PHYSICAL REVIEW B VOLUME 61, NUMBER 23 15 JUNE 2000-I
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The conventional Hellmann-Feynman theorem for the definition of forces on nuclei is not directly applicable
to quantum time-dependent and transport problems. We present a rigorous derivation of a general Hellmann-
Feynman-like theorem that applies to all quantum mechanical systems and reduces to well-known results for
ground-state problems. It provides a rigorous definition of forces in time-dependent and transport problems.
Explicit forms of Pulay-like forces are derived and the conditions for them to be zero are identified. A practical
scheme forab initio calculations of current-induced forces is described and the study of the transfer of a Si
atom between two electrodes is presented as an example.

[. INTRODUCTION scope to create atomic-scale structures on crystal sutfaces
represent transport problems for which the traditional Boltz-
The Hellmann-FeynmaiHF) theorent has been a key mann equation approach does not apflyeully quantum
ingredient of the quantum mechanical treatment of forcesnechanical calculations of transport properties are needed,
acting on nuclei in molecules and solids. In turn, these forcegncluding calculations of current-induced atomic rearrange-
are the key ingredient o&b initio calculations of atomic- ments. The macroscopic manifestation of the latter, namely
scale structure and dynamics in materials physics, chemistrglectromigration, has remained an open question through the
and molecular biolog§=® In such calculations, the electron yeard”18and is ripe for direct first-principles calculations.
system is kept in its instantaneous ground state, for which the For both classes of problems, the conventional formula-
traditional formulations of the HF theorem apply. For ex-tions of the HF theorem and its generalizations are not ap-
ample, for several decades, theoretical investigations of mobyjicable and the proper definition of the force on nuclei has
ecules and chemical reactions have relied on potential energgmained unsettletf'®-2°Some attempts to extend the HF
surfaces computed in this fashion. In the last two decades, theorem to nonstationary states have been propdbet, as
similar approach has been the basis for calculations in solidgve show later in the paper, they rely on an incorrect physical
e.g., surface reconstruction, phase transformations, defegssumption.
configurations, and defect reactions. In more recent years, |n this paper, we will first give a concise statement of the
fully dynamical calculations (e.g., the Car-Parrinello HF theorem for eigenstate and variational ground-state prob-
method®) generally assume the electron system remains ifems as a point of reference and identify the precise obstacles
its instantaneous ground state. that have left the problem unsettled for the time-dependent
The conventional formulations of the HF theoréi, and transport problems. We will then present a general form
however, do not apply to two important classes of problemsf the HF theorem that is applicable to all quantum mechani-
in which the electron system is not in the ground state. Botltal systems with square-integrable wave functions. The
these classes are emerging frontiers dbr initio quantum  proper definition of forces and their implementation in prac-
mechanical calculations. tical calculations will then become clear. We will show that
(@) Molecules and solids itime-dependergxternal fields,  this general theorem and its practical implementations reduce
e.g., radiation. In such systems, the external field generallyp the classic results for systems in the ground state. An
induces electronic excitations and nuclear motions. The adexample will be provided for the forces acting on a Si atom

vent of powerful free-electron lasers and of tabletop lasergetween two electrodes when steady-state current flows.
that deliver intense ultrashort pulses has renewed interest in

the photodissociation of molecules and other ultrafast

reactions, the gengra}tion of. high harmonics, including Il. HE THEOREM EOR GROUND STATE

x rays, from atoms in intense infrared pul$&4!the photo-

induced desorption of atoms and molecules from solid Throughout this paper we will present derivations using a

surfaces? and other phenomena, especially in the nonlineamany-body Hamiltoniati and many-body square-integrable

regime. wave functions¥ for a system of nuclei and electrons with-
(b) Transportin nanostructures and molecules. The fabri-out any particular approximations. Analogous derivations

cation of electronic devices using nanoparticles orcan easily be formulated using specific approaches to the

molecule$®** and the use of a scanning-tunneling micro- many-body problem such as Hartree-Fock or density-
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functional theory(DFT). The explicit equations for DFT are (b) One works with the full Eq(2). The usual interpreta-

given in the Appendix. tion of this equation is that-dE/d\ represents the exact
Given the eigenvalue problem force, the negative of the first term on the right is the HF
force, and the negative of the last term is a correction term

HY=EV, (1) often referred to as the Pulay foré@his interpretation was

whereH depends parametrically on a quantityand ¥ is backed by the fact that, as we already mentioned, attempts to
square-integrable, it is straightforward to show by direct dif-US€ the HF force alone with atom-centered basis orbitals

ferentiation that gave manifestly wrong resultsThe Pulay force is routinely
included in calculations using atom-centered basis functions
dE JH oV and is in fact needed to produce realistic results. It is viewed
ﬁ=<‘l" K\P> / (W|w)+ <‘1’ H-E K> as a correction to the HF force needed to make the calcula-
tion accurate to second ordf.

