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By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have
studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of
the hexagonal lattice structure and the effect of spin-orbital coup8@O on the hole states are investigated.

It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator
strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb
interaction of exciton states is also taken into account. In order to identify the exciton states, we use the
approximation of eliminating the coupling &%(X,Y) with I";(Z) states. The results are found to account for

most of the important features of the experimental photoluminescence excitation spectra ofédiairis
However, if the interaction betwedny(X,Y) andIl';(Z) states is ignored, the optically passRgstate cannot
become the ground hole state for small CdSe quantum dots of radius less than 30 A. It is suggested that the
intrinsic asymmetry of the hexagonal lattice structure and the couplinggEX,Y) with I';(Z) states are
important for understanding the “dark exciton” effect.

. INTRODUCTION states, Xid introduced the Baldereschi-Lipari Hamiltonfan
to investigate the electronic structure of spherical QD’s.
Recently much attention has been paid to the physics ofhen Murrayet al2 and other§®2324.28.2%ppjied the spheri-
low-dimensional semiconductor structures. This has beenal multiband effective-mass theory to study nanocrystallite
stimulated by the rapid progress in nanometer-scale fabricd@D’s and found experimental results in good agreement with
tion technology. Among them, quantum d@¢€@D’s), which  theoretical predictions. Einevoll and co-workefpresented
are also defined as nanocrystals and microcrystallites, an effective bond-orbital model to study the exciton states of
nanoclusters, are of particular interest. The effect of quanturaemiconductor nanocrystals. Recently, Efedsal® devel-
confinement on the electrons and holes in semiconductasped an eight-band model to calculate the band-edge exciton
QD's has been studied extensively both theoreti¢alRand  fine structure in semiconductor QD’s. An alternative method
experimentally®~?2in recent years. The most striking prop- is a treatment within the linear combination of atomic orbit-
erty of semiconductor QD’s is the massive change in opticails (LCAO) approximation. For example, tight-bindfid®
properties as a function of quantum dot size. For exampleand empirical pseudopotential methidd?have been used to
the band gap in a CdS nanocrystal can be tuned between 4calculate the energy states of semiconductor QD’s.
and 2.5 eV as the size is varied from the molecular regime to The nanocrystallite QD’s of II-VI compounds are usually
the macroscopic crystal. embedded in a large-band-gap matrix, such as glasses, poly-
The semiconductor nanocrystal has a prospective applicaners, liquids, rocksalts, or zeolites. For CdSe, CdS, and ZnS
tion in devices’®~22 Furthermore, it offers an opportunity to nanocrystallites the common lattice structure is hexagonal
investigate theoretically the inherent physics in such threetwurtzite), as proved by high-resolution transmission elec-
dimensionally confined systems. The size-dependent absorfron microscopy TEM and x-ray diffractiohHowever, the
tion spectra of CdSe or CdS colloids have several well-above theoretical work using the effective-mass model was
defined excitonic features that have been convincinglynainly based on a Hamiltonian with zinc-blende structufe,
assigned to states derived from a spherical confinemerr treated the crystal-field splittingdue to the hexagonal
model using the effective-mass approximatfdi*However,  structurg as a perturbatiott/>> To improve the models fur-
the observation of the “dark exciton” in recent ther, it is necessary to compare the band structure of zinc-
experiment®?® makes it worth endeavoring to study the in- blende semiconductors with that of wurtzite semiconductors.
teresting systems in detail. In Fig. 1 the bulk bands are plotted for zinc-blende and
Up to now, several different theoretical models have beenvurtzite crystal structure¥. The similarity of the two bands
used in the study of electronic structures of semiconductois the twofold spin degeneracy &t=0 in the conduction
QD’s. Early on, Efros and Efrdsdescribed the quantum band. Taking into account the spin-orbit interaction, the va-
sphere within the framework of the single-band effective-lence bands are classified according to the total angular mo-
mass approximation. Taking into account the mixing of holementumJ, which represents the sum of the orbital angular
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the zandx,y directions. The effective-mass Hamiltonian of
\ / / the electron is written as
k
J=3/2
HH7 z=43/
LH

AE conductionband A E electron is not isotropic, with different effective masses in
1 1
- He==—(p3+p2)+ —p? 1
= C e 2mx(px py) 2mzpza ( )
wherem, andm, are the effective masses in tkéor y) and
Jz=41/2 z directions, respectively. The Hamiltonidfh) can also be

written as

\
.

