This result shows the existence of the BKT-type traneal values are 1/4. This result shows the existence of the Gaussian
sition. transition.
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Lo poli=3 o CDW-SDW - Ecow U 2(1-9)7
e 50V o L 2 (3v—1U
1.4 ’++++ 00000000
1.2 + ‘)SoDowoococoooooooO¢Gg++*+++ ] . (1_5)2[(3&)2_50_1)(1_5)2_8(31)_1)0]1:4
S0 [ et triplet. 321 v(3v—1)%(4v—-1)U3 ’
02233009333000000
08 _6¢o®m993?fffifooo *+;;559$2°°1 (50)
0.6 t DUSSSELIIILL S ] 2.2
" deoeoe °°°°‘?d°i{;;ern Siﬁéléf ESDW_ _ 4(1_5) t“In2
0.4 1 spin-gap Gaussian . L (1-v)U
1.3 14 1.5 1.6 1.7
Vit (1-972(1- &~ 1+ov]t?
+94(3) - . (5D
(1-v)°U

FIG. 11. Six excitation spectra W/t in L=8 system atJ/t

=3 near theU=2V line. wherev=V/U and £=X/t. In Eq. (51), we have used the
Bethe-ansatz result of tHg=1/2 Heisenberg spin chami>*

Table Il), which consist of both charge and spin components.

These spectra can be obtained under conditions given in <3,$+1>_E:_|n 2, (523
Table II. 4

The level-crossing points for the three assumed transition
lines are close to th& =2V line, but slightly deviateg(see (S Sio)— E ——41In2+ 9§(3)_ (52b)
Fig. 11). The deviations fromJ=0 to U= are shown in 4 4

Fig. 12. These three lines coincide in the weak- and therhe phase boundary between the CDW and the SDW phases
strong-coupling limits. For the Gaussian line, the finite-sizejs given by the equatioh

effect is small for all regions. For the spin-gap phase bound-
ary, the finite-size effect is small in the weak-coupling re- Ecow=Espw- (53
gion, but it becomes large in the strong-coupling region. Th

®rhe strong-coupling th h d t with th
direct CDW-SDW level-crossing point has large size effec © strong-couping Ieory SNOWS & gooc agreement Wi ©

. 'Gaussian transition in the charge part, among the three tran-
for all regions. . o sition lines that we have considered. We should also note
In order to identify the actual transition lines from thesenat the present Gaussian critical point agrees with Cannon

three lines, we use the strong-coupling perturbation theory; g)'s result obtained by the direct evaluation of the CDW

following Hirsct? and van Dongeh.The energy of the SDW g der parameter® V/t=1.65"%1 for U/t=3, and V,/t

state in the strong-coupling region of the EHM are analyti-— 3 92+ .04 for U/t=5.5 (see Figs. 9 and 12

cally obtained up to the fourth order. If we include the cor-  From the above results, we conclude that the actual tran-
related hopping terni2) in the EHM, the energies of the sijtion near theU=2V line is not a direct CDW-SDW tran-
CDW and the SDW states are given by sition, but two independent Gaussian and spin-gap transi-
tions, at least from the weak- to the intermediate-coupling
region. In the strong-coupling region, these two boundaries
approach and appear to be coupled at fibitandV. Unfor-

0.2 ' ' ' ' tunately, in the present analysis, we cannot determine this
. ‘*ﬂ*"’.‘\ 2nd tricritical point, but it is considered to be identical to the
o1t Ga“SSIaI:.** ] crossover point between the second- and the first-order tran-
= o el L %ﬁg sitions. This phenomenon is considered to be an effect of the
<) x ﬁggg%ri:m At J}% charge-spin coupling terrfthe g5 term in Eq.(6)] as was
S 0.0 $oxEoenr? ! ; discussed by Voit in Ref. 4. In this way, our analysis sug-
J * _CDW-SDW Pl - . gests that the crossover along the=2V line is closely re-
~ * ”** L;IO . lated to the validity of the charge-spin separation. Our result
0.1 ¢ o a ¥, =12 = also demonstrates that there is a finite region of a charge- and
Spu-gap x, yw‘gr" . L=14 = spin-gapped state between the Gaussian and the spin-gap
***;Wez + transition lines. It follows from the discussion in Sec. |V that
-0.2 : S : the third phase is identified as a BCDW state.
0.0 0.2 0(?/(U+ 4()t)6 0.8 1.0 In order to clarify the above interpretation for the CDW-

