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Positron energy levels in semiconductors
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Positron affinities, deformation potentials, and lifetimes are calculated in diamond, Si, SiC, and BN bulk
cubic semiconductors using the first principles pseudopotential and linear-muffin-tin-ofa0 ) methods.
Both the electron and positron energies are calculated within the local density approximation and generalized
gradient approximatioiGGA). It is observed that the LMTO calculated values of quantities of interest are
systematically lower than those calculated with the pseudopotential method. Results further show that the GGA
correction for the electron energy levels is not very important in positron calculations. The calculated positron
affinity in SiC is found to be in reasonable agreement with experiment. Positron properties for other materials
are also compared with available experimental data.

[. INTRODUCTION tion in semiconductors, whereas in metals the positron affin-
ity is the same as the positron work function. The electron
Positron energy levels in solids are quite difficult to ex- affinity (x_) does not change due to surface band benging.
amine experimentally. In semiconductors the interpretation The other definition of the positron affinitjabeled often
of experiments is further complicated by surface effectsasA.) by Puskaet al? is related to the positron absolute
From the theoretical point of view ordinary techniques toenergy levels in different materials. That is, the positron af-
examine the electronic structure gderiodig solids cannot finity is introduced throughh . =+ w . and is thus a pure
handle such effects. Fortunately, the sum of electron an8ulk property of the material. This definition can also be
positron chemical potentials is independent of the surfacéxpressed aé,=—(¢_+ ¢, ). SinceA andEg have con-
properties, and standard computational electronic structuriibutions to the electron and positron work functions, equal
methods can be used to calculate it. This sum, usually calle@h magnitude and opposite in sign, they cancel out in the
the positron affinity, can also be obtained experimentally vissum, leavingu_ and ., only. This second notion of the
work function measurements. positron affinity (A, ) is used in the present paper. Such a
The electron work function in a solid is defined as thepositron affinity is examined with a good precision in the
minimum energy needed to take an electron from the Fermpositron emission spectroscopy mett{od.
level deep within the bulk region to the vacudrm order to Positrons implanted into a solid start to diffuse after their
separate the bulk and surface contributions, the electrothermalization owing to positron-phonon interactions. The
work function is usually expressed ds = —u_+A where  positron diffusion in a semiconductor at low temperatures is
w_ is the bulk chemical potential anil is the surface dipole dominated by a free positron interacting with longitudinal
potential arising from the surface structure and surface chenfcoustic phonons. In the deformation potential theory the
istry. The positron work function is defined as the minimumpositron diffusion constand , due to the acoustic phonon
energy gained to bring a thermalized positron from thescattering is given By
vacuum into the lowest bulk energy level, which is identified
with the positron chemical potential, . In terms of the (8 v L
separation into bulk and surface contributions, the positron 19 (m* )52k T) V22
work function is expressed ag,=—pu,—A. Due to the " . d
large surface dipole potential, the positron is seen to be emitwhere Eg is the positron deformation potentiah’ is the
ted in most solids. In semiconductors there is band bendingositron effective masg; is the absolute temperature, and
near the surface due to surface charge deAg\ya result of is the elastic constant associated with the longitudinal waves
this both the electron and positron work functions are modi-averaged over the directions of propagation.
fied by the corresponding electric field arising from the sur- The conventional method for calculating the positron af-
face band bending, i.e4:=—u: = A+ Eg, whereEgis the  finity is based on density functional theory where the elec-
energy required to produce the electric field. tron and positron energy levels are calculated with respect to
The positron affinity in semiconductors can be viewed inthe common reference level called the crystal zero of the
two different ways. First, it can be defined as the energyinfinite lattice’ The method of choosing the crystal zero is
gained by taking a thermalized positron from the vacuum tacompletely dependent on the electronic structure scheme
the lowest bulk energy level close to the surfAdue to the  taken for calculating the energy band structure of the solid.
surface band bending the positron affinitlesignated in this For example, in the linear-muffin-tin-orbital method within
case usually ag..) is different from the positron work func- the atomic sphere approximatith(LMTO-ASA) the Cou-
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lomb potential on the surface of the Wigner-Seitz sphere isial (V) in the bulk solid. However, the average potential in
taken as the crystal zero, and in the augmented plane waw infinite solid without a surface is not uniquely defirtéd.
method the average of the Coulomb potential between th8ince the contribution 0¥, is equal and opposite in_ and
muffin-tin sphere and the Wigner-Seitz cell is taken as theu. , it is canceled in the final expression far, ,

crystal zerd In bulk positron affinity calculations explicit

determination of the crystal zero level is not needed, as its A, =E,+Ey+a. 2
particular values for electrons and positrons have the same

magnitude and opposite sign in the electron and positron The positron deformation potentiaEf) is obtained from

chemical potential calculations. _ ~ the volume derivative of the positron affinity using the
In the present work we have used the first principlesexpressioh

pseudopotential method for calculating positron affinities.

