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Positron energy levels in semiconductors
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Positron affinities, deformation potentials, and lifetimes are calculated in diamond, Si, SiC, and BN bulk
cubic semiconductors using the first principles pseudopotential and linear-muffin-tin-orbital~LMTO! methods.
Both the electron and positron energies are calculated within the local density approximation and generalized
gradient approximation~GGA!. It is observed that the LMTO calculated values of quantities of interest are
systematically lower than those calculated with the pseudopotential method. Results further show that the GGA
correction for the electron energy levels is not very important in positron calculations. The calculated positron
affinity in SiC is found to be in reasonable agreement with experiment. Positron properties for other materials
are also compared with available experimental data.
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I. INTRODUCTION

Positron energy levels in solids are quite difficult to e
amine experimentally. In semiconductors the interpretat
of experiments is further complicated by surface effec
From the theoretical point of view ordinary techniques
examine the electronic structure of~periodic! solids cannot
handle such effects. Fortunately, the sum of electron
positron chemical potentials is independent of the surf
properties, and standard computational electronic struc
methods can be used to calculate it. This sum, usually ca
the positron affinity, can also be obtained experimentally
work function measurements.

The electron work function in a solid is defined as t
minimum energy needed to take an electron from the Fe
level deep within the bulk region to the vacuum.1 In order to
separate the bulk and surface contributions, the elec
work function is usually expressed asf252m21D where
m2 is the bulk chemical potential andD is the surface dipole
potential arising from the surface structure and surface ch
istry. The positron work function is defined as the minimu
energy gained to bring a thermalized positron from
vacuum into the lowest bulk energy level, which is identifi
with the positron chemical potentialm1 . In terms of the
separation into bulk and surface contributions, the posit
work function is expressed asf152m12D. Due to the
large surface dipole potential, the positron is seen to be e
ted in most solids. In semiconductors there is band bend
near the surface due to surface charge density.2 As a result of
this both the electron and positron work functions are mo
fied by the corresponding electric field arising from the s
face band bending, i.e.,f752m76D6Es, whereEs is the
energy required to produce the electric field.

The positron affinity in semiconductors can be viewed
two different ways. First, it can be defined as the ene
gained by taking a thermalized positron from the vacuum
the lowest bulk energy level close to the surface.2 Due to the
surface band bending the positron affinity~designated in this
case usually asx1) is different from the positron work func
PRB 610163-1829/2000/61~23!/15848~6!/$15.00
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tion in semiconductors, whereas in metals the positron af
ity is the same as the positron work function. The electr
affinity (x2) does not change due to surface band bendin2

The other definition of the positron affinity~labeled often
as A1) by Puskaet al.3 is related to the positron absolut
energy levels in different materials. That is, the positron
finity is introduced throughA15m21m1 and is thus a pure
bulk property of the material. This definition can also
expressed asA152(f21f1). SinceD andEs have con-
tributions to the electron and positron work functions, eq
in magnitude and opposite in sign, they cancel out in
sum, leavingm2 and m1 only. This second notion of the
positron affinity (A1) is used in the present paper. Such
positron affinity is examined with a good precision in th
positron emission spectroscopy method.4,5

Positrons implanted into a solid start to diffuse after th
thermalization owing to positron-phonon interactions. T
positron diffusion in a semiconductor at low temperatures
dominated by a free positron interacting with longitudin
acoustic phonons. In the deformation potential theory
positron diffusion constantD1 due to the acoustic phono
scattering is given by6

D15S 8p

9 D 1/2 \4cL

~m1* !5/2~kBT!1/2Ed
2

, ~1!

where Ed is the positron deformation potential,m1* is the
positron effective mass,T is the absolute temperature, andcL
is the elastic constant associated with the longitudinal wa
averaged over the directions of propagation.

The conventional method for calculating the positron
finity is based on density functional theory where the el
tron and positron energy levels are calculated with respec
the common reference level called the crystal zero of
infinite lattice.7 The method of choosing the crystal zero
completely dependent on the electronic structure sche
taken for calculating the energy band structure of the so
For example, in the linear-muffin-tin-orbital method with
the atomic sphere approximation3,8 ~LMTO-ASA! the Cou-
15 848 ©2000 The American Physical Society
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lomb potential on the surface of the Wigner-Seitz sphere
taken as the crystal zero, and in the augmented plane w
method the average of the Coulomb potential between
muffin-tin sphere and the Wigner-Seitz cell is taken as
crystal zero.9 In bulk positron affinity calculations explici
determination of the crystal zero level is not needed, as
particular values for electrons and positrons have the s
magnitude and opposite sign in the electron and posi
chemical potential calculations.

