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Photonic band structure of Sierpinski waveguide networks
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The photonic band structure and transmission properties of Sierpinski fractal networks~SNs! made of
one-dimensional waveguides are studied with the generalized eigenfunction method. In the absence or presence
of dissipation and in different exit situations, we have numerically calculated the transmission coefficient as a
function of frequency in the range 0–500 MHz for the first four generations of SNs. As the number of
generations is increased, the structures in the transmission spectra show explicitly the evolution of discrete
eigenmodes and the corresponding photonic band gap structures in such fractal networks. The gap structures
are not altered by the presence of dissipation and are independent of the exit situation. An interesting anomaly
due to dissipation is found at certain frequencies where a resonant peak is split into two peaks with zero
transmission in the valley.
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I. INTRODUCTION

In the last decade, the localization of classical waves
random media has been under intensive study.1 Unlike elec-
tron localization, the localization of classical waves is pur
a result of multiple scattering in a random environment a
free from the complications arising from interaction effec
However, due to Rayleigh scattering at low frequencies,
more difficult to localize classical waves than to locali
electrons. Photonic band gap~PBG! materials have also bee
greatly studied during the past decade.2–4 The existence of
gaps in photonic crystals where electromagnetic waves
forbidden has important implications in both fundamen
science and technological applications. It has been poin
out that it is easier to observe localized states inside the b
gap of a disordered PBG system.3 The localization of elec-
tromagnetic waves has been observed in one-dimensi
~1D! and 2D PBG materials.5,6 For 3D systems, efforts hav
been focused only on wave localization in random med
The effects arising from wave localization have been
ported in microwave experiments,7 although direct interpre-
tation of localization was complicated by the presence
large absorption. Direct evidence of light localization h
also been reported in strongly scattering media of semic
ductor powders based on the size dependence of the t
mission coefficient.8 Very recently Zhanget al.9 have pro-
posed a class of PBG systems that are networks connecte
segments of 1D waveguides. By introducing randomn
into such systems, they have directly observed the Ande
localized wave functions inside the photonic band gap,
spite the presence of dissipation. Excellent quantita
agreement between the theory and experiments has bee
tained for both transmission coefficients and localized w
functions. There are two important advantages of the n
PRB 610163-1829/2000/61~23!/16193~8!/$15.00
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work system. First, strong scattering can be easily introdu
in a unit cell to produce large full gaps in any dimensio
Therefore unlike the usual PBG systems, these system
not require a material with a large dielectric constant. S
ond, the wave function at each node is physically access
so that 3D localized wave functions can be probed. On
same lines, Dobrzynskiet al.,10 Vasseuret al.,11 and Pradhan
and Watson12 have also reported interesting work.

Although photonic band gaps can be created in perio
networks, gaps may also exist in other network syste
without periodicity, such as fractal networks.13–16 Due to
their self-similar structures, fractals are much more com
cated to study when compared with periodic systems. On
the main points of interest has been the fact that these
similar objects are found to serve as a nontrivial model
the backbone of some transport problems. Fractals, in
ticular deterministic fractals, such as the Sierpinski gas
~SG! fractal, possess some special properties, one of whic
scale invariance, and do not have any translational orde
fact they bridge the gap between periodic and disorde
systems. In the past, the spectrum of eigenmodes as we
the wave functions for SGs have been extensively studied
both electronic systems and harmonic excitations.13–18 In
such systems, there exist many structure-induced local
states, which are different in nature from the Anderson loc
ized states that are caused by the multiple scattering of wa
in a random environment. Besides localized states, there
exist an infinite number of extended states for an isola
SG.17,18The effects of magnetic field on the electronic stru
ture of SGs have also been studied.18 Liu and co-workers19,20

