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Photonic band structure of Sierpinski waveguide networks
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The photonic band structure and transmission properties of Sierpinski fractal net(&\ks made of
one-dimensional waveguides are studied with the generalized eigenfunction method. In the absence or presence
of dissipation and in different exit situations, we have numerically calculated the transmission coefficient as a
function of frequency in the range 0-500 MHz for the first four generations of SNs. As the number of
generations is increased, the structures in the transmission spectra show explicitly the evolution of discrete
eigenmodes and the corresponding photonic band gap structures in such fractal networks. The gap structures
are not altered by the presence of dissipation and are independent of the exit situation. An interesting anomaly
due to dissipation is found at certain frequencies where a resonant peak is split into two peaks with zero
transmission in the valley.

[. INTRODUCTION work system. First, strong scattering can be easily introduced
in a unit cell to produce large full gaps in any dimension.

In the last decade, the localization of classical waves inTherefore unlike the usual PBG systems, these systems do
random media has been under intensive sfudylike elec-  not require a material with a large dielectric constant. Sec-
tron localization, the localization of classical waves is purelyond, the wave function at each node is physically accessible
a result of multiple scattering in a random environment andso that 3D localized wave functions can be probed. On the
free from the complications arising from interaction effects.same lines, Dobrzynski al,'° Vasseuet al,'! and Pradhan
However, due to Rayleigh scattering at low frequencies, it isnd Watsoff have also reported interesting work.
more difficult to localize classical waves than to localize Although photonic band gaps can be created in periodic
electrons. Photonic band gépBG) materials have also been networks, gaps may also exist in other network systems
greatly studied during the past dec&d&The existence of without periodicity, such as fractal networks:!® Due to
gaps in photonic crystals where electromagnetic waves arheir self-similar structures, fractals are much more compli-
forbidden has important implications in both fundamentalcated to study when compared with periodic systems. One of
science and technological applications. It has been pointethe main points of interest has been the fact that these self-
out that it is easier to observe localized states inside the bargimilar objects are found to serve as a nontrivial model for
gap of a disordered PBG systénThe localization of elec- the backbone of some transport problems. Fractals, in par-
tromagnetic waves has been observed in one-dimensionttular deterministic fractals, such as the Sierpinski gasket
(1D) and 2D PBG materials® For 3D systems, efforts have (SG) fractal, possess some special properties, one of which is
been focused only on wave localization in random mediascale invariance, and do not have any translational order. In
The effects arising from wave localization have been refact they bridge the gap between periodic and disordered
ported in microwave experimentsalthough direct interpre- systems. In the past, the spectrum of eigenmodes as well as
tation of localization was complicated by the presence othe wave functions for SGs have been extensively studied for
large absorption. Direct evidence of light localization hasboth electronic systems and harmonic excitatith® In
also been reported in strongly scattering media of semicorsuch systems, there exist many structure-induced localized
ductor powders based on the size dependence of the trarstates, which are different in nature from the Anderson local-
mission coefficienf. Very recently Zhanget al® have pro- ized states that are caused by the multiple scattering of waves
posed a class of PBG systems that are networks connected loya random environment. Besides localized states, there also
segments of 1D waveguides. By introducing randomnessxist an infinite number of extended states for an isolated
into such systems, they have directly observed the Anderso®8G1"*8The effects of magnetic field on the electronic struc-
localized wave functions inside the photonic band gap, deture of SGs have also been studi@dliu and co-workers2°
spite the presence of dissipation. Excellent quantitativéhave developed a generalized eigenfunction meti@EM)
agreement between the theory and experiments has been db-study the electronic transport properties of an open SG
tained for both transmission coefficients and localized wavevhich is connected to electron reservoirs. The electronic lo-
functions. There are two important advantages of the netealization induced by the fractal structure and by the quan-
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tum coherence effect has been systematically studied. The
results of this work suggest that there could be photonic band
gaps for the propagation of electromagnetic waves through
Sierpinski networks(SNg. Motivated by this analogy, we
choose to study the wave propagation and photonic band gap
structure in SNs. Because the network equations of SNs can
be mapped to the zero-energy single-electron tight-binding
equation, we can use the GEM to numerically study the pho-
tonic band structure in the microwave range 0—-500 MHz.
We have calculated the transmission spectra for the first four
generations of SNs. The fourth generation cont&ins123
nodes. In each generation of SNs we consider both the cases
of single and double exist. The effects due to dissipation are
also studied. The numerical results display how the exit situ-
ation and dissipation effect can influence the magnitude of
the transmission coefficient but not the photonic band struc-
ture. We have observed the interesting evolution of discrete
eigenmodes as well as the photonic band gap structure fol- FIG. 1. The fourth-generation Sierpinski network, the electro-
lowing the enlargement of Sierpinski networks. We showmagnetic wave transmission properties of which are studied in the
explicitly that the resonant frequencies in a transmissioriext.