The advantage of this method is that it can be used to calcu- oA,
late affinities and deformation potentials in semiconductors Ed:Q&—Q,
with defects where the lattice relaxations at the defect site
play an important role in changing the electron and positro

energy levels. The LMTO-ASA technique has also been ™ ¢ i positron lifetimer is another valuable quantity

employed for comparison. to check the correctness of the density functional calcula-
As for the materials studied, we have chosen the follows;,5 |t is the inverse of the annihilation rate

ing cubic semiconductors: diamond, silicon, silicon carbide

(SiC), and boron nitride(BN). The purpose of the present

paper is to compare theoretical results obtained with avail- )\:T—lzmgcf n(ryn.(r)y(r)dr, (4)
able experimental findings. Recently, positron affinities have

been studied experimentally in diamdnand both experi-
mental and theoretical studies have been undertaken for s

eral structural mod|f|cat|ons .Of S&?.' Regarding Shtis oo, Furthermorer, is the classical electron radius and
expected that it has a negative positron work function like is the speed of light

d|a;mé)?d ant(;l] S'Cj ?O;On mtn?e h"_its not yekt fbee? mves(;u- Concerning core electrons, which essentially do not enter
gated from the point or view or positron work tunction and y,q pseudopontential calculations, Logieall’ have shown

afﬁ_lr_]gy and we give hgre; prefdllftmn c:f 'té’ prolpl)erues. lai that their inclusion into the exchange-correlation potential
'€ paper IS organized as 1oflows. In Sec. 1l We exp a'nindirectly by the nonlinear core correctighlLCC) method
briefly the theoretical background for electronic structure

leulati 4 determinati ¢ itron levels in th reproduces structural properties of the solids which can be
calculations and determination of positron Ivels in the ma'compared with those obtained from all-electron methods. We

tgrials studied. Sgction Il deal; with results and their diSCUSUse the NLCC technique in our pseudopotential calculations.
sion. The paper is concluded in Sec. IV. The band structure calculation has been carried out in the
momentum space method with a plane wave basi&Sete
Il. METHODS FOR ELECTRONIC STRUCTURE charge _den_sity is evaIL_Jated by perfor_ming Brillouin zone
AND POSITRON STATE CALCULATIONS summation in the Chad|-C(_)hen two-point schefhe.
For the sake of comparison, we have also employed the
The details of positron affinity and deformation potential LMTO-ASA method already mentioned above and com-
calculations using the first principles pseudopotential techputed all positron quantities of interest. Details of our calcu-
nique have been described in our earlier wbtkiere only  lations are presented in Refs. 10 and 11. We just note here
the essential features of the method will be described. Nornthat we have incorporated appropriate empty spheres into
conserving pseudopotentials of Bachelet-Hamann-$ehlu crystal structures to better describe the interstitial charge dis-
type'* are used to calculate electronic structure in semicontribution. Into the basis we have includedp, andd orbitals,
ductors. The electron chemical potential in this method isreatingd orbitals as downfolded!.
calculated asu_=E,+ a+V,, whereE, is the top of the For the electron exchange-correlation potential we have
valence bandg is the pseudocore correction, aWg is the  utilized two approaches. The first is the local density ap-
average Coulomb potential in the solid. The quanditgor-  proximation(LDA). In this case, we take the scheme of Cep-
rects the pseudo nature of the electron ion-core potentiakrley and Aldel® as parametrized by Perdew and Zuntfer.
After this correction the ion-core potential is a point-core Furthermore, the ground state properties of solids seem to be
potential which does not include any contribution from thereproduced well by incorporating inhomogeneity effects in
core orbitals’® In order to calculate the positron affinity in a the energy functional within the generalized gradient
solid, the positron states need to be calculated with the samapproximatiod'~2° (GGA). The Perdew-Wang GGA
electron Coulomb potential but with opposite sign to main-schem& has been used here. The GGA potentials in mo-
tain the samé&/,, in both calculations. Therefore the positron mentum spacéneeded in pseudopotential calculatipase
ion-core potential is constructed in the point-core approximaevaluated by the method prescribed by White and Eird.
tion. The positron chemical potential is thus expressed as Barbiellini et al?"?® have shown that the inclusion of a
. =Eq—V,, whereE, is the ground state energy including gradient correction in the positron correlation term repro-
positron correlation energy. duces the experimental lifetimes of metals, semiconductors,
Determination of the electron and positron chemical po-and insulators. In addition to that, the positron affinities in
tentials needs the calculation of the average Coulomb potersome metals calculated in this scheme agree quite well with