have developed a generalized eigenfunction method~GEM!
to study the electronic transport properties of an open
which is connected to electron reservoirs. The electronic
calization induced by the fractal structure and by the qu
16 193 ©2000 The American Physical Society
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tum coherence effect has been systematically studied.
results of this work suggest that there could be photonic b
gaps for the propagation of electromagnetic waves thro
Sierpinski networks~SNs!. Motivated by this analogy, we
choose to study the wave propagation and photonic band
structure in SNs. Because the network equations of SNs
be mapped to the zero-energy single-electron tight-bind
equation, we can use the GEM to numerically study the p
tonic band structure in the microwave range 0–500 MH
We have calculated the transmission spectra for the first
generations of SNs. The fourth generation containsN5123
nodes. In each generation of SNs we consider both the c
of single and double exist. The effects due to dissipation
also studied. The numerical results display how the exit s
ation and dissipation effect can influence the magnitude
the transmission coefficient but not the photonic band str
ture. We have observed the interesting evolution of disc
eigenmodes as well as the photonic band gap structure
lowing the enlargement of Sierpinski networks. We sh
explicitly that the resonant frequencies in a transmiss
spectrum coincide with the eigenfrequencies of the isola
SN. We have also found an anomalous behavior of the tra
mission coefficient due to dissipation at the frequencies
correspond tok52pn (n50,1,2,3,...), wherek is the wave
vector in units of m21. This anomaly can be explained b
using a mathematical analysis. Since we have adopted
realistic parameters used in Ref. 9 for dissipation, all
results obtained here should also represent experime
measurements in a quantitative way.

This paper is organized as follows. In Sec. II, we der
the Sierpinski network equation and describe how to use
generalized eigenfunction method to calculate the transm
sion and reflection coefficients of Sierpinski networks. T
numerical results and discussions of the photonic band st
ture as well as the transport properties of electromagn
waves in SNs are presented in Sec. III. A brief summary
given in Sec. IV.

II. NETWORK EQUATIONS AND GENERALIZED
EIGENFUNCTION METHOD FOR SIERPINSKI

WAVEGUIDE NETWORKS

Following the work of Zhanget al.,9 we use coaxial
cables as 1D waveguides for the SNs. In Fig. 1, we sho
fourth-generation SN that containsN5123 nodes. In gen-
eral, we start with a network formed by waveguide segme
of variable length. Each segment has a single channel
wave propagation. The electromagnetic wave functionc i j
within any segment between nodesi and j satisfies the fol-
lowing homogeneous wave equation:21

]2c i j ~s!

]s2 5
«v2

c0
2 c i j ~s!, ~1!

wherev52p f is the frequency of the electromagnetic wav
c0 is the electromagnetic wave speed in vacuum, ands is the
distance measured from nodei. For a coaxial cable,c de-
notes the voltage waves and«5«01 i«8 is the relative per-
mittivity of the dielectric medium. It is known that the solu
tion of Eq. ~1! has the form15,21
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c i j ~s!5c i

sinh@~ l i j 2s!z#

sinh~ l i j z!
1c j

sinh~sz!

sinh~ l i j z!
, ~2!

wherel i j is the length of the segment,c i andc j are, respec-
tively, the values of the wave function at the nodesi and j,
and z5( iv/c0)A«. At each nodei, the wave function is
continuous and the derivative of the wave function at
nodei gives the following flux conservation condition:

(
j

F ]

]s
c i j ~s!G

s50

50, ~3!

where the summationj is over all the nodes linked directly to
i. Substituting Eq.~2! into Eq. ~3! we obtain the network
equation

2c i(
j

coth~u i j !1(
j

1

sinh~u i j !
c j50, ~4!

where u i j 5zli j . If we compare Eq.~4! with the single-
electron tight-binding equation20,22

~« i2E!c i5(
j

t i , jc j , ~5!

evidently Eq.~4! represents the zero-energy state with cor
lated site energy

« i5(
j

coth~u i j !

and hopping matrix element

t i j 51/sinh~u i j !.

For this reason we can use the generalized eigenfunc
method for the single-electron tight-binding equation to d
with the present electromagnetic wave transport problem19

In the following we rewrite separately the network equati
~4! in the absence and presence of dissipation. In the for
case«850, «5«0 , so the wave vectork5vA«0/c0 . Equa-
tion ~4! can be rewritten as

FIG. 1. The fourth-generation Sierpinski network, the elect
magnetic wave transmission properties of which are studied in
text.



N

am

r

th

a
-

and

es
lve
tion
nic

t-

a

PRB 61 16 195PHOTONIC BAND STRUCTURE OF SIERPINSKI . . .
2c i(
j

cot~u i j !1(
j

1

sin~u i j !
c j50, ~6!

whereu i j 5kl i j . Now we assume that all segments in the S
are of equal length, which is chosen asl i j 51(m), for sim-
plicity. In this case, the network equation~6! is reduced to

2nac i1(
j

c j50, ~7!

wherea5cosk, k has units of m21, andn is the number of
nearest-neighbor nodes.

