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Asymmetric nonlinear conductance of quantum dots with broken inversion symmetry
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Coherent electron transport in open, asymmad(iangula) quantum dots is studied experimentally and
theoretically in the nonlinear response regime. The nonlinear dot conductance is found to be asymmetric with
respect to zero bias voltage. This conductance asymmetry is related to the nonsymmetric effect of an applied
electric field on the quantum electron states inside the dot and on their coupling to the states in the electron
reservoirs. The direction of the asymmetry depends sensitively on the amplitude of an applied ac voltage, on
the Fermi energy and on the magnetic field, and is suppressed at temperatures above a few Kelvin. Quantum
dots can therefore be viewed as ratchets, that is, devices in which directed particle flow is induced by non-
equilibrium fluctuations, in the absence @fme-averaged external net forces and gradients. A quantum
mechanical model calculation reproduces the key experimental observations. The magnitude of the conduc-
tance asymmetry is found to depend strongly on the electric field distribution inside the dot. In addition to
exact calculations, an approximation is presented which makes it possible to qualitatively predict the nonlinear
behavior from the energy dependence of the conductance in the linear response regime. We also discuss a
semiclassical explanation for our observations and comment on limits of quantum-interference induced recti-
fication.

[. INTRODUCTION profile or a band offset, respectively, and a state of thermal
nonequilibrium is created by application of an electric field.
The majority of studies of electron transport in meso-Then, even if the applied field is zero on time-average, a
scopic systems has to date been limited to the linear respong@ected current is generated. Another example is the photo-
regime where effects of thermal nonequilibrium can be negalvanic effect, that is, the generation of current by illumi-
glected. Small electronic systems at low temperatures, howsating a homogeneous but microscopically not centrosym-
ever, can easily be driven away from thermal equilibriummetric materiaf.®
and nonlinear effects are therefore important already at small Mesoscopic semiconductor structures provide an almost
bias voltages. The lowest order of nonlinearity, that is, the ideal laboratory for studies on rectification, because today a
term G, in the expansion of the currerit=GyU + G,U? large variety of fabrication techniques is available to create
+..., leads to the rectification of an external voltade In potentials of defined symmetry, or asymmetry, and electrical
general terms, rectification can be defined as the directecurrents can be measured with extremely high accuracy.
motion of particles in asymmetric potentials in the absencéMost importantly, however, at low temperatures the elec-
of time-averaged macroscopic net forces. Devices in whichronic properties of mesoscopic structures are determined by
the rectification of nonequilibrium fluctuations or fields can quantum effects. Mesoscopic structures in the non-linear re-
be observed are often called ratcRétand have in recent gime can therefore be used to study rectification due to quan-
years attracted considerable interest in a broad physics cortum processes such as tunneliff and quantum
munity. This interest is in part of a fundamental nature but isinterference? Such quantum rectification is the focus of the
also motivated by the prospect of applications. One field tgresent paper. Specifically, we will present a detailed inves-
which the physical concept of rectification in ratchets may beigation of asymmetries in the nonlinear conductance of
applicable is the chemomechanical energy conversion in bicsemiconductor quantum dots without spatial inversion sym-
logical cells. There, mechanical work is generated by sometry (Fig. 1).
called molecular motors in the absence of macroscopic Quantum dots are two-dimensional electron cavities, usu-
forces or thermal gradienfs® In these systems it is thought ally of the order of 20 times larger than the electron Fermi
that the Brownian motion of molecules is rectified using en-wavelength, but much smaller than the electron mean free
ergy from nonequilibrium chemical reactions. path for impurity scattering. At low temperatures transport
The necessary conditions for rectification in any systenthrough such structures is phase coherent and determined by
are, first, a lack of central symmetry of the potenfiddus the coupling of electron states in the reservoirs to the elec-
defining a preferential direction of motignand, second, a tron states inside the dot. The electrostatic potential that de-
state of thermal nonequilibriunfrectification in thermal termines the electron states inside the dot can be modified by
equilibrium would violate the second law of thermo- an electric field via point contacts. Therefore, the conduc-
dynamics.”®In a diode based onn junction or a Schottky tance of quantum dots depends on the applied voltage al-
barrier, for instance, the symmetry is broken by the dopingeady at voltages as small as a few hundred microvolts, or a
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Il. EXPERIMENT
A. Devices

The triangular quantum dots used in the present work
were defined by electron beam lithography and shallow wet
etching in modulation-doped, GaAs/&a _,As, two-
dimensional electron gas materiéfig. 1). The transport
properties of similar devices fabricated by the same process
methods have been previously characterized in great detail in
the linear response regim&??Here, we build on these ear-

FIG. 1. Scanning electron micrograph of a triangular quantumlier results and extend the studies into the nonlinear regime
dot as used in the present work. The structure was patterned usir@f transport. We will present data from one particular device,
electron beam lithography and was transferred into GaAs/AlGaAsepresentative of data from in excess of fifteen different de-
heterostructure material by shallow wet etchiiched areas are vices studied in the nonlinear response regime.
darker in the image An additional top-gate made it possible to tune  The effective, inner side length of the dot potential as
the electron concentration in the dot and surrounding areas. determined from classical commensurability effects in mag-
netoresistance measureméhtsas about 1.7.m, much less
than the electron mean free path with respect to impurity

cattering of about 1wm. Using a top gate, the Fermi en-
rgy (ug , determined from Shubnikov—de Haas oscillations
in an area outside the billiardvas tunable in the range 7-9

few percent of the Fermi energy. If the geometry of the quan
tum dot is not symmetric with respect to the direction of the
current, these nonlinear quantum effects depend, in gener
on the direction of the electric fiekf~** Consequently,

asymmetric quantum dots can partly rectify an ac voltag eV, corresponding to a Fermi wavelengthe of 0.05—

applied over the structure. The direction of the net curren 06 um. Typically four modes were open at the point con-
depends on the exact configuration of the electronic stateg, 1™ cyrent controlled, two-terminal resistance measure-

and can not be deduced from the orientatipn Of the triangle i|?nents were carried out, using separate current and voltage
a straightforward way. Reversals of the direction of the rec- robes in a four-point geometry, with an excitation voltage

tified current can be observed as a function of ac voltag <kaT~25ueV. Unless otherwise indicated, the tem-
amplitude, Fermi energy or magnetic field. The key property erature wag = 0.3 K

of the dot that leads to rectification is, however, the brokerP To study electron transport in the nonlinear regime, we

gymmetry_of thg shape of thg dot, V‘.'h'.Ch. is defined by themeasured the differential resistankRe-9U(1)/dl as a func-
lithographic design of the device. This is in contrast to pre-,

X . . . . tion of a dc bias current) which was added to the ac com-
vious experiments using mesoscopic semiconductor struc

tures in which the symmetry of the potential was brOkenp'onent used for lock-in detection. The differential conduc-
because of the random distribution of impurittés*® ﬁggguigur;jvléﬁgs)whvg?;is mznsoﬁﬁig_]ﬁ:g vgl?ame the
In a recent article, rectification in triangular quantum dots ' ge.