(2)  forces in time-dependent and transport problems remains un-

oV
+ K H—-EW¥Y
solved: it is not obvious that, in these cases, one can mean-

From this perspective, it is clear why the problem of
(W] ).

In view of Eq. (1), Eq. (2) reduces to ingfully define a force in terms of an energy derivative.
Moreover, it was recognized that there is no HF theorem that

d_E= \P‘ﬁ ¥ (V| W) &) would connect the energy derivative to the practical HF
dx DY ' force!® It has been argued, however, that, even in the ab-

sence of a HF theorem, the HF forigeght-hand side of Eq.
(3)] remains the correct qguantum mechanical force for time-

states. If the quantity is a given degree of freedom of the d
. . ependent and transport problems because of the Ehrenfest
system, then the quantity dE/d\ given by Eq.(3) can be theorem that relates this force to the time derivative of the

interpreted as the generalized force associated with it. In par-

ticular, if the nuclei(or iong are treated as classical particles expectation value of the (generalizegl momentum
’ - ) operatort®*® This assertion is appealing, but has not been
and\ is the position vector of a nucleus, thendE/d\ is P bp 9,

X tested andruns contrary to the established fathat, for
the classical force on that nucleus.

T tical i " fthe HF th is that variational ground-state calculations using atom-centered ba-
' e practical Importance of the eorem s that energy; sets, the HF force alone is inadequate and the corrections
derivatives are difficult to compute numerically, whereas th

Sntroduced by the Pulay terms are not negligible.
expression on the right in Eq3), the negative of which is y y gg
known as the HF force, can be computed efficiently. How-
ever, it was recognized by early computational work using Ill. TIME-DEPENDENT PROBLEM
festly wrong resultS. The origin of the problem is most suc- formulation of forces for all quantum mechanical problems,
cinctly illustrated by noting that, for a variational calculation The first step is to recognize that the only correct and most
of the ground-state enerdy, whenV' is expanded in terms  general quantum mechanical definition of a force is the ex-
of afinite basis setone no longer has Edl) but the more  pectation value of the time derivative of the momentum
restrictive operato™ For the most general, time-dependent quantum
mechanical problem defin
(W|H—E|W)=0, @ echanical problem defined by

This last equation represents the HF theorenefacteigen-

I P
where E and ¥ now are the variational energy and wave Hp—i -~ ®)

function, respectively. Equatio¥) is now amatrix equa- ot
tion. As a result, the second term in E@) is no longer zero. ) i
Two approaches have been pursued in the literature; ~ (We use units such thdt=1 and we useb to denote time-

term in Eq.(2) is identically zero. This requirement, known freedom\ is defined by®
as Hurley’s conditiorf! is satisfied if the basis functions do
not depend on\ (e.g., when the parameteks are nuclear F=—i%<¢> %q)> / (D|D). 7
guantum chemistry; in solid state applications, the com-, . . .
monly used plane waves are such a.s&he condition is _If \ is the position vector of a given 'nucleus, then the fprce
also satisfied if the derivatives of the basis functions with!? E9: (7) is simply the time derivative of the expectation
case, the original HF theorem is satisfied. In order to prov? If we spe.cialize this definition to time-independent prob-
these statements, one writes in matrix notation ems for which

¥=Cy, (5) d(t)=e Ep, €)
From the stationarity principlegE/sW =0, we getsE/SC
=0, so that only the derivativey/d\ survive ingW/dx in Fe— d_E 9)

(a) One requires that the basis set is such that the extrdependent wave functiopsthe force for a given degree of
position vectors; such sets are known as “floating sets” in
respect ton are themselves part of the basis S&t.such a  value of the momentum operator of that nucleus.
where{x} is the basis set an@ the expansion coefficients. We get immediately
Eq. (2). N
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Two most important observations are in order: fittke  or if their derivatives are also members of the set. In order to
reduction of the force definition to the energy-derivativeprove this statement, it is necessary to invoke the fact that in
form is only possible for time-independent probleraed time-dependent problems, the action S defined by
second, for time-independent problems, this reduction is
valid for both exact wave functions and wave functions ex- t
pressed in terms of a finite basis set. These observations S=J <‘D‘H
validate rigorously the long-standing assumption that, for fo
time-independent eigenstate problems, the force can be dfy sationary for a gived, namelysS/ b =0, so that when
fined in terms of the derivative of the energy. They alsoye expand®=Cy, we havesS/6C=0. For plane waves
make clear the fact that, for time-dependent problems, thgng “fioating sets,” the Pulay-like terms are again zero and
rigorous definition of the force is Eq7). the HF force is the exact force. Otherwise, the Pulay-like