In the present work we have used the first princip
pseudopotential method for calculating positron affiniti
The advantage of this method is that it can be used to ca
late affinities and deformation potentials in semiconduct
with defects where the lattice relaxations at the defect
play an important role in changing the electron and posit
energy levels.1 The LMTO-ASA technique has also bee
employed for comparison.

As for the materials studied, we have chosen the follo
ing cubic semiconductors: diamond, silicon, silicon carb
~SiC!, and boron nitride~BN!. The purpose of the presen
paper is to compare theoretical results obtained with av
able experimental findings. Recently, positron affinities ha
been studied experimentally in diamond2 and both experi-
mental and theoretical studies have been undertaken for
eral structural modifications of SiC.10,11 Regarding Si, it is
expected12 that it has a negative positron work function lik
diamond and SiC. Boron nitride has not yet been inve
gated from the point of view of positron work function an
affinity and we give here a prediction of its properties.

The paper is organized as follows. In Sec. II we expl
briefly the theoretical background for electronic structu
calculations and determination of positron levels in the m
terials studied. Section III deals with results and their disc
sion. The paper is concluded in Sec. IV.

II. METHODS FOR ELECTRONIC STRUCTURE
AND POSITRON STATE CALCULATIONS

The details of positron affinity and deformation potent
calculations using the first principles pseudopotential te
nique have been described in our earlier work.13 Here only
the essential features of the method will be described. N
conserving pseudopotentials of Bachelet-Hamann-Schl¨ter
type14 are used to calculate electronic structure in semic
ductors. The electron chemical potential in this method
calculated asm25Ev1a1V0, whereEv is the top of the
valence band,a is the pseudocore correction, andV0 is the
average Coulomb potential in the solid. The quantitya cor-
rects the pseudo nature of the electron ion-core poten
After this correction the ion-core potential is a point-co
potential which does not include any contribution from t
core orbitals.15 In order to calculate the positron affinity in
solid, the positron states need to be calculated with the s
electron Coulomb potential but with opposite sign to ma
tain the sameV0 in both calculations. Therefore the positro
ion-core potential is constructed in the point-core approxim
tion. The positron chemical potential is thus expressed
m15E02V0, whereE0 is the ground state energy includin
positron correlation energy.

Determination of the electron and positron chemical p
tentials needs the calculation of the average Coulomb po
is
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tial (V0) in the bulk solid. However, the average potential
an infinite solid without a surface is not uniquely defined16

Since the contribution ofV0 is equal and opposite inm2 and
m1 , it is canceled in the final expression forA1 ,

A15Ev1E01a. ~2!

The positron deformation potential (Ed) is obtained from
the volume derivative of the positron affinity using th
expression1

Ed5V
]A1

]V
, ~3!

whereV is the volume of the crystal.
The bulk positron lifetimet is another valuable quantity

to check the correctness of the density functional calcu
tions. It is the inverse of the annihilation rate1

l5t215pr 0
2cE n~r !n1~r !g~r ! dr , ~4!

wheren(r ) is the total electron charge density,n1(r ) stands
for the positron density, andg(r ) denotes the enhanceme
factor. Furthermore,r 0 is the classical electron radius andc
is the speed of light.

Concerning core electrons, which essentially do not en
the pseudopontential calculations, Louieet al.17 have shown
that their inclusion into the exchange-correlation poten
indirectly by the nonlinear core correction~NLCC! method
reproduces structural properties of the solids which can
compared with those obtained from all-electron methods.
use the NLCC technique in our pseudopotential calculatio
The band structure calculation has been carried out in
momentum space method with a plane wave basis set.15 The
charge density is evaluated by performing Brillouin zo
summation in the Chadi-Cohen two-point scheme.18

For the sake of comparison, we have also employed
LMTO-ASA method already mentioned above and co
puted all positron quantities of interest. Details of our calc
lations are presented in Refs. 10 and 11. We just note h
that we have incorporated appropriate empty spheres
crystal structures to better describe the interstitial charge
tribution. Into the basis we have includeds, p, andd orbitals,
treatingd orbitals as downfolded.8

For the electron exchange-correlation potential we h
utilized two approaches. The first is the local density a
proximation~LDA !. In this case, we take the scheme of Ce
erley and Alder19 as parametrized by Perdew and Zunger20