(Fig. 1) was demonstrated, and it was shown that modeling
of quantum transport in the nonlinear regime qualitatively
accounts for the experimental observatibhsHere, we In the present work we are interested in quantum rectify-
present additional experimental results and carry their thedng effects, that is, in nonsymmetric effects that can be re-
retical interpretation one step further. In Sec. Il we will cre-lated to the nonlinear response of the quantum properties of
ate a basis for the theoretical discussions by giving an oveithe electron cavities being studied. Since nonlinear effects of
view of the main experimental results. After a description ofa classical nature can also lead to rectification in asymmetric
the theoretical methods used we investigate the physical ormicrostructure$>?* it is necessary to establish techniques
gin of the asymmetric conductance in Sec. Ill. One issue thawvhich make it possible to experimentally distinguish classi-
will be raised is the relative importance of different quantumcal and quantum effects. This distinction can be made be-
rectification mechanisms which could be essential in our deeause quantum and classical effects depend in different ways
vice. Specifically, we distinguish the effect of the geometri-on temperature and magnetic field, as will be illustrated in
cal asymmetry of the dot and secondary effects related to thime following.

self-consistent, spatial distribution of an applied electric In Fig. 2 we show measurements of the magnetoconduc-
field. We will also present an intuitive understanding of thetance of our triangular dot in linear response, that is, with no
results based on the theory presented in Ref. 20 which exdc bias voltage applied. The bold and thin lines were re-
presses the nonlinear behavior of quantum dots derived frormorded atT=0.3K and T=5 K, respectively. It has been
their energy-dependent conductance spectrum in the linedound previously, using devices processed in the same way
response regime. In Sec. IV, we compare the experimentals those studied here, that data recorded at the higher tem-
and theoretical results and point to effects which are noperature can be explained in great detail in terms of commen-
currently included in the theoretical model. We present asurability effects due to a classical, billiard-ball-like motion
semiclassical picture of nonlinear quantum transport in elecef the electrons inside the cavity The quickly varying fluc-

tron cavities and discuss classical rectification effects. Furtuations emerging at the lower temperature, in contrast, are
ther, we discuss the limits of interference-induced rectifica-of quantum mechanical origin and can be interpreted in
tion in open quantum dots. Finally, our results areterms of variation in the density of states inside the billird.
summarized in Sec. V where also some open questions afighese quantum magnetoconductance fluctuations are observ-
addressed. able only at very low temperaturds<l K) where phase-

B. Temperature and magnetic field dependence
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FIG. 2. Magnetoconductance of the triangular electron cavity FIG. 3. (a) Differential conductance vs dc bias voltagemea-

(left axis) at T=>5 K (thin line) and T=0.3 K (bold line). The con-
ductance minimum at abo&=0.1T is caused by a classical com-
mensurability effectfor details, see Ref. 21By subtraction of the
high temperature data from the low temperature dsteown with
respect to the right-hand vertical axisne can, to a good approxi-
mation, isolate the quantum conductance fluctuatiods;

sured at a temperature of 5 K at, from the top down, magnetic fields
between zero and 100 mT with a relative spacing\@&= 10 mT.

The variation from curve to curve is associated with classical ef-
fects and the conductance valuedJat 0 agree with the magneto-
conductance shown in Fig. 2.(b) When the temperature is low-
ered to 0.3 K additional structure emerges in the nonlinear

=[G(0.3K)-G(5 K)] (for details, see Ref. 22 conductance because of quantum interference effects.

destructive, inelastic electron scattering and thermal averagubtracting the high temperature data from those recorded at
ing are sufficiently suppressed. By subtracting the datdow temperaturéFig. 4). In agreement with what one would
recorded at the higher temperature from the low-temperaturexpect for a quantum effect, the magnitude of the result is of
data, the quantum effects can be isolated to a good approxine order of 0.1-0.2%n and depends strongly on the mag-
mation (Fig. 2, right-hand axis The rms value of the quan- netic field. Most important, however, the nonlinear quantum
tum fluctuations is about 0.15/& which is a typical value effects are in general not symmetric with respect to zero bias
for experimentally observed magnetoconductance fluctuavoltage, where the orientation of the asymmetry depends on
tions at temperatures around 300 mK. The magnetic fieldhe magnetic field strength. It is this nonsymmetric quantum
scale(the correlation field) of magnetoconductance fluc- behavior that we will focus our attention on in the following.
tuations is given by the flux required to significantly changeThe slowly varying, classical, nonlinear effects, which are in
the electron states inside the cavity. Semiclassically, thigeneral also slightly asymmetric, are not of primary interest
field is given approximately b= (h/e)/a, wherea is the  here and will be commented on only briefly in Sec. IV.
effective area of the device cavitabout 1.2um?), which The relative separation in magnetic field of the data sets
yields a value of a few millitesla foB¢, in agreement with  shown in Fig. 4 AB=10 mT) is of the order of the scale of
Fig. 2. Classical effects, by comparison, change much more
slowly with magnetic field, since the typical field scale here
is determined by the field that markedly bends classical, bal-
listic electron orbits, i.e., when the cyclotron diameter be-
comes comparable to the lateral size of the detat®ut 100

mT for the present devigé! These significant differences in
the dependence on magnetic field and on temperature be-
tween classical and quantum behavior can be employed to
distinguish classical and quantum effects also in the nonlin-
ear response regime.

Measurements of the differential conductance as a func-
tion of the dc source-drain bias voltage are shown in Fig. 3,
where the different curves have been recorded in a magnetic
field range from O to 100 mT, at a relative separation of 10
mT. At T=5K [Fig. 3@], when quantum effects are ex- . . .
pected to be suppressed, the nonlinear conductance is in all 2 -1 0 1 2
cases found to increase monotonically with increasing bias Bias voltage (mV)
vqltage. Thg cqndu'ctance value at zero bias voltage changes -\~ 4 1pe differenceAG(U)=[G(U,T=0.3K)— G(U,T
with magnetic field in agreemen'F W'_th Fig. 2 an_d the shape 0f:5 K)] at different magnetic fields between zero and 100(reTa-
the G(U) curves depends qualitatively only little on mag- e spacing 10 m¥, obtained by subtracting the data in Figal3
netic field. At the lower temperatufd=0.3K Fig. 3b)],  (T=5kK) from corresponding data in Fig.l® (T=0.3K). The
however, when quantum effects are expected to appear, th@rves have been offset by0.05 é/h from one another and show,
nonlinear behavior becomes more rich and varies qualitafrom the bottom up data for increasing magnetic field, where alter-
tively as a function of magnetic field. Following the same natingly full, long-dashed and short-dashed lines have been used.
procedure as illustrated in Fig. 2 for the linear-response magrhe curves were slightly smoothed to remove point-to-point noise
netoconductance we isolate the nonlinear quantum effects lytcurring at the higher temperature.

