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By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have
studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of
the hexagonal lattice structure and the effect of spin-orbital coupling~SOC! on the hole states are investigated.
It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator
strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb
interaction of exciton states is also taken into account. In order to identify the exciton states, we use the
approximation of eliminating the coupling ofG6(X,Y) with G1(Z) states. The results are found to account for
most of the important features of the experimental photoluminescence excitation spectra of Norriset al.
However, if the interaction betweenG6(X,Y) andG1(Z) states is ignored, the optically passivePx state cannot
become the ground hole state for small CdSe quantum dots of radius less than 30 Å. It is suggested that the
intrinsic asymmetry of the hexagonal lattice structure and the coupling ofG6(X,Y) with G1(Z) states are
important for understanding the ‘‘dark exciton’’ effect.
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I. INTRODUCTION

Recently much attention has been paid to the physic
low-dimensional semiconductor structures. This has b
stimulated by the rapid progress in nanometer-scale fabr
tion technology. Among them, quantum dots~QD’s!, which
are also defined as nanocrystals and microcrystallites
nanoclusters, are of particular interest. The effect of quan
confinement on the electrons and holes in semicondu
QD’s has been studied extensively both theoretically1–15 and
experimentally16–22 in recent years. The most striking prop
erty of semiconductor QD’s is the massive change in opt
properties as a function of quantum dot size. For exam
the band gap in a CdS nanocrystal can be tuned betwee
and 2.5 eV as the size is varied from the molecular regim
the macroscopic crystal.

The semiconductor nanocrystal has a prospective app
tion in devices.20–22 Furthermore, it offers an opportunity t
investigate theoretically the inherent physics in such thr
dimensionally confined systems. The size-dependent abs
tion spectra of CdSe or CdS colloids have several w
defined excitonic features that have been convincin
assigned to states derived from a spherical confinem
model using the effective-mass approximation.23,24However,
the observation of the ‘‘dark exciton’’ in recen
experiments25,26 makes it worth endeavoring to study the i
teresting systems in detail.

Up to now, several different theoretical models have be
used in the study of electronic structures of semicondu
QD’s. Early on, Efros and Efros1 described the quantum
sphere within the framework of the single-band effectiv
mass approximation. Taking into account the mixing of h
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states, Xia2 introduced the Baldereschi-Lipari Hamiltonian27

to investigate the electronic structure of spherical QD
Then Murrayet al.3 and others4,5,23,24,28,29applied the spheri-
cal multiband effective-mass theory to study nanocrystal
QD’s and found experimental results in good agreement w
theoretical predictions. Einevoll and co-workers6,7 presented
an effective bond-orbital model to study the exciton states
semiconductor nanocrystals. Recently, Efroset al.25 devel-
oped an eight-band model to calculate the band-edge exc
fine structure in semiconductor QD’s. An alternative meth
is a treatment within the linear combination of atomic orb
als ~LCAO! approximation. For example, tight-binding8–10

and empirical pseudopotential method,11,12have been used to
calculate the energy states of semiconductor QD’s.

The nanocrystallite QD’s of II-VI compounds are usua
embedded in a large-band-gap matrix, such as glasses,
mers, liquids, rocksalts, or zeolites. For CdSe, CdS, and
nanocrystallites the common lattice structure is hexago
~wurtzite!, as proved by high-resolution transmission ele
tron microscopy TEM and x-ray diffraction.3 However, the
above theoretical work using the effective-mass model w
mainly based on a Hamiltonian with zinc-blende structure,2–4

or treated the crystal-field splitting~due to the hexagona
structure! as a perturbation.5,7,25 To improve the models fur-
ther, it is necessary to compare the band structure of z
blende semiconductors with that of wurtzite semiconducto

In Fig. 1 the bulk bands are plotted for zinc-blende a
wurtzite crystal structures.30 The similarity of the two bands
is the twofold spin degeneracy atk50 in the conduction
band. Taking into account the spin-orbit interaction, the
lence bands are classified according to the total angular
mentumJ, which represents the sum of the orbital angu
15 880 ©2000 The American Physical Society
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momentum and the spin angular momentum. When coup
the orbital momentumL with the spin momentum 1/2, on
may obtain the valence band with a total angular momen
J53/2 (Jz563/2,61/2) or J51/2 (Jz561/2). At k50
~theG point of the Brillouin zone! the two bandsJ53/2 and
J51/2 are split by the spin-orbit coupling energyDSO. In
Fig. 1~a! the three valence bands of zinc-blende type
defined as the heavy-hole~HH!, light-hole ~LH!, and spin-
orbit split-off ~SO! bands. The HH and LH subbands a
degenerate at theG point. In bulk wurtzite semiconductor
@Fig. 1~b!#, the three valence bands are denoted as theA, B,
andC bands.30 The A band is higher than theB band due to
the crystal-field splitting. In our recent work15 and the
present paper, we find that the crystal-field splitting plays
important role in the ground hole state of nanocrystal
QD’s.