Furthermore, the ground state properties of solids seem t
reproduced well by incorporating inhomogeneity effects
the energy functional within the generalized gradie
approximation21–25 ~GGA!. The Perdew-Wang GGA
scheme22 has been used here. The GGA potentials in m
mentum space~needed in pseudopotential calculations! are
evaluated by the method prescribed by White and Bird.26

Barbiellini et al.27,28 have shown that the inclusion of
gradient correction in the positron correlation term rep
duces the experimental lifetimes of metals, semiconduct
and insulators. In addition to that, the positron affinities
some metals calculated in this scheme agree quite well w
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experiment. Finally, in LDA positron calculations the for
of the positron correlation potential from Ref. 29 has be
taken.

III. RESULTS AND DISCUSSION

Lattice constants for all systems studied are specified
Table I together with other structural data. The positron
finities, deformation potentials, and lifetimes are calcula
first using the positron LDA formalism.29 The enhancemen
factor @see Eq.~4!# is taken from Ref. 30. The results ob
tained using the pseudopotential and LMTO-ASA metho
are presented in Tables II and III, respectively. The tab
contain results of calculations for both electron LDA a
GGA. Analogously, Tables IV and V show results of calc
lations obtained using the positron GGA formalism.27 In this
case the enhancement factor from Ref. 27 is employed.

From the results presented it is clear that the treatmen
the electron exchange-correlation potential in the GG
method does not have any significant effect on the calcula
affinities, deformation potentials, and lifetimes when co
pared with the LDA results. It is also clear that the GG
scheme had no effect on the calculated positron angular
relation in Si ~Ref. 31! as the positron avoids the ion-co
region where the gradient of the electron density is high. T
difference between the GGA and LDA approaches wo
probably be more apparent if optimization of the lattice co
stants with respect to the total energy were performed be
calculating the positron properties.

Concerning the difference between the LDA and GG
schemes for positrons, the positron affinities are shifted
~their magnitudes are reduced! in the case of the GGA due t
the GGA correction in the positron correlation energy, wh
leads to a more repulsive positron potential compared to
LDA. To be precise, the GGA scheme results in seve
tenths of eV shift ofA1 values with respect to the LDA

TABLE II. Theoretical positron affinities (A1), deformation po-
tentials (Ed), and lifetimes (t) in semiconductors calculated usin
the pseudopotential technique. The positron correlation energ
considered in the Boron´ski-Nieminen LDA formalism~Ref. 29!.
Both LDA and GGA approaches for electrons are used.

LDA GGA
A1 Ed t A1 Ed t
~eV! ~eV! ~ps! ~eV! ~eV! ~ps!

Diamond 22.64 212.01 100 22.64 211.92 99
Si 26.48 26.48 217 26.45 26.39 217
SiC 24.58 28.76 145 24.42 28.73 145
BN 23.91 210.62 102 24.10 210.63 102

TABLE I. Structural data for semiconductors studied: latti
constant (a0), structure type, and space group.

a0 ~Å! Structure type Space group

Diamond 3.58 diamond Fd3m
Si 5.43 diamond Fd3m
SiC 4.35 zinc blende F43m
BN 3.62 zinc blende F43m
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calculation, which was also observed in the case of metal
Ref. 27. A similar effect occurs for the deformation pote
tials ~except for Si calculated with the pseudopotent
method! even if the shift is not so large as for affinities. N
systematic trend can be observed for lifetimes.

The comparison of results calculated using the pseudo
tential and LMTO-ASA techniques is as follows. Th
LMTO-ASA positron affinities are systematically lower tha
the pseudopotential ones. The same conclusion holds
positron lifetimes in accordance with calculations of Ro
et al.,32 where the LDA scheme for positrons was applied
several elemental semiconductors. With the exception o
and SiC the deformation potentials are also shifted do
The origin of these systematic shifts might be in the atom
sphere approximation8 and in the fact that the description o
interstitial electron and positron charge distributions may
be fully realistic even if empty spheres have been includ
into the crystal lattice of the semiconductors studied~see
Sec. II!. On the other hand, the pseudopotential techniq
also incorporates several approximations~see Sec. II!. To
clarify the adequacy of both computational techniques us
a full potential calculation including core electrons~i.e., an
all-electron calculation! is required.

