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Hellmann-Feynman theorem and the definition of forces in quantum time-dependent
and transport problems
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The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable
to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-
Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for
ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems.
Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical
scheme forab initio calculations of current-induced forces is described and the study of the transfer of a Si
atom between two electrodes is presented as an example.
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I. INTRODUCTION

The Hellmann-Feynman~HF! theorem1 has been a key
ingredient of the quantum mechanical treatment of for
acting on nuclei in molecules and solids. In turn, these for
are the key ingredient ofab initio calculations of atomic-
scale structure and dynamics in materials physics, chemi
and molecular biology.2–8 In such calculations, the electro
system is kept in its instantaneous ground state, for which
traditional formulations of the HF theorem apply. For e
ample, for several decades, theoretical investigations of m
ecules and chemical reactions have relied on potential en
surfaces computed in this fashion. In the last two decade
similar approach has been the basis for calculations in so
e.g., surface reconstruction, phase transformations, de
configurations, and defect reactions. In more recent ye
fully dynamical calculations ~e.g., the Car-Parrinello
method2,3! generally assume the electron system remain
its instantaneous ground state.

The conventional formulations of the HF theorem,2–8

however, do not apply to two important classes of proble
in which the electron system is not in the ground state. B
these classes are emerging frontiers forab initio quantum
mechanical calculations.

~a! Molecules and solids intime-dependentexternal fields,
e.g., radiation. In such systems, the external field gener
induces electronic excitations and nuclear motions. The
vent of powerful free-electron lasers and of tabletop las
that deliver intense ultrashort pulses has renewed intere
the photodissociation of molecules and other ultraf
reactions,9 the generation of high harmonics, includin
x rays, from atoms in intense infrared pulses,10,11 the photo-
induced desorption of atoms and molecules from so
surfaces,12 and other phenomena, especially in the nonlin
regime.

~b! Transportin nanostructures and molecules. The fab
cation of electronic devices using nanoparticles
molecules13,14 and the use of a scanning-tunneling micr
PRB 610163-1829/2000/61~23!/16207~6!/$15.00
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scope to create atomic-scale structures on crystal surfac15

represent transport problems for which the traditional Bo
mann equation approach does not apply.16 Fully quantum
mechanical calculations of transport properties are nee
including calculations of current-induced atomic rearran
ments. The macroscopic manifestation of the latter, nam
electromigration, has remained an open question through
years17,18 and is ripe for direct first-principles calculations.

For both classes of problems, the conventional formu
tions of the HF theorem and its generalizations are not
plicable and the proper definition of the force on nuclei h
remained unsettled.10,18–20Some attempts to extend the H
theorem to nonstationary states have been proposed22 but, as
we show later in the paper, they rely on an incorrect phys
assumption.

In this paper, we will first give a concise statement of t
HF theorem for eigenstate and variational ground-state p
lems as a point of reference and identify the precise obsta
that have left the problem unsettled for the time-depend
and transport problems. We will then present a general fo
of the HF theorem that is applicable to all quantum mecha
cal systems with square-integrable wave functions. T
proper definition of forces and their implementation in pra
tical calculations will then become clear. We will show th
this general theorem and its practical implementations red
to the classic results for systems in the ground state.
example will be provided for the forces acting on a Si ato
between two electrodes when steady-state current flows

II. HF THEOREM FOR GROUND STATE

Throughout this paper we will present derivations using
many-body HamiltonianH and many-body square-integrab
wave functionsC for a system of nuclei and electrons with
out any particular approximations. Analogous derivatio
can easily be formulated using specific approaches to
many-body problem such as Hartree-Fock or dens
16 207 ©2000 The American Physical Society
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functional theory~DFT!. The explicit equations for DFT are
given in the Appendix.

Given the eigenvalue problem

HC5EC, ~1!

whereH depends parametrically on a quantityl and C is
square-integrable, it is straightforward to show by direct d
ferentiation that

dE

dl
5 K CU ]H

]l UC L Y ^CuC&1F K CUH2EU]C

]l L
1 K ]C

]l UH2EUC L G Y ^CuC&. ~2!

In view of Eq. ~1!, Eq. ~2! reduces to

dE

dl
5 K CU ]H

]l UC L Y ^CuC&. ~3!

This last equation represents the HF theorem forexacteigen-
states. If the quantityl is a given degree of freedom of th
system, then the quantity2dE/dl given by Eq.~3! can be
interpreted as the generalized force associated with it. In
ticular, if the nuclei~or ions! are treated as classical particl
and l is the position vector of a nucleus, then2dE/dl is
the classical force on that nucleus.