In this paper we study the exciton states and optical sp
tra in CdSe QD’s. The excitonic binding energies includi
the Coulomb interaction are calculated. It is found that
the excited hole states, the coupling ofG6(X,Y) andG1(Z)
states is small and can be neglected. In this approxima
our theoretical results are found to account for most of
important features of the experimental optical spectra
tained by Norriset al.23,24 The remainder of the paper i
organized as follows. In Sec. II we present the calculat
method for the system being considered. Our numerical
sults and discussion are given in Sec. III. Finally, we draw
brief conclusion in Sec. IV.

II. CALCULATION METHOD

Using thek•p perturbation method, we have derived t
correct effective-mass Hamiltonian for wurtzite semicond
tors including thep linear term.15,31The CdSe band structur
is calculated by the empirical pseudopotential method,
the effective-mass parameters are determined by fitting
valence-band structure near the top. We do not repeat
details here for the sake of conciseness.

A. Electronic structure of spherical quantum dot

From the effective-mass parameters for hexago
semiconductors,15 we see that the conduction band of t

FIG. 1. Scheme of band structure for zinc-blende-type a
wurtzite-type semiconductors. Zinc-blende-type band structur
drawn in ~a!, and wurtzite-type band structure is shown in~b!.
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electron is not isotropic, with different effective masses
the z andx,y directions. The effective-mass Hamiltonian
the electron is written as

He5
1

2mx
~px

21py
2!1

1

2mz
pz

2 , ~1!

wheremx andmz are the effective masses in thex ~or y) and
z directions, respectively. The Hamiltonian~1! can also be
written as

He5
p2

2ma
2

1

2mb
A2

3
P0

(2) , ~2!

with the effective masses

1

ma
5

1

3 S 2

mx
1

1

mz
D ,

1

mb
5

1

3 S 1

mx
2

1

mz
D ,

whereP0
(2) is the second-order tensor of the momentum o

erator.
The Hamiltonian~2! couples states with either even ang

lar momentuml or odd l; only thez componentm is a good
quantum number. From Ref. 15 we see that for II-VI co
pounds the difference betweenmx andmz is so small that we
can neglect the coupling between differentl states, and con-
sider thatl andm are good quantum numbers. The eigene
ergy of the electron stateCln j l(kn

l r ) is

El ,n5
\2

2ma
S an

l

R D 2

, ~3!

where j l(x) is the spherical Bessel function of orderl, an
l

5kn
l R is the nth zero point of j l , R is the radius of the

sphere, andCl ,n is the normalization constant,

Cl ,n5
A2

R3/2

1

j l 11~an
l !

.

The hole effective-mass Hamiltonian in the zero sp
orbital coupling~SOC! limit is

Hh5
1

2m0
UP1 S T

S* P3 S

T* S* P1

U , ~4!

d
is
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where

P15g1p22A 2
3 g2P0

~2! ,

P35g18p212A2
3 g28P0

~2!12m0Dc ,

T5hP22
(2)1dP2

(2) ,

T* 5hP2
(2)1dP22

(2) ,

S5Ap0P21
(1)1A2g38P21

(2) ,

S* 52Ap0P1
(2)2A2g38P1

(2) ,

andP(2),P(1) are the second-order and first-order tensors
the momentum operator, respectively. The effective-m
parametersg1 ,g2 , . . . are related toL,M ,N, . . . as fol-
lows:

g15 1
3 ~L1M1N!, g25 1

6 ~L1M22N!, g35 1
6 R,

g185 1
3 ~T12S!, g285 1

6 ~T2S!, g385 1
6 Q,

h5 1
6 ~L2M1R!, d5 1

6 ~L2M2R!.

L,M , . . . ,S,T are effective-mass parameters of hexago
semiconductors taken from Ref. 15.