SDW transition, we analyze the EHM including the corre-

FIG. 12. Three possible transitiof@aussian, spin-gap, and di- lated hopping terniEq. (2)]. This term is known to e.nlallrge
rect CDW-SDW transitionisalong theU=2V line of the EHM  the BCDW phase foiX/t<0 even in theU,V—0 limit,
calculated inL=8,10,12,14 systems. The result of the strong-Without disturbing the Y- and the I-shaped structure of the
coupling expansiofiEg. (53) with £=0] agrees with the Gaussian Phase diagram for the charge and the spin paes Fig. 1
transition. This means that the actual transitions are the Gaussidd€cause this term makes the magnitude of the backward and

and the spin-gap transitions, and a BCDW state exists betweetfie Umklapp scattering couplings differepg;, =U—2V
them, from Ref. 16. +4X/ 7,03, =—(U—2V—4X/7)] conserving the SU(2)
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0.3 T T 3 T T T
u My 2nd -
0.2 G !!!’!’a \ 2 :;;;_. U/t=8
0.1 r - 1 _ix:::gééal-
= 4/ s M
= 00 s = iy,
ol o** &0 L
h *X t+ Lﬂ .ii .
SERNIE ; e i,
| : L=8 - SSN Bl S i,
5_02 i D:+ i - x L=10 x L:10 . -'E”;**:XXXXJ(
S - ¢G L=12 ~ 2t 4
'0.3 P& B L=12 o .-D‘:‘g *
- % L=14 o \ =14 = “.%e,
04 @Xn=—1/4 1 [ (b)Xit=1/4 1 ) - . . -
05 : : . . s -4.4 -4.3 -4.2 -4.1 -4
06 08 10 04 06 08 10 Vit
U/(U+4t) U/(U_H”) FIG. 14. Ground-state energy of the EHM for=6-14 systems

at U/t=8 measured from the fully phase separated fate= (U
+4V)L/2 [Eq. (54)]. The zero point gives the critical point for the
phase separation.

FIG. 13. The GaussiafG) and the spin-gagS) transitions in
the strong-coupling region fof@ X/t=-—1/4 and(b) X/t=1/4 .
The strong-coupling theoryEg. (53)] agrees with the Gaussian
lines. Note that a BCDW phase appears not onlyajnbut also in

®) Therefore, we use the relatidb= Epg as a criterion for the

phase separatiofi.We show in Fig. 14 the ground-state en-

e ergy of the EHM measured from the fully phase separated
®SU(2) symmetry of the Hubbard mod€lAs was pre-  giate The zero point gives the critical point for the phase

dicted by theg-ology, the BCDW phase appears from the genaration. The finite-size effect of the phase boundary is
weak- to the intermediate-coupling regi$hOn the other sufficiently small.
hand, in the strong-coupling region, the two transition lines , order to check the validity of the numerical results, we

are coupled, and the direct CDW-SDW transition takeS;ompare our result with the asymptotic phase boundary in

place. .The_ strong—coupling_ the.ory also ~agrees with thgpe strong-coupling limit. Fou/t>1 region, using Eqg51)
Gaussian line as is shown in Fig. (&8 This is the same 4.4 (54), the phase boundary is given By
behavior as in the case of the pure EHM. Therefore, the ’

tricritical point in the pure EHM is considered to have the Eps=Espw- (55

same property of the one that separates the CDW, the SDW .
and thlg BpCD\Bllv phases in the can)e)Ut<O. On the other hand, fod/t<—1 region, the system can be

For X/t>0, the order of the Gaussian and the spin-gaﬂna_pde on_to the= 1/22 XXZ spin chain with antife_rromag-
transitions becomes vice versa, so that the BSDW phase ap€tic couplingd,y=4t*/|U| andJ,=J,,+4V, by using the
pears. However, in Fig. 18), we find that the two transition 7-Pairing operatorg20) and the second-order perturbation

lines cross in the intermediate-coupling region, and a finitd"€0ry. Then, the phase boundary is given By=—J,,

BCDW phase appears. This BCDW region becomes narhich corresponds to the first-order transition between the