In the presence of dissipation, we introduce a new par
eterz,

z5
iv

c0
A«5

iv

c0
A«0S 11 i

«8

«0
D 1/2

.

Because«8,«0 , if only the first-order term of the Taylo
expansion is kept, we have

z5
iv

c0
A«0S 11 i

«8

2«0
D5 ik2

k«8

2«0
.

Further, we can introduce an absorption lengthl 5«0 /k«8 to
simplify the above expression, i.e.,

z5 ik2
1

2l
5 i S k1

i

2l D .

To simulate the experiment conditions9 we need to incorpo-
rate an additional dissipation due to connectors into the
oretical calculation. For this purpose we add a constantg to
the termszli j , i.e., we replacezli j by zli j 1g. Thus, in the
presence of dissipation, the network equation becomes

2n~a1 ib !c i1(
j

c j50, ~8!

where

a5 1
2 ~eg21/2l1e1/2l 2g!cosk,

b5 1
2 ~eg21/2l2e1/2l 2g!sink.
-

e-

We start from the first-generation Sierpinski network with
single exit as shown in Fig. 2~a!. In the absence of dissipa
tion, Eq. ~7! gives

3ac22c122c350,

4ac32c22c32c42c550,

2ac42c32c550,

5ac522c422c32c650. ~9!

On the other hand, for the special nodes at the entrance
the exit we can write down the wave functions as20

c12r 51,

c22re2 ik5eik,

c52t50,

c62teik50, ~10!

wherer and t are the reflection and transmission amplitud
of the outgoing waves, respectively. To numerically so
this problem we can use the generalized eigenfunc
method which was developed to deal with the electro
transport problems of Sierpinski gasket lattices.19 The trick
of the GEM lies in that we treat the amplitudesr and t like
the wave functionsc i . In this way the coupled equations~9!
and ~10! can be rewritten as a matrix equation of orderN
12, whereN is the number of nodes in the Sierpinski ne
work:

FIG. 2. First-generation Sierpinski network connected with
signal generator~entrance! and a spectrum analyzer~exit!: ~a!
single-exit case;~b! double-exit case.
3
21 3a 22 0 0 0 0 0

0 21 ~4a21! 21 21 0 0 0

0 0 21 2a 21 0 0 0

0 0 22 22 5a 21 0 0

1 0 0 0 0 0 21 0

0 1 0 0 0 0 2e2 ik 0

0 0 0 0 1 0 0 21

0 0 0 0 0 1 0 2e2 ik

4 3
c1

c2

c3

c4

c5

c6

r
t

4 53
0
0
0
0
1

eik

0
0

4 .
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If we denote the above matrix equation as

MC5C, ~11!

then the reflection and transmission amplitudes become

r 5C75~M 21C!7 , ~12!

t5C85~M 21C!8 . ~13!

The transmission and reflection coefficients are simplyT
5utu2 andR5ur u2, respectively. Evidently, the numerical so
lution of Eqs.~11!–~13! is easy to obtain even with a PC.

In the presence of dissipation, from Eq.~8!, the network
equation can be written as

2c113~a1 ib !c222c350,
is

ac
ha
en
in
2c21@4~a1 ib !21#c32c42c550,

2c312~a1 ib !c42c550,

22c322c415~a1 ib !c52c650,

c12r 51,

c22re2 ik5eik,

c52t50,

c62teik50.

The corresponding generalized eigenfunction matrix eq
tion becomes
3
21 3~a1 ib ! 22 0 0 0 0 0

0 21 @4~a1 ib !21# 21 21 0 0 0

0 0 21 2~a1 ib ! 21 0 0 0

0 0 22 22 5~a1 ib ! 21 0 0

1 0 0 0 0 0 21 0

0 1 0 0 0 0 2e2 ik 0

0 0 0 0 1 0 0 21

0 0 0 0 0 1 0 2eik

4 3
c1

c2

c3

c4

c5

c6

r
t

4 53
0
0
0
0
1

eik

0
0

4 . ~14!
The above matrix equation can again be denoted asMC
5C, and the formal solutions for the reflection and transm
sion amplitudes remain the same as Eqs.~12! and ~13!. The
generalized eigenfunction method is a very flexible appro
to studying the transport property of a network system t
contains large number of nodes. For example, in the abs
of dissipation, the network equation and its correspond
matrix equation for the first generation of SN’s withtwo
exits, as is shown in Fig. 2~b!, can be written as

