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Asymmetric nonlinear conductance of quantum dots with broken inversion symmetry
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Coherent electron transport in open, asymmetric~triangular! quantum dots is studied experimentally and
theoretically in the nonlinear response regime. The nonlinear dot conductance is found to be asymmetric with
respect to zero bias voltage. This conductance asymmetry is related to the nonsymmetric effect of an applied
electric field on the quantum electron states inside the dot and on their coupling to the states in the electron
reservoirs. The direction of the asymmetry depends sensitively on the amplitude of an applied ac voltage, on
the Fermi energy and on the magnetic field, and is suppressed at temperatures above a few Kelvin. Quantum
dots can therefore be viewed as ratchets, that is, devices in which directed particle flow is induced by non-
equilibrium fluctuations, in the absence of~time-averaged! external net forces and gradients. A quantum
mechanical model calculation reproduces the key experimental observations. The magnitude of the conduc-
tance asymmetry is found to depend strongly on the electric field distribution inside the dot. In addition to
exact calculations, an approximation is presented which makes it possible to qualitatively predict the nonlinear
behavior from the energy dependence of the conductance in the linear response regime. We also discuss a
semiclassical explanation for our observations and comment on limits of quantum-interference induced recti-
fication.
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I. INTRODUCTION

The majority of studies of electron transport in mes
scopic systems has to date been limited to the linear resp
regime where effects of thermal nonequilibrium can be
glected. Small electronic systems at low temperatures, h
ever, can easily be driven away from thermal equilibriu
and nonlinear effects are therefore important already at s
bias voltages.1 The lowest order of nonlinearity, that is, th
term G1 in the expansion of the currentI 5G0U1G1U2

1..., leads to the rectification of an external voltageU. In
general terms, rectification can be defined as the dire
motion of particles in asymmetric potentials in the abse
of time-averaged macroscopic net forces. Devices in wh
the rectification of nonequilibrium fluctuations or fields c
be observed are often called ratchets2,3 and have in recen
years attracted considerable interest in a broad physics c
munity. This interest is in part of a fundamental nature bu
also motivated by the prospect of applications. One field
which the physical concept of rectification in ratchets may
applicable is the chemomechanical energy conversion in
logical cells. There, mechanical work is generated by
called molecular motors in the absence of macrosco
forces or thermal gradients.4–6 In these systems it is though
that the Brownian motion of molecules is rectified using e
ergy from nonequilibrium chemical reactions.

The necessary conditions for rectification in any syst
are, first, a lack of central symmetry of the potential~thus
defining a preferential direction of motion!, and, second, a
state of thermal nonequilibrium~rectification in thermal
equilibrium would violate the second law of therm
dynamics!.7,8 In a diode based on apn junction or a Schottky
barrier, for instance, the symmetry is broken by the dop
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profile or a band offset, respectively, and a state of ther
nonequilibrium is created by application of an electric fie
Then, even if the applied field is zero on time-average
directed current is generated. Another example is the ph
galvanic effect, that is, the generation of current by illum
nating a homogeneous but microscopically not centrosy
metric material.7,8

Mesoscopic semiconductor structures provide an alm
ideal laboratory for studies on rectification, because toda
large variety of fabrication techniques is available to cre
potentials of defined symmetry, or asymmetry, and electr
currents can be measured with extremely high accura
Most importantly, however, at low temperatures the el
tronic properties of mesoscopic structures are determined
quantum effects. Mesoscopic structures in the non-linear
gime can therefore be used to study rectification due to qu
tum processes such as tunnelling9–11 and quantum
interference.12 Such quantum rectification is the focus of th
present paper. Specifically, we will present a detailed inv
tigation of asymmetries in the nonlinear conductance
semiconductor quantum dots without spatial inversion sy
metry ~Fig. 1!.

Quantum dots are two-dimensional electron cavities, u
ally of the order of 20 times larger than the electron Fer
wavelength, but much smaller than the electron mean
path for impurity scattering. At low temperatures transp
through such structures is phase coherent and determine
the coupling of electron states in the reservoirs to the e
tron states inside the dot. The electrostatic potential that
termines the electron states inside the dot can be modifie
an electric field via point contacts. Therefore, the cond
tance of quantum dots depends on the applied voltage
ready at voltages as small as a few hundred microvolts,
15 914 ©2000 The American Physical Society
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PRB 61 15 915ASYMMETRIC NONLINEAR CONDUCTANCE OF QUANTUM . . .
few percent of the Fermi energy. If the geometry of the qu
tum dot is not symmetric with respect to the direction of t
current, these nonlinear quantum effects depend, in gen
on the direction of the electric field.12–14 Consequently,
asymmetric quantum dots can partly rectify an ac volta
applied over the structure. The direction of the net curr
depends on the exact configuration of the electronic st
and can not be deduced from the orientation of the triangl
a straightforward way. Reversals of the direction of the r
tified current can be observed as a function of ac volt
amplitude, Fermi energy or magnetic field. The key prope
of the dot that leads to rectification is, however, the brok
symmetry of the shape of the dot, which is defined by
lithographic design of the device. This is in contrast to p
vious experiments using mesoscopic semiconductor st
tures in which the symmetry of the potential was brok
because of the random distribution of impurities.15–19

In a recent article, rectification in triangular quantum do
~Fig. 1! was demonstrated, and it was shown that mode
of quantum transport in the nonlinear regime qualitativ
accounts for the experimental observations.12 Here, we
present additional experimental results and carry their th
retical interpretation one step further. In Sec. II we will cr
ate a basis for the theoretical discussions by giving an o
view of the main experimental results. After a description
the theoretical methods used we investigate the physical
gin of the asymmetric conductance in Sec. III. One issue
will be raised is the relative importance of different quantu
rectification mechanisms which could be essential in our
vice. Specifically, we distinguish the effect of the geome
cal asymmetry of the dot and secondary effects related to
self-consistent, spatial distribution of an applied elect
field. We will also present an intuitive understanding of t
results based on the theory presented in Ref. 20 which
presses the nonlinear behavior of quantum dots derived f
their energy-dependent conductance spectrum in the li
response regime. In Sec. IV, we compare the experime
and theoretical results and point to effects which are
currently included in the theoretical model. We presen
semiclassical picture of nonlinear quantum transport in e
tron cavities and discuss classical rectification effects. F
ther, we discuss the limits of interference-induced rectifi
tion in open quantum dots. Finally, our results a
summarized in Sec. V where also some open questions
addressed.