I=1/2
SO Jz=+1/2

BN

2 1 2
P “p@, @

(a) valence band (b) o= Z_ma — 2_mb 3

FIG. 1. Scheme of band structure for zinc-blende-type and
wurtzite-type semiconductors. Zinc-blende-type band structure igyith the effective masses
drawn in(a), and wurtzite-type band structure is shown(lin.

momentum and the spin angular momentum. When coupling

the orbital momentuni with the spin momentum 1/2, one i: l(iJr i
may obtain the valence band with a total angular momentum mg 3\mgy m,)’
J=3/2 (J,=%3/2,£1/2) orJ=1/2 (J,=*1/2). At k=0

(theT point of the Brillouin zongthe two bandd=3/2 and

J=1/2 are split by the spin-orbit coupling energyso. In 1 1/1 1
Fig. 1(a the three valence bands of zinc-blende type are m—b= §(R— E) '

defined as the heavy-hol&iH), light-hole (LH), and spin-
orbit split-off (SO bands. The HH and LH subbands are
degenerate at thE point. In bulk wurtzite semiconductors whereP{? is the second-order tensor of the momentum op-
[Fig. 1(b)], the three valence bands are denoted a#\thé, erator.

andC bands®® The A band is higher than thB band due to The Hamiltonian2) couples states with either even angu-
the crystal-field splitting. In our recent wofkand the |ar momentum or odd!; only thez componenim s a good
present paper, we find that the crystal-field splitting plays amyuantum number. From Ref. 15 we see that for II-VI com-
important role in the ground hole state of nanocrystallitepounds the difference between, andm, is so small that we
QD’s. can neglect the coupling between differéstates, and con-

In this paper we study the exciton states and optical speGsider thatl andm are good quantum numbers. The eigenen-
tra in CdSe QD’s. The excitonic binding energies includingergy of the electron stat€,,j,(k\r) is
the Coulomb interaction are calculated. It is found that for
the excited hole states, the couplinglaf(X,Y) andI"1(Z)
states is small and can be neglected. In this approximation 2 [a'\?
our theoretical results are found to account for most of the Ein ( R) ,
important features of the experimental optical spectra ob-
tained by Norriset al?®?* The remainder of the paper is

organized as follows. In S_ec. Il we present the calcylationNherejl(x) is the spherical Bessel function of ordlera'n
method for the system being considered. Our numerical re= ! R is the nth zero point ofj;, R is the radius of the

sults and discussion are given in Sec. Ill. Finally, we draw &phere, an@, ,, is the normalization constant
brief conclusion in Sec. IV. '

()

:2ma

Il. CALCULATION METHOD \/E 1

Using thek- p perturbation method, we have derived the Cl,anT/ZT-
correct effective-mass Hamiltonian for wurtzite semiconduc- Jrealen
tors including thep linear term*>! The CdSe band structure
is calculated by the empirical pseudopotential method, and e nole effective-mass Hamiltonian in the zero spin-
the effective-mass parameters are determined by fitting thgpita) coupling(SOQ limit is
valence-band structure near the top. We do not repeat the

details here for the sake of conciseness.

. . P, S T
A. Electronic structure of spherical quantum dot 1
. Hh:_ S* PS S ’ (4)
From the effective-mass parameters for hexagonal .
semiconductor®® we see that the conduction band of the ™ S P
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P1=7y1p"— \/g’}’zp(z),
Ps=y1p?+2 \/gﬁpgz) +2meA,
T=7P®+ 6P,

T* = yPP+ 5P,
S=ApoPY +2y4P?),

S =~ ApoPE)— \Zy1P ),
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Because of the hexagonal symmetry only trtemponent
of the angular momenturd, is a good quantum number. The
linear terms in the Hamiltoniat¥) couple the states of even
angular momenturhand oddl, and the summation ovéiin
the expansion of wave functiofY) includes both even and
oddl, different from the case of zinc-blende semiconductors.
In that case? the summation overincludes either evehor
odd | due to the second-order tensor operators.