AG (&/h)
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FIG. 6. Effect of a dc bias voltage on conductance fluctuations
FIG. 5. The differenceAG(U)=[G(U,T=0.3K)-G(U,T observed as a function of the Fermi enefggp axi9 which was
=5 K)] obtained in the same way as the data shown in Fig. 4, butuned using a top-gatéottom axi$. The lower(uppe) group of
with a relative magnetic field spacing of only 1 mT. From the plots have been recorded at increasing negdpiesitive bias volt-
bottom up at the center of the graph, the magnetic field increaseasges and refer to the left-haidght-hand axis. The same absolute
from zero to 9 mT. values of bias voltages have been used in both cases, ndely
=0 (bold lineg, =0.1 mV,+0.2 mV, ...,=0.5 mV. These values
the correlation fieldB, which also significantly alters the for the voltage drop over the device refer to the center of the plot.
linear-response conductancgig. 2), pointing to the same Because the conductance depends on the Fermi energy, the effec-
origin. In Fig. 5 we show data which have been obtained ifive voltage drop decreases by about 25% over the range of the
the same way as those in Fig. 4, but with a relative separegraph- No magnetic field was a_ppli_ed. All data were obtained by
tion of only 1 mT. With this higher resolution one can follow Subtracting a 2nd order polynomial it from the raw datdsg ).
the evolution of the nonlinear behavior as a function of mag-"Set- raw data oG(U,y), recorded at zero bias voltage.
netic field, from an almost symmetric signal at zero magnetic . . . L
field to a pronouncedly asymmetric shape at a few miIIitesIa.reﬂeCt the oscillatory structure in the density of states inside
the dot at zero magnetic field and the energy dependent cou-
) pling of the electron states to the reservoirs.
C. Fermi energy The effect of an electric field on the fluctuatifguantum
The data presented in the previous section demonstratep@rt of the dot conductance can be studied by measuring
nonlinear, rectifying effect in asymmetric quantum dotsG(ug) at a series of bias voltages and subtracting the slowly
which has the same magnitude, temperature dependence, avaying background in the same manner as described above.
magnetic field dependence as magnetoconductance fluctugesulting data oAG(ug) are shown in Fig. 6 for positive
tions observed in the linear response regime. We will showright-hand axi$ and negative bias voltagékeft-hand axis,
in the following that the relation between the observed, non¥espectively, where the same absolute values of the bias volt-
linear behavior and the effect of an applied voltage on theages, 6<|U|<0.5mV, have been used in the two cases.
electron states inside the electron cavity can be elucidateblote that the bold lines in both groups of curvgero bias
even better by using the Fermi energy as an experimentafoltage are identical. From Fig. 6 it is immediately apparent
variable. that a bias voltage of the order of 0.5 mV modifies the con-
In the inset in Fig. 6 we show the conductance as a funcductance fluctuations as a function of the Fermi energy sig-
tion of the top-gate voltagé),y at zero magnetic field and nificantly. At certain energies these changes can be of the
zero bias voltagéinear responseAlso indicated in Fig. 6is  same magnitud¢0.15 €/h) as the fluctuations themselves.
the relation betweet),; and the Fermi energy, which was Most importantly, these changes depend on the sign of the
determined in the two-dimensional electron gas areas adjaoltage, which becomes even more apparent when the posi-
cent to the quantum dot, using Shubnikov—de Haas oscillations of local maxima oA G(ug) are plotted as a function of
tions. The overall trend of the conductance to decrease witthe Fermi energy and bias voltageig. 7). Up to bias volt-
decreasing Fermi energy is due to the depletion of the poirages of aboutU|~1 mV one can follow the positions of
contacts, that is, due to the decreasing number of wavidividual maxima, which shift at a rate of typically
modes contributing to transport. Superposed on this slowlydug/dU|~0.1 meV/mV. However, while some transmis-
varying background are fluctuations which can be isolated bgion resonances initially shift in a symmetric manrfear
subtracting a second degree polynomial fit from the raw datinstance the peaks at-=7.76 meV and 8.20 me)the po-
(we have checked that this procedure yields, to a good asition of others is pronouncedly asymmetric with respect to
proximation, the same outcome as subtraction of data meaero bias voltage already at small voltagesg., atur
sured at a higher temperatir@he result is shown as bold =8.04 and 8.33 me)/ At bias voltagesU|>1 mV the peak
lines in Fig. 6. The origin of these energy dependent fluctuapositions at corresponding negative and positive bias volt-
tions is similar to that of conductance fluctuations observediges are basically uncorrelated, that is, the electronic states
as a function of magnetic fieldFig. 2), i.e., these fluctuations inside the cavity are fully modified by the applied field.
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distribution usedreferred to as model | in the textPotential steps
FIG. 7. Energy position of local maxima of conductance fluc- are assumed at each discontinuity of the wave guide, and a linear
tuations, observed as a function of the Fermi energy for different dglope is assumed inside the cavity where backscattering odciirs.
bias voltages. The transmission resonances are shifted in a noCalculated differential conductan&(U) for four different Fermi
symmetric manner by the applied electric field. energies as indicated.

How the effect of an electric field on the transmission lll. THEORY

resonances, apparent in Figs. 6 and 7, manifests itself in the The nonlinear regime of transport in mesoscopic systems
nonlinear conductance of the dot is illustrated in Fig. 8 wherehas to date been addressed in only a limited number of the-
data of G(U), recorded at different Fermi energies Bt oretical studies. Btiker and co-workers have developed a
=0.3K, are shown. The corresponding Fermi energies argauge-invariant theory for the frequency-depentfeand
marked with letters in Fig. 6. nonlineaf® transport of mesoscopic systems, which takes the
To conclude this experimental section, the differentialinternal, self-consi;tent potential into consideration. So far,
conductance of triangular electron cavities is, in the cohererfhie application of Bttiker's nonlinear theory has been lim-
regime of transport, in general not symmetric with respect tdted largely to studies of the lowest-order, nonlinear conduc-
zero bias voltage. The observed asymmetry is clearly relate®@"c® I the weakly, nqnlmeggr regime in quasi-one-dimen-
to the asymmetric effect of an electric field on the electrorsionaf’” and two-dimension&f *systems. In order to model
states inside the cavity. In the following section we will O4 present experimental r_esults, ho_wever, we wish not to be
present a quantum mechanical model calculation which aélm'ted to the weakly nonlinear regime. We have therefore

o ... chosen to carry out exact numerical calculations of the dif-
counts qualitatively for the observed quantum rectification. . o :
ferential conductance of a model potential in the nonlinear

regime. We will show that the calculations yield qualitative
agreement with the experimental results and we will discuss
the physical origin of the quantum rectification mechanism.
In particular, we will investigate the influence of the symme-
try of the point contacts and of the geometrical shape of the
cavity on quantum rectification.

10.5

10

9.5F A. Theoretical model

In our calculations we used a model potential that consists
of an equilateral, triangular structure connected to two-
dimensional electron reservoirs via two point contd&tg.
9(a)]. A hard-wall potential was used, which in previous
studies was found to describe well the electronic properties
of devices fabricated with the same hetereostructure material

AR I and by the identical processes as the ones usedh&ehe
1.5 -1 -05 0 05 1 1.5 side length of the cavity was Am, the largest size that was
Bias voltage (mV) computationally feasible without reducing the accuracy of

FIG. 8. Examples of the differential conductance versus biadn€ calculation. The point contacts are 100 nm wide and
voltage for different top-gate voltages. From the bottom g, ~ SUPPOrt about four to five wave modes at the Fermi energies
=—4.40-3.44-3.24-3.08-2.65 V, corresponding tour considered9 to 10 meV. It is assumed that electron trans-
=7.79, 8.20, 8.28, 8.35, 8.53 meV. The bottom curve has beeROrt inside the cavity is ballistic and that any inelastic pro-
offset by +1.2 €/h. Note that in this plot the classical, nonlinear cesses occur only far from the device. The reservoirs remain
behavior has not been subtracted. Nonlinear quantum fluctuatiori§ local, thermal equilibrium at temperatuiieand their re-
are therefore less pronounced than it may appear in Fig. 6, whergpective electrochemical potentials and u, are related to
the quantum fluctuations have been isolated from the backgroundthe applied source-drain voltageby w,—u,=eU.

Differential conductance (e2/h)

8.5
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For calculations in the nonlinear regime of transport one " -— — i
needs to make assumptions about the profile of the electro- (a) _—
static potential, which in general has a complicated depen- |§ |
dence on the applied source-drain voltage. An exact determi-
nation of this dependence requires self-consistent treatment

of the three-dimensional Schiimger equatiotf and is be-

yond the scope of the present work. Several suggestions exist M — —>—1@
for simple assumptions on how the source-drain voltage (b) — o
drops between two reservoi$3'~3® Here we adopt a @
conventioR® which was previously found to yield good

agreement with the experiment of Ref. 34. A change in the .

electrostatic potential is assumed to be related to a probabil- F!G- 10. lllustration of electron transport through a quantum

ity for backscattering which occurs in our device inside thedot: The curvature of the conductance band edge inside the dot

cavity and at each discontinuity of the potential or of therepresents the effect of the confinement energy inside the triangular
. . R o dot (not to scalé The horizontal lines inside the dot indicate the

boundaries. AS IS shown_ in Fig(t9 we dlstrlbgte one fourth shell structure of the density of states. The energy rabgeu,

of the potential dropeU linearly over the inside of the de-

. . . wherep is the local electrochemical potential, is indicated by shad-
vice, while the other three fourths et are dropped in equal ing. (@ In linear response the transmission probability, that is, the

pgrt§ at?”‘pt'y at the d|scont|ng|t!es of the bgundanes. Th'%onductance, is independent of the absolute value and the sign of
distribution of the voltage drop is in the foIIovylng referred 10 the voltage. In(b) the energy diagram at finite voltage is shown,
as model I. In the present case these considerations lead jere a voltage drop distribution as in Figh9(model ) has been
different total potential drops at the two point contacts. Thisysed. This is the nonlinear response regime where the potential and
is a result of the intrinsic asymmetry of the triangular struc-the electron states depend on the voltage applied. The nonlinear
ture, which makes it impossible to have two fully symmetric conductance is asymmetric with respect to zero voltage when the
quantum point contacts attached to it. potential is not inversion symmetrisee text

If a Fermi-Dirac distributionf(e,T) is assumed for the

electrons in the reservoirs, the total current through the degpite pias voltage, that is, in the nonlinear response regime,
vice can be written as using the voltage drop distribution of Fig(® (model .