FIG. 1. Scanning electron micrograph of a triangular quant
dot as used in the present work. The structure was patterned u
electron beam lithography and was transferred into GaAs/AlG
heterostructure material by shallow wet etching~etched areas are
darker in the image!. An additional top-gate made it possible to tun
the electron concentration in the dot and surrounding areas.
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II. EXPERIMENT

A. Devices

The triangular quantum dots used in the present w
were defined by electron beam lithography and shallow
etching in modulation-doped, GaAs/AlxGa12xAs, two-
dimensional electron gas material~Fig. 1!. The transport
properties of similar devices fabricated by the same proc
methods have been previously characterized in great deta
the linear response regime.21,22 Here, we build on these ear
lier results and extend the studies into the nonlinear reg
of transport. We will present data from one particular devi
representative of data from in excess of fifteen different
vices studied in the nonlinear response regime.

The effective, inner side length of the dot potential
determined from classical commensurability effects in m
netoresistance measurements21 was about 1.7mm, much less
than the electron mean free path with respect to impu
scattering of about 15mm. Using a top gate, the Fermi en
ergy ~mF , determined from Shubnikov–de Haas oscillatio
in an area outside the billiard! was tunable in the range 7–
meV, corresponding to a Fermi wavelength (lF) of 0.05–
0.06 mm. Typically four modes were open at the point co
tacts. Current controlled, two-terminal resistance meas
ments were carried out, using separate current and vol
probes in a four-point geometry, with an excitation volta
Uac,kBT'25meV. Unless otherwise indicated, the tem
perature wasT50.3 K.

To study electron transport in the nonlinear regime,
measured the differential resistanceR5]U(I )/]I as a func-
tion of a dc bias current~I! which was added to the ac com
ponent used for lock-in detection. The differential condu
tance G(U)51/R(U) was then calculated from th
measured raw data, whereU is the source-drain voltage.

B. Temperature and magnetic field dependence

In the present work we are interested in quantum rect
ing effects, that is, in nonsymmetric effects that can be
lated to the nonlinear response of the quantum propertie
the electron cavities being studied. Since nonlinear effect
a classical nature can also lead to rectification in asymme
microstructures,23,24 it is necessary to establish techniqu
which make it possible to experimentally distinguish clas
cal and quantum effects. This distinction can be made
cause quantum and classical effects depend in different w
on temperature and magnetic field, as will be illustrated
the following.

In Fig. 2 we show measurements of the magnetocond
tance of our triangular dot in linear response, that is, with
dc bias voltage applied. The bold and thin lines were
corded atT50.3 K and T55 K, respectively. It has been
found previously, using devices processed in the same
as those studied here, that data recorded at the higher
perature can be explained in great detail in terms of comm
surability effects due to a classical, billiard-ball-like motio
of the electrons inside the cavity.21 The quickly varying fluc-
tuations emerging at the lower temperature, in contrast,
of quantum mechanical origin and can be interpreted
terms of variation in the density of states inside the billiard22

These quantum magnetoconductance fluctuations are ob
able only at very low temperatures~,1 K! where phase-

ing
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15 916 PRB 61H. LINKE et al.
destructive, inelastic electron scattering and thermal ave
ing are sufficiently suppressed. By subtracting the d
recorded at the higher temperature from the low-tempera
data, the quantum effects can be isolated to a good app
mation ~Fig. 2, right-hand axis!. The rms value of the quan
tum fluctuations is about 0.15 e2/h which is a typical value
for experimentally observed magnetoconductance fluc
tions at temperatures around 300 mK. The magnetic fi
scale~the correlation fieldBC! of magnetoconductance fluc
tuations is given by the flux required to significantly chan
the electron states inside the cavity. Semiclassically,
field is given approximately byBC5(h/e)/a, wherea is the
effective area of the device cavity~about 1.2mm2!, which
yields a value of a few millitesla forBC , in agreement with
Fig. 2. Classical effects, by comparison, change much m
slowly with magnetic field, since the typical field scale he
is determined by the field that markedly bends classical,
listic electron orbits, i.e., when the cyclotron diameter b
comes comparable to the lateral size of the device~about 100
mT for the present device!.21 These significant differences i
the dependence on magnetic field and on temperature
tween classical and quantum behavior can be employe
distinguish classical and quantum effects also in the non
ear response regime.

Measurements of the differential conductance as a fu
tion of the dc source-drain bias voltage are shown in Fig
where the different curves have been recorded in a magn
field range from 0 to 100 mT, at a relative separation of
mT. At T55 K @Fig. 3~a!#, when quantum effects are ex
pected to be suppressed, the nonlinear conductance is
cases found to increase monotonically with increasing b
voltage. The conductance value at zero bias voltage cha
with magnetic field in agreement with Fig. 2 and the shape
the G(U) curves depends qualitatively only little on ma
netic field. At the lower temperature@T50.3 K Fig. 3~b!#,
however, when quantum effects are expected to appear
nonlinear behavior becomes more rich and varies qua
tively as a function of magnetic field. Following the sam
procedure as illustrated in Fig. 2 for the linear-response m
netoconductance we isolate the nonlinear quantum effect

FIG. 2. Magnetoconductance of the triangular electron ca
~left axis! at T55 K ~thin line! andT50.3 K ~bold line!. The con-
ductance minimum at aboutB50.1 T is caused by a classical com
mensurability effect~for details, see Ref. 21!. By subtraction of the
high temperature data from the low temperature data~shown with
respect to the right-hand vertical axis! one can, to a good approxi
mation, isolate the quantum conductance fluctuations,DG
5@G(0.3 K) –G(5 K)# ~for details, see Ref. 22!.
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subtracting the high temperature data from those recorde
low temperature~Fig. 4!. In agreement with what one woul
expect for a quantum effect, the magnitude of the result is
the order of 0.1–0.2 e2/h and depends strongly on the ma
netic field. Most important, however, the nonlinear quantu
effects are in general not symmetric with respect to zero b
voltage, where the orientation of the asymmetry depends
the magnetic field strength. It is this nonsymmetric quant
behavior that we will focus our attention on in the followin
The slowly varying, classical, nonlinear effects, which are
general also slightly asymmetric, are not of primary inter
here and will be commented on only briefly in Sec. IV.

The relative separation in magnetic field of the data s
shown in Fig. 4 (DB510 mT) is of the order of the scale o

y FIG. 3. ~a! Differential conductance vs dc bias voltageU mea-
sured at a temperature of 5 K at, from the top down, magnetic fie
between zero and 100 mT with a relative spacing ofDB510 mT.
The variation from curve to curve is associated with classical
fects and the conductance values atU50 agree with the magneto
conductance shown in Fig. 2.~b! When the temperature is low
ered to 0.3 K additional structure emerges in the nonlin
conductance because of quantum interference effects.

