
PHYSICAL REVIEW B 15 JUNE 2000-IVOLUME 61, NUMBER 23
Light scattering from slightly rough semiconductor surfaces near exciton resonance
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The phenomenon of light scattering by a randomly rough surface and fluctuations of the excitonic surface
potential is investigated by means of a first-order perturbation theory. We employ the generalized Morse
potential to describe both intrinsic~repulsive! potentials and extrinsic near-surface potential wells. Frequency
and angle dependencies of the light-scattering cross section are calculated. A considerable increase of the
scattering cross section, as the correlation between the surface roughness and the excitonic potential fluctua-
tions diminishes, is observed. Our theory describes very well available experimental results for samples with a
repulsive surface potential. Also, the optical manifestation of excitonic bound states, generated within a
surface-potential well, is analyzed. We find that the near-surface localized excitons produce a resonance
structure in the spectrum of the light-scattering cross section, which is very sensitive to the degree of corre-
lation between surface roughness and potential-well fluctuations.
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I. INTRODUCTION

For a long time the phenomenon of light scattering fro
rough surfaces had been a topic of great interest to resea
ers ~see, for example, Refs. 1–17!. This phenomenon is no
tably affected not only by the characteristics of the surfa
profile of the irradiated medium, but also by its bulk optic
properties such as spatial dispersion or nonlocality.18 This
property of the medium leads to a wave-vector depende
of the dielectric function and to the generation of addition
electromagnetic modes that influence upon a variety of o
cal spectra. In particular, spatial dispersion has a signific
effect on light scattering from rough surfaces of metallic3–7

and excitonic3,4,8–16media.
In the case of excitonic crystals, besides nonlocal effe

the interaction of the exciton with the sample surface play
fundamental role.19 In a simple approach, this interaction ca
be taken into account by choosing appropriate additio
boundary conditions19 ~ABC! needed to determine the am
plitudes of the generated modes, since the usual Max
boundary conditions~continuity of the tangential electric an
magnetic fields at the sample surface! are not sufficient.
Within this approach the spectra of light scattering turn
to be fairly sensitive to the choice of the ABC as is shown
Refs. 8 and 9.

The interaction of excitons with the sample surface c
also be described by using a surface potential.19 In crystals of
relatively high quality the surface potential is given by i
trinsic contributions, which are determined, principally,
the no-escape condition for the electron and hole20,21and the
image potential.20,22 As a result, the intrinsic potential repe
excitons from the near-surface region.20 The simplest mode
for such a potential consists of an infinite barrier at cert
distance from the surface, of the order of the exciton rad
PRB 610163-1829/2000/61~23!/15993~13!/$15.00
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This barrier produces a near-surface layer, where excit
are absent~exciton-free layer or dead layer22!. For many
years, this model was widely applied for interpreting refle
tivity measurements. However, the dead-layer model
various problems:19,23 ~i! appropriate ABC at the fictitious
interface have to be specified,~ii ! it cannot describe the re
flectivity distortion associated with the finite slope of the re
~continuous! surface potential for the translational excito
motion, and~iii ! the fits based on this model are not suf
ciently accurate for III-V semiconductors, having relative
small longitudinal-transverse splitting. In a set of papers10–15

the dead-layer model was also used to analyze light sca
ing from rough surfaces. There it was shown that surfa
roughness gives rise to fluctuations of the inner boundary
the dead layer, which affect considerably spectra of the lig
scattering cross section.

A trustworthy description of the surface-potential sha
requires the use of a model more sophisticated than the d
layer, especially when the potential has an extrinsic con
bution, which can be caused either unintentionally during
process of crystal growth or by surface treatments. Inde
electron24–26 and ion27–29 bombardment, intense
illumination,30–33heating,34 and the application of an electri
field32,33,35 give rise to a near-surface space-charge reg
and, consequently, a macroscopic electric field with wh
excitons interact.32,36,37Due to this interaction, an attractiv
part in the surface potential can appear, and thus a pote
well may be formed. The generation of exciton bound sta
within near-surface potential wells and their manifestation
optical spectra for samples with ideal flat surfaces have b
widely analyzed~see, for instance Refs. 19, 25, and 36–4!.
Today it is well established that reflectivity spectra exhi
broad peaks~transverse resonances39,41–43! at frequencies
vTn close to the eigenvalues of excitonic bound states. Mo
15 993 ©2000 The American Physical Society
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over, the coupling of the localized excitons with the elect
magnetic field inside the semiconductor depends strongly
the polarization of the incident light.24,40,44 As a result, the
resonance structures of reflectivity spectra fors-polarized
light andp-polarized light turn out to be very different. In th
p-polarization geometry, additional resonances~dips! appear
in the reflectivity spectra. The new resonances are assoc
with quantized polarization waves~longitudinal modes!,
whose eigenfrequenciesvLn are shifted with respect to th
frequenciesvTn of transverse resonances asvLn5vTn
1vLT ~Refs. 40 and 44! (vLT is the frequency value of the
longitudinal-transverse splitting!. The longitudinal modes are
well identified by employing 45° reflectometry.45

Recently,46 the manifestation of near-surface localized e
citons in spectra of light scattering from rough surfaces w
investigated theoretically by us. In that work, a model for t
surface potential that takes into account its random fluc
tions produced by the surface roughness, was employed
assuming a complete correlation between potential-well fl
tuations and surface roughness, it was shown in Ref. 46
a resonance structure in the spectrum of light-scattering c
section appears because of the generation of exciton bo
states. The assumption of complete correlation between
tential fluctuations and the surface profile is an import
limitation of our previous theory,46 since the presence o
impurities or defects in the near-surface layer~especially in
an extrinsic transition layer! can diminish such a
correlation,13,14 and therefore both frequency and angle d
pendencies of the light-scattering cross section may be
tered.

The aim of the present work is to investigate theoretica
the light scattering from slightly rough semiconductor s
faces near exciton resonance, particularly when the sur
roughness and the excitonic potential fluctuations are
completely correlated. In Sec. II we present in detail
theoretical formalism applied to calculate the light-scatter
cross section for a semi-infinite excitonic medium. In Se
III and IV, we study the effect of the degree of correlatio
between potential fluctuations and surface roughness
light-scattering spectra in the cases of intrinsic and extrin
transition layers, respectively. We compare our theoret
spectra with available experimental results for samples
relatively high quality ~Sec. III!. The spectra of light-
scattering cross sections in the presence of near-surfac
calized excitons are analyzed in Sec. IV.