XY and the ferromagnetic phases in the spin systéfi the
we cannot conclude whether this BCDW phase remains offfect of the correlated hopping terf@) is included, the
vanishes in the thermodynamic limit. We will consider this Phase boundary is given by

phenomenon again in Sec. VII. 012
Vz—m(l—@z- (56)
D. Phase separation

Here, we determine the phase-separation boundary fror-nrhe numerical result given by =Epswell agrees with these

the numerical data of the exact diagonalizafibisually, asymptotic phase boundariesee Fig. 15

the phase boundary is determined by the divergence of the

compressibility’® However, for theU/t>1 region of the VI. QUARTER-FILLING

EHM, the phase separation can take place in the SDW state Finally, we analyze the phase diagram of the EHM at
where the compressibility cannot be defined. Consequentl;quarter_ﬁ”ingzs—25 by the level-crossing approach. In this
the method of observing the divergence of the compressibilease, the metal-insulator transition is considered as a BKT
ity is no longer valid. In this paper, we determine the phasg,ansition due to the higher-order Umklapp scatterirgg (
boundary by comparing the energy of the ground state and. 5y Then, the phase boundary should be given by the level
that of the phase-separated state. In the phase-separated S@E?ssing between the marginal and four times of the
at half-filling, the system is separated into dou_bly occupied4kF_CDW SPectrac,o=4x,; or 4x,,=X,3, as was discussed
sites and a vacuum. In this case, the energy in the thermgs gec. |1 B 2. In the present numerical analysis, we use the
dynamic limit is exactly obtained as former level crossing, becaugg; needs larger Hilbert space
thanx,, andx,,. Based on this assumption, we obtain the
result shown in Fig. 16. Since the level-crossing point for the
transition is higher X,=2) than the case of the half-filling

U-+4v




16 388 MASAAKI NAKAMURA PRB 61
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(b) X/=0 FIG. 16. Phase diagram of the 1D EHM at quarter-filling for the
05 | CDW V/t>0 region. The phase boundary between the TL liquid and the
— ) 4k =CDW phases is determined by the level crossingxpf
~ =4x,, in L=8,12,16 systems. The critical points in the strong-
s 0.0 coupling limits areV./t=2 andU_./t=4, respectively.
= SS T T, SDW
= g, 1S "mg X, 1+ 3% 1
L ET, Zpl 102~ (57)
-0.5 4 2°
PS Except for the largd/ region, the extrapolated value be-
1.0 comes 1/2 with error less than 4%, as shown in Fig. 17.
Thus, the universality class of the transition is considered to
1.0 . be a BKT-type.
©) X/t=1/4 o® On the other hand, fov/t>1 region, since the finite-size
@M’@ effect is too large, it is hard to perform the systematic ex-
0.5 CDW :;f@ trapolation. However, the phase boundary appears to flow
= into the exact transition poird .= 4t in the V/t—< limit as
ﬁ BSDW o the system size is increased. Now let us review how the
= 00 S . SDW critical point of the charge-gap phase in ¥ — o limit is
N N**X*;TS " derived? The charge gap is defined by
0.5 A,=E(N+1)+E(N—-1)—2E(N). (58
P - . .
S At quarter-filling, E(L/2)=0. If one electron is add to this,
-1.0 - - then the energy i€(L/2+1)=U. Conversely, if one elec-
-1.0 -0.5 0.0 0.5 1.0 tron is removed, two free holes appear, then they have a
U(lU1+4) kinetic energy E(L/2— 1)~ — 4t cos(r/L). Therefore, the

critical point for the charge-gap phase is givenly=4t in
FIG. 15. Phase diagram of the 1D EHM determined by the datdhe thermodynamic limit. We should note that the critical

of the L=12 system at half-filling fora) X/t=—1/4, (b) X/t=0,
and (c) X/t=1/4 [CDW (SDW), charge (spin-density wave;
BCDW (BSDW), bond-charggspin)-density wave; SSTS), sin-
glet (triplet) superconducting phase; PS, phase-separated. Sthte
asymptotic phase boundaries for the PS are given by G&sand
(56).

(x,=1/2), the finite-size effect from the irrelevant fielthe
deviation from the linearized dispersion relatidmecomes
larger. In this case, we need an extrapolation of the critical
point to make the phase diagram. In thét—oc limit, the
transition point for the charge-gap phase is given\iyt
=2, because it corresponds to the XY&l¢ransition in the
S=1/2 XXZ spin chairf®®! For theU/t>1 region, the ex-
trapolated phase boundary flows into the poid,V)

=(=,2t) as we expected. In order to check the consistency

in the finiteU region, we calculate the following averaged
scaling dimension:

<
=
o
=
on
t
=

point in theU/t—o andV/t— o limits are given by a com-

0.6
05t S hhakkasases 2 o8 8 o8 8
04} =8 -
L=12 =
L=16 =
03} L=eo v
0.2 : : : :
04 05 o 8 09 10

6 0.7 0
Ul(U+41)

FIG. 17. Scaling dimensions given by E§7) on the BKT line.