FIG. 4. The differenceDG(U)5@G(U,T50.3 K)2G(U,T
55 K)# at different magnetic fields between zero and 100 mT~rela-
tive spacing 10 mT!, obtained by subtracting the data in Fig. 3~a!
(T55 K) from corresponding data in Fig. 3~b! (T50.3 K). The
curves have been offset by10.05 e2/h from one another and show
from the bottom up data for increasing magnetic field, where al
natingly full, long-dashed and short-dashed lines have been u
The curves were slightly smoothed to remove point-to-point no
occurring at the higher temperature.
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PRB 61 15 917ASYMMETRIC NONLINEAR CONDUCTANCE OF QUANTUM . . .
the correlation fieldBC , which also significantly alters the
linear-response conductance~Fig. 2!, pointing to the same
origin. In Fig. 5 we show data which have been obtained
the same way as those in Fig. 4, but with a relative sep
tion of only 1 mT. With this higher resolution one can follo
the evolution of the nonlinear behavior as a function of m
netic field, from an almost symmetric signal at zero magne
field to a pronouncedly asymmetric shape at a few millites

C. Fermi energy

The data presented in the previous section demonstra
nonlinear, rectifying effect in asymmetric quantum do
which has the same magnitude, temperature dependence
magnetic field dependence as magnetoconductance flu
tions observed in the linear response regime. We will sh
in the following that the relation between the observed, n
linear behavior and the effect of an applied voltage on
electron states inside the electron cavity can be elucid
even better by using the Fermi energy as an experime
variable.

In the inset in Fig. 6 we show the conductance as a fu
tion of the top-gate voltageUtg at zero magnetic field and
zero bias voltage~linear response!. Also indicated in Fig. 6 is
the relation betweenUtg and the Fermi energy, which wa
determined in the two-dimensional electron gas areas a
cent to the quantum dot, using Shubnikov–de Haas osc
tions. The overall trend of the conductance to decrease
decreasing Fermi energy is due to the depletion of the p
contacts, that is, due to the decreasing number of w
modes contributing to transport. Superposed on this slo
varying background are fluctuations which can be isolated
subtracting a second degree polynomial fit from the raw d
~we have checked that this procedure yields, to a good
proximation, the same outcome as subtraction of data m
sured at a higher temperature!. The result is shown as bol
lines in Fig. 6. The origin of these energy dependent fluct
tions is similar to that of conductance fluctuations obser
as a function of magnetic field~Fig. 2!, i.e., these fluctuations

FIG. 5. The differenceDG(U)5@G(U,T50.3 K) –G(U,T
55 K)# obtained in the same way as the data shown in Fig. 4,
with a relative magnetic field spacing of only 1 mT. From t
bottom up at the center of the graph, the magnetic field increa
from zero to 9 mT.
n
a-

-
ic
.

a

and
ua-
w
-
e
ed
tal

c-

ja-
a-
th
nt
e

ly
y

ta
p-
a-

-
d

reflect the oscillatory structure in the density of states ins
the dot at zero magnetic field and the energy dependent
pling of the electron states to the reservoirs.

The effect of an electric field on the fluctuating~quantum!
part of the dot conductance can be studied by measu
G(mF) at a series of bias voltages and subtracting the slo
varying background in the same manner as described ab
Resulting data ofDG(mF) are shown in Fig. 6 for positive
~right-hand axis! and negative bias voltages~left-hand axis!,
respectively, where the same absolute values of the bias
ages, 0,uUu,0.5 mV, have been used in the two case
Note that the bold lines in both groups of curves~zero bias
voltage! are identical. From Fig. 6 it is immediately appare
that a bias voltage of the order of 0.5 mV modifies the co
ductance fluctuations as a function of the Fermi energy
nificantly. At certain energies these changes can be of
same magnitude~0.15 e2/h! as the fluctuations themselve
Most importantly, these changes depend on the sign of
voltage, which becomes even more apparent when the p
tions of local maxima ofDG(mF) are plotted as a function o
the Fermi energy and bias voltage~Fig. 7!. Up to bias volt-
ages of aboutuUu'1 mV one can follow the positions o
individual maxima, which shift at a rate of typicall
udmF /dUu'0.1 meV/mV. However, while some transmis
sion resonances initially shift in a symmetric manner~for
instance the peaks atmF57.76 meV and 8.20 meV!, the po-
sition of others is pronouncedly asymmetric with respect
zero bias voltage already at small voltages~e.g., at mF
58.04 and 8.33 meV!. At bias voltagesuUu.1 mV the peak
positions at corresponding negative and positive bias v
ages are basically uncorrelated, that is, the electronic st
inside the cavity are fully modified by the applied field.

ut

es

FIG. 6. Effect of a dc bias voltage on conductance fluctuatio
observed as a function of the Fermi energy~top axis! which was
tuned using a top-gate~bottom axis!. The lower~upper! group of
plots have been recorded at increasing negative~positive! bias volt-
ages and refer to the left-hand~right-hand! axis. The same absolut
values of bias voltages have been used in both cases, nameU
50 ~bold lines!, 60.1 mV,60.2 mV, . . . ,60.5 mV. These values
for the voltage drop over the device refer to the center of the p
Because the conductance depends on the Fermi energy, the e
tive voltage drop decreases by about 25% over the range of
graph. No magnetic field was applied. All data were obtained
subtracting a 2nd order polynomial fit from the raw data ofG(Utg).
Inset: raw data ofG(Utg), recorded at zero bias voltage.
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15 918 PRB 61H. LINKE et al.
How the effect of an electric field on the transmissi
resonances, apparent in Figs. 6 and 7, manifests itself in
nonlinear conductance of the dot is illustrated in Fig. 8 wh
data of G(U), recorded at different Fermi energies atT
50.3 K, are shown. The corresponding Fermi energies
marked with letters in Fig. 6.

To conclude this experimental section, the different
conductance of triangular electron cavities is, in the cohe
regime of transport, in general not symmetric with respec
zero bias voltage. The observed asymmetry is clearly rela
to the asymmetric effect of an electric field on the electr
states inside the cavity. In the following section we w
present a quantum mechanical model calculation which
counts qualitatively for the observed quantum rectificatio

FIG. 7. Energy position of local maxima of conductance flu
tuations, observed as a function of the Fermi energy for differen
bias voltages. The transmission resonances are shifted in a
symmetric manner by the applied electric field.