II. THEORY

A. Formulation of the problem

Let us consider a system consisting of a semiconducto
the regionz.z r(r i), wherer i5(x,y,0), and of vacuum in
the regionz,z r(r i). Here, the functionz r(r i) describes the
profile of the semiconductor surface, which is assumed to
slightly rough and random with small slopes@ u“z r(r i)u!1#
and a small characteristic deviationd r from the average sur
face z50. The functionz r(r i) of the surface profile is a
zero-mean, stationary, Gaussian random process, determ
by the properties

^z r~r i!&50, ^zr~r i!z r~r i8!&5d r
2 exp@ ur i2r i8u

2/Lr
2#. ~1!
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Here, the angle brackets denote an average over the
semble of realizations of the functionz r(r i) and Lr is the
correlation length (Lr@d r).

The incident field has the form

Ei~r ,t !5Ei@coss~ x̂ cosu i2 ẑsinu i !1 ŷsins#

3ei (kxx1kzz)2 ivt, ~2!

wherekx5k sinui (ki5kxx̂), kz5k cosui , k5v/c, v is the
frequency,c is the velocity of light in vacuum, andu i ands
are the angles of incidence~in thexz plane! and polarization,
respectively. Ifs50 (p/2) the incident wave isp (s) polar-
ized. Applying perturbation theory up to first order inkd r
!1 andu“z r(r i)u!1, the scattered field can be expressed

Esc5Esc
(0)1Esc

(1) , ~3!

where the zeroth-order field

Esc
(0)~r ,t !5@Ep

(0)~kx!~ x̂ cosu i1 ẑsinu i !

1Es
(0)~kx!ŷ#ei (kxx2kzz)2 ivt, ~4!

and the first-order field is given by

Esc
(1)~r ,t !5E d2ki8

~2p!2
Esc

(1)~ki8!ei (ki8•r i2kz8z)2 ivt, ~5!

Esc
(1)~ki8!5T̂@Ep

(1)~ki8!~ x̂8 cosu81 ẑ8 sinu8!1Es
(1)~ki8!ŷ8#,

~6!

where x̂85ki8/ki8 (ki85ukx8
8 u), ẑ85 ẑ, and ŷ85 ẑ83 x̂8; T̂ is a

rotation matrix with nonzero elementsTxx85Tyy85kx8/ki8 ,
Txy852Tyx852ky8/ki8 , andTzz851; u8 is the angle of scat-
tering in the x8z8 plane, kx8

8 5k sinu8, and kz8
8 5„k2

2(kx8
8 )2

…

1/25k cosu8.
Inside the semiconductor, the electric fieldE and the ex-

citonic polarizationP are described by a system of couple
equations:19

¹2E2“~“•E!1e`k2E524pk2P, ~7!

F2
\vT

M
¹21vT

22v22 inv1
2vTU~r i ,z!

\ GP5
vP

2

4p
E,

~8!

wheree` is the high-frequency~background! dielectric con-
stant,M is the translational exciton mass,vT is the exciton
resonance frequency,vP is a measure of the oscillato
strength, and the damping constantn describes the lifetime
broadening. The wave equation~7! for E is obtained from
Maxwell equations, and Eq.~8! for P is derived from the
exciton motion within the adiabatic approximation.19

Due to the surface roughness, the surface potentialU in
Eq. ~8! depends not only on the coordinatez, but also onr i .
If the semiconductor surface is sufficiently smooth such t
Lr@a (a is the characteristic size of the surface transiti
layer!, the exciton interactslocally with a flat region of the
smooth surface. In this case, the surface potential depe
parametrically on r i and is given by U(r i ,z)5U„z
2z r(r i)…, whereU(z) is the potential for an ideal flat sur
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face. Assuming a very small roughness (d r!a), we can ap-
proximate the surface potentialU(r i ,z) up to linear terms in
z r :

U~r i ,z!'U~z!2
dU~z!

dz
z r~r i!, d r!a!Lr . ~9!

Let us emphasize that Eq.~9! is valid when there is a com
plete correlation between the fluctuations of the surface
tential and the profile of the rough surface. As was m
tioned in the Introduction, the presence of impurities
defects in the transition layer can substantially diminish s
a correlation. In describing the latter situation, we shall
sume here that the potential fluctuations, produced by
two kinds of disorder~surface roughness and near-surfa
defects!, are sufficiently small to be treated as a perturbati
Hence, we can use an expansion of the real surface pote
U(r i ,z) similar to Eq.~9!,

U~r i ,z!5U~z!2
dU~z!

dz
z f~r i!, d f!a!min$L f ,Lr ,Lr f %,

~10!

where the functionz f(r i) is also a zero-mean, Gaussian ra
dom process, characterized by the following statistical pr
erties:

^z f~r i!&50, ^z f~r i!z f~r i8!&5d f
2 exp@ ur i2r i8u

2/L f
2#

~11!

and

^z r~r i!z f~r i8!&5d rd fk r f exp@ ur i2r i8u
2/Lr f

2 #. ~12!

Here d f and L f are the average value and the correlat
length of z f(r i), respectively;Lr f is the mutual correlation
length for functions z r(r i) and z f(r i), and k r f
5^z r(0)z f(0)&/(d rd f) is a correlation coefficient satisfyin
the conditionuk r f u<LrL f /Lr f

2 <2LrL f /(Lr
21L f

2)<1.14,17 In
our model ~10! the random part of the potentialU(r i ,z)
depends statistically only onr i , whereas itsz dependence is
deterministic. As we will see below, although the chos
model~10! for the potentialU(r i ,z) is quite simple, it turns
out to be good enough to interpret and reproduce experim
tal spectra of light scattering not only in the case of hi
correlation between the potential fluctuations and the pro
of the semiconductor surface@z f(r i)'z r(r i)#, but also when
such a correlation is low.

Considering that the excitonic potentialU(z) for an ideal
flat surface is well modeled by the generalized Mo
potential,39,40 the surface potentialU(r i ,z) ~10! can be ex-
pressed as

U~r i ,z!5U1e2z/a1U2e22z/a1z f~r i!