spectrum coincide with the eigenfrequencies of the isolated

SN. We have also found an anomalous behavior of the trans- sint{ (I};—s)z] sinh(sz)

mission coefficient due to dissipation at the frequencies that $ij(S)= o SNl 2) iSinfl-2)’ 2
correspond tk=27n (n=0,1,2,3,...), wherd is the wave N N

vector in units of m<. This anomaly can be explained by wherel;; is the length of the segmenf; andy; are, respec-
using a mathematical analysis. Since we have adopted twidvely, the values of the wave function at the nodesndj,
realistic parameters used in Ref. 9 for dissipation, all theand z= (i w/cy) Je. At each nodei, the wave function is
results obtained here should also represent experimentabntinuous and the derivative of the wave function at the

measurements in a quantitative way. nodei gives the following flux conservation condition:
This paper is organized as follows. In Sec. I, we derive

the Sierpinski network equation and describe how to use the D i¢__(s) -0 3)

generalized eigenfunction method to calculate the transmis- T los T .o '

sion and reflection coefficients of Sierpinski networks. The o . )
numerical results and discussions of the photonic band stru¢vhere the summatiopis over all the nodes linked directly to
ture as well as the transport properties of electromagnetit Substituting Eq.(2) into Eq. (3) we obtain the network
waves in SNs are presented in Sec. IIl. A brief summary ig€duation
given in Sec. IV.
1

— >, coth(6;))+ >, W%:O’ (4)
II. NETWORK EQUATIONS AND GENERALIZED : : !
EIGENFUNCTION METHOD FOR SIERPINSKI where ¢;;=2zl;; . If we compare Eq.(4) with the single-

WAVEGUIDE NETWORKS electron tight-binding equatiéh??

Following the work of Zhanget al.® we use coaxial
cables as 1D waveguides for the SNs. In Fig. 1, we show a (ei—E) ¢i=2 tijd, ®)
fourth-generation SN that contaifé=123 nodes. In gen- :
eral, we start with a network formed by waveguide segmentsvidently Eq.(4) represents the zero-energy state with corre-
of variable length. Each segment has a single channel fdated site energy
wave propagation. The electromagnetic wave functign
W|th|n any segment between nodl_eandj satisfies the fol- sizz coth 6;))
lowing homogeneous wave equatith: i J

and hopping matrix element
(921#”(3) 8w2 1
(952 C(2) 1,0”(5), ( ) tij::L/SlnI'( 0”)

For this reason we can use the generalized eigenfunction
wherew =2=f is the frequency of the electromagnetic wave, method for the single-electron tight-binding equation to deal
¢, is the electromagnetic wave speed in vacuum, sisthe ~ with the present electromagnetic wave transport probdfem.
distance measured from nodeFor a coaxial cabley de-  In the following we rewrite separately the network equation
notes the voltage waves amsd=e,+ie’ is the relative per- (4) in the absence and presence of dissipation. In the former
mittivity of the dielectric medium. It is known that the solu- cases’ =0, e=¢,, S0 the wave vectok=w/gq/Co. Equa-
tion of Eq. (1) has the fornr?! tion (4) can be rewritten as
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— 2 o)+ 2 o =0, 6) 4
" 14 S'n(au) : > 314 /t
whered;; =kl;; . Now we assume that all segments in the SN 1 2 5_6
are of equal length, which is chosenlgs=1(m), for sim-
plicity. In this case, the network equati®8) is reduced to T 3 > \‘t
(@)

—na¢i+; wl:o’ @) FIG. 2. First-generation Sierpinski network connected with a
) ) signal generator(entrancg and a spectrum analyzeexit): (a)
wherea=cosk, k has units of m', andn is the number of single-exit casefb) double-exit case.

nearest-neighbor nodes. ' _ S .
In the presence of dissipation, we introduce a new paramWe start from the first-generation Sierpinski network with a
eterz, single exit as shown in Fig.(d). In the absence of dissipa-

tion, Eq.(7) gives

g’ 1/2

2= o= e

Becauses' <gg, if only the first-order term of the Taylor day—y— h3— thy— h5=0,
expansion is kept, we have

1+| 3alp2_¢'1_2(ﬂ3:0,

2a,— 3= P5=0,
N

Further, we can introduce an absorption lengtre,/ke’ to
simplify the above expression, i.e.,

1+i =ik——.