FIG. 8. Examples of the differential conductance versus b
voltage for different top-gate voltages. From the bottom up,Utg

524.40,23.44,23.24,23.08,22.65 V, corresponding tomF

57.79, 8.20, 8.28, 8.35, 8.53 meV. The bottom curve has b
offset by 11.2 e2/h. Note that in this plot the classical, nonline
behavior has not been subtracted. Nonlinear quantum fluctua
are therefore less pronounced than it may appear in Fig. 6, w
the quantum fluctuations have been isolated from the backgrou
he
e

re
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o
ed
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III. THEORY

The nonlinear regime of transport in mesoscopic syste
has to date been addressed in only a limited number of
oretical studies. Bu¨ttiker and co-workers have developed
gauge-invariant theory for the frequency-dependent25 and
nonlinear26 transport of mesoscopic systems, which takes
internal, self-consistent potential into consideration. So
the application of Bu¨ttiker’s nonlinear theory has been lim
ited largely to studies of the lowest-order, nonlinear cond
tance in the weakly, nonlinear regime in quasi-one-dim
sional27 and two-dimensional28,29 systems. In order to mode
our present experimental results, however, we wish not to
limited to the weakly nonlinear regime. We have therefo
chosen to carry out exact numerical calculations of the
ferential conductance of a model potential in the nonlin
regime. We will show that the calculations yield qualitativ
agreement with the experimental results and we will disc
the physical origin of the quantum rectification mechanis
In particular, we will investigate the influence of the symm
try of the point contacts and of the geometrical shape of
cavity on quantum rectification.

A. Theoretical model

In our calculations we used a model potential that cons
of an equilateral, triangular structure connected to tw
dimensional electron reservoirs via two point contacts@Fig.
9~a!#. A hard-wall potential was used, which in previou
studies was found to describe well the electronic proper
of devices fabricated with the same hetereostructure mat
and by the identical processes as the ones used here.21,22The
side length of the cavity was 1mm, the largest size that wa
computationally feasible without reducing the accuracy
the calculation. The point contacts are 100 nm wide a
support about four to five wave modes at the Fermi energ
considered~9 to 10 meV!. It is assumed that electron tran
port inside the cavity is ballistic and that any inelastic pr
cesses occur only far from the device. The reservoirs rem
in local, thermal equilibrium at temperatureT and their re-
spective electrochemical potentialsm1 andm2 are related to
the applied source-drain voltageU by m12m25eU.

-
c
n-

s

n

ns
re
d.

FIG. 9. ~a! Geometry of the hard-wall potential used in th
calculations. The side length of the equilateral triangle is 1mm and
the point contacts are 100 nm wide.~b! The assumed voltage dro
distribution used~referred to as model I in the text!. Potential steps
are assumed at each discontinuity of the wave guide, and a li
slope is assumed inside the cavity where backscattering occurs~c!
Calculated differential conductanceG(U) for four different Fermi
energies as indicated.
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For calculations in the nonlinear regime of transport o
needs to make assumptions about the profile of the elec
static potential, which in general has a complicated dep
dence on the applied source-drain voltage. An exact dete
nation of this dependence requires self-consistent treatm
of the three-dimensional Schro¨dinger equation30 and is be-
yond the scope of the present work. Several suggestions
for simple assumptions on how the source-drain volta
drops between two reservoirs.20,31–33 Here we adopt a
convention20 which was previously found to yield goo
agreement with the experiment of Ref. 34. A change in
electrostatic potential is assumed to be related to a prob
ity for backscattering which occurs in our device inside t
cavity and at each discontinuity of the potential or of t
boundaries. As is shown in Fig. 9~b! we distribute one fourth
of the potential dropeU linearly over the inside of the de
vice, while the other three fourths ofeU are dropped in equa
parts abruptly at the discontinuities of the boundaries. T
distribution of the voltage drop is in the following referred
as model I. In the present case these considerations lea
different total potential drops at the two point contacts. T
is a result of the intrinsic asymmetry of the triangular stru
ture, which makes it impossible to have two fully symmet
quantum point contacts attached to it.

If a Fermi-Dirac distributionf («,T) is assumed for the
electrons in the reservoirs, the total current through the
vice can be written as

I ~U !5E
0

`

d«$ f @«2~mF1eU!,T#2 f ~«2mF ,T!%J~«,U !,

~1!

wheremF5m2 was assumed andJ(«,U) is the density of
current, which can be calculated by scattering ma
methods.35–37 In all calculations presented in the followin
the temperatureT50.3 K was used. By definition, the differ
ential conductance is given byG(U)5]I (U)/]U which
yields, in the limit of very small voltages, the linear respon
conductance. Calculations of the nonlinear differential c
ductance for four different Fermi energies are shown in F
9~c!. In all cases the differential conductance exhibits a co
plicated, nonmonotonic behavior. While the four datasets
quantitatively very different from one another, we note th
all four of them are, on a scale of a few hundred microvo
significantly nonsymmetric with respect to zero bias volta
These observations are in qualitative agreement with the
perimental results.

B. Origin of rectification and dependence
on the voltage drop distribution

In order to understand the origin of the nonsymmet
effect it is helpful to discuss a simple model for transp
through a quantum dot in the linear and nonlinear regim
First, we consider the case of negligible bias voltage@Fig.
10~a!#. Transport through the cavity is in this regime via t
electron states within a fewkBT of the Fermi energy.38 The
states which contribute to transport are independent of
applied, very small voltage (ueUu!kBT), and are the same
for both current directions. This is the linear response reg
where transport is by definition symmetric upon voltage
versal. For comparison, Fig. 10~b! shows the situation for
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finite bias voltage, that is, in the nonlinear response regi
using the voltage drop distribution of Fig. 9~b! ~model I!.
One point to note here is that the assumed potential d
inside the electron cavity changes the potential landsc
when the source-drain voltage is varied. Because of the n
symmetric shape of the cavity, the resulting effective pot
tial landscape depends also on the sign of the voltage. Th
fore, the electron states which carry the current inside the
depend on the absolute value and on the sign of the
voltage, which leads to a nonlinear and nonsymmetric c
ductance. The second difference from the linear respo
regime is that at finite bias voltage not only electron sta
within a fewkBT of the Fermi energy contribute to transpo
through the dot. The contributing energy window is also d
termined by the voltage drop at the source quantum p
contact. This will lead to rectification when the two poi
contacts are different, because a different range of quant
electron states will make a contribution at different signs
the voltage.

The above discussion suggests that we can disting
two sources of rectification in asymmetric quantum dots: T
asymmetry of the scattering potential as a whole, and
nonidentical point contacts. We emphasize that these eff
are related to one another, and can in reality not be separ
In the calculation, however, we have the freedom to ma
special assumptions concerning the potential distribution,
lowing us to study the relative importance of each rectific
tion mechanism.