The practical importance of the HF theorem is that ene
derivatives are difficult to compute numerically, whereas
expression on the right in Eq.~3!, the negative of which is
known as the HF force, can be computed efficiently. Ho
ever, it was recognized by early computational work us
atom-centered basis functions that the HF force gave m
festly wrong results.5 The origin of the problem is most suc
cinctly illustrated by noting that, for a variational calculatio
of the ground-state energyE, whenC is expanded in terms
of a finite basis set, one no longer has Eq.~1! but the more
restrictive

^CuH2EuC&50, ~4!

where E and C now are the variational energy and wa
function, respectively. Equation~4! is now a matrix equa-
tion. As a result, the second term in Eq.~2! is no longer zero.

Two approaches have been pursued in the literature:
~a! One requires that the basis set is such that the e

term in Eq.~2! is identically zero. This requirement, know
as Hurley’s condition,21 is satisfied if the basis functions d
not depend onl ~e.g., when the parametersl are nuclear
position vectors; such sets are known as ‘‘floating sets’’
quantum chemistry; in solid state applications, the co
monly used plane waves are such a set!. The condition is
also satisfied if the derivatives of the basis functions w
respect tol are themselves part of the basis set.4 In such a
case, the original HF theorem is satisfied. In order to pr
these statements, one writes in matrix notation

C5Cx, ~5!

where$x% is the basis set andC the expansion coefficients
From the stationarity principle,dE/dC50, we getdE/dC
50, so that only the derivativesdx/dl survive in]C/]l in
Eq. ~2!.
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~b! One works with the full Eq.~2!. The usual interpreta-
tion of this equation is that2dE/dl represents the exac
force, the negative of the first term on the right is the H
force, and the negative of the last term is a correction te
often referred to as the Pulay force.5 This interpretation was
backed by the fact that, as we already mentioned, attemp
use the HF force alone with atom-centered basis orbi
gave manifestly wrong results.5 The Pulay force is routinely
included in calculations using atom-centered basis functi
and is in fact needed to produce realistic results. It is view
as a correction to the HF force needed to make the calc
tion accurate to second order.5,6

From this perspective, it is clear why the problem
forces in time-dependent and transport problems remains
solved: it is not obvious that, in these cases, one can m
ingfully define a force in terms of an energy derivativ
Moreover, it was recognized that there is no HF theorem t
would connect the energy derivative to the practical H
force.18 It has been argued, however, that, even in the
sence of a HF theorem, the HF force@right-hand side of Eq.
~3!# remains the correct quantum mechanical force for tim
dependent and transport problems because of the Ehre
theorem that relates this force to the time derivative of
expectation value of the ~generalized! momentum
operator.10,18 This assertion is appealing, but has not be
tested andruns contrary to the established factthat, for
variational ground-state calculations using atom-centered
sis sets, the HF force alone is inadequate and the correc
introduced by the Pulay terms are not negligible.

III. TIME-DEPENDENT PROBLEM

We have now laid the groundwork to present a rigoro
formulation of forces for all quantum mechanical problem
The first step is to recognize that the only correct and m
general quantum mechanical definition of a force is the
pectation value of the time derivative of the momentu
operator.23 For the most general, time-dependent quant
mechanical problem defined by

HF5 i
]

]t
F ~6!

~we use units such that\51 and we useF to denote time-
dependent wave functions!, the force for a given degree o
freedoml is defined by23

F52 i
d

dt K FU ]

]l UF L Y ^FuF&. ~7!

If l is the position vector of a given nucleus, then the for
in Eq. ~7! is simply the time derivative of the expectatio
value of the momentum operator of that nucleus.

If we specialize this definition to time-independent pro
lems for which

F~ t !5e2 iEtC, ~8!

we get immediately

F52
dE

dl
. ~9!
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Two most important observations are in order: first,the
reduction of the force definition to the energy-derivati
form is only possible for time-independent problems; and
second, for time-independent problems, this reduction
valid for both exact wave functions and wave functions e
pressed in terms of a finite basis set. These observat
validate rigorously the long-standing assumption that,
time-independent eigenstate problems, the force can be
fined in terms of the derivative of the energy. They a
make clear the fact that, for time-dependent problems,
rigorous definition of the force is Eq.~7!.

We now address the issue of connecting the rigor
force definition to the HF force in the general case. By dir
differentiation of the definition~7! and use of Eq.~6!, it is
straightforward to show that,for exact wave functions

i
d

dt K FU ]

]l UF L 5 K FU ]H

]l UF L . ~10!