The basic functions of the valence-band top areu11&
5(1/A2)(X1 iY), u10&5Z, u121&5(1/A2)(X2 iY), with
components of angular momentum 1, 0, and21, respec-
tively. Taking u11&, u10&, andu121& as the basic functions
the spin-orbital coupling Hamiltonian is written as15,32

HSO5U2l 0 0 0 0 0

0 0 0 A2l 0 0

0 0 l 0 2A2l 0

0 A2l 0 l 0 0

0 0 2A2l 0 0 0

0 0 0 0 0 2l

U ,

~5!

where the first three basic functions correspond to spin
states, the second three basic functions correspond to
down states,

l5
\3

4m0
2c2 K XU]V

]x

]

]y UYL 5
DSO

3
, ~6!

andDSO is the spin-orbital splitting energy.
The eigenenergies and corresponding eigenstates in q

tum spheres are calculated as in Refs. 32 and 15. The w
functions are expanded with spherical Bessel functions
spherical harmonic functions for the zero SOC case,

Ch5(
l ,n S al ,nCl ,nj l~kn

l r !Yl ,m21~u,f!

bl ,nCl ,nj l~kn
l r !Yl ,m~u,f!

dl ,nCl ,nj l~kn
l r !Yl ,m11~u,f!

D . ~7!
f
s

l

p
in-

an-
ve
d

Because of the hexagonal symmetry only thez component
of the angular momentumJz is a good quantum number. Th
linear terms in the Hamiltonian~4! couple the states of eve
angular momentuml and oddl, and the summation overl in
the expansion of wave function~7! includes both even and
odd l, different from the case of zinc-blende semiconducto
In that case,32 the summation overl includes either evenl or
odd l due to the second-order tensor operators.

In the case of finite SOC, we start from the hole Ham
tonian ~4! for both states~spin up and spin down!, to which
we add the SOC Hamiltonian~5!, and keep thez component
of the total angular momentum as a constant. For exampl
we takeJz50 in Eq. ~7! for the first three basic functions
then we takeJz51 in Eq. ~7! for the second three basi
functions, in order that thez component of the total angula
momentum be 1/2.

In order to study the SOC effect, we calculate the h
subband structure from the finite SOC to the strong S
limit ( l→`). The corresponding hole Hamiltonians a
636 and 434 dimensional matrices, respectively. As a r
sult, the hole effective-mass Hamiltonian with wurtzite stru
ture in the strong SOC limit is

Hh5
1

2m0U P1 2A2
3 S

1

A3
T 0

2A 2
3 S* 1

3 P11 2
3 P3 0

1

A3
T

1

A3
T* 0 1

3 P11 2
3 P3 A 2

3 S

0
1

A3
T* A 2

3 S* P1

U . ~8!

The basic functions of Hamiltonian~8! in the valence-band

top areu 3
2 , 3

2 &, u 3
2 , 1

2 &, u 3
2 ,2 1

2 &, andu 3
2 ,2 3

2 &.

B. Oscillator strength of optical transition

First, we ignore the exciton effect and calculate the os
lator strength of the optical transition between t
conduction- and valence-band states. The optical-transi
matrix element can be calculated by

^FeupuFh&5E r 2dr f e~r ! f h~r !^ l emeu l hmh&^cupuv&

5(
L
E r 2dr f e~r ! f h~r !(

M1

^cupuv&

5I ehpcvd l el h
dmemh

,

where f e(r ) @ f h(r )# is the electron~hole! radial wave func-
tion, u lm& is the angular wave function.uc& and uv& are the
Bloch wave functions at the conduction-band bottom a
valence-band top.I eh is the overlap integral for the envelop
functions of electrons and holes. Then the oscillator stren
of the optical transition is given by

K5uI ehu2. ~9!
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FIG. 2. Hole energies for several states
functions of the spin-orbital splitting energy for
fixed dot radiusR551.8 Å. In ~a! uJzu51/2 and
in ~b! uJzu53/2.
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C. Exciton states

If we take the electronic Bohr radiusae* 5\2e r /me* e2 and
RydbergRe* 5me* e4/2\2e r

2 (me* is the effective mass of the
electron in units of the free electron massm0, ande r is the
dielectric constant of the material! as the units of length and
energy, the exciton Hamiltonian in a quantum sphere can
written as

H5H01Ve-h , ~10!

H05He1Hh1HSO1Ve~r !1Vh~r !, ~11!

Ve-h52
2

r eh
, ~12!

wheree(h) refers to electron~hole!, andVe (Vh) is the con-
fined potential of the electron~hole!. Ve-h is the Coulomb
interaction term between the electron and hole.

The exciton wave function can be expanded in terms
electron and hole wave functions as

Cex5(
i , j

ci j Cei~re!Ch j~rh!, ~13!

where Cei (rei) and Ch j (rh j) are the wave functions o
electronic and hole eigenstates, respectively. The matrix
ement of the Coulomb interaction can be calculated by us

1

r eh
5 (

k50

` r ,
k

r .
k11

Pk~cosueh!, ~14!