First, we consider the effect of nonsymmetric point co
tacts and neglect the effect of a potential drop inside the
To achieve this, we use the potential distribution shown
the inset in Fig. 11~c! ~model II!. Two thirds and one third of
the total voltage are assumed to drop at the left- and rig
hand contact, respectively, while the potential in the inter
of the dot remains flat. The resulting, nonlinear conducta
is shown in Figs. 11~c! and 11~d! for two Fermi energies,

FIG. 10. Illustration of electron transport through a quantu
dot. The curvature of the conductance band edge inside the
represents the effect of the confinement energy inside the triang
dot ~not to scale!. The horizontal lines inside the dot indicate th
shell structure of the density of states. The energy rangeE,m,
wherem is the local electrochemical potential, is indicated by sha
ing. ~a! In linear response the transmission probability, that is,
conductance, is independent of the absolute value and the sig
the voltage. In~b! the energy diagram at finite voltage is show
where a voltage drop distribution as in Fig. 9~b! ~model I! has been
used. This is the nonlinear response regime where the potentia
the electron states depend on the voltage applied. The nonli
conductance is asymmetric with respect to zero voltage when
potential is not inversion symmetric~see text!.
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mF59.5 meV andmF59.7 meV, respectively. Compariso
with the data for model I@Figs. 11~a! and 11~b!# shows great
qualitative similarity, although quantitatively the nonline
conductance has changed. In order to compare the degr
non-symmetry for different models we define a quantifi
asymmetry

A~U !5
1

U E
0

U

duuG~u!2G~2u!u, ~2!

which is the absolute value of the antisymmetric part of
differential conductance averaged over the voltage ra
@0,6U#. Data forA(U) are shown in Figs. 11~g! and 11~h!.
It is worth noting that the asymmetry of the conductance
of the order of 0.5 e2/h, which is in agreement with what on
expects for an electron interference effect. Comparing
asymmetry of the conductance for voltage drop models I
II we note that their functional behavior is closely relate
while the asymmetry for model I is consistently larger th
that for model II. The same behavior was also found at
other Fermi energies investigated. We can therefore conc
that the removal of one source of non-symmetric behav

FIG. 11. ~a!–~f! Calculated, differential conductance as a fun
tion of bias voltage formF59.5 meV ~left-hand column! and mF

59.7 meV ~right-hand column! (T50.3 K). Solid lines are exac
calculations, dashed lines are approximations based on Eq.~3! ~see
text!. From top, voltage drops according to models I, II, and
have been used as indicated@see insets to~a!, ~c!, and~e!, respec-
tively#. The bottom figures~g! and ~h! show the quantified asym
metries@Eq. ~2!# of the exact calculations shown in panels~a!–~f!.
of
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from model I, namely the voltage dependence of the pot
tial inside the quantum dot, indeed reduces the asymmetr
the conductance. The next step will now be to artificially a
remove from the calculation the non-symmetry of the vo
age drop at the point contacts. To achieve this, the conta
the tip was in this calculation made longer to match t
length of the base contact~see inset to Fig. 12!, which results
in the fully symmetric voltage drop shown as model III
Fig. 11. The only remaining asymmetry in this configurati
is now the geometrical shape of the hard-wall poten
which forms the dot itself. We emphasize again that we
here making a nonrealistic assumption: The symmetry of
voltage drop is related to the symmetry of the hard-wall p
tential, such that a symmetric voltage drop in a nonsymm
ric structure is not meaningful. By retaining this assumpti
for the moment, however, we can investigate the effect of
shape of the dot alone, without any additional~self-
consistently related! effect due to the electric field. The re
sulting, nonlinear conductance is shown in Figs. 11~e! and
11~f!. Also in this case the conductance is found to be asy
metric, see Figs. 11~g! and 11~h!, because also in this cas
the effective dot potential depends on the direction of
electric field, due to the spatial asymmetry of the dot. Ne
ertheless, the asymmetry for model III is significant
smaller than for models I and II. We have checked that
conductance of a fully symmetric~rectangular! dot yields a
perfectly symmetric conductance, as is expected from s
metry arguments.

We can conclude from this discussion that rectifying
fects induced by geometry are observed independent of
details of the voltage drop used in the calculation. In parti
lar, the dot shape alone yields rectification also when
voltage drop used is fully symmetric@Figs. 11~e! and 11~f!#.
Quantitatively, however, quantum rectification is signi
cantly enhanced by the asymmetric distribution of the el
tron potential, which is a necessary consequence1 of the dot
geometry@Figs. 11~g! and 11~h!#.

It should be noted that also model I, the most realistic o
of the three models used here, does not consider all sou
of nonsymmetry, because the spatial distribution of the e
tric field assumed there is symmetric upon voltage rever
In general, however, the electric field distribution in a no
symmetric structure will self-consistently also depend on
sign of the voltage, giving rise to additional nonsymmet

FIG. 12. Calculated, linear-response conductance~zero bias
voltage! versus the Fermi energy for model II~solid line! and for
model III ~dashed line!. The difference between the two mode
occurs because the point contact at the tip of the triangle was
sumed in model III to be longer than in model II~see insets!.
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behavior. Also inelastic scattering inside the dot, which
excluded from the present model, gives rise to additio
rectification.38

C. The energy dependence and the approximative approach

After this quantitative study of quantum rectification w
will in the following present a more intuitive way to unde
stand the general behavior of the nonlinear conductance.
begin by noting that part of the nonlinear behavior of the
conductance is related to the voltage dependence of the
ergy window in which electron states contribute to transp
that is, to the energy dependence of the transmission func
@Fig. 10 and Eq.~1!#. At small voltages, when the electro
states inside the dot are not strongly altered by the elec
field, it is therefore possible to predict the nonlinear behav
from the energy dependence of the conductance in lin
response. It was shown20 that at very low temperature th
nonlinear, differential conductance can be approximat
written as

G~mF ,U !'$~12a!G0@mF1~12a!eU#

1aG0~mF2aeU!% ~mF.aeU! ~3!

wherea is the portion of the voltage that drops at the righ
hand contact andG0(mF)5G(mF ,U50) is the differential
conductance in linear response.20 Equation~3! indicates that
nonlinearities of the current caused by the energy dep
dence of the transmission function can be approximated
the weighted average of the two zero bias conductance
@mF1(12a)eU# and @mF2aeU#.20 Nonlinear effects
caused by the field dependence of the potential landsc
inside the dot are, however, not considered by this sim
model. Independent of the field distribution inside the cav
the resulting nonlinear conductance is therefore symme
with respect to zero bias voltage whena5 1

2 , that is, when
the voltage drop at the two point contacts is the same,
nonsymmetric otherwise.