()

RwhereQ is the volume of the crystal.

wheren(r) is the total electron charge density, (r) stands
&6r the positron density, angi(r) denotes the enhancement
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TABLE |I.
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Structural data for semiconductors studied: lattice
constant &), structure type, and space group.
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TABLE IIl. Positron properties in semiconductors calculated
using the LMTO-ASA method and Borski-Nieminen LDA for-
malism (Ref. 29. The meaning of the symbols is the same as in

ag (A) Structure type Space group ~ Table Il
Diamond 3.58 diamond Fd3m LDA GGA
Si 5.43 diamond Fd3m A, Eq r A, Eq r
SiC 4.35 zinc blende F43m (eV) (eV) (ps) (ew (ev) (ps)
BN 3.62 zinc blende F43m
Diamond —-3.02 —-1324 94 -280 -13.26 94
Si -717 -6.15 214 -7.01 -6.20 214
experiment. Finally, in LDA positron calculations the form sjc -551 -807 137 -533 -8.11 137
of the positron correlation potential from Ref. 29 has beengpn —457 —1138 98 —434 —-11.39 99

taken.

ll. RESULTS AND DISCUSSION calculation, which was also observed in the case of metals in

IBef. 27. A similar effect occurs for the deformation poten-

Lattice constants for all systems studied are specified i bals ( t for Si calculated with th dopotential
Table | together with other structural data. The positron af'ais (except Tor i caiculated wi € pseudopotentia
ethod even if the shift is not so large as for affinities. No

finities, deformation potentials, and lifetimes are calculate i e
P systematic trend can be observed for lifetimes.

first using the positron LDA formalisif? The enhancement Th . ¢ it lculated using th q
factor [see Eq.(4)] is taken from Ref. 30. The results ob- & comparison of results caiculated using thé pSeudopo-

tained using the pseudopotential and LMTO-ASA method ential -and LM.TO-ASA't'echnlques IS as follows.  The
are presented in Tables Il and Ill, respectively. The table MTO-ASA p05|tr(_)n affinities are systematlcally_lower than
contain results of calculations for both electron LDA and he pseudopotential ones. The same conclusion holds for

GGA. Analogously, Tables IV and V show results of calcu- positron lifetimes in accordance with calculations of Rojas
. ) 32 i i
lations obtained using the positron GGA formaliéfin this et al,™ where the LDA scheme for positrons was applied to

case the enhancement factor from Ref. 27 is employed several elemental semiconductors. With the exception of Si

From the results presented it is clear that the treatment o?zd S'.C . thef Elheformatl?n p?_ten'[r;gf[[s are rilsl;o _shf;ed (tjow_n.
the electron exchange-correlation potential in the GGA € origin of Inese systematic Snitts might be In e atomic

method does not have any significant effect on the caIcuIateﬁphere .approxmatlérand in the fact that .the. de_scrlptlon of
affinities, deformation potentials, and lifetimes when Com_mterstmal electron and positron charge distributions may not

pared with the LDA results. It is also clear that the GGA _be fully realistic even if empty sphgres have been included
to the crystal lattice of the semiconductors studiede

scheme had no effect on the calculated positron angular cotx . .
relation in Si(Ref. 3) as the positron avoids the ion-core ec. .ID' On the other hand, the pseu_dopotennal technique
<_’also incorporates several approximatidisge Sec. )l To

region where the gradient of the electron density is high. Th . . .
difference between the GGA and LDA approaches wouIaCIa”fy the adequacy of both computational techniques used,

probably be more apparent if optimization of the lattice Congl|flé|||e2?rt§:téglccua}!:t?;;g)?egilrueﬂng core electrofis., an
tants with t to the total f f ) . ’ .
stants with respect to the total energy were performed befor From Tables 1I-V it is clear that the lifetimes, affinities,

calculating the positron properties. ; ; . .
Concerning the difference between the LDA and GGAand deformation potentials for different semiconductors are
orrelated mainly with their lattice constantsee Table )l

schemes for positrons, the positron affinities are shifted ugy.; e .