Pk~cosueh!5
4p

2k11 (
m52k

k

Ykm* ~ue ,we!Ykm~uh ,wh!,

~15!

where Pk are the Legendre polynomials,ueh is the angle
between the position vectors of electron (re) and hole (rh),
r ,[min(re,rh), andr .[max(re,rh).

33

The exciton energy can be obtained from the secu
equation

u~Ene ,l e
1Emh ,l h

2E!d i j 1Vi j u50. ~16!

The matrix element of the Coulomb interactionVi j is given
by
e

f

l-
g

r

K 1

r eh
L 5(

l ,k
Rk

4p

2k11 (
m52k

k

~21!m^Yl
e8m

e8
uYk2muYl eme

&

3^Yl
h8m

h8
uYkmuYl hmh

&, ~17!

where

Rk5(
l
E

0

`E
0

`

Re~ne ,l e ,me!Re~ne8 ,l e8 ,me8!

3Rh~nh ,l h ,mh!Re~nh8 ,l h8 ,mh8!
r ,

k

r .
k11

r e
2r h

2dredrh ,

~18!

^Yl 8m8uYkmuYlm&5E
0

2pE
0

p

Yl 8m8~u,w!

3Ykm~u,w!Ylm~u,w!sin~u!du dw

5S ~2l 811!~2l 11!~2k11!

4p D 1/2

3S k lh l h8

0 0 0D
3S k lh l h8

m mh mh8D . ~19!

III. NUMERICAL RESULTS AND DISCUSSION

In this section we use CdSe QD’s as a model system
make a numerical computation. The parameters conce
are taken from Ref. 30: the hexagonal lattice constanta
54.30 Å, c57.02 Å, the spin-orbit splittingDSO50.42 eV,
and the crystal-field splittingDc540 meV. CdSe QD’s can
be embedded in different types of material. The values of
electron band offsetVe and hole band offsetVh for these
strucures are generally unknown. In this paper, the hole
culations assume an infinite potential boundary conditi
while a finite barrier for electrons (Ve) is used for comparing
with experimental data. The best fit requires thatVe
59.0 eV. It is obvious that this parameter is not physica
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meaningful, and in practiceVe is used as a fitting paramete
Figure 2 exhibits the hole energy spectra as functions

spin-orbit splitting energyDSO. There are many degenera
states atDSO50, e.g.,Dx↑ and Dx↓ in Fig. 2~a!, and they
would be split at finite SO splitting energy due to the sp
orbit coupling. In both Figs. 2~a! and 2~b! the excited hole
states are observed to cross when the SO splitting ener
small. The crossings of hole states are very sensitive to
SO splitting energy in the interval 0,DSO,0.3 eV. It is
shown that the strong SOC limit~i.e., DSO→`) is a good
approximation for CdSe~with DSO50.42 eV) QD’s for the
ground hole states (Px with uJzu51/2, and Sx with uJzu
53/2). However, for the high excited hole states withuJzu
51/2, for example, theFx↑ state in Fig. 2~a!, this approxi-
mation would not be appropriate because these states
mainly affected by the split-off band@C band in Fig. 1~b!#.
Figure 2 only plots the case for a fixed dot radiusR
551.3 Å, but similar results would be given for other rad

In Fig. 3 we plot the oscillator strength of the optic
transitions between the electron and hole states as func
of the dot radius. The strongest transitions are 1Se-1S3/2,

FIG. 3. Oscillator strength as a function of the dot radiusR in
the case of~a! uJzu51/2 and~b! uJzu53/2.
f
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1Pe-1P3/2, and 1Pe-1P1/2. Since it is hard to identify high
excited hole states such as the 2S3/2 state, we show only
some transition oscillator strengths of lower states. It is e
ily found that the selection rule of optical transitions in
wurtzite-type semiconductor nanocrystal isDL50,61,62.
The transitions do not follow the selection ruleDL50,62
strictly any more.2 This is because the linear terms in th
Hamiltonian~4! couple states of even angular momentuml
and oddl. However, transitions betweens-type andp-type
wave functions such as 1Se-1P3/2 and 1Pe-1S3/2 in Fig.
3~a!, and 1Se-1P1/2 in Fig. 3~b!, exhibit quite small oscillator
strengths.