" One point to note here is that the assumed potential drop
I(U):f de{fl[e— (upteU),T]—f(e—ue,T)}(e,U), inside the electron cavity changes the potential landscape

0 when the source-drain voltage is varied. Because of the non-

(1) symmetric shape of the cavity, the resulting effective poten-

where up=u, was assumed and(e,U) is the density of tial landscape depends alsc_) on the sign of the vplte}ge. There-
current, which can be calculated by scattering matrixfore, the electron states which carry the current inside the QOt
method$®%" In all calculations presented in the following depend on the absolute value and on the sign of the bias
the temperatur@ = 0.3 K was used. By definition, the differ- voltage, which leads to a nonlinear and nons_ymmetrlc con-
ential conductance is given b@(U)=al(U)/dU which ductance. The second difference from the linear response

yields, in the limit of very small voltages, the linear response'€9ime is that at finite bias voltage not only electron states
conductance. Calculations of the nonlinear differential conWithin @ fewkgT of the Fermi energy contribute to transport

ductance for four different Fermi energies are shown in Figthrough the dot. The contributing energy window is also de-
9(0). In all cases the differential conductance exhibits a com{€rmined by the voltage drop at the source quantum point
plicated, nonmonotonic behavior. While the four datasets ar§ontact. This will lead to rectification when the two point
quantitatively very different from one another, we note thatcontacts are dlffe_rent, because a dlff_erent range of qganuzed
all four of them are, on a scale of a few hundred microvolts,eleC"O” states will make a contribution at different signs of
significantly nonsymmetric with respect to zero bias voltagehe Voltage.

These observations are in qualitative agreement with the ex- 1ne above discussion suggests that we can distinguish
perimental results. two sources of rectification in asymmetric quantum dots: The

asymmetry of the scattering potential as a whole, and the
nonidentical point contacts. We emphasize that these effects
are related to one another, and can in reality not be separated.
In the calculation, however, we have the freedom to make
In order to understand the origin of the nonsymmetricspecial assumptions concerning the potential distribution, al-
effect it is helpful to discuss a simple model for transportlowing us to study the relative importance of each rectifica-
through a quantum dot in the linear and nonlinear regimetion mechanism.
First, we consider the case of negligible bias voltfg. First, we consider the effect of nhonsymmetric point con-
10(a)]. Transport through the cavity is in this regime via the tacts and neglect the effect of a potential drop inside the dot.
electron states within a fewg T of the Fermi energy® The  To achieve this, we use the potential distribution shown in
states which contribute to transport are independent of théhe inset in Fig. 14c) (model Il). Two thirds and one third of
applied, very small voltage|¢ U|<kgT), and are the same the total voltage are assumed to drop at the left- and right-
for both current directions. This is the linear response regiméand contact, respectively, while the potential in the interior
where transport is by definition symmetric upon voltage re-of the dot remains flat. The resulting, nonlinear conductance
versal. For comparison, Fig.  shows the situation for is shown in Figs. 1) and 11d) for two Fermi energies,

B. Origin of rectification and dependence
on the voltage drop distribution
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Hp=9.5meV Hp=9.7meV
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o & ! modelII  model IO
8 5 PR R R T S T N T SR TR |
£ 9.2 9.6 10
'é 4 Fermi energy (meV)
(o] Qo
8 A | )
S 3 LT 4 ieu__ | FIG. 12. Calculated, linear-response conductafmero bias
:,E, I S | I S voltage versus the Fermi energy for model (Kolid line) and for
2 5 L 1IRG) | model Ill (dashed ling The difference between the two models
[a) | 1L | occurs because the point contact at the tip of the triangle was as-
4 L p w sumed in model 1l to be longer than in model(fee insets
8 pHI eU1 7 from model |, namely the voltage dependence of the poten-
1 L 1 L 1 1 " 1 " 1 y g p p
04 0 0404 0 o042 tial inside the quantum dot, indeed reduces the asymmetry of
- Bias voltage (mV) Bias voltage (V) the conductance. The next step will now be to artificially also
% 0.6 remove from the calculation the non-symmetry of the volt-
= y S age drop at the point contacts. To achieve this, the contact at
Z L @ L (h) l ge drop ne po .
Eoal | 1L ] the tip was in this calculation made longer to match the
E | I L length of the base conta(tee inset to Fig. )2which results
8 i AL u in the fully symmetric voltage drop shown as model Il in
2 m_]| ] Fig. 11. The only remaining asymmetry in this configuration
'g 0 / S is now the geometrical shape of the hard-wall potential
3 0 02 04 0 02 04 which forms the dot itself. We emphasize again that we are
Bias voltage (mV) Bias voltage (mV) here making a nonrealistic assumption: The symmetry of the

_ _ voltage drop is related to the symmetry of the hard-wall po-
_ FIG. 1_1. (a)—(f) Calculated, differential conductance as a func- tential, such that a symmetric voltage drop in a nonsymmet-
tion of bias voltage forur=9.5meV (left-hand columhand ue ¢ strycture is not meaningful. By retaining this assumption
=9.7meV (right-hand column (T=0.3K). Solid lines are exact . \ha moment, however, we can investigate the effect of the
calculations, dashed lines are approximations based o(BE(see shape of the dot alone, without any additionédelf-
texy. From top, voltage drops according to models I, 1I, and Il consistently relatedeffect d,ue to the electric field. The re-
have been used as indicafgste insets (¢a), (c), and (@), respec- sulting, nonlinear conductance is shown in Fi s(.e).hnd
tively]. The bottom figuresg) and (h) show the quantified asym- 11(f) ?A,Iso in this case the conductance is foung to be asym-
metries[Eq. (2)] of the exact calculations shown in pané&g—(f). metric see Figs. 18) and 11h), because also in this Casye
the effective dot potential depends on the direction of the
electric field, due to the spatial asymmetry of the dot. Nev-
ertheless, the asymmetry for model Ill is significantly
smaller than for models | and Il. We have checked that the
nductance of a fully symmetrigectangular dot yields a
perfectly symmetric conductance, as is expected from sym-

pne=9.5meV andur=9.7 meV, respectively. Comparison
with the data for model [Figs. 11a) and 11b)] shows great
qualitative similarity, although quantitatively the nonlinear
conductance has changed. In order to compare the degree
non-symmetry for different models we define a quantified

asymmetry metry arguments.
1 U We can conclude from this discussion that rectifying ef-
_ o~ fects induced by geometry are observed independent of the
A(U)=— | du|G G , 2 . ) i .
) U fo ulG(u) (=l @ details of the voltage drop used in the calculation. In particu-

lar, the dot shape alone yields rectification also when the
which is the absolute value of the antisymmetric part of thevoltage drop used is fully symmetrj€igs. 11e) and 11f)].
differential conductance averaged over the voltage rang®uantitatively, however, quantum rectification is signifi-
[0,£U]. Data forA(U) are shown in Figs. 1f) and 11h). cantly enhanced by the asymmetric distribution of the elec-
It is worth noting that the asymmetry of the conductance isron potential, which is a necessary consequénéehe dot
of the order of 0.5 ®h, which is in agreement with what one geometry{Figs. 11g) and 11h)].
expects for an electron interference effect. Comparing the It should be noted that also model I, the most realistic one
asymmetry of the conductance for voltage drop models | andf the three models used here, does not consider all sources
Il we note that their functional behavior is closely related,of nonsymmetry, because the spatial distribution of the elec-
while the asymmetry for model | is consistently larger thantric field assumed there is symmetric upon voltage reversal.
that for model Il. The same behavior was also found at alln general, however, the electric field distribution in a non-
other Fermi energies investigated. We can therefore concludgymmetric structure will self-consistently also depend on the
that the removal of one source of non-symmetric behaviosign of the voltage, giving rise to additional nonsymmetric
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behavior. Also inelastic scattering inside the dot, which isused to gain an intuitive understanding of the quantum dot

excluded from the present model, gives rise to additionatonductance in the nonlinear regime.