In Figs. 11~c!–11~f! we show calculations of the nonlin
ear differential conductanceG5]I /]U using the approxima-
tion Eq. ~3! ~dashed lines! in comparison to the exact calcu
lations of Eq.~1! ~full lines!. The same Fermi energies an
voltage drop distributions have been used for the two ca
lations. Here, the approximated calculations using Eq.~3! are
based on exact, calculated data forG0(mF ,T50.3 K) as
shown in Fig. 12. From Fig. 11 it is apparent that the a
proximation Eq.~3! reproduces all features of the exact s
lution qualitatively very well. The quantitative agreement b
tween approximation and model is best at small voltages
is to be expected. For model II, even the nonsymmetry of
conductance is reproduced by the approximation, while
model III, where symmetric voltage drops at the point co
tacts are assumed, the approximation yields a symme
nonlinear conductance. For the more realistic and comp
potential distribution according to model I the approximati
as given by Eq.~3! can not be used in the form given b
cause in this case not all of the voltage drop occurs at
point contacts. In spite of this, the resemblance of the
proximation for model II @dashed line in Figs. 11~c! and
11~d!# with the exact calculation for model I@Figs. 11~a! and
11~b!# is still remarkably good. Equation~3! can therefore be
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used to gain an intuitive understanding of the quantum
conductance in the nonlinear regime.

ConsiderG0(mF) in Fig. 12 ~model II!. In the vicinity of
mF59.5 meV the linear response conductance has a lo
maximum, decreases monotonically to approximately
60.1 meV, and continues to decrease in both directions a
passing local maxima. From Eq.~3! one would therefore
expect also the nonlinear conductance to decrease mono
cally until the larger ofaeU and (12a)eU reaches60.1
meV, and to continue then to decrease non-monotonic
towards higher bias voltages. This expectation agrees
with the observed behavior of the nonlinear conductance
mF59.5 meV as shown in Fig. 11~c!: The conductance de
creases towards positive and negative voltages with sh
ders at aboutU'10.3 mV and atU'20.2 mV. A similar
analysis can be made formF59.7 meV @see Fig. 11~d!#
G0(mF) is, with respect to this energy value, pronounced
non-symmetric, showing a local minimum atmF
'9.65 meV and a local maximum atmF'9.75 meV. Conse-
quently, also the nonlinear conductance is strongly asymm
ric already in the vicinity of zero bias voltage, and exhib
non-monotonic behavior atU'60.1 mV.

Also the experimental, nonlinear differential conductan
can to some degree be understood using the model Eq.~3!.
For instance, at the top-gate voltageUtg522.6 V ~denoted
by e in Fig. 6! whereG(mF ,U50) exhibits a pronounced
local minimum, also the nonlinear conductance shows a c
minimum around zero bias voltage~curve e in Fig. 8!. A
very detailed agreement of the approximation in Eq.~3! with
experimental data ofG(U) is not expected, however, be
cause the approximation does not consider modification
the electron states inside the dot induced by an electric fi
which in the experiment are clearly quite important alrea
at small voltages~see Figs. 6 and 7!.

IV. DISCUSSION

A. Comparison of experiment and theory

From the experimental and theoretical results presente
the previous sections a consistent picture of nonlinear qu
tum effects in asymmetric electron cavities emerges. In
experiment as well as in the calculations we find that
nonlinear conductance exhibits rich structure in the cohe
regime and is in general asymmetric with respect to zero b
voltage. The origin of the nonlinear fluctuations is the effe
of the applied voltage on the electron states inside the
and on the coupling of the states to the reservoirs via
point contacts. Consequently, the nonlinear effects,
thereby the properties of quantum rectification, depend
the Fermi energy or the magnetic field in a sensitive w
Here, the scale in energy~or magnetic field! on which the
nonlinear behavior changes, is consistent with the co
sponding scale of correlation energy~or correlation magnetic
field! for conductance fluctuations observed in linear
sponse. Also the magnitude of the quantified asymmetr
experimentally and in theory consistent with the correspo
ing amplitude of conductance fluctuations observed at z
bias voltage. The most important conclusion is, therefo
that our theoretical model can qualitatively account for t
key experimental observations.
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In the following we will discuss some quantitative diffe
ences between the experiment and the calculation. A gen
observation is that the calculated, nonlinear conducta
shows overall stronger and more pronounced structure
the experimental data. This is apparent, for instance, fro
comparison of Figs. 4 and 9~c!. The difference in fluctuation
magnitude is, however, expected, given that the magnit
of fluctuations in linear response as a function of the Fe
energy are much smaller in the experiment than in the
culations. The corresponding rms values are approxima
0.15 e2/h for fluctuations in the experiment~Fig. 6! and 0.45
e2/h in the calculations~Fig. 12!. The most obvious reaso
for this difference is that phase breaking, which leads
broadening of the electron states, is not included in the
culation.

Broadening of electron states is likely to be responsi
also for differences between experiment and theory in
period of the quantum fluctuations. In the case of the line
response conductance fluctuations as a function of the F
energy, both experiment and calculation yield that the fl
tuations have a period of about 0.1 meV~Figs. 6 and 12!.
This suggests that fast fluctuations are suppressed by br
ening in the experimental case because in the larger ex
mental cavity~side length 1.7mm compared to 1mm in the
calculation! the conductance should vary faster as a funct
of energy.

Our calculations do not reproduce the experimental f
ture that the differential conductance usually increases w
increasing bias voltages~Figs. 3 and 8!, which is regularly
observed in electron cavities studied in the non-lin
regime.39,40 An overall increase of the conductance is e
pected for higher voltages in the calculations, where m
modes in the point contacts can eventually open. It is p
sible that this behavior is masked in the theoretical data
the coherent fluctuations which are, relative to the total c
ductance, stronger than in the experimental case. In addi
it is likely that the slowly varying conductance is at least
part due to effects that are not included in the theory, suc
current heating.39 We will return to this point in Sec. IV C.

Another difference between experiment and theory is
maximum voltage range in which quantum fluctuations
the nonlinear conductance can be observed. In the exp
ment the magnitude of the fluctuations generally decrea
with increasing voltage, and fluctuations are not observa
at voltages beyond about 2 to 3 mV. This suppression
fluctuations may be caused by thermal energy averaging
to current heating,41 and by phase breaking due to electro
electron interaction of non-equilibrium electrons.39,40 Since
inelastic effects are not included in our theoretical mod
this limitation of the voltage range is not relevant to t
calculation.