'2 ) " 2o 5ays— 24— 23— 1hs=0. ©

On the other hand, for the special nodes at the entrance and
the exit we can write down the wave functiong%s

i pp—r=1,

2l 21)°

o1
z=ik— =il k+ o
1/;2—re"k=e'k,
To simulate the experiment conditidnse need to incorpo-

rate an additional dissipation due to connectors into the the- Ps—t=0,
oretical calculation. For this purpose we add a consjatut
the termszl;;, i.e., we replacel;; by zl;;+ y. Thus, in the pe—te*=0, (10)

presence of dissipation, the network equation becomes ) . )
wherer andt are the reflection and transmission amplitudes

of the outgoing waves, respectively. To numerically solve
—n(a+ib) i+ >, %;=0, (8)  this problem we can use the generalized eigenfunction
j method which was developed to deal with the electronic

transport problems of Sierpinski gasket lattic®The trick

where of the GEM lies in that we treat the amplitudesndt like
_ _ the wave functiong}; . In this way the coupled equatioK8)
_1 12,12 [
a=z (e’ te 7)cosk, and (10) can be rewritten as a matrix equation of ordr
+2, whereN is the number of nodes in the Sierpinski net-
b=13 (e? Y2 —eV2~7)sink. work:
[—1 3a -2 0 0 0 0 o7 _ _ .
0 -1 (4a-1) -1 -1 0 0 0 Zl 8
2
0 0 -1 2a -1 O 0 0 Vs 0
0 0 -2 -2 5a -1 0 0 Vs 0
1 0 0 0O 0 0 -1 0 gs| | 1
. ik
0o 1 0 0 0 0 -ek o || eo
;
0 0 0 0 1 0 0 - 1. ¢ 0
L0 © 0 o o0 1 e k]t T T
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If we denote the above matrix equation as —yp+[4(a+ib)—1]¢y— yy— h5=0,

MW¥=C, (17) — s+ 2(a+ib) iy, — Ps=0,

then the reflection and transmission amplitudes become )
— 23— 244+ 5(a+ib) s— =0,

r=¥,=(M"'C)y, (12
¢l_ r= 1,
t=Wg=(M"'C)s. (13 o
. . . . yp—re k=gl
The transmission and reflection coefficients are simply
=|t|? andR=|r|?, respectively. Evidently, the numerical so- Ys—t=0
lution of Egs.(11)—(13) is easy to obtain even with a PC. ’
In the presence of dissipation, from E®), the network Ye—tek=0.

equation can be written as . . ) . )
The corresponding generalized eigenfunction matrix equa-

—in+3(at+ib),—2¢3=0, tion becomes
[—1 3(a+ib) -2 0 0 0 0 07. _ - _
0 -1 [4@a+ib)-1] -1 1 0 o 0 zl g
. 2
0 0 -1 2(a+ib) -1 0 0 0 || 4, 0
0 0 -2 -2 5(a+ib) -1 0 0 W 0 14
1 0 0 0 0 0 -1 o [|¥s| |1 (14
. ik
0 1 0 0 0 0 —ek o ||¥ eo
r
0 0 0 0 1 0 0 -1 t 0
e 0 0 0 0 1 0o —ekj° ° - -
|
The above matrix equation can again be denotedvals — Yyt 3aP,— Ps— Yg=0,
=C, and the formal solutions for the reflection and transmis-
sion amplitudes remain the same as H4®) and(13). The —th3— Y+ 2ay5=0,
generalized eigenfunction method is a very flexible approach
to studying the transport property of a network system that Y—r=1,
contains large number of nodes. For example, in the absence ' _
of dissipation, the network equation and its corresponding Yro—re k=glk
matrix equation for the first generation of SN’s wittvo
exits as is shown in Fig. @), can be written as Ps—t=0,
- ¢1+ 3alﬂ2_2¢3:0, llf6_teik:O.
— it (4a—1)s—hy— h5=0, and
-1 3a -2 0 0 0 o7 . _ .
0 -1 (4a-1) -1 -1 0 0O 0 gl 8
0O 0 -1 3 -1 -1 0 0 wi 0
0o 0 -1 -1 2a 0 0 0 ||y, 0
1 0 0 o 0 o0 -1 0 gs| | 1
. ik
o 1 0 0 0 0 -ek o ||V eo
r
0 0 0 1 0 0 0 -1 ¢ 0
L 0 © 0 0o o0 1 e .
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FIG. 3. Transmission coefficiefitas a function of frequency for FIG. 4. The same as Fig. 3 for second-generation Sierpinski