The energy difference ofSx andPx states as a function o
the dot radiusR is shown in Fig. 4. The solid curve is plotte
without taking into account the exciton effect~this is also
depicted in Ref. 15!, while the dotted curve shows the ca
with the exciton effect. Comparing the two curves, we c
find that the result with the exciton effect is more consist
with the experimental results of resonant Stokes shift
ported by Efroset al.25

Now we discuss the relationship between the exci
states and the optical spectra in CdSe QD’s. Norriset al.23,24

investigated the photoluminescence excitation~PLE! spec-
troscopy to avoid the competition between bleach featu
and induced absorptions that complicates the analysis. As
our theoretical model presented in this paper, due to h
state mixing, it is difficult to assign the high-hole states
the strong confinement regime.15 But we found that for the
excited hole states the coupling ofG6(X,Y) with G1(Z)
states is small and can be neglected. In this approxima
we calculated the spectra of CdSe QD’s.

Our results for the size-dependent spectra of CdSe Q
in the strong confinement regime are shown in Fig. 5 a
Fig. 6. Thex axis of the two figures is the energy of th
ground exciton state~i.e., the first excited state!, because the
energy is more easily and precisely measured experimen
than the dot size due to sample inhomogeneities. Using
dot radius as thex axis will induce significant error in the

FIG. 4. Energy differences ofSx(uJzu53/2) andPx(uJzu51/2)
states as functions of the dot radius. The result without exc
effect is plotted as the solid curve, while the result with excit
effect is shown as the dotted curve.
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size measurement; therefore, the energy of the first exc
state can describe the probed dots better. The energy ofy
axis is relative to the ground exciton state. As mention
above, when the interaction betweenG6(X,Y) and G1(Z)
states is ignored, the ground exciton state is 1Se1S3/2 in our
calculation. Figure 5 shows 1Se1S1/2, 1Se2S1/2, and
1Se3S1/2 exciton energy spectra by the solid curves. The d
points are experimental data from Ref. 24. The figure in
cates that the theory is in agreement with the experime
results. Figure 6 depicts the spectra of the 1Se2S3/2 and
1Pe1P3/2 states. From Fig. 3 we see that the 1Se1S3/2 and
1Pe1P3/2 should be the two strongest transitions, which
consistent with experimental observations.24 In Fig. 6 the
dotted curve represents the relative exciton energy of
1Pe1P1/2 state and is compared with that of the 1Pe1F1/2
state.

The assumption ofS50 in Hamiltonian~4!, i.e., elimina-
tion of the coupling ofG6(X,Y) with G1(Z) states, has a
great effect on the 1P1/2 hole state, and it would not be th
ground hole state for small dots whose radius is smaller t
30 Å.15 Taking the coupling@G6(X,Y) with G1(Z) states#
into consideration, the actual energy of the 1Pe1P1/2 state
would be smaller than that of 1Pe1P3/2 in the strong con-
finement regime. Consequently, we think that the high
exciton state in Fig. 6 should not be assigned to 1Pe1P1/2,
but to 1Pe1F1/2. Additionally, the above discussion also in

FIG. 5. Comparison with experiments for excited exciton sta
The excited-state energies are shown as functions of the ener
the first excited state~i.e., the ground-state exciton energy!. Solid
curves correspond to 1Se1S1/2, 1Se2S1/2, and 1Se3S1/2 states. Ex-
perimental results of Norriset al. ~Ref. 14! on CdSe quantum dot
are marked as circles.
ed
e
d
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dicates that the coupling ofG6(X,Y) with G1(Z) states in
Hamiltonian~4! is important for the ‘‘dark exciton’’ theory.

IV. CONCLUSION

In this paper, we have studied the exciton states of C
nanocrystallite quantum dots, including the Coulomb int
action between electron and hole. It is found that the stro
SOC limit is a good approximation for the hole state. T
linear terms in the hole Hamiltonian make it possible f
transitions to occur between states with angular momentul
andl 61. Taking into account the exciton effect, our nume
cal result is in agreement with the experimental results
the resonant Stokes shift.25 In order to identify the exciton
states, we use the approximation of eliminating the coupl
of G6(X,Y) and G1(Z) states. The results are found to a
count for most of the important features of the experimen
optical spectra of Norriset al. However, if the interaction
betweenG6(X,Y) andG1(Z) states is ignored, the opticall
passivePx state cannot become the ground state for sm
CdSe quantum dots of radius less than 30 Å. Only if t
inherent asymmetry of the hexagonal lattice structure and
coupling of G6(X,Y) with G1(Z) states are taken into ac
count for calculating the electronic structure of CdSe na
crystals, can the ‘‘dark exciton’’ be well explained.
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FIG. 6. Same as Fig. 5, but the solid curves correspond
1Se2S3/2, 1Pe1P3/2, and 1Pe1F1/2 states. The dotted curve corre
sponds to the 1Pe1P1/2 state.
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