rectification®® ConsiderGy(ug) in Fig. 12(model II). In the vicinity of
ne=9.5meV the linear response conductance has a local

C. The energy dependence and the approximative approach ~ maximum, decreases monotonically to approximately 9.5
. L L +0.1meV, and continues to decrease in both directions after
After this quantitative study of quantum rectification we

il in the followi : it : d passing local maxima. From E@3) one would therefore
willin the Tollowing present a more intuitive way 1o un er'Wexpect also the nonlinear conductance to decrease monotoni-
stand the general behavior of the nonlinear conductance. £

: - .“with the observed behavior of the nonlinear conductance for
that is, to the energy dependence of the transmission function

X M“e=9.5meV as shown in Fig. 14): The conductance de-
[Fig. 10 and Eq(1)]. At small voltages, when the electron .creases towards positive and negative voltages with shoul-

states inside the dot are not strongly altered by the electr|8ers at about)~+0.3mV and atU~ —0.2mV. A similar
field, it is therefore possible to predict the nonlinear behavioranalysis can be méde foue=9.7 meV .[see .Fig 14d)]
from the energy dependence of the conductance in line . . ko ’

response. It was showi? that at very low temperature the aéO(’uF) Is, with respect to this energy value, pronouncedly

nonlinear, differential conductance can be approximatel non-symmetric, showing a local minimum  ajur
written as: PP Y~ 9.65 meV and a local maximum at-~9.75meV. Conse-

quently, also the nonlinear conductance is strongly asymmet-
ric already in the vicinity of zero bias voltage, and exhibits
Glur,U)~{(1=a)Gol pe+(1-a)eU] non-monotonic behavior af ~+0.1mV.
+aGy(pur—ael)} (ue>ael) (3) Also the experimental, nonlinear differential conductance
can to some degree be understood using the mode{3qg.

wherea is the portion of the voltage that drops at the right- For instance, at the top-gate voltage,=—2.6V (denoted
hand contact an®,(ur) =G(ug,U=0) is the differential by e in Fig. 6) where G(ug,U=0) exhibits a pronounced
conductance in linear resporSeEquation(3) indicates that local minimum, also the nonlinear conductance shows a clear
nonlinearities of the current caused by the energy deperminimum around zero bias voltageurve e in Fig. §). A
dence of the transmission function can be approximated byery detailed agreement of the approximation in &.with
the weighted average of the two zero bias conductances axperimental data oG(U) is not expected, however, be-
[+ (1—a)eU] and [ur—aeU].?° Nonlinear effects cause the approximation does not consider modifications to
caused by the field dependence of the potential landscagbe electron states inside the dot induced by an electric field,
inside the dot are, however, not considered by this simplavhich in the experiment are clearly quite important already
model. Independent of the field distribution inside the cavity,at small voltagessee Figs. 6 and)7
the resulting nonlinear conductance is therefore symmetric
with respect to zero bias voltage whes 3, that is, when
the voltage drop at the two point contacts is the same, and IV. DISCUSSION
nonsymmetric otherwise.

In Figs. 11c)-11(f) we show calculations of the nonlin-
ear differential conductandg@= dl/JU using the approxima- From the experimental and theoretical results presented in
tion Eq. (3) (dashed linesin comparison to the exact calcu- the previous sections a consistent picture of nonlinear quan-
lations of Eq.(1) (full lines). The same Fermi energies and tum effects in asymmetric electron cavities emerges. In the
voltage drop distributions have been used for the two calcuexperiment as well as in the calculations we find that the
lations. Here, the approximated calculations using(Bpgare  nonlinear conductance exhibits rich structure in the coherent
based on exact, calculated data Bg(ug,T=0.3K) as regime and is in general asymmetric with respect to zero bias
shown in Fig. 12. From Fig. 11 it is apparent that the ap-voltage. The origin of the nonlinear fluctuations is the effect
proximation Eq.(3) reproduces all features of the exact so-of the applied voltage on the electron states inside the dot,
lution qualitatively very well. The quantitative agreement be-and on the coupling of the states to the reservoirs via the
tween approximation and model is best at small voltages, gsoint contacts. Consequently, the nonlinear effects, and
is to be expected. For model I, even the nonsymmetry of thehereby the properties of quantum rectification, depend on
conductance is reproduced by the approximation, while fothe Fermi energy or the magnetic field in a sensitive way.
model Ill, where symmetric voltage drops at the point con-Here, the scale in energypr magnetic fielgl on which the
tacts are assumed, the approximation yields a symmetriconlinear behavior changes, is consistent with the corre-
nonlinear conductance. For the more realistic and complesponding scale of correlation ener@yr correlation magnetic
potential distribution according to model | the approximationfield) for conductance fluctuations observed in linear re-
as given by Eq(3) can not be used in the form given be- sponse. Also the magnitude of the quantified asymmetry is
cause in this case not all of the voltage drop occurs at thexperimentally and in theory consistent with the correspond-
point contacts. In spite of this, the resemblance of the aping amplitude of conductance fluctuations observed at zero
proximation for model Il[dashed line in Figs. 1&) and bias voltage. The most important conclusion is, therefore,
11(d)] with the exact calculation for model[Figs. 11a) and that our theoretical model can qualitatively account for the
11(b)] is still remarkably good. Equatiof8) can therefore be key experimental observations.

A. Comparison of experiment and theory
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In the following we will discuss some quantitative differ-
ences between the experiment and the calculation. A genera
observation is that the calculated, nonlinear conductance
shows overall stronger and more pronounced Structure tharpe -
the experimental data. This is apparent, for instance, from a
comparison of Figs. 4 and®. The difference in fluctuation
magnitude is, however, expected, given that the magnitude
of fluctuations in linear response as a function of the Fermi
energy are much smaller in the experiment than in the cal-
culations. The corresponding rms values are approximately
0.15 é&/h for fluctuations in the experimeiiig. 6) and 0.45
€’/h in the calculationgFig. 12. The most obvious reason
for this difference is that phase breaking, which leads to
broadening of the electron states, is not included in the cal- reflection reflection
culation. .

Broadening of electron states is likely to be responsible , . . ,
also for differences between experiment and theory in the FIG. 13. Simulation of a large number of billiard-ball trajecto-

period of the quantum fluctuations. In the case of the Iinearfies in a triangular electron billiard &= 0 (for details see text and
: ef. 29. Left-hand(right-hand figures: Electrons are injected via

response conductance fluctuations as a function of the Ferrﬁ tact in the sidéip) indicated by th The |
energy, both experiment and calculation yield that the fluc- € contact In Ihe Sidglip), as Indicated by Ihe arrows. The lower

. . figures show only the reflected trajectories and these depend on the
Elyrﬁgosnusgg::tes ?hgte fr;oscti fcl)ljc?Sec\)tlijct)nos.trrgés?g;.reisinddbbzbro direction of the injection. The transmitted trajectoriemper fig-

. . . - e9, however, which contribute to the current, are independent of
ening in th(.a ex.pe”memal case because in the Iarger EXPeTe source contact. In thermal equilibrium, when direct and inversed
mental g:aV|ty(S|de length 1.7um compared to Jum in the . states are equally populated, no rectification occurs. At finite volt-
calculation the conductance should vary faster as a functionyges however, when thermal equilibrium is disturbed, rectification
of energy. can take place.