the first-generation Sierpinski networta) For the case of a single networks. Compared with Fig. 3, the antiresonant transmission dips

exit, the solid and dotted curves are the results with and withoufvalleys have now developed into photonic band gaps.

dissipation, respectivelyb) The same a&) for the case of double

exits; hereT is the value in either one of the two exits. due to connectors. Following Ref. 9, we choose
=1702f %% wherel is in units of m andy=—0.0075. The

respectively. For simplicity, in the above treatment we havevalue ofeg is taken as 2.32. Thus, in the numerical calcula-

used the symmetry between two exits. This treatment is rigtion we can take

orous, because there is no phase difference between two out-

going waves, which is different from the electronic transport _ 277\/8—0 10°
properties in the presence of magnetic féld? As in the K=599700518 -

single-exit case, if we denote the above matrix equation as

MW =C, we are able to obtain the reflection and transmis-The frequency range of interest here is 0-500 MHz. To ex-
sion amplitudes from Eq$12) and(13). In this case the total amine thg accuracy of our numerical calculations, we check
transmission and reflection coefficients becofme2|t|2 and ~ at every intermediate stage of the calculation so that the cri-
R=|r|?, respectively. terion T+ F_2= lis sz_itisfied to very high accuracy.

We would like to point out that it is easy to extend the _ The main numerical results are shown in Figs. 3-8 below.
above formalism to higher generations of SNs and othefhe transmission spectra for the first generation are ghown in
more complicated situations, such as with many entrancesig- 3. The transmission spectra for the second, third, and
and exits or with disordered elemerisegment length, struc- fourth generations are shown in Figs. 4, 5, and 6, respec-
ture). In the present article we use this GEM to calculate theively. In all of these figures the plot(®) are for the case of
transmission spectrum of SNs up to four generations for botR Single exit, and plotgb) are for the case of double exits.
single and double exits. To save space we will not writeThe solid and dotted curves represent the results with and
down the network equations and their corresponding matrixvithout dissipation, respectively. From the numerical results
equation for the higher generations of SNs, but directlyobtained, we can observe interesting transmission properties

present the numerical results and discuss the electromagne@& Well as the photonic band gap structure, which are com-
wave transport properties in SNs. mon for different generations of SNs. First, from Fig. 3 we

observed that even in this simplest Sierpinski network with
only six nodes photonic band gaps have appeared around 100
MHz in the first period. In the absence of dissipation, the
The formalism presented in Sec. Il can be easily impletransmission spectruri(f) (the dotted curveis periodic
mented numerically and the results for both single andvith a period 196.8 MHz, which corresponds th
double exits have been obtained up to the fourth generatior 27 (m™1). The periodic structure i (f ) is a result of a
of SNs withN=123 nodes. With these four generations, wesingle length used for all waveguides in the entire network.
have already seen the main characteristics of wave transporhis can also been seen from the network equation and trans-
in SNs. In order to make our results ready for experimentamission amplitude formulagll) and(12), wherek appears
comparisol we have considered the dissipation effect byin the form ofe'*. In the presence of dissipatidthe solid
including the absorption length and the additional dissipatiorcurves, the reduction in the transmission coefficient in-

IIl. NUMERICAL RESULTS AND DISCUSSION
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FIG. 5. Same as Fig. 3 for third-generation Sierpinski networks. k|G, 6. Same as Fig. 3 for fourth-generation Sierpinski net-
Compared with Figs. 3 and 4, there are more photonic band gapgyorks, More &-like resonant transmission peaks and photonic band
and Fh_e dissipation effect has greatly depressed the transmissi%ps have developed. The dissipation effect has drastically de-
coefficient. pressed the transmission coefficient.