From Tables II–V it is clear that the lifetimes, affinitie
and deformation potentials for different semiconductors
correlated mainly with their lattice constants~see Table I!.
Siethoff33 has shown that the bulk lifetime is proportional
a0

3/2 with a0 being the lattice constant. We have checked
the affinities and deformation potentials in semiconduct
can be scaled with the lattice constant. For this purpose
consider the results obtained using the LDA approach

is

TABLE III. Positron properties in semiconductors calculat
using the LMTO-ASA method and Boron´ski-Nieminen LDA for-
malism ~Ref. 29!. The meaning of the symbols is the same as
Table II.

LDA GGA
A1 Ed t A1 Ed t
~eV! ~eV! ~ps! ~eV! ~eV! ~ps!

Diamond 23.02 213.24 94 22.80 213.26 94
Si 27.17 26.15 214 27.01 26.20 214
SiC 25.51 28.07 137 25.33 28.11 137
BN 24.57 211.38 98 24.34 211.39 99

TABLE IV. Theoretical positron affinities (A1), deformation
potentials (Ed), and lifetimes (t) in semiconductors calculated us
ing the pseudopotential technique. The positron correlation ene
is considered in the GGA formalism by Barbielliniet al. ~Ref. 27!.
Both LDA and GGA approaches for electrons are used.

LDA GGA
A1 Ed t A1 Ed t
~eV! ~eV! ~ps! ~eV! ~eV! ~ps!

Diamond 22.24 211.79 100 22.20 211.67 100
Si 25.98 26.51 215 25.91 26.41 216
SiC 24.10 28.60 143 23.92 28.55 144
BN 23.37 210.60 105 23.15 210.57 105



he
b

e
b

ro

it
he
at

i

nd
e

iq
t
li
o

n-

de
to
th

o
ta
en

G

g-

n
ee
a

de
ic
re

er
the

e
y

ro
ntial
lity,
e
the
al
d in
ses
es
ove
lain
-

o-
eri-

m

do-
t is

on
e
e
c-

age
rk

ti-

us

l on
tors
ame
the

PRB 61 15 851POSITRON ENERGY LEVELS IN SEMICONDUCTORS
both electrons and positrons~Tables II and III!. No such
scaling is possible for the affinity data. Concerning t
pseudopotential results the deformation potential can
scaled asEd52C/a0

3/2, whereC 5 281 eV Å 3/2 for dia-
mond, Si, and SiC~see Fig. 1, solid line!. However, it is
surprising to find that boron nitride does not fit into this lin
We have no physical reason for this behavior at present,
it is quite common that semiconductors consisting of nit
gen~among other elements! behave differently.25 Fitting the
LMTO-ASA results in the same way~see Fig. 1, dotted line!
gives C 5 283 eV Å 3/2, but the calculated points exhib
rather large scatter with respect to the fitted line. This furt
indicates that the above scaling relation is only approxim

Let us now discuss our results for particular systems
more detail.

A. Diamond

Li et al.34 have measured the positron lifetime in diamo
to be 97.56 1.5 ps. From Tables II–V it is found that th
lifetime calculated by treating theVxc andVcorr in the LDA
and GGA schemes, regardless of computational techn
used, is about the same and in good agreement with
experimental value. The contribution from the core is neg
gibly small. This is because as these electrons are m
tightly bound in diamond than in other semiconductors.

The positron affinity with the positron correlation pote
tial treated in the LDA scheme~see Table II! is found to be
close to the previous calculation of22.5 eV ~Ref. 35!. The
positron affinity at 0 K is estimated to be20.8 eV from the
measured electron and positron work functions of Bran
and Mills.2 Since the present calculation is referred to the
of the valence band, it is required to take account of
electron Fermi energy due to the boron level~0.35 eV above
the top of the valence band! in the experiment mentioned t
compare it meaningfully with theory. The experimen
value of A1 referred to the top of the valence band is th
21.15 eV, which is smaller~in magnitude! than our result.
Although the positron correlation energy based on the G
scheme brings the theory closer to experiment~see Table
IV !, yet the difference is still about 1 eV, which is not ne
ligible. When considering LMTO-ASA results~Table V!, the
difference is even larger. The reason for such a discrepa
is probably that the electron energy levels have not b
evaluated in the presence of the boron impurity. The ex
method would need a Car-Parrinello calculation for the
termination of the electron energy levels where the latt
relaxation in the presence of the boron impurity is conside

TABLE V. Positron properties in semiconductors calculated
ing the LMTO-ASA method and Barbielliniet al.GGA formalism.
~Ref. 27!. See Table IV for explanation of symbols.