This is the usual Ehrenfest theorem that can be found
textbooks.23 In view of Eqs.~7! and~9!, we see immediately
that for time-independent problems, the Ehrenfest theo
reduces to Eq.~3!, namely the HF theorem. In fact, th
Ehrenfest theorem has been referred to as the time-depen
version of the HF theorem.19 One observation is crucial
however. The Ehrenfest theorem@Eq. ~10!# is only valid for
exact wave functions. When the wave functions are e
panded in terms of a finite basis set, as in most comp
tional work, one must derive the correspondingfinite-set
Ehrenfest-like theorem. We note that, for finite basis sets, w
no longer have Eq.~6!, but the more restrictive

K FUH2 i
]

]t UF L 50, ~11!

which is a matrix equation. By direct differentiation an
some algebraic manipulation, we then getthe finite-set
Ehrenfest theorem:

i
d

dt K FU ]

]l UF L 5 K FU ]H

]l UF L 1 K ]F

]l UH2 i
]

]t UF L
1 K FUH1 i

]

]t U]F

]l L . ~12!

This is the central result of this paper and represents the m
general form of an HF-like theorem that is applicable to
systems and allows a correct and unambiguous definitio
forces for practical implementation. Note that this appro
mate form of the Ehrenfest theorem reduces to the e
form, Eq. ~10!, when the basis is complete, simply becau
Eq. ~6! and its complex conjugate are then exact. When
specialize the finite-set theorem of Eq.~12! to the time-
independent case, we immediately get Eq.~2!. Thus, as is the
case for time-independent problems, we find that when
appropriate form of the Ehrenfest theorem is used, the
force is not necessarilythe correct definition of force. The
extra terms in Eq.~12! are the analog of the Pulay forces f
the time-dependent problem. The Pulay forces can agai
made zero by an appropriate choice of a basis set, as in
time-independent Hurley’s condition. In other words, the P
lay forces are zero if the basis functions do not depend ol
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or if their derivatives are also members of the set. In orde
prove this statement, it is necessary to invoke the fact tha
time-dependent problems, the action S defined by

S5E
t0

t K FUH2 i
]

]t UF L dt ~13!

is stationary for a givenF, namelydS/dF50, so that when
we expandF5Cx, we havedS/dC50. For plane waves
and ‘‘floating sets,’’ the Pulay-like terms are again zero a
the HF force is the exact force. Otherwise, the Pulay-l
terms must be included. Note also that, in the most gen
case, stationarity of the action does not imply a minimu
principle, indicating that the accuracy of the results is ve
sensitive to the choice of the approximate wave functio
employed.10

We can now compare directly the above results with pr
literature. As we already remarked, the assertion by Gr
et al.10 regarding the use of the HF force is rigorously corre
in the limit of a complete basis set and remains valid wh
the generalized Hurley condition is satisfied, as discus
previously ~see also the Appendix!. Otherwise, Pulay-like
forces must be included. It is also clear from the abo
analysis why the Balaet al. results22 are not correct: the
correct definition of the force in quantum mechanics is
time derivative of the expectation value of the momentu
operator andnot thel derivative of the expectation value o
the Hamiltonian on time-dependent wave functions.

IV. STEADY-STATE TRANSPORT PROBLEM

We turn now to the transport problem. The general f
malism above is actually valid for all problems describab
by square-integrable wave functions. The only questi
therefore, is one of normalization of wave functions. In t
eigenstate and variational ground-state problems one d
with either finite systems~molecules, clusters! or with infi-
nite solids for which square-integrability is attained throu
periodic Born–von Ka´rmán boundary conditions. For trans
port problems, square-integrability is ensured if one d
scribes the complete circuit, including, e.g., the battery
generator. In the most general case of time-dependent po
source, the above time-dependent formalism is comple
valid. For practical calculations, however, one norma
treats a system, say a device D, in contact with electro
that act as reservoirs of electrons and serve merely as bo
ary conditions for the wave function of D. Square integrab
ity can then be assured by constructing new many-elec
wave functions from wave packets centered at individ
one-electron energies.

For time-independent direct-current~dc! steady-state
transport, the most general form of the many-body wa
function of the system D is again as in Eq.~8!, where nowE
is a phase factor with units of energy. Using this form in E
~13! we find that the action becomes

S5^FuH2EuF&~ t2t0!. ~14!