Our calculations do not reproduce the experimental fea-
ture that the differential conductance usually increases Withherefore, whether there is a simple classical or semiclassical
increasing bias voltageigs. 3 and 8 which is regularly  gypianation also for the nonlinear quantum effects as they
ob;ervgéj40|n electron _cavities studied in the non_—hnearare discussed here.
regime:""" An overall increase of the conductance is €x-  The pilliard-ball picture of electron transport in thermal
pected for higher voltages in the calculations, where moreyijibrium is illustrated in Fig. 13. The figures on the left
modes in the point contacts can eventually open. It i poSgight) show a superposition of a large number of simulated,
sible that this behavior is masked in the theoretical data by|assjcal trajectories of electrons which are injected into the
the coherent fluctuations which are, relative to the total congjjjiard through the contact in the base of the triangip).
ductance, stronger than in the experimental case. In additioRhe same distribution of initial conditions has been used for
it is likely that the slowly varying conductance is at least in o1y injection directiongfor more details on the simulation
part due to e_ffegts that_are not included ir_l th_e theory, such & chnique, see Ref. 22The upper(lower) two figures show
current heating” We will return to this point in Sec. IV C. only such trajectories that are transmitteflected by the

Another difference between experiment and theory is theayity As one can intuitively expect, the reflected trajecto-
maximum voltage range in which quantum fluctuations Ofr,ies have an entirely different topography depending on the
the nonlinear cpnductance can be'observed. In the expelirection of injection Figs. 13c) and 13d)], and one can be
ment the magnitude of the fluctuations generally decreasggisied to assume that this difference causes rectificAfion.
with increasing voltage, and fluctuations are not Obse_rvabl?-lowever, one must note that it is only the transmitted trajec-
at voltages beyond about 2 to 3 mV. This suppression Ofyries that contribute to the current. The striking, detailed
fluctuations may ble caused by thermal energy averaging dugyreement of the spatial distribution of transmitted trajecto-
to current heatln.é, and by phase breaking due t% electron-ies in this simulatiorfFigs. 13a) and 13b)] illustrates why
electron interaction of non-equilibrium electrofis?” Since  j thermal equilibrium no rectification occurs. The reason is
inelastic effects are not included in our theoretical modelyn4t each trajectory that contributes to transport can be fol-
this limitation of the voltage range is not relevant to the|gyeq in either direction. In thermal equilibrium, when the
calculation. occupation probability for direct and reversed electron mo-
mentum statestrajectorie$ is equal, it follows that equally
many electrons will carry charge in either direction. This
situation changes when thermal equilibrium is disturbed, for

Only quantum mechanical treatment, such as we used it imstance, by the application of a source-drain voltéagen-
the theory section, is fully adequate to model quantum rectilinear response Then, the transmitting trajectories will in
fication effects as we report them here. However, it has beegeneral be occupied with different probabilities upon voltage
shown that, in the linear response regime, a semiclassicaleversal because electrons are nonisotropically accelerated in
“billiard-ball” picture of electron transport is remarkably the applied electric field. Consequently, rectification occurs
successful in explaining quantum transport properties of triif the potential lacks central symmetfyFor a structure in-
angular ballistic cavitie$®*>*® An interesting question is, verse to the one studied here, a triangular antidot, this clas-

B. Semiclassical discussion
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sical, ballistic rectification mechanism has been discussed in +B
detail® and was recently demonstrated experimentally in a
ballistic microstructuré>?* Additional, classical, nonlinear
effects are expected at higher voltages, where the scattering
potential as a whole is altered by the applied field.

In the present report, however, we are concerned with a
guantum mechanical effect. The common way to establish a
semiclassical link between classical trajectories and quantum
mechanical effects is to equip the classical paths with a phase FIG. 14. Classical illustration of the symmetry of the nonlinear
and to include the possibility of electron interferefitén a  conductance in a magnetic field. The distribution of classical trajec-
situation where thermal equilibrium is disturbed by a biastories depends in the nonlinear regime on the direction of the cur-
voltage such that the occupation of transmitted trajectorie&nt: @nd symmetry with respect to zero bias voltage is broken. The
depends on the current direction, also the interference bélffect of a magnetic field, however, is independent of the direction
tween semiclassical electron paths will depend on the sign chf the magnetic field if the potential has a horizontal symmetry axis.
the yoltage. In addition to this effect,.the interfgrence of b s the symmetry of the dot geometry felt by the electrons?
semiclassical electron paths depends in a sensitive way on . i ]
the wavelength(energy of the electrons involved. Analo- So far we have restricted our discussion to the symmetry
gous to our discussion of Fig. 1@ec. Il this energy de- Qf conduc_tlon Wlf{h respect to zero bias vo_Itag_e. In this sec-
pendence of the transmission probability will also lead tolio" We Will consider the symmetry properties in a magnetic
nonlinear effects. Therefore, at low temperatures, wher(IJIGId as a tool to test the symmetry of the effective, real dot
transport through the dot is phase coherent, the classice{?,

otential which is sampled by the electrons.
nonlinear behavior discussed above will have faster, non-

In the linear response regime, conduction is always sym-
. . . metric with respect to zero magnetic field, that is, the relation
symmetric fluctuations related to electron interference SuPerG(B)=G(—B) is valid independent of the potential
posed on it. This expectation is in agreement with our eX'symmetrﬁ8'5° For our device this is apparent from Fig. 2
perimental observations, and we can conclude that th@ere the linear response conductance is shown for positive
occurrence of quantum rectification can be anticipated usingq4 negative fields. In the nonlinear regime, however, when

semiclassical arguments. Whether also a detailed understangi, conductance depends on the bias volt,age this ,general
ing of quantum, nonlinear behavior can be gained, for in-qymmetry relation breaks down and symmetry in magnetic

stance, in terms of specific, classical electron trajectories, ifg|q is normally absent. It is restored only when the potential
the way this is possible for interference effectg'm triangularas 5 symmetry axis parallel to the direction of the current
electron billiards in the linear response regiffié’is a topic (Fig. 14). Under this condition, which is fulfilled in our dot

for future investigations. geometry, the relatios(U,B)=G(U,—B) is valid.

This symmetry relation allows us to perform an important
test: if the reason for the absence of symmetry with respect
to zero bias voltage is indeed the geometry of the (dot

In Sec. Il we limited the discussion of our experimentalnot, for instance, broken symmetry because of random im-
data to quantum effects only. While it was possible to isolatgurities of the materig) then the conductance in the nonlin-
the quantum behavior by subtracting data recorded at aar regime should be symmetric with respect to zero mag-
higher temperature, it is clear from the preceding section that
also nonlinear effects of an origin not related to electron B>0 B<0O
interference can be expected in ballistic devices. That this is ~
the case also in our devices is apparent from Fig), 3vhere
data recordedteb K are shown. At this temperature, where
phase coherent effects are suppressed, the conductance is
usually found to increase with bias voltage and is in general
not fully symmetric with respect to zero bias voltage. As one
would expect for a classical effect, the non-linear behavior
varies only little upon small changéa few milliteslag of the
magnetic field. One reason for asymmetric, nonlinear behav-
ior of classical origin may be the voltage dependence of the L1
selection of classical trajectories as discussed above. In fact, 2 1 0 1 2-2 10 1 2
strong effects of a bias voltage on classical commensurabil- Bias voltage (mV)  Bias voltage (mV)
ity effects in a magnetic field have been observed previously £ 15 Experimental data of the differential conductance
in triangular(see, for instance, Fig. 5 in Ref. Pas well a5 G(u) at increasing(a) positive and(b) negative magnetic field
rectanguldt® electron billiards, indicating that such effects (T=0.3K). The field values are, from the bottom up for
will be important also here. A detailed understanding of nona) B=-02+1.8+38,...4+17.8 mT and for (b) B
linear behavior in the classical regime is probably compli-= —-0.2-2.2-4.2, ... —~18.2 mT(note the offset-0.2 mT of the
cated. Nonlinear behavior of the point contattsurrent  magnetic field values, which is due to a residual field in the mag-
heating®®“® and electron-electron scattering of nonequilib- nej. Each curve has been offset by0.1 €/h from the preceding
rium electron&"*®*°may all be of importance. one.