We now address the issue of connecting the rigorougerms must be included. Note also that, in the most general
force definition to the HF force in the general case. By d'reCTcase, stationarity of the action does not imply a minimum

differentiation of the definition(7) and use of Eq(6), itis  principle, indicating that the accuracy of the results is very

. Jd
_IECD dt (13)

straightforward to show thafor exact wave functions sensitive to the choice of the approximate wave functions
employedt®

i£<<b iq)> _ < ® ﬁ (IJ>. (10) We can now compare directly the above results with prior

dt I\ I\ literature. As we already remarked, the assertion by Gross

10 H . .
This is the usual Ehrenfest theorem that can be found ir(1at al.” regarding the use of the HF force is rigorously correct

textbook<? In view of Eqs.(7) and(9), we see immediately in the limit of a complete basis set and remains valid when

that for time-independent problems, the Ehrenfest theorer%he generalized Hurley condition is satisfied, as discussed

reduces to Eq(3), namely the HF theorem. In fact, the previously (see a_lso the App_enc)ithherwise, Pulay-like
’ . ’ foEces must be included. It is also clear from the above
Ehrenfest theorem has been referred to as the time-dependen Ivsi hv th | | 122 “th
version of the HF theorer?. One observation is crucial, analysis why the Bala@t al. results® are not correct: the

however. The Ehrenfest theordifag. (10)] is only valid for correct Qeflq|t|on of the force In quantum mechanics is the
: 4 time derivative of the expectation value of the momentum
exact wave functions. When the wave functions are ex-

. . . . operator anahot the \ derivative of the expectation value of
panded in terms of a finite basis set, as in most computa[-he Hamiltonian on time-dependent wave functions
tional work, one must derive the correspondifigite-set P '

Ehrenfest-like theorenWe note that, for finite basis sets, we

no longer have Eq6), but the more restrictive IV. STEADY-STATE TRANSPORT PROBLEM
P We turn now to the transport problem. The general for-
<<I>‘H—i — <1>> =0, (1)  malism above is actually valid for all problems describable
Jt by square-integrable wave functions. The only question,

which is a matrix equation. By direct differentiation and therefore, is one of normalization of wave functions. In the
some algebraic manipulation, we then gbe finite-set eigenstate and variational ground-state problems one deals

Ehrenfest theorem with either finite systemsmolecules, clustejsor with infi-
nite solids for which square-integrability is attained through
d K JH ET0)) 9 periodic Born—von Keman boundary conditions. For trans-
ia<‘b N ‘D>=<‘D N ‘1’> +<ﬁ H_iﬁ <I>> port problems, square-integrability is ensured if one de-

scribes the complete circuit, including, e.g., the battery or
Jlod generator. In the most general case of time-dependent power

+<®H+i pn K>' (12 source, the above time-dependent formalism is completely

valid. For practical calculations, however, one normally

This is the central result of this paper and represents the mogeats a system, say a device D, in contact with electrodes

general form of an HF-like theorem that is applicable to allthat act as reservoirs of electrons and serve merely as bound-

systems and allows a correct and unambiguous definition ciry conditions for the wave function of D. Square integrabil-

forces for practical implementation. Note that this approxi-ity can then be assured by constructing new many-electron

mate form of the Ehrenfest theorem reduces to the exasvave functions from wave packets centered at individual

form, Eq. (10), when the basis is complete, simply becauseone-electron energies.