2c113ac222c350,

2c21~4a21!c32c42c550,
-

h
t
ce
g

2c313ac42c52c650,

2c32c412ac550,

c12r 51,

c22re2 ik5eik,

c52t50,

c62teik50.

and
3
21 3a 22 0 0 0 0 0

0 21 ~4a21! 21 21 0 0 0

0 0 21 3a 21 21 0 0

0 0 21 21 2a 0 0 0

1 0 0 0 0 0 21 0

0 1 0 0 0 0 2e2 ik 0

0 0 0 1 0 0 0 21

0 0 0 0 0 1 0 2e2 ik

4 3
c1

c2

c3

c4

c5

c6

r
t

4 53
0
0
0
0
1

eik

0
0

4 .
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respectively. For simplicity, in the above treatment we ha
used the symmetry between two exits. This treatment is
orous, because there is no phase difference between two
going waves, which is different from the electronic transp
properties in the presence of magnetic field.20,22 As in the
single-exit case, if we denote the above matrix equation
MC5C, we are able to obtain the reflection and transm
sion amplitudes from Eqs.~12! and~13!. In this case the tota
transmission and reflection coefficients becomeT52utu2 and
R5ur u2, respectively.

We would like to point out that it is easy to extend th
above formalism to higher generations of SNs and ot
more complicated situations, such as with many entran
and exits or with disordered elements~segment length, struc
ture!. In the present article we use this GEM to calculate
transmission spectrum of SNs up to four generations for b
single and double exits. To save space we will not wr
down the network equations and their corresponding ma
equation for the higher generations of SNs, but direc
present the numerical results and discuss the electromag
wave transport properties in SNs.

III. NUMERICAL RESULTS AND DISCUSSION

The formalism presented in Sec. II can be easily imp
mented numerically and the results for both single a
double exits have been obtained up to the fourth genera
of SNs withN5123 nodes. With these four generations,
have already seen the main characteristics of wave trans
in SNs. In order to make our results ready for experimen
comparison9 we have considered the dissipation effect
including the absorption length and the additional dissipat

FIG. 3. Transmission coefficientT as a function of frequency fo
the first-generation Sierpinski network.~a! For the case of a single
exit, the solid and dotted curves are the results with and with
dissipation, respectively.~b! The same as~a! for the case of double
exits; hereT is the value in either one of the two exits.
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due to connectors. Following Ref. 9, we choosel
>1702f 20.59, wherel is in units of m andg>20.0075. The
value of«0 is taken as 2.32. Thus, in the numerical calcu
tion we can take

k5
2pA«0

2.997 925

106

108 f .

The frequency range of interest here is 0–500 MHz. To
amine the accuracy of our numerical calculations, we ch
at every intermediate stage of the calculation so that the
terion T1R51 is satisfied to very high accuracy.

The main numerical results are shown in Figs. 3–8 belo
The transmission spectra for the first generation are show
Fig. 3. The transmission spectra for the second, third,
fourth generations are shown in Figs. 4, 5, and 6, resp
tively. In all of these figures the plots~a! are for the case of
a single exit, and plots~b! are for the case of double exits
The solid and dotted curves represent the results with
without dissipation, respectively. From the numerical resu
obtained, we can observe interesting transmission prope
as well as the photonic band gap structure, which are c
mon for different generations of SNs. First, from Fig. 3 w
observed that even in this simplest Sierpinski network w
only six nodes photonic band gaps have appeared around
MHz in the first period. In the absence of dissipation, t
transmission spectrumT( f ) ~the dotted curve! is periodic
with a period 196.8 MHz, which corresponds tok
52p ~m21!. The periodic structure inT( f ) is a result of a
single length used for all waveguides in the entire netwo
This can also been seen from the network equation and tr
mission amplitude formulas~11! and ~12!, wherek appears
in the form of eik. In the presence of dissipation~the solid
curves!, the reduction in the transmission coefficient i

t

FIG. 4. The same as Fig. 3 for second-generation Sierpin
networks. Compared with Fig. 3, the antiresonant transmission
~valleys! have now developed into photonic band gaps.
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creases with the frequency. This is expected due to the
quency dependence of the absorption length, i.e.,l;k20.59.
By comparing Figs. 3~a! and 3~b!, it is easy to see that th
position of the resonant peak does not depend on the
situation. This is expected as these peak positions repre
the eigenfrequencies of the system and should not be s
tive to the exit situation. They should also not be much
tered by the presence of modest dissipation. A direct ve
cation of this point will be made later.