In the case of finite SOC, we start from the hole Hamil-
tonian (4) for both stategspin up and spin downto which
we add the SOC Hamiltonia(®), and keep the component
of the total angular momentum as a constant. For example, if
we takeJ,=0 in Eq. (7) for the first three basic functions,
then we takel,=1 in Eq. (7) for the second three basic
functions, in order that the component of the total angular

andP®@ P are the second-order and first-order tensors ofnomentum be 1/2.
the momentum operator, respectively. The effective-mass In order to study the SOC effect, we calculate the hole

parametersy;,vy,, ... are related td_,M,N, ... as fol- subband structure from the finite SOC to the strong SOC
lows: limit (A—o2). The corresponding hole Hamiltonians are
L . . 6X6 and 4x<4 dimensional matrices, respectively. As a re-
y1=3(L+M+N), y,=5(L+M=2N), vy3=5R, sult, the hole effective-mass Hamiltonian with wurtzite struc-
ture in the strong SOC limit is
y1=3(T+2S), 7=35(T-9), 7;=35Q, .
P —v:2S —T 0
7=HL-M+R), &=1(L-M-R). ! V8 V3
LM, ... ST are effective-mass parameters of hexagonal _ Jzex 1 2 1
semiconductors taken from Ref. 15. \/;S 3P1t3Ps 0 \/§T

The basic functions of the valence-band top #té) Hy=

. (8)

. . . 2m 1
=(IN2)(X+iY), [10)=2Z, |1—1)=(1/2)(X—iY), with S 0 Lp t2p, \Is
components of angular momentum 1, 0, and, respec- V3
tively. Taking|11), |10y, and|1—1) as the basic fu2r10tions, L
the spin-orbital coupling Hamiltonian is written’as 0 il NI P,
V3
- 0 0 0 0 0 ) _ o _
0 0 0 2\ 0 0 The basic functions of Hamiltonia8) in the valence-band
top are|3,3), |3.3), 13,—3), and|3,— 3).
0 0 A 0 —y2n 0
Hso= 0 \/E)\ 0 A 0 ol B. Oscillator strength of optical transition
0 0 — \/E)\ 0 0 0 First, we ignore the exciton effect and calculate the oscil-
0 0 0 0 0 Y lator strength of the optical transition between the
conduction- and valence-band states. The optical-transition

®) matrix element can be calculated by

where the first three basic functions correspond to spin-up
states, the second three basic functions correspond to spin-
down states,

h3
A= ——(X
4m302<

<q)e|p|q)h>=f rzdrfe(r)fh(r)<|eme||hmh><c|plv>

Vv d

e © =3 [ rartonm3 clpl)

ASO
Y>—?

and A g is the spin-orbital splitting energy.

The eigenenergies and corresponding eigenstates in quan-
tum spheres are calculated as in Refs. 32 and 15. The wavygheref(r) [f,(r)] is the electronhole) radial wave func-
functions are expanded with spherical Bessel functions angon, |Im) is the angular wave functiofic) and|v) are the
spherical harmonic functions for the zero SOC case, Bloch wave functions at the conduction-band bottom and

valence-band tof., is the overlap integral for the envelope
functions of electrons and holes. Then the oscillator strength
7) of the optical transition is given by

=1 ehPcy 5le|h5memh’

2y nCinji(KnM)Yi m-1(6, )
b1 wCind 1 (KD Y1 (6, )
Ay nCrnd i (K Y1 me 1(6, )

\I’h:%
K=1len/?. €)
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|Jz=3/2, R=51.38
> s
< L
? ? FIG. 2. Hole energies for several states as
=i & functions of the spin-orbital splitting energy for a
2. 2 fixed dot radiusR=51.8 A. In(a) |J,|=1/2 and
= = in (b) |J,]=3/2.
0.00 1 T T T T 0.00 4 . T T T
0.0 2 4 .6 8 1.0 0.0 2 4 .6 8 10
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C. Exciton states 1 A k
. . 2 ke — )= R > (DY Vil Yimg)
If we take the electronic Bohr radiag = %€, /m} e* and ren/ % 2k+1 <y Temgl T k—ml T1mg,

RydbergR? =mZ e*/2h2€? (m? is the effective mass of the
electron in units of the free electron massg, ande, is the XYV Yl Y1 m ) 17
dielectric constant of the materiads the units of length and

energy, the exciton Hamiltonian in a quantum sphere can b}ﬁ/here
written as 2 w (o
Rk= J J’ Re(Ne,le,Me)R(NL 1., m.
H=H0+Ve_h, (10) | 0 0 e( erfe e e( ere e)
k
Ho=Hc+Hpt+tHgotVa(r)+Vy(r), 11 r
o7t Hao Vel (), (Y Ryl ) Rl m0) 3 2y
2 >
Ven=— o (12 (18)
wheree(h) refers to electroithole), andV, (V) is the con- 2w (m
fined potential of the electrothole). V.., is the Coulomb Y Vi Yim) = o Jo Yirm (0,¢)
interaction term between the electron and hole.
The exciton wave function can be expanded in terms of XYim(0,0)Y m(0,¢)sin(6)dode

electron and hole wave functions as

(21" +1)(21+1)(2k+ 1)\ 2

4
Vo= € Weilfe) Wiy(rn), (13 i
" k 1y 1}
where W (re;) and Wy, (ry;) are the wave functions of Xlo o o
electronic and hole eigenstates, respectively. The matrix el-
ement of the Coulomb interaction can be calculated by using C Y
h In
1 & rk X ' (19)
— = ——-Py(coSbep), (14 m M M
len k=0 rs
k IIl. NUMERICAL RESULTS AND DISCUSSION