C. Classical effects

9.5

8.5

Differential conductance (e2/h)
©
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netic field. Figures 1&) and 1%b) show the nonlinear V. SUMMARY
conductance at increasing positive as well as corresponding

negative magnetic fields, respectively. Clearly, the nonlinear In the coherent, nonlinear regime of transport, asymmetric

quantum conductance does not depend on the direction of th%uantum dots exhibit conductance fluctuations which are not
field within that field range which fully alters the nonlinear symmetric with respect to zero bias voltage. These nonlinear

. rf]ljuctuations occur because the electric field applied modifies
that the effective dot potential does indeed have the symmet- e electron states inside the dot and the way these states

try properties that are apparent from Fig. 1, and that unin5:ouple to the states in the electron reservoirs via the quantum

tended deviations from this symmetry are not significant inpOInt contacts. Because of the broken symmetry of the dots,

the parameter range covered h§|< 20 mTU|<2 mV). the _qonl?near fluctuations are not symmetric and quantum
Therefore, the rectification observed can, indeed, be relaterc?cuﬂca.tlon takes_place. .
. . : The interpretation of our observations as a quantum me-
to the intentionally asymmetric geometry of the dot. . : .
chanical effect is based on the experimental dependence of
the nonlinear conductance fluctuations on the Fermi energy,
on a small magnetic field, and on temperature, which are all
in agreement only with an electron interference effect. Fur-
The triangular dot shape used in the present work is onghermore, the nonsymmetric conductance fluctuations can be
of the simplest geometrical forms which lacks spatial inver-rg|ated to the electric-field-induced shift and modification of
sion symmetry. It is therefore interesting to ask: would ayransmission resonances which are known to be related to the
different dot geometry generate even stronger quantum réguantum properties of the dot.
tification? We can argue qualitatively that, at most, the non- guantum mechanical calculations of the conductance of a
linear quantum fluctuations at negative and positive biagriangular dot confirm our interpretation and reproduce the
voltage can be fully uncorrelated. Then, the asymmetry Edkey experimental results. The calculations depend on as-
(2) yields a value of the order of the magnitude of the quansumptions concerning the spatial distribution of the voltage
tum fluctuations themselves, that is, about 0 ems atT  drop over the device. While we find that qualitative agree-
=0.3K in our calculationgFig. 12. This value can be com- ment of the calculations with experiment is obtained inde-
pared to Figs. 1(y) and 11h) where the averaged asymme- pendent of the details of the assumed voltage drop, there is a
try according to Eq(2) is shown. For model I, the asymme- strong quantitative dependence of the strength of rectification
try appears to level out at about 0.3 mV suggesting that non the exact electric-field distribution. In particular we find
further increase of the quantum asymmetry occurs at highghat even a fully symmetric voltage drop yields in the calcu-
voltages, and reaches values of about 8/6.@ne can there- lation a nonsymmetric conductance, simply because of the
fore conclude that the triangu|ar Shape y|e|d5 a quanturﬂeometrica| shape of the dot. More realistic models for the
asymmetry close to the maximum that can be expected. A\{Oltage drOp must C.Onsider thatthe eleCtriC'ﬁ.eld diStribution
lower temperatures, when the fluctuation amplitude in-will be nonsymmetric because itis self—c_onS|stentIy related
creases, larger total asymmetric effects can be observed, bi@ the symmetry of the scattering potential. Such nonsym-

one can not expect that the value of the asymmetry due tgretric distributions of the voltage drop are found to substan-

electron interference will exceed the order of the conducli@ly enhance the nonsymmetry of the conductance. Details

tance unit &h, independent of the dot geometry of the nonlinear behavior at small voltages can be approxi-
The situatfon may be different when the normalizedmatively understood from the energy dependence of the

asymmetry is considered, that is, the rectification Coefﬁcienpnear—response conductance. One reason for quantitative dif-
NN ' . erences between experiment and theory is that the calcula-
A(U)/G(U=0) which in the present case vyields only a P y

-, . tions do not take effects of incoherence into account.
value of the order of a few percent. Itis likely that this value o oceyrrence of nonlinear conductance fluctuations can

can be increased by using a different geometry and fewege nderstood also semiclassically, using a billiard-ball pic-
modes in the point contacts, thus decreasing the average Cofire of electron transport combined with a qguantum mechani-
ductance while keeping the asymmetry high. cal phase. It remains an intriguing, open question whether
Concerning the opposite limit of geometry-induced recti-a|so a detailed semiclassical understanding of nonlinear ef-
fication it is of relevance to ask: What is the least geometrifects in quantum dots can be obtained, such as is possible for
cal asymmetry necessary to generate significant interferencinterference effects observed in the linear response regime.
induced rectification? One could argue that a minimumOther open questions concern the limits of quantum rectifi-
requirement is a nonsymmetric variation of the scatteringcation. On one hand, it is at present not clear what minimum
potential on the scale of the Fermi wavelength because onlgeometrical asymmetry is required to produce observable,
then can the wave function spatially sample this variationsignificant quantum rectification. On the other hand it is of
The rectification caused by such a small deviation from symfundamental and technological interest whether dot geom-
metry will, again, depend on the self-consistent field distri-etries exist that would yield rectification coefficients much
bution, and is an issue for future investigations. Theoreticalarger than the value of a few percent observed here.
studies addressing this question may also clarify by how An important implication of our results is that asymmetric
much the rectification properties of quantum dots are im-quantum dots can be viewed as quantum ratchets, that is, as
paired by small imperfections of the effective, real dot po-devices that utilize a quantum effect to rectify nonequilib-
tential, caused by individual impurities or process-related derium fluctuationst?®* Quantum dot ratchets have qualities
viations from the intended dot shape. not known from other rectifiers: For instance, the direction of

E. Limits of geometry-induced quantum rectification
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the rectified current is not related in a straightforward manfore prove to be an ideal tool to significantly improve our
ner to the orientation of the dot, but depends sensitively omunderstanding of molecular motors.

parameters such as the amplitude of the ac voltage, the Fermi
energy and the magnetic field. These qualitatively new
physical properties provide strong motivation for continued
experimental studies of quantum ratcheRurthermore, mo- The authors acknowledge helpful discussions with K.-F.
tivation stems from potential, practical applications to so-Berggren, S. M. Reimann, and C. Pryor. This project was
called molecular motors in biological cefisThe extremely  supported by the Swedish Research Councils for Natural and
small physical size of molecular motors makes it likely thatfor Engineering Sciences, by the aa Gustafsson Founda-
mesoscopic effects, such as electron tunneling or singléon for Research in Natural Sciences and Medicin, and by
charge effects, are of central importance for the operation ahe Australian Research CoundiL). The authors thank
the motor. Mesoscopic devices and the theoretical model€laus B. Sgrensen and the 11I-V NANOLAB of MIC and
developed for mesoscopic semiconductor systems may therdBI for the MBE-grown structures.