3~U1e2z/a12U2e22z/a!/a. ~13!

This form of the surface potential allows to solve analytica
the system of Eqs.~7! and ~8!. Indeed, let us write the
exciton-polariton fieldsE andP in terms of only zeroth- and
first-order contributions inkd r!1, u“z r u!1, d r /a!1, and
d f /a!1:

E5E(0)1E(1), P5P(0)1P(1). ~14!
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Using Eqs.~13! and~14!, we can rewrite the system of Eq
~7! and ~8! in the form

4pk2P(0)1¹2E(0)2“~“•E(0)!1e`k2E(0)50, ~15!

F2
\vT

M
¹21vT

22v22 inv1
2vT

\
~U1e2z/a

1U2e22z/a!GP(0)2
vP

2

4p
E(0)50, ~16!

4pk2P(1)1¹2E(1)2“~“•E(1)!1e`k2E(1)50, ~17!

F2
\vT

M
¹21vT

22v22 inv1
2vT

\
~U1e2z/a

1U2e22z/a!GP(1)2
vP

2

4p
E(1)

52
2vT

\

z f~r i!

a
~U1e2z/a12U2e22z/a!P(0), ~18!

The solutions of Eqs.~15! and ~16! describe the exciton-
polariton fields in the absence of both potential fluctuatio
and surface roughness and have been analytically calcu
in Refs. 39 and 40. Since those solutions are necessar
obtain the first-order polaritonic fields@P(1) andE(1) in Eqs.
~17! and ~18!#, below we shall present them in a compa
form.

B. Zeroth-order solutions

According to the assumed geometry of the problem,
can rewrite the system of Eqs.~15! and~16! in terms of only
P(0) components as follows:

]4Py
(0)

]z4
1@b1D#

]2Py
(0)

]z2
12

]D

]z

]Py
(0)

]z

1FbD1
]2D

]z2
2ak2GPy

(0)50, ~19!

ikxF ]3Px
(0)

]z3
1D

]Px
(0)

]z
1

]D

]z
Px

(0)G2b
]2Pz

(0)

]z2

1@ak22bD#Pz
(0)50, ~20!

]4Px
(0)

]z4
1@b1D#

]2Px
(0)

]z2
12

]D

]z

]Px
(0)

]z
1FbD1

]2D

]z2

2
ak2b

kx
21b

GPx
(0)2

ikxak2

kx
21b

]Pz
(0)

]z
50, ~21!

where

a5
vP

2 M

\vT
, b5e`k22kx

2 , ~22!
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D~z!5
M

\vT
Fv22vT

21 ivn2
2vT

\
~U1e2z/a1U2e22z/a!G

2kx
2 . ~23!

In obtaining Eqs.~19!, ~20!, and ~21! we have taken into
account that the zeroth-order fields are proportional
exp(ikxx). The solutions of these equations can be writ
as39,40

Py
(0)~z!5 (

m51

2

Am
(0)eikmz(

n50

`

ay,nme2nz/a, ~24!

Pj
(0)~z!5 (

m51

3

Bm
(0)eikmz(

n50

`

aj ,nme2nz/a, j 5x,z . ~25!

Here km (m51,2,3, Imkm.0) is the z component of the
wave vectors for polaritonic modes that propagate in the b
where the surface potential is negligible@U(z)→0#. The
quantitiesk1 andk2 correspond to transverse modes and
given by

k1,25H 1

2 F M

\vT
@v22vT

21 ivn#2kx
21b

6F S M

\vT
@v22vT

21 ivn#2kx
22b D 2

14ajG1/2G J .

~26!

The modem53 in Eq. ~25! is a longitudinal one, for which

k35S M

\vT
@v22vT

21 ivn#2kx
22

vP
2 M

e`\vT
D 1/2

. ~27!

The coefficientsaj ,nm ( j 5x,y,z) in series~24! and ~25! are
found from recursion relations, which are straightforward
obtained by substituting these series into Eqs.~19!, ~20!, and
~21!. We will not present here the recursion relations
aj ,nm because of their cumbersome form. Finally,Am

(0) and
Bm

(0) in Eqs. ~24! and ~25! are the amplitudes of the zeroth
order fields to be calculated by using boundary conditio
The expression for the electric fieldE(0) is easily derived
from Eqs.~16!, ~24!, and~25!.

C. First-order solutions

In order to solve the system of Eqs.~17! and ~18! it is
convenient to express the first-order fields as

E(1)~r !5E d2ki8

~2p!2
T̂@Ex8

(1)
~ki8 ,z!x̂81Ey8

(1)
~ki8 ,z!ŷ8

1Ez
(1)~ki8 ,z!ẑ#eiki8•r i, ~28!

P(1)~r !5E d2ki8

~2p!2
T̂@Px8

(1)
~ki8 ,z!x̂81Py8

(1)
~ki8 ,z!ŷ8

1Pz
(1)~ki8 ,z!ẑ#eiki8•r i, ~29!
o
n

lk

e

r

s.

Using Eqs.~17!, ~18!, ~28!, and ~29!, we get a system of
equations for the Fourier transformsE(1)(ki8 ,z) and
P(1)(ki8 ,z) in the coordinate systemx8y8z:

F ]2

]z2
1D8GPj

(1)~ki8 ,z!1F j~ki8 ,z!

52
a

4p
Ej

(1)~ki8 ,z!, j 5x8,y8,z ~30!

F ]2

]z2
1b8GEy8

(1)
~ki8 ,z!524pk2Py8

(1)
~ki8 ,z!, ~31!

F ]2

]z2
1e`k2GEx8

(1)
~ki8 ,z!2 ik i8

]

]z
Ez

(1)~ki8 ,z!

524pk2Px8
(1)

~ki8 ,z!, ~32!

ik i8
]

]z
Ex8

(1)
~ki8 ,z!2b8Ez

(1)~ki8 ,z!54pk2Pz
(1)~ki8 ,z!.

~33!

Herea is defined as in Eq.~22!, b85e`k22(ki8)
2, and

D8~z!5
M

\vT
Fv22vT

21 ivn2
2vT

\
~U1e2z/a1U2e22z/a!G

2~ki8!2. ~34!