The extrapolated value becomes 1/2 with error less than 4%.



PRB 61 TRICRITICAL BEHAVIOR IN THE EXTENDED.. . . 16 389

pletely different argument. Therefore, we expect that a tricwe have investigated the phase diagram of the EHM includ-
ritical behavior may also be seen along the BKT transitioning the correlated hopping ter(®). In this case, there appear
line. BCDW and BSDW phases, depending on the order of the
In a similar way as the half-filling, we consider the effect Gaussian and the spin-gap transitions. Note that the direct
of a charge-spin coupling operator, which is derived from theCDW-SDW transition also takes place in the strong-coupling
g=2 Umklapp scattering between three parallel spins andegion.
one antiparallel spifithe gz term in Eq.(6)]. This operator Therefore, we can understand the crossover of the CDW-
may cause the synchronization of the BKT transitiap ( SDW transition in the EHM as a kind of these generalized
=2) in the charge part and the spin-gap transition. In ordecases. The reason why the mechanism of the CDW-SDW
to examine this possibility, we determine the spin-gap phas#ransition has been left ambiguous for long times is that the
boundary by the singlet-triplet level crossing in the lakge- analytical solutions both in weak- and strong-coupling limits
region. Then, the phase boundary of the spin gap appears ¢ive the same phase boundddy=2V, and the numerical
be coupled with that of the charge gap, and flows into theanalysis for the intermediate-coupling region does not have
point (U,V) = (4t,x), as the system size is increased. There-enough precision to distinguish the Gaussian and the spin-
fore, this result suggests that the crossover in the metagap transition lines. Recently, the similar mechanism of tran-
insulator transition also takes place by the mechanism simisition was reported in studies of the Hubbard chain with
lar to the case of half-filling. In the largé-region, there are periodic potential, which has the transition between Mott and
phase-separated staf8gut that has not been studied in the band insulator§>%
present analysis. We should also consider the effect of the At quarter-filling, the phase boundary of the metal-
phase separation in the future. insulator transition has also been determined by assuming
that it is the BKT-type transition of the higher-order Um-
klapp scattering. The obtained phase boundary is consistent
VIl. SUMMARY AND DISCUSSION with the known exact results in thgd —c and theV—o

Let us summarize the results obtained in this paper. wdMmits. In the present parameter space, there are neither a
have determined the phase diagrams of the 1D EHM at hal8KT transition with the hidden symmetry, nor a Gaussian
and quarter-filling using the level-crossing approach, whictransition. Although the finite-size effect Wt>1 region is
is based on the TL liquid theory and the renormalization/2'9€, the phase boundaries of the charge- and the spin-gap
group. The metal-insulator transitions in halguarter) fill- phases appear to be coupled as the system size is increased.
ing are classified as BKT-type transitions due to the first-1 herefore, there may be a crossover from the BKT to the

(second) order Umklapp scattering. This fact reflects the first-order transitions in this region. , _
“fractional quantization” discussed by the bosonization The rest of the section is devoted to discussions. We have