ACKNOWLEDGMENTS

*Present address: School of Physics, The University of New Sout?’L. Christensson, H. Linke, P. Omling, P. E. Lindelof, K.-F.

Wales, Sydney 2052, Australia. Electronic address: Berggren, and |. V. Zozoulenko, Phys. Rev. &, 12 306

hl@phys.unsw.edu.au (1998.

1R. Landauer, ifNonlinearity in Condensed Matteedited by A.  2>A. M. Song, A. Lorke, A. Kriele, J. P. Kotthaus, W. Wegscheider,
R. Bishop, D. K. Campbell, P. Kumar, and S. E. Trullinger and M. Bichler, Phys. Rev. Let80, 3831(1998.
(Springer-Verlag, Berlin, 1997 24p. M. Song, Phys. Rev. B59, 9806(1999.

’R. P. Feynman, R. B. Leighton, and M. San@&e Feynman 25\ Biittiker, A. Pretre, and H. Thomas, Phys. Rev. L@@, 4114
Lectures of Physic6Addison-Wesley, Reading, 1963 (1993.

3p. Hanggi and R. Bartussek, iNonlinear Physics of Complex 25M. Biittiker, J. Phys.: Condens. Mattgy 9361 (1993.
Systems—Current Status and Future Tremdtited by J. Parisi, 27J. Wang, Q. Zheng, and H. Guo, Phys. ReV6B 9763(1997).
S. C. Muler, and W. ZimmermaniiSpringer, Berlin, 1996 28\, D. Sheng, J. Wang, and H. Guo, J. Phys.: Condens. MHiter

4M. O. Magnasco, Phys. Rev. Leftl, 1477(1993. 5335(1998.
SF. Jlicher, A. Ajdari, and J. Prost, Rev. Mod. Phy&9, 1269  2°W. D. Sheng, Q. Zheng, J. Wang, and H. Guo, Phys. Re59B
(1997. 538 (1999.

8R. D. Astumian, Scienc@76, 917 (1997.

V. . Belinicher and B. I. Sturman, Usp. Fiz. Naulk30, 415
(1980 [Sov. Phys. Usp23, 199(1980].

8B. I. Sturman and V. M. FridkinThe Photovoltaic and Photore-
fractive Effects in Noncentrosymmetric Materid&Sordon and
Breach, Philadelphia, 1992

9H. Linke, T. E. Humphrey, A. Lfgren, A. O. Sushkov, R. New-
bury, R. P. Taylor, and P. Omling, Scien286, 2314(1999.

0p_ Reimann, M. Grifoni, and P. laggi, Phys. Rev. Lett79, 10
(1997.

11H. Q. Xu, Ann. Phys(Leipzig) 8, SI-289(1999.

124 Linke, W. D. Sheng, A. Lfgren, H. Q. Xu, P. Omling, and P.
E. Lindelof, Europhys. Lett44, 341(1998.

BH. Linke, P. Omling, H. Q. Xu, S. M. Reimann, and P. E.
Lindelof, in Proceedings of the 23rd International Conference
on the Physics of Semiconducto&ngapore, 1996M. Schef-
fler and R. ZimmermanriWorld Scientific, Singapore, 1996
p. 1593.

1H. Linke, Ph.D. thesis, Lund University, 1997.

5R. A. Webb, S. Washburn, and C. P. Umbach, Phys. Re87,B
8455(1988.

165, B. Kaplan, Surf. Sci196, 93 (1988.

30No report on self-consistent treatment of the electrostatic poten-
tial in a quantum dot in nonequilibrium has been available. For
a theoretical treatment of this problem in the equilibrium case,
see, for example, M. Stopa, Phys. Rev58 13 767(1996.

1L, I. Glazman and A. V. Khaetskii, Europhys. Le®t.263(1989.

32C. s. Lent, S. Sivaprakasam, and D. J. Kirkner, Solid-State Elec-
tron. 32, 1137(1989.

33E. Castano and G. Kirczenow, Phys. Rev4B 3847(1990.

34N. K. Patel, J. T. Nicholls, L. Martin-Moreno, M. Pepper, J. E. F.
Frost, D. A. Ritchie, and G. A. C. Jones, Phys. Rev4®&
13 549(1991).

35H. Q. Xu, Phys. Rev. B50, 8469 (1994

%6H. Q. Xu, Phys. Rev. B52, 5803(1995.

37"W. D. Sheng, J. Phys.: Condens. Mat®e18369(1997.

383, Datta, Electronic Transport in Mesoscopic Systerf@am-
bridge University Press, Cambridge, 1995

39H. Linke, J. P. Bird, J. Cooper, P. Omling, Y. Aoyagi, and T.
Sugano, Phys. Status Solidi 4, 318 (1997).

404, Linke, J. P. Bird, J. Cooper, P. Omling, Y. Aoyagi, and T.
Sugano, Phys. Rev. B6, 14 937(1997.

41H. Linke, H. Q. Xu, A. Ldgren, W. Sheng, A. Svensson, P.
Omling, P. E. Lindelof, R. Newbury, and R. P. Taylor, Physica

7P, A. M. Holweg, J. A. Kokkedee, J. Caro, A. H. Verbruggen, S.
Radelaar, A. G. M. Jansen, and P. Wyder, Phys. Rev. B&ft.
2549 (1991).

8D, C. Ralph, K. S. Ralls, and R. A. Buhrmann, Phys. Rev. Lett.

70, 986 (1993.

19R. Taboryski, A. K. Geim, M. Persson, and P. E. Lindelof, Phys.

Rev. B49, 7813(1994.

204, Q. Xu, Phys. Rev. B7, 15 630(1993.

2IH. Linke, L. Christensson, P. Omling, and P. E. Lindelof, Phys.
Rev. B56, 1440(1997).

B 272 61(1999.

42M. Brack, J. Blaschke, S. C. Creagh, A. G. Magner, P. Meier,
and S. M. Reimann, Z. Phys. D: At., Mol. Clusted§, 276
(1996.

43p. Bgggild, A. Kristensen, H. Bruus, S. M. Reimann, and P. E.
Lindelof, Phys. Rev. B7, 15 408(1998.

“The dependence of reflected trajectories on the injection direction

illustrates the absence of detailed balance in spatially, not
inversion-symmetric potentials. The lack of detailed balance
leads to rectification when thermal equilibrium is disturbed, for



15926 H. LINKE et al. PRB 61

instance, by the application of an electric field. In thermal equi- J. J. Harris, Phys. Rev. B9, 8040(1989.

librium, however, conduction remains symmetric according to*8L.-H. Lin, N. Aoki, K. Nakao, A. Andresen, C. Prasad, F. Ge, J.

the reciprocity principle. For a detailed discussion, see Ref. 8.  P. Bird, D. K. Ferry, Y. Ochiai, K. Ishibashi, Y. Aoyagi, and T.
4SM. Brack and R. K. BadhuriSemiclassical PhysicéAddison- Sugano, Phys. Rev. B0, R16 299(1999.

Wesley, Reading, MA, 1997 49T Schpers, M. Kriger, J. Appenzeller, A. Fster, B. Lengeler,
46, Christensson, H. Linke, A. ifgren, P. Omling, and P. E. and H. Luh, Appl. Phys. Lett66, 3603(1995.

Lindelof, Phys. Low-Dimens. Semicond. Strub®2, 253(1998.  °°M. Biittiker, Phys. Rev. Lett57, 1761(1986.
47L. P. Kouwenhoven, B. J. v. Wees, C. J. P. M. Harmans, J. G>'P. Hanggi and P. Reimann, Phys. WorltR, 21 (1999; M.

Williamson, H. v. Houten, C. W. J. Beenakker, C. T. Foxon, and  Brooks, New Scientis00Q 29.