QuantitiesF j (ki8 ,z) ( j 5x8,y8,z) in Eq. ~30! are the compo-
nents of the vector

F~ki8 ,z!52
2M

\2a
~U1e2z/a12U2e22z/a!

3z f~ki82ki!T̂
21P(0)~z!, ~35!

whereP(0)(z) is the zeroth-order excitonic polarization@see
Eqs. ~24! and ~25!# and z f(ki8) is the Fourier transform of
z f(r i),

z f~ki8!5E d2r ie
2 iki8•r iz f~r i!. ~36!

After eliminating the electric field from Eqs.~30–33!, we
get an inhomogeneous system of equations forPj

(1)(ki8 ,z)
( j 5x8,y8,z) in the form

]4Py8
(1)

]z4
1@b81D8#

]2Py8
(1)

]z2
12

]D8

]z

]Py8
(1)

]z
1Fb8D81

]2D8

]z2

2ak2GPy8
(1)

1b8Fy81
]2Fy8

]z2
50, ~37!

ik i8F ]3Px8
(1)

]z3
1D8

]Px8
(1)

]z
1

]D8

]z
Px8

(1)G2b8
]2Pz

(1)

]z2
1@ak2

2b8D8#Pz
(1)1 ik i8

]Fx8
]z

2b8Fz50, ~38!
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]4Px8
(1)

]z4
1@b81D8#

]2Px8
(1)

]z2
12

]D8

]z

]Px8
(1)

]z
1Fb8D81

]2D8

]z2

2
ak2b8

~ki8!21b8
GPx8

(1)
2

ik i8ak2

~ki8!21b8

]Pz
(1)

]z
1b8Fx81

]2Fx8

]z2

50, ~39!

The solutions of this system of equations can be written

Py8
(1)

~ki8 ,z!5a2 (
m51

2

Am
(1)eikm8 z(

n50

`

by8,nme2nz/a

1
z f~ki82ki!

a (
m51

2

Am
(0)eikmz(

n50

`

cy8,nme2nz/a

1
z f~ki82ki!

a (
m51

3

Bm
(0)eikmz(

n50

`

dy8,nme2nz/a,

~40!

Pj
(1)~ki8 ,z!5a2 (

m51

3

Bm
(1)eikm8 z(

n50

`

bj ,nme2nz/a

1
z f~ki82ki!

a (
m51

2

Am
(0)eikmz(

n50

`

cj ,nme2nz/a

1
z f~ki82ki!

a (
m51

3

Bm
(0)eikmz(

n50

`

dj ,nme2nz/a,

j 5x8,z. ~41!

Here, the first term on the right-hand side of Eqs.~40! and
~41! corresponds to the homogeneous solution for the sys
of Eqs. ~37!, ~38!, and ~39!. The particular solution of this
system is given by the terms proportional toz f(ki82ki) in
Eqs. ~40! and ~41!. The expressions for the wave-vect
componentskm8 (m51,2,3, Imkm8 .0), appearing in the ho
mogeneous solution, are obtained from the formulas~26! and
~27! for km by writing thereki8 andb8 instead ofkx andb,
respectively. The coefficientsbj ,nm , cj ,nm , and dj ,nm ( j
5x8,y8,z) obey recursion relations, which are straightfo
wardly found by substituting expressions~40! and ~41! into
Eqs.~37!, ~38!, and~39!. As in the case of zeroth-order so
lutions, these recursion relations are too cumbersome
will not be shown in this paper. QuantitiesAm

(1) andBm
(1) are

first-order amplitudes to be calculated from boundary con
tions. Finally, explicit expressions forE(1) are easily ob-
tained using Eqs.~28!, ~30!, ~40!, and~41!.

D. Boundary conditions: Light-scattering cross section

Let us calculate the amplitudes for both zeroth- and fi
order fields. With this aim we apply Maxwell’s bounda
conditions at the surfacez5z r(r i):

n̂3E2~r i ,z!uz5zr
5n̂3E1~r i ,z!uz5zr

, ~42!

n̂3H2~r i ,z!uz5zr
5n̂3H1~r i ,z!uz5zr

. ~43!
s

m

nd

i-

t-

Here 2 and 1 superscripts correspond to the fields insi
the vacuum and semiconductor, respectively,n̂ denotes a
unit vector normal to the vacuum-semiconductor interfac

n̂5S 2
]z r~r i!

]x
,2

]z r~r i!

]y
,1D F11S ]z r~r i!

]x D 2

1S ]z r~r i!

]y D 2G21/2

. ~44!

In order to calculate all the amplitudes, it is necessary
apply the boundary condition for the excitonic polarizati
too,

P~r i ,z!uz5zr
50. ~45!

The latter condition should not be considered a chosen A
since it is a direct consequence of the vanishing of the e
ton wave function at the surface. Expanding the vectorn̂ in
Eq. ~44! and the fieldsE, H, andP, appearing in boundary
conditions@Eqs. ~42!, ~43!, and ~45!#, up to linear terms in
u“z r u!1, kd r!1, d r /a!1, andd f /a!1, we have obtained
a system of algebraic equations for the amplitudes:Ep

(0)(kx)
and Es

(0)(kx) in Eq. ~4!, Ep
(1)(ki8) and Es

(1)(ki8) in Eq. ~6!,
An

(0) in Eq. ~24!, Bm
(0) in Eq. ~25!, An

(1) in Eq. ~40!, andBm
(1)

in Eq. ~41! (n51,2; m51,2,3). The zeroth-order solution
of this system for the specific geometries ofs- and
p-polarized incident light coincide with those given in Ref
39 and 40. In calculating the first-order amplitudes, it is co
venient to write them in the form

Ep
(1)~ki8!5Ep,r~ki8!z r~ki82ki!1Ep, f~ki8!z f~ki82ki!,

Es
(1)~ki8!5Es,r~ki8!z r~ki82ki!1Es, f~ki8!z f~ki82ki!,

~46!
An

(1)~ki8!5An,r~ki8!z r~ki82ki!1An, f~ki8!z f~ki82ki!,

Bm
(1)~ki8!5Bm,r~ki8!z r~ki82ki!1Bm, f~ki8!z f~ki82ki!,

wherez r(ki8) and z f(ki8) are the Fourier transforms of th
surface profilez r(r i) and the functionz f(r i), describing the
surface potential fluctuations, respectively.