The stationarity of the action10 now yields

d^FuH2EuF&50. ~15!
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The equation above shows that the dc transport problem
be rigorously mapped onto a variational problem wh
^CuHuC&/^CuC& is the steady-state energy of the system

It differs from the ground-state problem only in the for
of boundary conditions~closed versus open!. Again, for
plane waves and ‘‘floating sets,’’ the HF force represents
total force whereas for other sets Pulay-like forces must
included as in Eq.~2!.

So far our derivations were carried out for the many-bo
Hamiltonian H and wave functionsC or F. For practical
implementations, one normally separates the nuclear
electronic degrees of freedom and treats the nuclei as cl
cal particles~see the Appendix!. The Hamiltonian then de
pends parametrically on the nuclear position vectors, wh
can be treated asl ’s in the present theory. The correspon
ing forces are the classical forces on the nuclei. For grou
state and time-dependent problems the general theory a
can then easily be cast within the respective Hartree-Foc
density-functional formulations of the many-electron pro
lem. For dc transport, Eq.~15! allows us to conclude tha
ground-state density-functional theory is again applica
with the steady-state energy of the system D playing the
of the ground-state energy. This result provides formal ju
fication for the use of one-electron theories for transport c
culations. We note, however, that for the transport proble
a practical implementation is still lacking for realistic sy
tems. We conclude the paper by summarizing the main
ments of such a practical scheme.

We consider the system D and two~or more! electrodes
(R and L for right and left!. Each of these systems can b
treated separately by density functional theory. Let us de
nate the correspondingsingle-particleHamiltonians byHD ,
HR , andHL . The coupling between the system and the el
trodes can then be included by defining the total sing
particle Hamiltonian as

H5HD1HL1HR1HLC
I 1HRC

I , ~16!

where HLC
I and HRC

I are Hermitian operators to be dete
mined. Only the HamiltoniansHLC

I , HRC
I , and HD are as-

sumed to depend on the position of the atoms. The exte
electric field is introduced by requiring that, far from th
system, the Fermi-level difference between the left and ri
electrodes is equal to the desired value.20 As we showed
above, the steady-state energy of the system is define
terms of the ground-state energy functional evaluated w
the new wave functions obeying the transport bound
conditions.24

The most effective approach to a self-consistent deter
nation ofHLC

I , HRC
I , andC is the Green’s function method

whereHLC
I 1HRC

I 1HD is viewed as the perturbation to th
bare electrodes. So far this problem has been addressedwith-
out considering the problem of forces by seve
authors.20,25,26 A practical scheme has been developed
Lang20 by assuming that the electrodes are described
‘‘jellium,’’ namely, a homogeneous electron gas with
smeared-out compensating positive background. Form
tions using real metals arenot well-suited for practical cal-
culations because of ambiguities in ordering the wave fu
tions by energy.26 We propose, therefore, the followin
scheme for practical calculations, including force calcu
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tions: The electrodes can be approximated by jellium o
far from the system-electrode junctions so that the electr
wave functions can be easily ordered by the asymptotic
havior as plane waves. We anticipate that only a few lay
of metal atoms would be needed attached to jellium c
tinua. For the actual calculations, the metal layers are view
as part of the system in the cavity between jellium ele
trodes. Lang’s formalism can then be used to determineH
andC self-consistently, and current-induced forces on ato
can be computed as in variational problems in accorda
with the theorem proven in the present paper.27 The spurious
resistance introduced by the jellium-metal interface can
calculated separately and subtracted. We note that the
crete as well as the continuous spectrum of the whole sys
can be included in the formalism above in a straightforwa
way. This is of extreme importance in such phenomena s
as electromigration, where the contributions coming from
continuous and discrete parts of the spectrum are of the s
order of magnitude.18

We conclude with a practical example applying the fo
mulation above to the problem of a Si atom between t
electrodes.28 The two electrodes are kept at a distance of
Å. An external bias is applied between the right and l
electrode, the left electrode being positive with respect to
right electrode. The spectrum of the present system ha
discrete and a continuum component. For the single-part
wave functions in the discrete part of the spectrumc i ,
square-integrability is satisfied because thec i ’s are local-
ized. For each energy in the continuum we build squa
integrable wave functionsc̃ in an energy regionD, as we
stated above:

c̃5AE
D
dEc, ~17!

where A is a normalization constant andc ’s are single-
particle wave functions in the continuum. As in Ref. 29 w
choose plane waves to represent the Hilbert space.30 Accord-
ing to Eq.~2!, the Pulay-like terms are thus identically zer
The forceF acting on the atom at positionR due to the
electron distribution as modified by the external bias is th

F5(
i

K c iU ]H

]R Uc i L 1 lim
D→0

E
s
dEK c̃U ]H

]R Uc̃ L . ~18!