Eq. (6) and its complex conjugate are then exact. When we For time-independent direct-currendc) steady-state

specialize the finite-set theorem of E@.2) to the time- transport, the most general form of the many-body wave

independent case, we immediately get &). Thus, as is the function of the system D is again as in E§), where nowE

case for time-independent problems, we find that when thés a phase factor with units of energy. Using this form in Eq.

appropriate form of the Ehrenfest theorem is used, the HE13) we find that the action becomes

force isnot necessariljthe correct definition of force. The

extra terms in Eq(12) are the analog of the Pulay forces for S=(P|H-E|P)(t—tg). (14

the time-dependent problem. The Pulay forces can again be

made zero by an appropriate choice of a basis set, as in téhe stationarity of the actidf now yields

time-independent Hurley’s condition. In other words, the Pu-

lay forces are zero if the basis functions do not depend on &(®|H—E|®)=0. (15
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The equation above shows that the dc transport problem cdions: The electrodes can be approximated by jellium only
be rigorously mapped onto a variational problem wherefar from the system-electrode junctions so that the electrode
(P|H|W)/(¥|WP) is the steady-state energy of the system. wave functions can be easily ordered by the asymptotic be-

It differs from the ground-state problem only in the form havior as plane waves. We anticipate that only a few layers
of boundary conditiongclosed versus openAgain, for  of metal atoms would be needed attached to jellium con-
plane waves and “floating sets,” the HF force represents theinua. For the actual calculations, the metal layers are viewed
total force whereas for other sets Pulay-like forces must bas part of the system in the cavity between jellium elec-
included as in Eq(2). trodes. Lang’s formalism can then be used to deterriine

So far our derivations were carried out for the many-bodyand¥ self-consistently, and current-induced forces on atoms
HamiltonianH and wave functionsV' or ®. For practical can be computed as in variational problems in accordance
implementations, one normally separates the nuclear andith the theorem proven in the present pafieFhe spurious
electronic degrees of freedom and treats the nuclei as classesistance introduced by the jellium-metal interface can be
cal particles(see the Appendjx The Hamiltonian then de- calculated separately and subtracted. We note that the dis-
pends parametrically on the nuclear position vectors, whiclerete as well as the continuous spectrum of the whole system
can be treated as's in the present theory. The correspond- can be included in the formalism above in a straightforward
ing forces are the classical forces on the nuclei. For groundway. This is of extreme importance in such phenomena such
state and time-dependent problems the general theory aboas electromigration, where the contributions coming from the
can then easily be cast within the respective Hartree-Fock azontinuous and discrete parts of the spectrum are of the same
density-functional formulations of the many-electron prob-order of magnitudé®
lem. For dc transport, Eq15) allows us to conclude that We conclude with a practical example applying the for-
ground-state density-functional theory is again applicablenulation above to the problem of a Si atom between two
with the steady-state energy of the system D playing the rolelectrodes® The two electrodes are kept at a distance of 4.5
of the ground-state energy. This result provides formal justiA. An external bias is applied between the right and left
fication for the use of one-electron theories for transport calelectrode, the left electrode being positive with respect to the
culations. We note, however, that for the transport problemright electrode. The spectrum of the present system has a
a practical implementation is still lacking for realistic sys- discrete and a continuum component. For the single-particle
tems. We conclude the paper by summarizing the main elewave functions in the discrete part of the spectrum
ments of such a practical scheme. square-integrability is satisfied because thés are local-

We consider the system D and twor more electrodes ized. For each energy in the continuum we build square-
(R andL for right and left. Each of these systems can be jntegrable wave functiong in an energy regiom\, as we
treated separately by density functional theory. Let us desSigstated above:
nate the correspondingjngle-particleHamiltonians byHp ,

Hg, andH . The coupling between the system and the elec- ~
trodes can then be included by defining the total single- l//ZALdEi/f, (17)
particle Hamiltonian as
where A is a normalization constant an@’s are single-
H=Hp+H_ +Hg+H|c+Hkge, (16)  particle wave functions in the continuum. As in Ref. 29 we
choose plane waves to represent the Hilbert spasecord-
where H| . and Hg are Hermitian operators to be deter- ing to Eq.(2), the Pulay-like terms are thus identically zero.
mined. Only the Hamiltonians!| ., Hic, andHp are as-  The forceF acting on the atom at positioR due to the
sumed to depend on the position of the atoms. The externa&lectron distribution as modified by the external bias is thus
electric field is introduced by requiring that, far from the
system, the Fermi-level difference between the left and right oH
electrodes is equal to the desired vatlieAs we showed F:Ei <‘/’i‘ ﬁ“/’i>
above, the steady-state energy of the system is defined in
terms of the ground-state energy functional evaluated witlrhe sum and integral in Eg18) include spin variable too. In
the new wave functions obeying the transport boundarthe present case, no ion-ion interaction must be included.
conditions?* The continuum integrationr covers the part of the spectrum