To determine the cross section of light-scattering in
vacuum, we should also calculate the time- and ensem
averaged Poynting vector of the first-order fields,47,48,13

^Ssc&5
c

8p
^Re@Esc

(1)~r ,t !* 3Hsc
(1)~r ,t !#&

5
c2

128p5v
E

,
d2ki8E

,
d2ki9

^Esc
(1)~ki9!* 3@K 83Esc

(1)~ki8!#&ei (K82K9)•r. ~47!

HereK 85ki82kz8ẑ, the asterisk* denotes the complex con
jugate, and the symbol, appended to the integrals indicate
the regionki8,v/c, where kz8 is real, and then the fields
propagate away from the sample surface. According to E
~5!, ~6!, and~46!, the Fourier transformEsc

(1)(ki8) in Eq. ~47!
is given by
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Esc
(1)~ki8!5Esc,r~ki8!z r~ki82ki!1Esc, f~ki8!z f~ki82ki!,

~48!

where

Esc, j~ki8!5T̂@Ep, j~ki8!~ x̂8 cosu81 ẑ8 sinu8!

1Es, j~ki8!ŷ8#, j 5r , f . ~49!

Thus, the Poynting vector ~47! contains products
z j (ki9)* z j 8(ki8) ( j 5r , f ; j 85r , f ), which should be aver-
aged. Because of the assumed statistical properties o
roughness and surface-potential fluctuations@see Eqs.~1!,
~11!, and ~12!#, the ensemble average of the produ
z j (ki9)* z j 8(ki8) can be replaced by14,16,48,50

^z r~ki9!z r~ki8!&54p3d r
2Lr

2 exp@2uki8u
2Lr

2/4#d~ki82ki9!,

^z f~ki9!z f~ki8!&54p3d f
2L f

2 exp@2uki8u
2L f

2/4#d~ki82ki9!,
~50!

^z r~ki9!z f~ki8!&54p3d rd fLrL fk r f exp@2uki8u
2Lr f

2 /4#

3d~ki82ki9!.

Finally, the averaged Poynting vector^Ssc& ~47! acquires the
form

^Ssc&5
c2

32p2v
E

,
d2ki8K 8@ uEsc,r u2d r

2Lr
2e2uki82kiu

2Lr
2/4

1uEsc, f u2d f
2L f

2e2uki82kiu
2L f

2/4

12d rd fk r f Lr f
2 Re~Esc,r* •Esc, f !e

2uki82kiu
2Lr f

2 /4#.

~51!

In addition, the time-averaged Poynting vector for the in
dent light is

Si5
c

8p
uEi u2@ x̂ sinu i1 ẑcosu i #. ~52!

From Eqs.~51! and ~52! we can calculate, in a standar
way,13,47–49the dimensionless cross sectionds/dV, which is
defined as the ratio of the energy flux density of light sc
tered into the direction ofK 8 to the energy flux density of the
incident light per unit area of the surface (Si• ẑ). Using Eqs.
~49!, ~51!, and~52!, we can express the cross sectionds/dV
in terms of the amplitudesEs, j andEp, j ( j 5r , f ) correspond-
ing to the s and p components of the first-order scatter
field, respectively. Then,

ds

dV
5

v2

4pc2

cosu8

cosu i

1

uEi u2

3$@ uEp,r~ki8!u21uEs,r~ki8!u2#

3d r
2Lr

2e2uki82kiu
2Lr

2/41@ uEp, f~ki8!u2

1uEs, f~ki8!u2#d f
2L f

2e2uki82kiu
2L f

2/4

12d rd fk r f Lr f
2 Re@Ep,r~ki8!* Ep, f~ki8!
he

s

-

-

1Es,r~ki8!* Es, f~ki8!#e2uki82kiu
2Lr f

2 /4%. ~53!

Here, the terms with indicess and p describe thes- and
p-polarized scattered power, respectively, within the diff
ential solid angledV5sinu8du8df8 (kx85k sinu8 cosf8, ky8
5k sinu8 sinf8, k5v/c). Below, we will also use the sym
bol ds lq /dV to denote the componentq (q5s or p) of the
scattered power~53!. In this notation the first index (l 5s or
p) indicates the polarization of the incident light.

We should point out that the form ofds/dV @see Eq.
~53!# is characteristic for scattering of light by two stochas
processes. The terms withd r

2 andd f
2 in Eq. ~53! describe the

power scattered from roughness and potential fluctuatio
respectively. There is also a term withk r f , which deter-
mines the scattered power, associated with the cro
correlation between the random functionsz r(r i) andz f(r i).
The latter term would be zero if these random functions w
statistically independent (k r f 50). Expressions similar to Eq
~53! have been found, for example, in investigating lig
scattering from a rough surface with an inhomogeneous
electric permittivity,48 from the internal and external roug
boundaries of an exciton-free layer,13 and from an exciton
quantum well with rough interfaces.16

III. REPULSIVE POTENTIALS

In this section we shall present numerical results for
dimensionless cross sectionds/dV, considering that the ex
citon surface potentialU(r i ,z) is repulsive. As was men
tioned in the Introduction, the intrinsic contributions to th
surface potential, which are due to the no-escape boun
condition and the image potential,20–22 repel excitons from
the surface. Therefore, a semiconductor of sufficiently h
quality and without surface treatment should be charac
ized, precisely, by a repulsive exciton surface potential.