In the absence of dissipation, the difference caused by
exit situation lies in the magnitude ofT. In the case of a
single exit@Fig. 3~a!#, the largest resonant peaks are loca
at f 50 as well as other periodic positions withT51. This is
also expected if we consider the entire SN as a single s
terer in a one-dimensional system. In the long-wavelen
limit, the scattering becomes weak andT approaches unity
However, this is no longer true for the case of double ex
@Fig. 3~b!#, where all the resonant peaks have the same m
nitude utumax

2 50.45 for either one of the two exits. The tot
transmission has a maximum valueTmax50.9 even in the
zero-frequency limit. As for the transmission at other re
nant frequencies, the total transmission of double exits
larger than that of a single exit. This point can also be
served in the higher-generation SNs. An intuitive expla
tion for this phenomenon could be that for the case of dou
exits, waves can propagate directly from the entrance to
two exits through straight and direct channels, whereas
the case of a single exit, more waves will be reflected at
two corners on the output side.

Following the enlargement of the Sierpinski network, i.
for the higher generations of SNs, the transmission spe
become more complicated. Comparing the results of the
four generations of SNs shown in Figs. 3–6, we can obse
the following phenomena.

FIG. 5. Same as Fig. 3 for third-generation Sierpinski networ
Compared with Figs. 3 and 4, there are more photonic band g
and the dissipation effect has greatly depressed the transmi
coefficient.
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~1! The number of resonant transmission peaks prog
sively increases, from three peaks in a period for the fi
generation to fifteen peaks for the fourth generation,
peaks also becoming sharper and sharper. It is easy to un
stand these results. As the size of the SN is increased, t
are more nodes in the system. Stronger multiple scatte
allows more states with wavelengths smaller than the sam
size to appear. Also, the stronger multiple scattering
creases the dwell time of a resonant state and, there
makes the peak sharper. As a consequence, sharper res
peaks as well as antiresonant dips~valley shape! will develop
into photonic band gaps in the higher generation of S
This phenomenon can be clearly seen if we compare Fi
with Fig. 3. Also, since the number of resonant states
creases with system size, more photonic band gaps appe
the higher generations of SNs. These resonant peaks bec
d-like functions in the higher generations as can be see
Fig. 6. Thus, we have observed the evolution and the app
ance of more discrete eigenmodes as the size of the S
increased. However, the main gap centered around 100 M
remains unchanged.

~2! Following the enlargement of the SNs, the influence
dissipation effects on the transmission is also increased.
transmission coefficientT decreases more drastically, i.e
from Tmax around 0.6 at the first generation toTmax,0.1 at
the fourth generation. This is reasonable because, in a la
SN, the electromagnetic wave undergoes longer path len
and is scattered by more nodes, both of which enhance
dissipation effect.

The above discussion describes the main properties
electromagnetic wave propagation in Sierpinski wavegu
networks. Here we would like to ask two more questio
First, would the eigenfrequencies of an isolated SN give

FIG. 6. Same as Fig. 3 for fourth-generation Sierpinski n
works. Mored-like resonant transmission peaks and photonic ba
gaps have developed. The dissipation effect has drastically
pressed the transmission coefficient.
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same photonic band structures as that obtained from
transmission study? We have noticed that the photonic b
structure is independent of the exit number and dissipa
effects, which lets us guess that the photonic band struc
should be related to an intrinsic property of the Sierpin
networks. To check this, as an example, we investigate
eigenmode spectrum of anisolated first-generation SN,
which is shown in Fig. 2 but without connecting waveguid
at entrance and exits. For this isolated SN network, the
trix equation can be written as

3
2a 21 21 0 0 0

21 4a 21 21 21 0

21 21 4a 0 21 21

0 21 0 2a 21 0

0 21 21 21 4a 21

0 0 21 0 21 2a

4F
c1

c2

c3

c4

c5

c6

G 5F 0
0
0
0
0
0

G .