creases with the frequency. This is expected due to the fre-
quency dependence of the absorption length, li-ek %% (1) The number of resonant transmission peaks progres-
By comparing Figs. @ and 3b), it is easy to see that the sively increases, from three peaks in a period for the first
position of the resonant peak does not depend on the exifeneration to fifteen peaks for the fourth generation, the
situation. This is expected as these peak positions represepaks also becoming sharper and sharper. It is easy to under-
the eigenfrequencies of the system and should not be senstand these results. As the size of the SN is increased, there
tive to the exit situation. They should also not be much al-are more nodes in the system. Stronger multiple scattering
tered by the presence of modest dissipation. A direct verifiallows more states with wavelengths smaller than the sample
cation of this point will be made later. size to appear. Also, the stronger multiple scattering in-
In the absence of dissipation, the difference caused by thereases the dwell time of a resonant state and, therefore,
exit situation lies in the magnitude df. In the case of a makes the peak sharper. As a consequence, sharper resonant
single exit[Fig. 3@], the largest resonant peaks are locatedpeaks as well as antiresonant dipalley shapgwill develop
atf=0 as well as other periodic positions witl=1. Thisis  into photonic band gaps in the higher generation of SNs.
also expected if we consider the entire SN as a single scafhis phenomenon can be clearly seen if we compare Fig. 4
terer in a one-dimensional system. In the long-wavelengtlwith Fig. 3. Also, since the number of resonant states in-
limit, the scattering becomes weak afdapproaches unity. creases with system size, more photonic band gaps appear in
However, this is no longer true for the case of double exitghe higher generations of SNs. These resonant peaks become
[Fig. 3(b)], where all the resonant peaks have the same mags-like functions in the higher generations as can be seen in
nitude |t|2,,,=0.45 for either one of the two exits. The total Fig. 6. Thus, we have observed the evolution and the appear-
transmission has a maximum valdg,,,=0.9 even in the ance of more discrete eigenmodes as the size of the SN is
zero-frequency limit. As for the transmission at other reso4increased. However, the main gap centered around 100 MHz
nant frequencies, the total transmission of double exits isemains unchanged.
larger than that of a single exit. This point can also be ob- (2) Following the enlargement of the SN, the influence of
served in the higher-generation SNs. An intuitive explanadissipation effects on the transmission is also increased. The
tion for this phenomenon could be that for the case of doubléransmission coefficienT decreases more drastically, i.e.,
exits, waves can propagate directly from the entrance to th&som T, around 0.6 at the first generation T,,<0.1 at
two exits through straight and direct channels, whereas, ithe fourth generation. This is reasonable because, in a larger
the case of a single exit, more waves will be reflected at thé&N, the electromagnetic wave undergoes longer path lengths
two corners on the output side. and is scattered by more nodes, both of which enhance the
Following the enlargement of the Sierpinski network, i.e.,dissipation effect.
for the higher generations of SNs, the transmission spectra The above discussion describes the main properties of
become more complicated. Comparing the results of the firstlectromagnetic wave propagation in Sierpinski waveguide
four generations of SNs shown in Figs. 3—6, we can observeetworks. Here we would like to ask two more questions.
the following phenomena. First, would the eigenfrequencies of an isolated SN give the
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FIG. 7. DeterminanM as a function of frequency for the first-
generation Sierpinski network. Comparing this figure with Fig. 3, it
is clear that the eigenfrequencies of isolated Sierpinski networks
coincide with the frequencies of resonant transmission peaks.

same photonic band structures as that obtained from the
transmission study? We have noticed that the photonic band
structure is independent of the exit number and dissipation
effects, which lets us guess that the photonic band structure
should be related to an intrinsic property of the Sierpinski
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eigenmode spectrum of aisolated first-generation SN,
which is shown in Fig. 2 but without connecting waveguides