Figures 1–5 show frequency and angle dependencie
ds/dV calculated for ZnSe. In the calculation we used t
parameters51 e`5 8.1, \vT52.8022 eV,\vP50.2334 eV

FIG. 1. Spectrum for the dimensionless cross section of li
scattering,dspp /dV, from a ZnSe surface forp-polarized incident
light at an angle of incidenceu i5 15° and angle of scattering in th
plane of incidenceu853°, with a correlation coefficientk r f 51.
The values of the average heightU0 of the repulsive exponentia
potential are indicated in the figure.
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~i.e., a longitudinal-transverse splitting\vLT'\vP
2 /2vTe`

51.2 meV), and bulk damping\n50.2 meV. Here we em-
ployed the approximation of a single exciton branch with
total massM50.57m (m is the free-electron mass!, com-
puted in Ref. 21. Since intrinsic transition layers are w
described by the exponential model,23,51–53we used the sur-
face potential~13! with the parameters

U15U0 , U250, a550 Å , ~54!

whereU0 denotes the average value~height! of the potential
~13! at z50 @U05^U(r i,0)&5U(0)#. Besides, we chosed r

5d f[d (d58 Å ), Lr5L f5Lr f [L (L52500 Å ). The nu-
merical results presented in Figs. 1–5 consider scatterin
the plane of incidence. According to our first-order calcu
tions, forp- (s-! polarized incident light, there is onlyp- (s-!
scattered light in the plane of incidence.

In the case of complete correlation between surf
roughness and potential-well fluctuations,k r f 51, the fre-
quency dependence ofdspp /dV ~Fig. 1! anddsss/dV look
like thep- ands-polarization reflectivity spectra:45,51There is
a maximum at the exciton-resonance frequencyvT and a
minimum at the longitudinal frequencyvL . As the average

FIG. 2. The same as in Fig. 1, but withU052.0 meV and dis-
tinct values of the correlation coefficientk r f .

FIG. 3. The same as in Fig. 1, but with the correlation coe
cient k r f 50.
l

in
-

e
heightU0 of the repulsive surface potential is increased,
maximum of dspp /dV at vT decreases~see Fig. 1!. We
observed an analogous effect ofU0 on spectradsss/dV for
s-polarized light.

-

FIG. 4. Angular dependence of the dimensionless cross sec
~a! dsss/dV and ~b! dspp /dV for ZnSe calculated with the sam
sample parameters as in Figs. 1–3,v5vL , U051 meV, k r f 51
~complete correlation!, and at different angles of incidenceu i .

FIG. 5. Angular dependence ofdspp /dV for a ZnSe sample as
in Figs. 1–3,v5vL , U051 meV, andu i540°. The values of the
correlation coefficientk r f are indicated in the figure.
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Impairing the correlation betweenz r(r i) andz f(r i), both
dspp /dV ~Fig. 2! anddsss/dV increase and a conspicuou
peak nearvL appears. This peak results from the fluctuatio
of the surface potential when they are not completely co
lated with the profile of the rough surface~Fig. 2! and in-
creases withU0 ~Fig. 3!. According to the formula~53!, the
spectral line shape ofds/dV with k r f '0 is mainly deter-
mined by the terms associated with scattering from surf
roughness and potential fluctuations since the cro
correlation term can be neglected. However, when the co
lation coefficient is not very small (k r f &1), the cross-
correlation term ofds/dV @Eq. ~53!#, which turns out to be
negative, competes with the other terms and can drastic
modify the light-scattering spectra~see Fig. 2!.

Angle dependencies ofds/dV, calculated in the case o
complete correlation (k r f 51) and at different angles of in
cidenceu i , are shown in Fig. 4. It can be seen that t
maximumof dsss/dV @Fig. 4~a!# is close to the specula
direction. As the angle of scattering goes away from t
direction,dsss/dV decreases monotonically. The angle d
pendence ofdspp /dV is analogous to that ofdsss/dV
within the whole frequency region of the exciton resonan
except at the longitudinal frequencyvL . So, with v5vL
andk r f 51, the angular dependence ofdspp /dV exhibits a
minimumnear the specular direction at relatively large ang
of incidence@see the curve in Fig. 4~b! for u i540°#. This
surprising result can only be attributed to the excitation
the longitudinal mode in thep-polarization geometry. De
creasingk r f , the angular dependence ofdspp /dV at v
5vL is modified so that its minimum near the specular
rection becomes a maximum~see Fig. 5!.

Now, let us apply the theory developed in the preced
section to a CdS semiconductor. The interest in this kind
semiconductor is due to the fact that its spectra of ela
scattering of light have already been investigated both
perimentally and theoretically in several works.10–15 So, we
can verify how well our theory explains experimental resu
Figure 6~a! presents experimental spectra ofdspp /dV for
CdS in the region of theAn51 exciton state, which were
taken from Ref. 13. In this work the distinct spectral curv
of dspp /dV were obtained from different areas of the sam
crystal surface with angles of incidence and scatteringu i
514° andu854°, respectively. Curve 1 in Fig. 6~a! has a
single maximum at the longitudinal frequencyv5vL . This
type of spectrum is very common and has been observed
great variety of high-quality CdS samples.10–15 However, in
some cases the line shape of the spectrumdspp /dV is quite
different from the curve 1 in Fig. 6~a!, since, in addition to
the maximum atvL , there is another maximum near th
exciton resonance frequency11,13vT @compare curves 3 and
with curve 1 in Fig. 6~a!#. These experimental spectra we
explained in Ref. 13 as a result of light scattering not only
the roughness of the crystal surface but also by the fluc
tions of the surface excitonic potential. In the theory13 the
repulsive exciton potential was approximated by a 70 Å d
layer, applying the Pekar ABC for the excitonic polarizati
P @i.e., P50 ~Ref. 19!# at its inner rough boundary.

Our theoretical results fordspp /dV @Fig. 6~b!#, obtained
by modeling the excitonic surface potential as a repuls
exponential one, accomplish a quantitative reproduction
the experimental spectra of Fig. 6~a!. This fit turns out to be
s
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much better than that of Ref. 13, where the dead-layer mo
was applied. In our calculations we fixed various C
parameters54 \vP50.293 96 eV,e`59.1, M50.94m, \n
50.124 meV, and found the best fit for\vT52.552 25 eV.
This value ofvT is very close to those used in Refs. 13, 2
and 51 and is in reasonable agreement with other va
reported in the literature.54–56The repulsive surface potentia
is given by Eqs.~13! and ~54! with the parametersU0
54 meV anda570 Å , which have also allowed to repro
duce satisfactorily the specular reflectivity of CdS~near
An51 exciton resonance! for p-polarized light at 9° angle of
incidence, presented in Ref. 14. The statistical parameter
the surface profile and the potential fluctuations are indica
in the caption of Fig. 6.