The above matrix equation can be written asMc50. We
numerically evaluated the determinantuM u as a function of
frequencyf and show the result in Fig. 7. The frequen
where the determinant vanishes corresponds to an eige
quencyf eig of the SN. By comparing Fig. 3 with Fig. 7, w
do find that the resonant frequencies coincide with the eig
frequenciesf eig. This confirms that the photonic band stru

FIG. 7. DeterminantM as a function of frequency for the first
generation Sierpinski network. Comparing this figure with Fig. 3
is clear that the eigenfrequencies of isolated Sierpinski netwo
coincide with the frequencies of resonant transmission peaks.
he
nd
n
re
i
e

s
a-

re-

n-

tures obtained from transmission spectra are dictated by
eigenmodes of the system and are independent of the
situation and dissipation effects. The second question is
in Figs. 3–6 we have noticed a phenomenon caused by
sipation, i.e., at frequenciesf >n3196 MHz, which corre-
spond tok52np (n50,1,2,...)~m21!. The transmission co-
efficient has a double-peak structure with aT50 valley,
when dissipation is included. In the absence of dissipat
there is only a single peak withT51. We enlarge this por-
tion of T( f ) for the fourth generation of SNs and plot it i
Fig. 8. To understand the cause of this splitting, we use
following mathematical analysis. Whenk52np (n
50,1,2,...)~m21!, we have b50, eik51, and the matrix
equation~14! reduces to the following homogeneous mat
equation:

t
s

FIG. 8. An enlarged picture of Fig. 6 around frequency 1
MHz for the fourth-generation Sierpinski network with a sing
exit: ~a! for the case without dissipation, and~b! for the case with
dissipation.
3
21 3a 22 0 0 0 0 0

0 21 ~4a21! 21 21 0 0 0

0 0 21 2a 21 0 0 0

0 0 22 22 5a 21 0 0

1 0 0 0 0 0 21 0

0 1 0 0 0 0 21 0

0 0 0 0 1 0 0 21

0 0 0 0 0 1 0 21

4 3
c1

c2

c3

c4

c5

c6

r 11
t

4 53
0
0
0
0
0
0
0
0
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It is easy to show that the determinant ofM has the form
uM u5(a21)(120a3126a2221a25). In the case of no dis
sipation, sincea5cosk51, uM u equals zero and there exis
a nontrivial solution. However, in the presence of dissip
tion, aÞ1, as can be seen from Eq.~8!, anduM uÞ0. In this
case, there exists no nontrivial solution. This impliesr 5
21 andt50, or T50. This explains the splitting of a pea
into two with aT50 valley in the middle as is shown in Fig
8. This splitting is due to an intrinsic property of SNs and
not related to the exit situation. Therefore, similar splitti
appears in the case of double exits as is shown in Figs. 3~b!–
6~b!.

IV. BRIEF SUMMARY

The main purpose of the present article is to study
photonic band structure of Sierpinski networks consisting
1D waveguides. The existence of photonic band gaps
result of the self-similar structure, not due to periodici
Because the present network equation can be mapped t
zero-energy single-electron tight-binding equation, it can
numerically solved by using the generalized eigenfunct
method. We have investigated the wave transport prope
of the SN for the first four generations. Both cases of sin
and double exits have been considered. To simulate the
perimental conditions we have also investigated the diss
tion effect by introducing a realistic absorption length a
s

.

S

-

.

-

e
f
a

.
the
e
n
es
e
x-
a-

the additional dissipation due to connectors. Since all
segments in the network are of the same length~1 m!, the
transmission spectrum is periodic with a period 196.8 MH
The effect of dissipation is to decrease the transmission s
tra in a systematic way. The structures in the transmiss
spectra are found to be insensitive to the exit situation
well as to the presence of dissipation. They are closely
lated to the eigenfrequencies of isolated SNs.

Following the enlargement of the Sierpinski network, t
number of resonant peaks progressively increases and
photonic band structures become complicated. Both
number and depth of the antiresonant transmission dips~val-
leys! are increased; these valleys will develop into photo
band gaps in the higher generations of SNs. On the o
hand, following the enlargement of the SN system the infl
ence of dissipation effects on the transmission coefficien
enhanced. One interesting effect of dissipation is to split
resonant peaks that correspond tok52pn ~m21! into two
peaks with zero transmission in the valley. An analytic e
pression is used to explain this anomaly.
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