; - ’ - iethoff® has shown that the bulk lifetime is proportional to
(their magmtude; are redudeq the case of Fhe GGA due to aZ”? with a, being the lattice constant. We h?ivep checked if
the GGA correction in the positron correlation energy, which®o - 90 9 ) o ,

leads to a more repulsive positron potential compared to ththe affinities and_ deformat'lon potentials in selmlconductors
LDA. To be precise, the GGA scheme results in severafa" t_)e scaled with the Iat_tlce constant. For this purpose we
tenths of eV shift ofA, values with respect to the LDA consider the results obtained using the LDA approach for

TABLE Il. Theoretical positron affinitiesA . ), deformation po- TABLE IV. Theoretical positron affinities A, ), deformation
tentials Ey), and lifetimes ¢) in semiconductors calculated using potentials E4), and lifetimes ) in semiconductors calculated us-
the pseudopotential technique. The positron correlation energy img the pseudopotential technique. The positron correlation energy
considered in the Bofaki-Nieminen LDA formalism(Ref. 29. is considered in the GGA formalism by Barbielliei al. (Ref. 27.

Both LDA and GGA approaches for electrons are used. Both LDA and GGA approaches for electrons are used.

LDA GGA LDA GGA
A+ Ed T A+ Ed T A+ Ed T A+ Ed T
(eV) ev) (ps (eV) ev)  (p9 (eV) ev) (ps (ev) ev)  (p9
Diamond -2.64 —1201 100 -2.64 -1192 99 Diamond —224 -—11.79 100 -2.20 -—11.67 100
Si -6.48 —6.48 217 —-6.45 —6.39 217  Si -598 —-651 215 -591 —6.41 216
Sic -458 —876 145 —4.42 —873 145 SiC -410 -8.60 143 -392 -—855 144
BN -391 -10.62 102 -4.10 -10.63 102 BN -337 -10.60 105 -3.15 -10.57 105
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TABLE V. Positron properties in semiconductors calculated us- ' ' : :
ing the LMTO-ASA method and Barbielliret al. GGA formalism. 6r g .

(Ref. 27. See Table IV for explanation of symbols. 3
g 5} 1
LDA GGA £
A, Eq T A, = T g
S o0l J
(eV) ev) (ps (eV) €ev)  (py g o diamond
e
Diamond —242 -13.09 98 -217 -1310 99 E | e
Si -6.74 —594 211 -657 -597 211 B e el
sic ~-505 -7.97 138 -48 -7.99 138 | LMTO-ASA °
BN -394 -11.30 104 —3.70 —11.30 105 M — or oh - ol
a0-3/2 ( A—S/Z)
both electrons and positron@ables Il and 1l). No such FIG. 1. The dependence of the positron deformation potential on

scaling is possible for the affinity data. Concerning thethe inverse of the square root of the cell volume in semiconductors
pseudopotential results the deformation potential can betudied. Filled symbols mark pseudopotential results. The same
scaled aE4=—C/ad?, whereC = —81 eVA3? for dia-  open symbols denote the respective LMTO-ASA results. See the
mond, Si, and SiQsee Fig. 1, solid line However, it is  text for an explanation of straight lines.
surprising to find that boron nitride does not fit into this line.
We have no physical reason for this behavior at present, bytf. Ref. 30. The interpretation of the experiment is further
it is quite common that semiconductors consisting of nitro-complicated by the presence of hydrogen and oxygen at the
gen(among other elementdehave differently® Fitting the  diamond surfacésee Ref. 2 for detai)s
LMTO-ASA results in the same walgee Fig. 1, dotted line The calculated deformation potential in the LDA scheme
givesC = —83 eVA®?2 but the calculated points exhibit (Table Il) is found to be slightly smaller than that given by
rather large scatter with respect to the fitted line. This furthemn earlier pseudopotential calculat®mhich predicted it to
indicates that the above scaling relation is only approximatebe —12.3 eV. However, in that calculation the crystal zero
Let us now discuss our results for particular systems irscheme was based on the vanishing of the Coulomb potential
more detail. at the Wigner-Seitz radius. The measured positron mobility,
which is related td . [see Eq(1)], in the temperature range
A. Diamond 300 K to 400 K shows that the positron scatters from the
. ” . S acoustic phonon¥. In order to reproduce the experimental
Li et al.™ have measured the positron lifetime in diamondegylts, together with the deformation potentials calculated in
to be 97.5* 1.5 ps. From Tables II-V it is found that the the | DA and GGA schemes, the positron effective masses
lifetime calculated by treating the,. andVc, in the LDA e 1.9n, and 2.0n,, respectively. These effective masses
and GGA schemes, regardless of computational techniqugy not seem to be reasonable. However, taking the above
used, is about the same and in good agreement with th@asses and deformation potential, it is possible to explain