B. Semiclassical discussion

Only quantum mechanical treatment, such as we used
the theory section, is fully adequate to model quantum re
fication effects as we report them here. However, it has b
shown that, in the linear response regime, a semiclass
‘‘billiard-ball’’ picture of electron transport is remarkabl
successful in explaining quantum transport properties of
angular ballistic cavities.22,42,43 An interesting question is
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therefore, whether there is a simple classical or semiclass
explanation also for the nonlinear quantum effects as t
are discussed here.

The billiard-ball picture of electron transport in therm
equilibrium is illustrated in Fig. 13. The figures on the le
~right! show a superposition of a large number of simulat
classical trajectories of electrons which are injected into
billiard through the contact in the base of the triangle~tip!.
The same distribution of initial conditions has been used
both injection directions~for more details on the simulation
technique, see Ref. 22!. The upper~lower! two figures show
only such trajectories that are transmitted~reflected! by the
cavity. As one can intuitively expect, the reflected trajec
ries have an entirely different topography depending on
direction of injection@Figs. 13~c! and 13~d!#, and one can be
misled to assume that this difference causes rectificatio44

However, one must note that it is only the transmitted traj
tories that contribute to the current. The striking, detai
agreement of the spatial distribution of transmitted trajec
ries in this simulation@Figs. 13~a! and 13~b!# illustrates why
in thermal equilibrium no rectification occurs. The reason
that each trajectory that contributes to transport can be
lowed in either direction. In thermal equilibrium, when th
occupation probability for direct and reversed electron m
mentum states~trajectories! is equal, it follows that equally
many electrons will carry charge in either direction. Th
situation changes when thermal equilibrium is disturbed,
instance, by the application of a source-drain voltage~non-
linear response!. Then, the transmitting trajectories will in
general be occupied with different probabilities upon volta
reversal because electrons are nonisotropically accelerat
the applied electric field. Consequently, rectification occ
if the potential lacks central symmetry.7 For a structure in-
verse to the one studied here, a triangular antidot, this c

FIG. 13. Simulation of a large number of billiard-ball traject
ries in a triangular electron billiard atB50 ~for details see text and
Ref. 22!. Left-hand~right-hand! figures: Electrons are injected vi
the contact in the side~tip!, as indicated by the arrows. The lowe
figures show only the reflected trajectories and these depend o
direction of the injection. The transmitted trajectories~upper fig-
ures!, however, which contribute to the current, are independen
the source contact. In thermal equilibrium, when direct and inver
states are equally populated, no rectification occurs. At finite v
ages, however, when thermal equilibrium is disturbed, rectificat
can take place.
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sical, ballistic rectification mechanism has been discusse
detail7,8 and was recently demonstrated experimentally i
ballistic microstructure.23,24 Additional, classical, nonlinea
effects are expected at higher voltages, where the scatte
potential as a whole is altered by the applied field.

In the present report, however, we are concerned wit
quantum mechanical effect. The common way to establis
semiclassical link between classical trajectories and quan
mechanical effects is to equip the classical paths with a ph
and to include the possibility of electron interference.45 In a
situation where thermal equilibrium is disturbed by a b
voltage such that the occupation of transmitted trajecto
depends on the current direction, also the interference
tween semiclassical electron paths will depend on the sig
the voltage. In addition to this effect, the interference
semiclassical electron paths depends in a sensitive wa
the wavelength~energy! of the electrons involved. Analo
gous to our discussion of Fig. 10~Sec. III! this energy de-
pendence of the transmission probability will also lead
nonlinear effects. Therefore, at low temperatures, wh
transport through the dot is phase coherent, the class
nonlinear behavior discussed above will have faster, n
symmetric fluctuations related to electron interference su
posed on it. This expectation is in agreement with our
perimental observations, and we can conclude that
occurrence of quantum rectification can be anticipated us
semiclassical arguments. Whether also a detailed unders
ing of quantum, nonlinear behavior can be gained, for
stance, in terms of specific, classical electron trajectories
the way this is possible for interference effects in triangu
electron billiards in the linear response regime,22,43 is a topic
for future investigations.

C. Classical effects

In Sec. II we limited the discussion of our experimen
data to quantum effects only. While it was possible to isol
the quantum behavior by subtracting data recorded a
higher temperature, it is clear from the preceding section
also nonlinear effects of an origin not related to electr
interference can be expected in ballistic devices. That th
the case also in our devices is apparent from Fig. 3~a!, where
data recorded at 5 K are shown. At this temperature, whe
phase coherent effects are suppressed, the conductan
usually found to increase with bias voltage and is in gene
not fully symmetric with respect to zero bias voltage. As o
would expect for a classical effect, the non-linear behav
varies only little upon small changes~a few millitesla! of the
magnetic field. One reason for asymmetric, nonlinear beh
ior of classical origin may be the voltage dependence of
selection of classical trajectories as discussed above. In
strong effects of a bias voltage on classical commensura
ity effects in a magnetic field have been observed previou
in triangular~see, for instance, Fig. 5 in Ref. 21! as well as
rectangular46 electron billiards, indicating that such effec
will be important also here. A detailed understanding of no
linear behavior in the classical regime is probably comp
cated. Nonlinear behavior of the point contacts,47 current
heating,39,48 and electron-electron scattering of nonequil
rium electrons21,46,49may all be of importance.
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D. Is the symmetry of the dot geometry felt by the electrons?

So far we have restricted our discussion to the symme
of conduction with respect to zero bias voltage. In this s
tion we will consider the symmetry properties in a magne
field as a tool to test the symmetry of the effective, real d
potential which is sampled by the electrons.

In the linear response regime, conduction is always sy
metric with respect to zero magnetic field, that is, the relat
G(B)5G(2B) is valid independent of the potentia
symmetry.38,50 For our device this is apparent from Fig.
where the linear response conductance is shown for pos
and negative fields. In the nonlinear regime, however, wh
the conductance depends on the bias voltage, this gen
symmetry relation breaks down and symmetry in magne
field is normally absent. It is restored only when the poten
has a symmetry axis parallel to the direction of the curr
~Fig. 14!. Under this condition, which is fulfilled in our do
geometry, the relationG(U,B)5G(U,2B) is valid.