4
P (coSOg)==—— Yi(0e,08)Yim( On>@n), . .
K(€0SPer) = 57 m;k i O+ @e) Yian( b #n) In this section we use CdSe QD’s as a model system to

(15 make a numerical computation. The parameters concerned
Where P. are the Legendre polvnomialg.. is the angle &€ taken from Ref. 30: the hexagonal lattice constants
k - -€9 poly eh g =4.30 A,c=7.02 A, the spin-orbit splittingho=0.42 eV,
between the position vectors of electran)(and hole (},), : -~ _ .
o - 33 and the crystal-field splittind\,=40 meV. CdSe QD’s can
r-=min(re,ry), andr-=max(e,ry). L .
. . be embedded in different types of material. The values of the
The exciton energy can be obtained from the secular
. electron band offseV, and hole band offseV,, for these
equation .
strucures are generally unknown. In this paper, the hole cal-
I(En | +Em | —E)&:+V,|=0. (16)  culations assume an infinite potential boundary condition,
ere hh b while a finite barrier for electrons) is used for comparing
The matrix element of the Coulomb interactivf) is given ~ with experimental data. The best fit requires thég

by =09.0 eV. It is obvious that this parameter is not physically
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10 FIG. 4. Energy differences d8,(]J,|=3/2) andP,(|J,|=1/2)
states as functions of the dot radius. The result without exciton
effect is plotted as the solid curve, while the result with exciton

8 1 1Pe-1P1j2 effect is shown as the dotted curve.

6 1P.-1P55, and 1P.-1P4),. Since it is hard to identify high

excited hole states such as th&;2 state, we show only
some transition oscillator strengths of lower states. It is eas-
ily found that the selection rule of optical transitions in a
wurtzite-type semiconductor nanocrystalA¢ =0,+1,+2.

The transitions do not follow the selection rudd =0,+2
strictly any morée? This is because the linear terms in the
Hamiltonian(4) couple states of even angular momentum

Oscillator Strength
'S

0.0 1 and oddl. However, transitions betweesntype andp-type
(b) wave functions such asSl-1P5, and 1P.-1S, in Fig.
. . . . 3(a), and 1S.-1P, in Fig. 3(b), exhibit quite small oscillator
2 4 6 8 10 strengths.
Radius(nm) The energy difference &, andP, states as a function of

. . . the dot radiuk is shown in Fig. 4. The solid curve is plotted

FIG. 3. Oscillator strength as a function of the dot radium without taking into account the exciton effetthis is also

the case ofa) |J,|=1/2 and(b) |J,|=3/2. depicted in Ref. 15 while the dotted curve shows the case
with the exciton effect. Comparing the two curves, we can

meaningful, and in practic¥, is used as a fitting parameter. find that the result with the exciton effect is more consistent

Figure 2 exhibits the hole energy spectra as functions ofyith the experimental results of resonant Stokes shift re-
spin-orbit splitting energyAso. There are many degenerate ported by Efroset al?®
states also=0, e.g.,D,T andD,| in Fig. 2a), and they Now we discuss the relationship between the exciton
would be split at finite SO splitting energy due to the spin-states and the optical spectra in CdSe QD'’s. Nartial 324
orbit coupling. In both Figs. @) and 2b) the excited hole investigated the photoluminescence excitat{®.E) spec-
states are observed to cross when the SO splitting energy ifoscopy to avoid the competition between bleach features
small. The crossings of hole states are very sensitive to thgnd induced absorptions that complicates the analysis. As for
SO splitting energy in the interval 0A55<<0.3 eV. It is  our theoretical model presented in this paper, due to hole
shown that the strong SOC limit.e., Ago—=) is a good  state mixing, it is difficult to assign the high-hole states in
approximation for CdSéwith As,=0.42 eV) QD’s for the the strong confinement regimeBut we found that for the
ground hole statesR with |J,|=1/2, and S, with [J,]  excited hole states the coupling ®%(X,Y) with I';(Z)
=3/2). However, for the high excited hole states wjifh|  states is small and can be neglected. In this approximation
=1/2, for example, thé~,T state in Fig. 2a), this approxi- we calculated the spectra of CdSe QD's.
mation would not be appropriate because these states are Our results for the size-dependent spectra of CdSe QD’s
mainly affected by the split-off bandC band in Fig. 1b)]. in the strong confinement regime are shown in Fig. 5 and
Figure 2 only plots the case for a fixed dot radiBs Fig. 6. Thex axis of the two figures is the energy of the
=51.3 A, but similar results would be given for other radii. ground exciton staté.e., the first excited statgbecause the