theor’3 and the generalized Lieb-Schultz-Mattis clarified the mechanism of the CDW-SDW transition of the
theorem?®-3° EHM at half-filling. However, we have not revealed the rea-
In the case of half-filling, for the charge sector, there areS°N Why the intermediate state in Figs. 12 antb1% not a
two BKT lines reflecting the S(2) and hidden S(2) sym- BSDW but a BCDW. Wg can interpret the appearance of the
metries, and one Gaussian line. These three critical line8CDW phase considering roles of tigg term in Eq. (6).
meet at the multicritical pointW/t,V/t)=(0,0), and they When the charge gap opens in the>2V region @3, =
form a Y-shaped structure. Note that the same structure is ®). the phase field is locked a%,=2n/\/8 with n being
also known in the phase diagram of tBe=1/2 frustrated an integer, which minimize the classical potential energy as-
XXZ-spin chain®?32 For the spin sector, a spin-gap transi- sociated with thegs, term. In this case, the charge part of
tion occurs due to the attractive backward scattering. Sincthe gz term is also locked, so that;, =U—2V is reduced
the transition takes place at the origin of the RG flow dia-as
gram, the phase boundary has an I-shaped structure. Thus,
the entire phase diagram is given by the combination of the 91 —J1. +z(cog VB¢, ]), (59)
“Y” and the “I.” where gy = —2V. Thus, if we estimate the spin-gap phase
The tran_smon between th_e CDW and th_e SDW phases_héﬁoundary in the weak-coupling region using E&9), it
been considered by assuming the following two scenariosgpifs toward thel >2V side of theU =2V line. Similarly,
32? t';éhfhg‘%eepsgﬂeg;Ej:ﬁi':”tﬁgdofﬁg;'?sagtg?rgsg:'%gv‘d/ﬂfe can estimate the shift of the Gaussian line. In the
SDW transition under the charge-spin coupling. By checkingfa\:_ rze\?lon_, the spin gap openg{ = =), thengs, =
. . . ; shifts as
the relations between the scaling dimensions, and by com-
paring the numerical results with the strong-coupling theory,
we have concluded that the first scenario ig realipzedgfrom t?]/e Os.—Ga1 *+gzy(cod \/§¢’T]>' (60
weak- to the intermediate-coupling) (- 4t) region, and the where the phase field is locked &s=2n/+/8. Therefore,
second scenario is realized in the strong-coupling region. lthe Gaussian line shifts toward the opposite side of the spin-
the former case, a BCDW phase exists between the CDWap phase boundary. Consequently, the BCDW phase ap-
and the SDW phases. Thus, the crossover of the CDW-SDWears between the CDW and the SDW phases. Thus, it turns
transitions from the second order to the first order turned oudut that thegs term enhances the BCDW phase when it is
to be a phenomenon that reflects the validity of the chargeirelevant, and it couples the Gaussian line and the spin-gap
spin separation. phase boundary when it is relevant. The deviations from the
To clarify the mechanism of the crossover in more detail,lU=2V line may be analyzed quantitatively in the weak-
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coupling region by the renormalization group analysis in- . +

cluding g3|. The above explanation may also be applicable Hw:W_2 (CisCi+1stH.C)(Cig Civ1s TH.C). (62

to the phenomenon that a BCDW phase appearfor 0 1ss

in the strong-coupling regiofsee Fig. 18)]. This term also makes the difference in the magnitude of the
We should consider the reason why the size dependenagparameters for the backward and the Umklapp scattering in

of the Gaussian transition line is smaller than that of thethe weak-coupling limit[g;, =U—-2V+8W,g;, =— (U

spin-gap phase boundary, in the strong-coupling region of-2V—-8W)] (Ref. 4 conserving the symmetries of the

Figs. 12 and 13. The reason is considered to be the differendéubbard model. Therefore, we expect that this term play a

between the behavior of the charge and the spin gaps. As wasle similar to the correlated hopping terifitsg. (2)]. On the

discussed in Sec. I, the spin gap opens exponentially slowther hand, since this term can be rewritten as the exchange

(18), while the valley of the charge gap near the Gaussiamf the spins and of the pseudospif®)), it may affect the

transition becomes steeper as the strength of the interactiditst-order transition to a ferromagnetic st&ter the phase

is increased28). In the present analysis based on the TLseparation. Besides, in a parameter region of the EHM in-

liquid theory, we have assumed that both charge and spialuding this term, the BSDW state is shown to be the exact

parts are gapless, so that the Gauss&nin-gap transition  ground stat&® The analysis of the effect of this term by the

line may be affected by the spighargé gap in the strong- level-crossing approach will be reported elsewtfére.

coupling region. In the present case, magnitude and variation

of the charge gap are considered to be much larger than those ACKNOWLEDGMENTS

of the spin gap near the =2V line in the strong-coupling ] .
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authors>11-134Recently, the tricritical point is explored by computation in this work was partI_y done W|th_the facilities
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we may also determine the tricritical point by comparing theiCS, University of Tokyo.

numerical result of the Gaussian transition line and the

strong-coupling perturbative expansions in the higher order. APPENDIX A: WEAK-COUPLING LIMIT

It may also be worth studying the level crossing for the tri-

critical point by considering the logarithmic corrections to

the excitation spectra, which stem from thg term. In ad- D

dition to the tricritical point between the CDW and the SDW

phases, there is another tricritical point that separates the Tgroach is often called thg-ology

e DM, e S iales, 1 9,19, Ihe e boundan® The parameters o E4) are gven by th parameters

. 0y ONHafined in Refs. 2, 3, and 4 as follows:
coupling theory seem to be bent near the tricritical point.