FIG. 8. An enlarged picture of Fig. 6 around frequency 196

at entrance and exits. For this isolated SN network, the mavHz for the fourth-generation Sierpinski network with a single

trix equation can be written as

[2a -1 -1 0 0 O
-1 4a -1 -1 -1

-1 -1 4a 0 -1 —1{| y,
0 -1 0 2a -1 0 s
0 -1 -1 -1 4a -1|| ¥s
0 0 -1 0 -1 2al|-

I
O OO O oo

The above matrix equation can be written Mg/=0. We
numerically evaluated the determindh| as a function of
frequencyf and show the result in Fig. 7. The frequency

exit: (a) for the case without dissipation, arfl) for the case with
dissipation.

tures obtained from transmission spectra are dictated by the
eigenmodes of the system and are independent of the exit
situation and dissipation effects. The second question is that
in Figs. 3—6 we have noticed a phenomenon caused by dis-
sipation, i.e., at frequenciels=nXx 196 MHz, which corre-
spond tok=2n7 (n=0,1,2,...)(m"%). The transmission co-
efficient has a double-peak structure withTa=0 valley,
when dissipation is included. In the absence of dissipation
there is only a single peak with=1. We enlarge this por-
tion of T(f) for the fourth generation of SNs and plot it in
Fig. 8. To understand the cause of this splitting, we use the

where the determinant vanishes corresponds to an eigenfrisllowing mathematical analysis. Wherk=2nm (n

quencyfq of the SN. By comparing Fig. 3 with Fig. 7, we

=0,1,2,..)(m™ %), we haveb=0, e*=1, and the matrix

do find that the resonant frequencies coincide with the eigenequation(14) reduces to the following homogeneous matrix

frequencied ¢jq. This confirms that the photonic band struc-

-1 3a -2 0o o0
0 -1 (4a-1) -1 -1
0 o0 -1 2a -1
0o o -2 -2 b5a
1 0 0 0 0
0o 1 0 0 0
0 o0 0 0o 1

L0 0 0 0 0

equation:
o o o7 . _ .
o o olfl %) |©
0 0 0 Z 8
1 0 0| g, 0
0 -1 o] v | |O
0 -1 of|l ¥ | |0
r+1 0
o o -1l , 0
1 0 -1)- 7t
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It is easy to show that the determinant Mf has the form the additional dissipation due to connectors. Since all the
IM|=(a—1)(126%+26a2—21a—5). In the case of no dis- segments in the network are of the same ler{dthm), the
sipation, sincea=cosk=1, |M| equals zero and there exists transmission spectrum is periodic with a period 196.8 MHz.
a nontrivial solution. However, in the presence of dissipa-The effect of dissipation is to decrease the transmission spec-
tion, a# 1, as can be seen from E@), and|M|+0. In this  tra in a systematic way. The structures in the transmission
case, there exists no nontrivial solution. This implies spectra are found to be insensitive to the exit situation as
—1 andt=0, or T=0. This explains the splitting of a peak well as to the presence of dissipation. They are closely re-
into two with aT=0 valley in the middle as is shown in Fig. lated to the eigenfrequencies of isolated SNs.
8. This splitting is due to an intrinsic property of SNs and is  Following the enlargement of the Sierpinski network, the
not related to the exit situation. Therefore, similar splitingnumber of resonant peaks progressively increases and the
appears in the case of double exits as is shown in Figg—3 photonic band structures become complicated. Both the
6(b). number and depth of the antiresonant transmission (dgds
leys) are increased; these valleys will develop into photonic
IV. BRIEF SUMMARY band gaps in the higher generations of SNs. On the other
hand, following the enlargement of the SN system the influ-
The main purpose of the present article is to study thence of dissipation effects on the transmission coefficient is
photonic band structure of Sierpinski networks consisting oenhanced. One interesting effect of dissipation is to split the
1D waveguides. The existence of photonic band gaps is gesonant peaks that correspondkte 27zn (m™) into two

result of the self-similar structure, -nOt due to perIOdICIty eaks with zero transmission in the Va”ey_ An ana|ytic ex-
Because the present network equation can be mapped to theession is used to explain this anomaly.

zero-energy single-electron tight-binding equation, it can be

numerically solved by using the generalized eigenfunction

method. We have investigated the wave transport properties
of the SN for the first four generations. Both cases of single This work was supported by the National Natural Science
and double exits have been considered. To simulate the exoundation of China, Project No. 19874021. Z. Q. Zhang
perimental conditions we have also investigated the dissipacknowledges support from Research Grant No. HKUST
tion effect by introducing a realistic absorption length and6112/98p.
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