experimental value. The contribution from the core is negli-the experimental dat&in the framework of the shallow trap-
gibly small. This is because as these electrons are morging model.

tightly bound in diamond than in other semiconductors.

The positron affinity with the positron correlation poten- .
tial treated in the LDA schemésee Table i is found to be B. Silicon
close to the previous calculation ef2.5 eV (Ref. 35. The The positron lifetime in Si calculated using the pseudopo-
positron affinity & 0 K is estimated to be-0.8 eV from the tential method is in nearly perfect agreement with the experi-
measured electron and positron work functions of Brandesnental value of 216 p&Ref. 27. With the positron correla-
and Mills? Since the present calculation is referred to the toption energy in the GGA schem@able IV) the lifetime is
of the valence band, it is required to take account of thecalculated to be slightly smaller than in the LDA formalism
electron Fermi energy due to the boron le(@B5 eV above (Table 1l). Present LMTO-ASA calculationscf. Ref. 27
the top of the valence bapéh the experiment mentioned to give values smaller than those originating from the pseudo-
compare it meaningfully with theory. The experimental potential method, but the agreement with the experiment is
value of A, referred to the top of the valence band is thenstill good.
—1.15 eV, which is smalle(in magnitude than our result. The positron affinity in Si as given by the LMTO-ASA
Although the positron correlation energy based on the GGAmethod within the LDA formalism is-7.17 eV (Table III;
scheme brings the theory closer to experimé®e Table see also Ref. 35In the present pseudopotential calculation
IV), yet the difference is still about 1 eV, which is not neg- the positron affinity obtained with the LDA positron scheme
ligible. When considering LMTO-ASA result3able V), the  (Table 1) is found to be shifted up with respect to the
difference is even larger. The reason for such a discrepandyMTO-ASA method. The experimental electron work func-
is probably that the electron energy levels have not beetions in the[100] and[111] directions in Si were fourld to
evaluated in the presence of the boron impurity. The exadbe 4.91 eV and 4.74 eV, respectively. Taking the average
method would need a Car-Parrinello calculation for the deelectron work function as 4.82 eV and the positron work
termination of the electron energy levels where the latticsfunction —1 eV (Ref. 12, the positron affinity is estimated
relaxation in the presence of the boron impurity is considereés — 3.82 eV. The electron work function can also be esti-



15852 B. K. PANDA, G. BRAUER, W. SKORUPA, AND J. KURIPLACH PRB 61

mated from the electron affinity and band gap, which referfRef. 42. From our results it appears that other scattering
to the top of the valence band. This leads to an electron workhenomena such as optical phonon scattering and ionized
function of 5.14 eV using the electron affinity 4 eV and bandimpurity scattering together with shallow trappifigire re-

gap 1.14 eV. In this way we obtain the positron affinity assponsible for reducing the deformation potential in SiC.
—4.14 eV. It is quite clear that neither experimental affinity

is in agreement with the theory. This might be improved by D. Boron nitride

L o . L leula. ) - N
taking into account the electronic polarization in calcula We have calculated the positron lifetime, affinity, and de-

tions, as Pennettahas argued. On the other hand, the ex- ormation potential in boron nitride. These positron proper-
perimental work functions can also be influenced by a defecft ion p ' P Prope
site, as mentioned above. ties for BN are close to those found for diamond. This is

The positron deformation potential in Si does not differ probably due to the similar lattice constants and atomic con-
too mu[():h when calculated using the LMTO-ASA and stituents in both semiconducto(the atomic numbers of B
pseudopotential techniques. The accurate experimental da"flgq N differ just by 1 from that of diamodwhich results in .
by Makiner® have shown that the positron deformation po_a S|_m|Iar eIecFron dlstr|but!on as the background for determi-
tential is —6.2 = 0.3 eV provided the positron effective nation of positron pr%%?jﬁ'es'
mass is chosen to be m5. An earlier calculatiof® has Recently, proposa have appeared to use rare gas

determined the positron effective mass as mA5Thus the solids, diamond, and SiC as field assisted moderators. Vari-

positron deformation potential calculated here is in goooo us other ;emmonduqtors have alio bgeq e.xammﬁd W":h re-
agreement with experiment. spect to this purpose in Ref. 46. The similarity of the calcu-

lated parameters of BN and diamond suggests that it is worth
trying to study BN as a field assisted moderator as well.