The most effective approach to a self-consistent determigccupied by the electrons at a given biasTat0, from the
nation ofH| ¢, Hic, and¥ is the Green’s function method, bottom of the conduction band on the left to the quasi-Fermi-
whereH| c+Hgc+Hp is viewed as the perturbation to the level on the righf*
bare electrodes. So far this problem has been addregtded In the case at hand, the force is directed along the direc-
out considering the problem of forces by severaltion perpendicular to the electrode surfaces. The results are
authors?%2>26 A practical scheme has been developed byplotted in Fig. 1 for two different external bias conditions: 0
Lang® by assuming that the electrodes are described by and 3 V28 At zero bias the Si atom has two stable and one
“jellium,” namely, a homogeneous electron gas with a metastable configurations. The stable configurations corre-
smeared-out compensating positive background. Formulaspond to the atom at about 1.2 A from the two metals. The
tions using real metals amot well-suited for practical cal- metastable configuration corresponds to the atom between
culations because of ambiguities in ordering the wave functhe two electrodes. The stable configurations at zero bias
tions by energy® We propose, therefore, the following coincide exactly with the equilibrium positions obtainable
scheme for practical calculations, including force calculafrom standard density-functional total-energy calculatitns.

+ lim frdE<sz‘%Zy>. (18

A—0
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1 electron system with charge densitfr) in an external po-
tential V(r) can be written as a functional of the dengity
0.5t
o<
> E[n]=TS[n]+J V(r)n(r)dr
b 0
~
5 e? n(ryn(r’)
= i i NN '
0.5 ——— 3V + fo = drdr’'+E,{n]. (A1)
—00V
-1 L 1 1

T is the kinetic energy of noninteracting electrons, and
i 0 E,Jd n] is the exchange-correlation energy. The quantum me-
distance (A) chanical problem is solved with variational wave functions.

FIG. 1. Force on a single Si atom between two electrodes sepéﬁ_\ccordlng to Eq(3), the electronic contribution to the force

rated by 4.5 A for two different external biase® V and 3 V. acting on a nuclear degree of freedoms thus
Positive force pushes the atom to the right. Zero distance corre-
sponds to the atom between the two electrodes.

-1. -1 05 0 0.5 1 1.5

dE[n] aVv(r) SE(r) an(r)
O __f Py n(r)dr_f sn on O
The work necessary to bring the atom from one electrode to (A2)
the other can be calculated from the curves in Fig. 1 as the ) o ) )
integral between the metastable and stable configurations. Athere 6E(r)/én is the variation of the functional with re-
zero bias the work done is about 0.5 eV. Applyid VV ac-  Spect to the density. The first term in Eep2) is the HF
cross the electrodeghe left electrode is at the higher bjas force, .Whl|e the secpnd is the Pullay—llke term. If the ionic
the stable positions shift slightly towards the right electrodePotentials are spherically symmetric and their non-Coulomb
due to a transfer of charge on the left electrode. Finally, th®arts do_not_ove_rlap, a plasswal electrostatic term, represent-
activation barrier to bring the atom from its left stable con-iNg the ion-ion interaction, must be added to E42) to
figuration to the new metastable position decreases to abo@Ptain the total force on nuclei.

0.1 eV. The atom is essentially free to jump to the right In time-dependent DFT, Ed6) decouples into a set of
electrode when the bias is 3 V. coupled equations for all electrong and nuclei¢; (with

chargeZz;) under external time-dependent potentislig ,t)
andV(A,t), respectively,
V. CONCLUSIONS

We presented a general HF theorem that applies to all
guantum mechanical systems and allows a rigorous defini-
tion of forces in all cases, including those where a finite basis
set is used to represent the system wave functions. In the n(r’)
latter case, Pulay-like forces arise that can be set to zero with + J
a particular choice of the basis functions. We also presented

.0 B
|Ez,//i(r,t)— Tn]+V(r,t)

dr,+Exc[n]) lﬁi(r,t),

[r=r’|

a practical scheme for transport calculations in nanostruc- (A3)
tures that includes current-induced forces on atoms. The lat- | B
ter scheme is particularly important nowadays to provide 'ﬁd’i()"t)_ Th+VI\H—Z
valuable insight into current effects on molecular devices.
n(r’)
X dr,+EXC[n]()\!t) ¢i()\1t)y
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n(r’) Vi,on(r’)
xf Y (A4)

+ .
2 | )
APPENDIX: FORCES IN DFT (t)—r’| INi(t) =]

We explicitly write in this appendix the expressions of the The last term of Eq(A4) is the Pulay-like force in time-
HF forces in DFT. We recall that the total energy of a many-dependent DFT.
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