Note that the spectra with maxima at bothvL and vT

FIG. 6. ~a! Experimental data for the dimensionless cross s
tion dspp /dV of CdS taken from Ref. 13. Graphs 1–4 correspo
to light-scattering cross section measured at angles of incidencu i

514° and scatteringu854° and on different areas of the sam
crystal surface, being parallel to the hexagonalc axis. ~b! Theoret-
ical spectra for the dimensionless light-scattering cross sectio
CdS, calculated with a repulsive~exponential! potential. The statis-
tical parameters for the rough surface and the fluctuations
the surface potential are:d r55.05 Å , d f511.35 Å (h50.38),
k r f 50.39 ~curve 1!; d r510.45 Å , d f521.55 Å (h50.34), k r f

50.917 ~curve 2!; d r515.1 Å , d f526.05 Å (h50.27), k r f

50.931 ~curve 3!; d r517.8 Å , d f526.2 Å (h50.19), k r f

50.915 ~curve 4!; the correlation lengthsLr , L f , andLr f are the
same for all the curves (Lr5L f5Lr f 50.5 mm).
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@curves 3 and 4 in Fig. 6~b!# were calculated by using a larg
correlation coefficientk r f (.0.9) and close values ford r
andd f @h[ud f2d r u/(d f1d r),0.3#. On the other hand, the
spectrum of light scattering corresponding to a smaller va
of the correlation coefficient (k r f 50.39) and a larger quan
tity h (50.38) has a single maximum atvL @see curve 1 in
Fig. 6~b!#. An intermediate situation is observed in spectru
2 of Fig. 6~b!, which exhibits a shoulder at the frequencyvT
and a prominent peak atvL . These results show that the lin
shape of light-scattering spectra depends strongly on the
gree of correlation between the potential fluctuations and
surface roughness in the irradiated areas of the sample.

Finally, we should comment that there exist other mec
nisms ~substantial increase of the transition-layer thickn
and decrease of damping23,57! that produce a peak in th
specular reflectivity near the longitudinal frequencyvL and
might also modify the line shape of light-scattering spec
However, in interpreting the experiment13 we have excluded
such mechanisms because they would require the use o
realistic parameters (a and n) for the CdS sample, from
which the spectra of Fig. 6~a! were obtained. Therefore, w
can affirm that the form of the experimental curves@Fig.
6~a!# is principally produced by the effect of the correlatio
between surface roughness and potential fluctuations.

IV. NEAR-SURFACE LOCALIZED EXCITONS

Now, let us analyze the scattering of light from semico
ductors with an extrinsic near-surface potential well. Figu
7–10 show frequency and angle dependencies ofds/dV for
ZnSe, which were calculated by using the same parame
for the sample (vT , vP , e` , M, n, d r5d f , Lr5L f5Lr f ! as
in Figs. 1–5. Hereafter, the surface potentialU(r i ,z) with
small random fluctuations in Eq.~13! is modeled by employ-
ing a truncated Morse potential:39,40,45

U1522uUmuezm /a, U25uUmue2zm /a, ~55!

where uUmu symbolizes the depth of the average poten
well, which coincides with the potential well for a flat su
face (̂ U(r i ,z)&5U(z)5U1e2z/a1U2e22z/a); zm is the po-
sition of its minimum@Um5U(zm)#. The effective width of
the potential wellU(z) is approximately 2.3a.39 The param-
eters of the extrinsic potential in Eq.~55!, used here, are
Um521 meV, zm5150 Å , anda5150 Å. According to
the chosen parameters, the average potential wellU(z) has
two excitonic bound states at\vT152.8017 eV, and\vT2
52.802 17 eV which, as is usual,39,40,45are calculated from
the Schro¨dinger equation for the translational motion of th
exciton,

\2

2M S kx
22

]2

]z2D c~z!1@\vT1U~z!#c~z!2\vc~z!50,

~56!

with the boundary conditionsc(0)50 and c(`)50. It
should be noted that the first term on the left-hand side of
~56! gives a negligible contribution to the eigenvalues\vTn ,
which is of the order of 1025 eV. As was mentioned in the
e
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Introduction, the presence of near-surface localized excit
leads to the generation of quantized longitudinal polarizat
waves.44,40These modes satisfy the condition of vanishing
the displacement vector,D5«`E14pP50. Hence, the lon-
gitudinal polaritonic fields of zeroth order, satisfyingD(0)

50, should obey the equation

\2

2M S kx
22

]2

]z2D P(0)~kx ,z!1@\vT1\vLT1U~z!#

3P(0)~kx ,z!2\vP(0)~kx ,z!50, ~57!

which is straightforwardly obtained from Eq.~16! if we omit
there the damping term and consider that the differences
tweenv, vT , andvL are small. Comparing Eqs.~56! and
~57!, we see that the eigenenergies of the quantized long
dinal modes are shifted with respect to the eigenvalues of
excitonic bound states:\vL15\(vT11vLT)52.8029 eV,
\vL25\(vT21vLT)52.803 37 eV. On the other hand, th

FIG. 7. Spectrum of the dimensionless cross section of li
scattering from a ZnSe surface in the presence of two locali
excitons. The incident light iss polarized with an angle of incidenc
u i540°, and the scattered light iss polarized in the plane of inci-
dence withu853°. The values of the correlation coefficientkr f are:
1, 0.95 , 0.9 in panel~a!, and 0 in panel~b!.
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longitudinal modes of the scattered polaritonic fields ins
the sample satisfy the equation

\2

2M S ~ki8!22
]2

]z2D P(1)~ki8 ,z!1@\vT1\vLT1U~z!#

3P(1)~ki8 ,z!2\vP(1)~ki8 ,z!5
\2

2M
F~ki8 ,z!. ~58!

Indeed, using formulas~29! and ~35!, and the condition
D(1)50 for the longitudinal modes of the first-order field
Eq. ~18! for E(1) andP(1) can be rewritten in the form~58!.
Note that the reduced equation of the inhomogeneous
~58! is precisely Eq.~57!, with the quantitieskx and P(0)

replaced byki8 and P(1), respectively. Therefore, the firs
order polaritonic fields should have a resonant behavio
frequencies very close to the eigenvaluesvLn . It means that
singularities, associated with the quantized longitudi

FIG. 8. Spectrum of the dimensionless cross section of li
scattering from a ZnSe surface in the presence of two local
excitons. The incident light isp polarized with an angle of inci-
denceu i540°, and the scattered light isp polarized in the plane of
incidence withu8535°. The values of the correlation coefficie
kr f are 1, 0.95, 0.9 in panel~a!, and 0 in panel~b!.
e

ne

at

l

modes, should appear in the spectra of light scattering. T
statement is verified by our numerical results, which are d
cussed below.