C. Silicon carbide

Recently, the positron affinity has been meastirad3C, IV. CONCLUSIONS

4H, and €1 polytypes of SiC and compared with theoretical  positron lifetimes, affinities, and deformation potentials
results based on the LMTO-ASA method. The experimentahave been calculated in the LDA and GGA formalisms for
results in these three different polytypes are quite similardiamond, Si, SiC, and BN and compared with available ex-
Therefore, here the positron lifetime, affinity, and deforma-perimental data. Results are often found to be slightly differ-
tion potential have been calculated i€35iC only and com-  ent from those given by the conventional LMTO-ASA
pared with experiment. method. Positron lifetimes usually agree quite well with ex-
It should be mentioned that in Ref. 11 a different perimental data, which is not the case for positron affinities.
exchange-correlation potenflalwas employed in the elec- Ppositron deformation potentials can usually be compared
tronic structure calculations. This fact turns out to be thewith experiment only indirectly using data about positron
origin of slightly distinct results for the positron affinity in diffusion. Unfortunately, there are not yet enough experi-
the present work, namely, the present LMTO-ASA values ofments to compare and judge the accuracy of this work in
A. are shifted upward with respect to those presented in Refietail. This is principally the case for boron nitride.
11 by about 0.55 e\(see Tables Ill and V and Table Il in  Regarding positron affinity calculations, we observe that
Ref. 11. In any case, the LMTO-ASA values are still in the results depend only slightly on the treatment of electrons
strong disagreement with the experimental value-&#.83  (LDA or GGA), but the GGA approach for positrons results
= 0.45 eV. Surprisingly, the present pseudopotential calcuin A, values that are apparently closer to experimental ones
lation of the positron affinity, when the GGA positron corre- (if available than those originating from the LDA approach.
lation energy is considered, agrees quite well with experiOn the other hand, such an improvement is not sufficient,
ment. except for SiC and the pseudopotential method. This, in our
The positron lifetime in €-SiC calculated here agrees opinion, indicates that even the GGA for positrons does not
reasonably with the experimental value of 140 ps given forsatisfactorily describe electron-positron correlations in semi-
6H-SIiC in Ref. 10(we do not expect that theGSiC value  conductors, as discussed in more detail in Ref. 11. We do not
will differ significantly from the @H-SiC oné?%. More spe- have any explanation for the relative success of the GGA in
cifically, the pseudopotential calculations slightly overesti-SiC, and further studies using precise electronic structure
mate the experimental values, whereas the LMTO-ASAmethods are needed to clarify this point. In this context, it is
method gives slightly smaller values. worth mentioning that even in metals, where the differences
The experimental positron diffusion consté&nt in SiCis  in A, values between theory and experiment are evidently
found to vary in the range 0.3-0.8 ési! at room smaller than in semiconductors, the situation is somewhat
temperaturé” The value ofc, [see Eq.(1)] in SiC is esti- ambiguou$’?® as in 31 metals the GGA scheme for posi-
mated as 4.7% 10'? dynes cm. Taking the positron effec- trons improves the agreement of theory and experiment, but
tive mass to be 11,, the theoretical value dD, is found not in otherd metals.
to vary in the range 3.6-3.8 &s ! (taking into account From the experimental point of view the determination of
values in Tables Il and I\ which is much higher than the the positron affinity in semiconductors is a quite difficult task
value given by experiment. LMTO-ASA calculations lead to comprising measurement of electron and positron work func-
even slightly higher values. This indicates that the acoustitions. Various surface effeétan influence the resulting
phonon scattering is not important in SiC at room temperapositron affinity, which is a critical issue for comparison
ture. It has been found in GaAs that the positron scatters onlwith theory that determines the positron affinity as a bulk
with optical phonons in the temperature range 50-508d€  property not related to the surface. This point has to be dis-
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cussed for every particular case as it depends on the systesstablished to provide experimental affinity data in semicon-
studied and also on the methods used to measure both wodkuctors.
functions.
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