This symmetry relation allows us to perform an importa
test: if the reason for the absence of symmetry with resp
to zero bias voltage is indeed the geometry of the dot~and
not, for instance, broken symmetry because of random
purities of the material!, then the conductance in the nonlin
ear regime should be symmetric with respect to zero m

FIG. 14. Classical illustration of the symmetry of the nonline
conductance in a magnetic field. The distribution of classical tra
tories depends in the nonlinear regime on the direction of the
rent, and symmetry with respect to zero bias voltage is broken.
effect of a magnetic field, however, is independent of the direct
of the magnetic field if the potential has a horizontal symmetry a

FIG. 15. Experimental data of the differential conductan
G(U) at increasing~a! positive and~b! negative magnetic field
(T50.3 K). The field values are, from the bottom up fo
~a! B520.2,11.8,13.8, . . . ,117.8 mT and for ~b! B
520.2,22.2,24.2, . . . ,218.2 mT~note the offset20.2 mT of the
magnetic field values, which is due to a residual field in the m
net!. Each curve has been offset by10.1 e2/h from the preceding
one.
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netic field. Figures 15~a! and 15~b! show the nonlinear
conductance at increasing positive as well as correspon
negative magnetic fields, respectively. Clearly, the nonlin
quantum conductance does not depend on the direction o
field within that field range which fully alters the nonline
quantum fluctuations. We can therefore draw the conclus
that the effective dot potential does indeed have the sym
try properties that are apparent from Fig. 1, and that un
tended deviations from this symmetry are not significant
the parameter range covered here~uBu,20 mT,uUu,2 mV!.
Therefore, the rectification observed can, indeed, be rel
to the intentionally asymmetric geometry of the dot.

E. Limits of geometry-induced quantum rectification

The triangular dot shape used in the present work is
of the simplest geometrical forms which lacks spatial inv
sion symmetry. It is therefore interesting to ask: would
different dot geometry generate even stronger quantum
tification? We can argue qualitatively that, at most, the n
linear quantum fluctuations at negative and positive b
voltage can be fully uncorrelated. Then, the asymmetry
~2! yields a value of the order of the magnitude of the qu
tum fluctuations themselves, that is, about 0.5 e2/h rms atT
50.3 K in our calculations~Fig. 12!. This value can be com
pared to Figs. 11~g! and 11~h! where the averaged asymm
try according to Eq.~2! is shown. For model I, the asymme
try appears to level out at about 0.3 mV suggesting that
further increase of the quantum asymmetry occurs at hig
voltages, and reaches values of about 0.5 e2/h. One can there-
fore conclude that the triangular shape yields a quan
asymmetry close to the maximum that can be expected
lower temperatures, when the fluctuation amplitude
creases, larger total asymmetric effects can be observed
one can not expect that the value of the asymmetry du
electron interference will exceed the order of the cond
tance unit e2/h, independent of the dot geometry.

The situation may be different when the normaliz
asymmetry is considered, that is, the rectification coeffici
A(U)/G(U50) which in the present case yields only
value of the order of a few percent. It is likely that this val
can be increased by using a different geometry and fe
modes in the point contacts, thus decreasing the average
ductance while keeping the asymmetry high.

Concerning the opposite limit of geometry-induced rec
fication it is of relevance to ask: What is the least geome
cal asymmetry necessary to generate significant interfere
induced rectification? One could argue that a minim
requirement is a nonsymmetric variation of the scatter
potential on the scale of the Fermi wavelength because
then can the wave function spatially sample this variati
The rectification caused by such a small deviation from sy
metry will, again, depend on the self-consistent field dis
bution, and is an issue for future investigations. Theoret
studies addressing this question may also clarify by h
much the rectification properties of quantum dots are
paired by small imperfections of the effective, real dot p
tential, caused by individual impurities or process-related
viations from the intended dot shape.
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V. SUMMARY

In the coherent, nonlinear regime of transport, asymme
quantum dots exhibit conductance fluctuations which are
symmetric with respect to zero bias voltage. These nonlin
fluctuations occur because the electric field applied modi
the electron states inside the dot and the way these s
couple to the states in the electron reservoirs via the quan
point contacts. Because of the broken symmetry of the d
the nonlinear fluctuations are not symmetric and quant
rectification takes place.

The interpretation of our observations as a quantum m
chanical effect is based on the experimental dependenc
the nonlinear conductance fluctuations on the Fermi ene
on a small magnetic field, and on temperature, which are
in agreement only with an electron interference effect. F
thermore, the nonsymmetric conductance fluctuations ca
related to the electric-field-induced shift and modification
transmission resonances which are known to be related to
quantum properties of the dot.

Quantum mechanical calculations of the conductance
triangular dot confirm our interpretation and reproduce
key experimental results. The calculations depend on
sumptions concerning the spatial distribution of the volta
drop over the device. While we find that qualitative agre
ment of the calculations with experiment is obtained ind
pendent of the details of the assumed voltage drop, there
strong quantitative dependence of the strength of rectifica
on the exact electric-field distribution. In particular we fin
that even a fully symmetric voltage drop yields in the calc
lation a nonsymmetric conductance, simply because of
geometrical shape of the dot. More realistic models for
voltage drop must consider that the electric-field distribut
will be nonsymmetric because it is self-consistently rela
to the symmetry of the scattering potential. Such nonsy
metric distributions of the voltage drop are found to subst
tially enhance the nonsymmetry of the conductance. Det
of the nonlinear behavior at small voltages can be appro
matively understood from the energy dependence of
linear-response conductance. One reason for quantitative
ferences between experiment and theory is that the calc
tions do not take effects of incoherence into account.

The occurrence of nonlinear conductance fluctuations
be understood also semiclassically, using a billiard-ball p
ture of electron transport combined with a quantum mecha
cal phase. It remains an intriguing, open question whet
also a detailed semiclassical understanding of nonlinear
fects in quantum dots can be obtained, such as is possibl
interference effects observed in the linear response reg
Other open questions concern the limits of quantum rec
cation. On one hand, it is at present not clear what minim
geometrical asymmetry is required to produce observa
significant quantum rectification. On the other hand it is
fundamental and technological interest whether dot geo
etries exist that would yield rectification coefficients mu
larger than the value of a few percent observed here.

An important implication of our results is that asymmetr
quantum dots can be viewed as quantum ratchets, that i
devices that utilize a quantum effect to rectify nonequil
rium fluctuations.12,51 Quantum dot ratchets have qualitie
not known from other rectifiers: For instance, the direction
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the rectified current is not related in a straightforward m
ner to the orientation of the dot, but depends sensitively
parameters such as the amplitude of the ac voltage, the F
energy and the magnetic field. These qualitatively n
physical properties provide strong motivation for continu
experimental studies of quantum ratchets.9 Furthermore, mo-
tivation stems from potential, practical applications to s
called molecular motors in biological cells.5 The extremely
small physical size of molecular motors makes it likely th
mesoscopic effects, such as electron tunneling or sin
charge effects, are of central importance for the operatio
the motor. Mesoscopic devices and the theoretical mo
developed for mesoscopic semiconductor systems may th
u
s

e

S

t

s

s

-
n
mi

-

t
le
of
ls
re-

fore prove to be an ideal tool to significantly improve o
understanding of molecular motors.
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