Figures 7–10 correspond to light scattering in the plane
incidence. We remind readers that, according to our fi
order perturbation theory, the scattered light in the plane
incidence has the same polarization (p or s! of the incident
light. In the case of complete correlation between surfa
roughness and potential-well fluctuations,kr f 51, the depen-
dence ofdsss/dV on frequency@Fig. 7~a!# resembles the
s-polarization reflectivity spectrum:45 The maximum~broad
peak! of dsss/dV belowvT is produced by the bulk exciton
resonance (T) together with transverse resonances (T1 and
T2) associated with near-surface localized excitons. As
coefficient of correlation tends to zero (kr f →0), dsss/dV
increases considerably in the intervalvT,v,vL @Fig.
7~b!#. It is interesting that this effect of the correlation coe
ficient on the light-scattering cross section is similar to th
found in the case of repulsive~intrinsic! potentials~see Sec.
III !.

The spectrum ofdspp /dV for p-polarized light depends
strongly on the angle of scatteringu8 @Figs. 8 and 9#. When
kr f 51 and u8 is close to the angle corresponding to t

t
d

FIG. 9. The same as in Fig. 8, but the angle of scatteringu8
53°.
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specular direction,dspp /dV ~Fig. 8~a!! reproduces the sam
features of thep-polarization reflectivity.45 Diminishing the
correlation between the random functionsz r(r i) andz f(r i),
dspp /dV increases notably@see Fig. 8~b!# and the longitu-
dinal resonance atvL1, associated with the deepest lev
(n51) of the quantized polarization waves, is clearly o
served as a dip. Sufficiently far from the specular directi
the longitudinal resonances manifest themselves as pea
the spectrumdspp /dV at frequenciesvL1 andvL2 ~see Fig.
9!. These results confirm our predictions, namely, the pr
ence of quantized longitudinal polarization waves in the sc
tered polaritonic fields and their resonant manifestation
spectra of light scattering. We should mention that the s
face damping in an extrinsic transition layer is larger than
bulk damping and, therefore, the resonances, associated
the near-surface localized excitons, in spectra of light s
tering can be smoothed out and two or more of them m
coalesce into a single one. This fact should be taken
account in interpreting experimental spectra.40

Another interesting manifestation of the quantized lon
tudinal polarization modes can be observed in the ang
dependence ofdspp /dV shown in Fig. 10. As is seen there
the scattering cross section at the frequencyv5vL1 of the
first quantized longitudinal mode has a minimum near

FIG. 10. Angular dependence of the dimensionless cross se
dspp /dV for ZnSe calculated with the same parameters as in
8, and withv5vL1.
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specular direction when the value of the coefficientkr f is
close to one~complete correlation!. This angular dependenc
@Fig. 10~a!# looks like that ofdspp /dV for a sample with an
intrinsic potential at the frequencyvL of the bulk longitudi-
nal mode@compare with the curve labeled withk r f 51 in
Fig. 5~a!#. As the correlation coefficientk r f decreases, the
minimum ofdspp /dV near the specular direction becomes
maximum~see Fig. 10!.

We have also calculated spectra ofds/dV for CdS and
GaAs~Ref. 46! samples in the presence of an extrinsic ne
surface potential well. The generation of excitonic bou
states within the potential well leads to resonances in th
light-scattering spectra. Besides, as in the case of ZnSe
decrease of the correlation between the profile of the ro
surface and the potential-well fluctuations produces a con
erable increase ofds/dV in the frequency regionvT,v
,vL .

V. CONCLUSION

We have developed a perturbation theory for describ
the phenomenon of light scattering from semiconduc
rough surfaces near exciton resonance. In our theory we h
modeled the interaction between the exciton and the ro
surface by means of a generalized Morse potential with r
dom fluctuations. This model allows to study the effect
both intrinsic ~repulsive! transition layers and near-surfac
~extrinsic! potential wells on spectra of light scattering.
both cases, the light-scattering cross section increases
stantially near the longitudinal frequencyvL as the correla-
tion between the profile of the rough surface and the fluct
tions of the surface potential decreases. Applying this the
we could quantitatively reproduce experimental spectra
light-scattering cross section for CdS samples of sufficien
high quality.

It was also shown that the presence of exciton bou
states within a near-surface potential well affects nota
both frequency and angle dependencies of the lig
scattering cross section. In particular, the longitudinal mo
associated with the near-surface localized excitons prod
resonances in spectra of diffuse reflection, which are int
sified as the correlation between the surface roughness
the potential-well fluctuations diminishes. The optical ma
festation of such longitudinal confined modes turned out
be very sensitive not only to the angle of incidence, but a
to the angle of scattering.

Because of the large number of parameters to be spec
in the theory, spectra of light-scattering cross section as w
as specular reflectivity19,39,51can be reproduced by differen
sets of parameters. Therefore, it is recommendable to de
mine first the parameters of the average surface pote
from various reflectivity measurements~for example, at dif-
ferent angles of incidence for boths and p polarizations!.
Afterwards, the statistical parameters for the surface pro
and potential fluctuations can be adjusted to experime
spectra of diffuse reflection.

Finally, we should emphasize that the theory develope
this work is based on the adiabatic approach19 and has a
phenomenological character due to the use of an excito

on
.
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surface potential with fitting parameters. The employmen
this phenomenological theory is well justified by the cle
and simple interpretation of experiments on light scatteri
Nevertheless, it would be also interesting to compare
results with predictions of microscopic theories~for ex-
ample, the analytical-variational approach by D’Andrea a
Del Sole,21,58 ABC-free theory of Cho,59,60 and Stahl’s co-
herent wave approach61–63!, which have been mostly applie
s

gh

s

h.

.

e

rc

d.

.

iz.

.

f
r
.
r

d

to investigate optical properties of excitonic media with id
ally flat surfaces.
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