The sum and integral in Eq.~18! include spin variable too. In
the present case, no ion-ion interaction must be includ
The continuum integrations covers the part of the spectrum
occupied by the electrons at a given bias: atT50, from the
bottom of the conduction band on the left to the quasi-Fer
level on the right.31

In the case at hand, the force is directed along the dir
tion perpendicular to the electrode surfaces. The results
plotted in Fig. 1 for two different external bias conditions:
V and 3 V.28 At zero bias the Si atom has two stable and o
metastable configurations. The stable configurations co
spond to the atom at about 1.2 Å from the two metals. T
metastable configuration corresponds to the atom betw
the two electrodes. The stable configurations at zero b
coincide exactly with the equilibrium positions obtainab
from standard density-functional total-energy calculations32
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The work necessary to bring the atom from one electrod
the other can be calculated from the curves in Fig. 1 as
integral between the metastable and stable configurations
zero bias the work done is about 0.5 eV. Applying 3 V ac-
cross the electrodes~the left electrode is at the higher bias!,
the stable positions shift slightly towards the right electro
due to a transfer of charge on the left electrode. Finally,
activation barrier to bring the atom from its left stable co
figuration to the new metastable position decreases to a
0.1 eV. The atom is essentially free to jump to the rig
electrode when the bias is 3 V.

V. CONCLUSIONS

We presented a general HF theorem that applies to
quantum mechanical systems and allows a rigorous de
tion of forces in all cases, including those where a finite ba
set is used to represent the system wave functions. In
latter case, Pulay-like forces arise that can be set to zero
a particular choice of the basis functions. We also presen
a practical scheme for transport calculations in nanost
tures that includes current-induced forces on atoms. The
ter scheme is particularly important nowadays to prov
valuable insight into current effects on molecular devices
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APPENDIX: FORCES IN DFT

We explicitly write in this appendix the expressions of t
HF forces in DFT. We recall that the total energy of a man

FIG. 1. Force on a single Si atom between two electrodes s
rated by 4.5 Å for two different external biases: 0 V and 3 V.
Positive force pushes the atom to the right. Zero distance co
sponds to the atom between the two electrodes.
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electron system with charge densityn(r ) in an external po-
tential V(r ) can be written as a functional of the density33

E@n#5Ts@n#1E V~r !n~r !dr

1
e2

2 E E n~r !n~r 8!

urÀr 8u
drdr 81Exc@n#. ~A1!

Ts is the kinetic energy of noninteracting electrons, a
Exc@n# is the exchange-correlation energy. The quantum m
chanical problem is solved with variational wave function
According to Eq.~3!, the electronic contribution to the forc
acting on a nuclear degree of freedoml is thus

F52
dE@n#

dl
52E ]V~r !

]l
n~r !dr2E dE~r !

dn

]n~r !

]l
dr ,

~A2!

wheredE(r )/dn is the variation of the functional with re
spect to the density. The first term in Eq.~A2! is the HF
force, while the second is the Pulay-like term. If the ion
potentials are spherically symmetric and their non-Coulo
parts do not overlap, a classical electrostatic term, repres
ing the ion-ion interaction, must be added to Eq.~A2! to
obtain the total force on nuclei.

In time-dependent DFT, Eq.~6! decouples into a set o
coupled equations for all electronsc i and nucleif i ~with
chargeZi) under external time-dependent potentialsV(r ,t)
andV(l,t), respectively,

i
]

]t
c i~r ,t !5S Ts@n#1V~r ,t !

1E n~r 8!

urÀr 8u
dr 81Exc@n# D c i~r ,t !,

~A3!

i
]

]t
f i~l,t !5FTl1V~l,t !2Zi

3E n~r 8!

urÀr 8u
dr 81Exc@n#~l,t !Gf i~l,t !,

whereTl is the nuclei kinetic energy andExc@n#(l,t) is the
nuclear exchange-correlation potential. Note that, in our
tation, V(r ,t) and V(l,t) contain the electron-ion and ion
ion interactions, respectively. Assuming the nuclei as cla
cal particles with nuclear distributionni(l,t)5uf i(l,t)u2

5d„l2l i(t)… and applying Eq.~12! to the nuclear motion,
the force on the nuclei is

Fi~ t !52¹l i (t)
V~l,t !2Zi

3E n~r 8!

ul i~ t !2r 8u2
1ZiE ¹l i (t)

n~r 8!

ul i~ t !2r 8u
. ~A4!

The last term of Eq.~A4! is the Pulay-like force in time-
dependent DFT.
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