In Fig. 3 we plot the oscillator strength of the optical energy is more easily and precisely measured experimentally
transitions between the electron and hole states as functiomisan the dot size due to sample inhomogeneities. Using the
of the dot radius. The strongest transitions af®-1S;,, dot radius as the axis will induce significant error in the
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FIG. 5. Comparison with experiments for excited exciton states. FIG. 6. Same as Fig. 5, but the solid curves correspond to
The excited-state energies are shown as functions of the energy 5:2S32, 1Pc1P3;,, and 1P 1F,, states. The dotted curve corre-
the first excited statéi.e., the ground-state exciton eneyggolid  sponds to the B.1P,, state.

curves correspond 1S5, 15,255, and 15:3S,, states. Ex- o0 ihat the coupling dfs(X,Y) with I';(Z) states in

erimental results of Norrist al. (Ref. 14 on CdSe quantum dots . . - -
gre marked as circles. ( 3 a Hamiltonian(4) is important for the “dark exciton” theory.

IV. CONCLUSION
size measurement; therefore, the energy of the first excited ) ) )
state can describe the probed dots better. The energy gf the N this paper, we have studied the exciton states of CdSe
axis is relative to the ground exciton state. As mentioned’@nocrystallite quantum dots, including the Coulomb inter-
above, when the interaction betwe®p(X,Y) and I';(Z) action between electron and hole. It is found that the strong
states is ignored, the ground exciton state %15, in our SOC limit is a good apprOX|m.at|or'1 for the h'ole sta'te. The
calculation. Figure 5 shows SL1S;,, 1S.2S,,, and linear terms in the hole Hamiltonian make it possible for
1S,3S,, exciton energy spectra by the solid curves. The datdransitions to occur between states wlth angular momemtum
points are experimental data from Ref. 24. The figure indi-2Nd! = 1. Taking into account the exciton effect, our numeri-
cates that the theory is in agreement with the experimentdf@! result is in agreement with the experimental results for
results. Figure 6 depicts the spectra of th8,2S,, and the resonant Stokes shfft.In order to identify the exciton
1P_1Ps, states. From Fig. 3 we see that th8,1S,, and states, we use the approximation of eliminating the coupling
1P_1P5,, should be the two strongest transitions, which isOf I'6(X,Y) andT’y(Z) states. The results are found to ac-
consistent with experimental observatidisn Fig. 6 the count for most of the important features _of the_experlmental
dotted curve represents the relative exciton energy of th@Ptical spectra of Norrit al. However, if the interaction

1P.1P,,, state and is compared with that of th@ JLFy,, betwgenl“6(X,Y) andI';(Z) states is ignored, the optically
state. passiveP, state cannot become the ground state for small

The assumption 08=0 in Hamiltonian(4), i.e., elimina- _CdSe quantum dots of radius less thaq 30 A. Only if the
tion of the coupling ofl'4(X,Y) with I"';(Z) states, has a mhert_ant asymmetry of_the hexagonal lattice structure and the
great effect on the R,,, hole state, and it would not be the COUPIiNg of I's(X,Y) with I'y(Z) states are taken into ac-
ground hole state for small dots whose radius is smaller thafPunt for calculating the electronic structure of CdSe nano-
30 A5 Taking the coupling T's(X,Y) with T'y(Z) states crystals, can the “dark exciton” be well explained.
into consideration, the actual energy of thB 1P, state
would be smaller than that ofP,1P5, in the strong con-
finement regime. Consequently, we think that the highest This work was supported by the Chinese National Natural
exciton state in Fig. 6 should not be assigned Ry 1P 5, Science Foundation. J.L. thanks Professor Desheng Jiang for
but to 1P 1F,,. Additionally, the above discussion also in- helpful discussions.
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