This tricritical point may also be identified by the further , (9,12 27u,+4,
strong-coupling calculation. v,=\/U,— . K= m

Finally, we discuss the effect of site-off-diagonal interac-
tions. In this paper, we have considered the correlated hop- N
ping term given by Eq(2), however the generalized form of u,=ve+ 941 =941
this term is given by’ 2m

where the uppetlower) sign corresponds toe=p (v=0),
andvg=2t sin(kg) is the Fermi velocity. For the EHM in-
HX=XZ (clcii1stHC) (N _s+Niv1 o), (618  cluding theX [Eq.(2)] andW [Eg. (62)] terms at half-filling,
'S the g parameters can be identified as follows:

In the weak-coupling limit, the parameters of the sine-
Gordon model6) can be identified in terms of the bare cou-
ling constants of the original model, and consequently the
hase boundaries are obtained analytichlfy?® This ap-

, 0,=01—02+92., (AD

91, =9,=U—-2V+4g,
Hxr =X 2 (ClCisaatHOIM, iy o (61D G = (U_2V_59),
(A2)
In the present paper, we have $¢t—X'/2 to keep the 9,=—(U+6V-4g),
article-hole symmetry and the SU@PpU(2) symmetry of
fhe Hubbard rr{odel. I:‘ythis relation i(s r?ot(ch)os)én, thesye sym- og=4X/7+8W.
metries are lost, so that thé=0 line is no longer the phase This calculation can be performed straightforwardly except
boundary of the metal-insulator transition at half-filling. Be- for the X term. For theX term, which contains a three-body
sides, an additional Umklapp term s\iﬁqbp appears in the term, the operator-product-expansion technique is needed to
effective Hamiltoniarf:2° The analysis for this situationX(  identify theg parameter&’
# —X'[2) is the subject of future research. The instabilities for the charge and the spin gaps are dis-
There are other types of site-off-diagonal interactions. Focussed based on the renormalization gr@Rf®) analysis as
example, the bond-bond interaction term is givenfoy explained in Sec. Il. Sinc&, is approximated a¥ ,~1
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+g,/27v,, the parameter in the RG flow diagrdiFig. 2) is In this paper, we have takes, ¢ into account in the iden-
given byy,,(1)=g,/mv,. Then, the spin-gap opens when tification of g, andgs, by following Ref. 40. The Clifford
01, =9,<0, and the phase boundary is algebra forU, 5 (5) can be expressed by tensor products of

the Pauli matrices, which are chosen so the effective Hamil-
U=2V-4g. (A3)  tonian (6) is to be diagonal in the space bf; ;. For ex-
On the other hand, the charge gap opens wigr>|g, . ample, the following representation is possible:
The conditiongs, = —g,<0 is the BKT-type transition due

to the SU2) symmetry in the charge sector. Then, the phase Ugi=7®7, Ug=71®7,
boundary is obtained as

V=0, U<Jdg. (A4) U,=rer, U, =187 (A7)

The conditiongs, =g,>0 is the BKT-type transition due to
the hidden S2) symmetry in the charge sector. Then, we
obtain the phase boundary as

These operators contribute to the, and theg;, terms as
+1® 7%, and one eigenvalue of the matrix is chosen. Conse-
quently, the signs of,, andgs, become opposite as in Egs.
U=-2V+dg, U>dg. (A5)  (A2). When we consider the bosonization of a physical op-
) - erator, it should be diagonalized simultaneously with the
The Gaussian-type transition takes placeyat=0, for g,  Hamiltonian. Therefore, if the physical operator cannot be
<0. Thus, we obtain the Gaussian line for the charge sectafiagonalized by Eq(A7), we should choose other represen-

as tations forU, 5. In the derivation of the physical operators in
U=2V+ag, V<O. (A6) Sec. IV, we need one more representation such as
Thus, we obtain the phase diagrams in the weak-coupling Ug =707, Ug=7®7"

limit as is shown in Fig. 1, which have the Y- and the

I-shaped structures in the charge and the spin degrees of

freedom, respectively. In the presegology analysis, the Up=rer, U, =1a7. (A8)
parametersX and W appear only througtdg, so that theX

andW terms play similar roles in respect of the enhancementn this case, the contribution to tligg, and theg;, terms is
of the BCDW (5g<0) or the BSDW ¢g>0) phases. The F1® 7 If the contribution ofU, s is neglected, the sign of
correspondence between tgelogy and the level-crossing the g, term is reversed, and the roles 6f,; andO,, are
approach is summarized in Table I. interchanged.
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