LDA GGA
A1 Ed t A1 Ed t
~eV! ~eV! ~ps! ~eV! ~eV! ~ps!

Diamond 22.42 213.09 98 22.17 213.10 99
Si 26.74 25.94 211 26.57 25.97 211
SiC 25.05 27.97 138 24.85 27.99 138
BN 23.94 211.30 104 23.70 211.30 105
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~cf. Ref. 30!. The interpretation of the experiment is furth
complicated by the presence of hydrogen and oxygen at
diamond surface~see Ref. 2 for details!.

The calculated deformation potential in the LDA schem
~Table II! is found to be slightly smaller than that given b
an earlier pseudopotential calculation36 which predicted it to
be 212.3 eV. However, in that calculation the crystal ze
scheme was based on the vanishing of the Coulomb pote
at the Wigner-Seitz radius. The measured positron mobi
which is related toD1 @see Eq.~1!#, in the temperature rang
300 K to 400 K shows that the positron scatters from
acoustic phonons.37 In order to reproduce the experiment
results, together with the deformation potentials calculate
the LDA and GGA schemes, the positron effective mas
are 1.9me and 2.0me , respectively. These effective mass
do not seem to be reasonable. However, taking the ab
masses and deformation potential, it is possible to exp
the experimental data36 in the framework of the shallow trap
ping model.

B. Silicon

The positron lifetime in Si calculated using the pseudop
tential method is in nearly perfect agreement with the exp
mental value of 216 ps~Ref. 27!. With the positron correla-
tion energy in the GGA scheme~Table IV! the lifetime is
calculated to be slightly smaller than in the LDA formalis
~Table II!. Present LMTO-ASA calculations~cf. Ref. 27!
give values smaller than those originating from the pseu
potential method, but the agreement with the experimen
still good.

The positron affinity in Si as given by the LMTO-ASA
method within the LDA formalism is27.17 eV ~Table III;
see also Ref. 35!. In the present pseudopotential calculati
the positron affinity obtained with the LDA positron schem
~Table II! is found to be shifted up with respect to th
LMTO-ASA method. The experimental electron work fun
tions in the@100# and @111# directions in Si were found12 to
be 4.91 eV and 4.74 eV, respectively. Taking the aver
electron work function as 4.82 eV and the positron wo
function 21 eV ~Ref. 12!, the positron affinity is estimated
as 23.82 eV. The electron work function can also be es

-

FIG. 1. The dependence of the positron deformation potentia
the inverse of the square root of the cell volume in semiconduc
studied. Filled symbols mark pseudopotential results. The s
open symbols denote the respective LMTO-ASA results. See
text for an explanation of straight lines.
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mated from the electron affinity and band gap, which ref
to the top of the valence band. This leads to an electron w
function of 5.14 eV using the electron affinity 4 eV and ba
gap 1.14 eV. In this way we obtain the positron affinity
24.14 eV. It is quite clear that neither experimental affin
is in agreement with the theory. This might be improved
taking into account the electronic polarization in calcu
tions, as Pennetta12 has argued. On the other hand, the e
perimental work functions can also be influenced by a de
site, as mentioned above.

The positron deformation potential in Si does not diff
too much when calculated using the LMTO-ASA an
pseudopotential techniques. The accurate experimental
by Mäkinen38 have shown that the positron deformation p
tential is 26.2 6 0.3 eV provided the positron effectiv
mass is chosen to be 1.5me . An earlier calculation39 has
determined the positron effective mass as 1.45me . Thus the
positron deformation potential calculated here is in go
agreement with experiment.

C. Silicon carbide

Recently, the positron affinity has been measured11 in 3C,
4H, and 6H polytypes of SiC and compared with theoretic
results based on the LMTO-ASA method. The experimen
results in these three different polytypes are quite simi
Therefore, here the positron lifetime, affinity, and deform
tion potential have been calculated in 3C-SiC only and com-
pared with experiment.

It should be mentioned that in Ref. 11 a differe
exchange-correlation potential40 was employed in the elec
tronic structure calculations. This fact turns out to be
origin of slightly distinct results for the positron affinity i
the present work, namely, the present LMTO-ASA values
A1 are shifted upward with respect to those presented in R
11 by about 0.55 eV~see Tables III and V and Table II in
Ref. 11!. In any case, the LMTO-ASA values are still i
strong disagreement with the experimental value of23.83
6 0.45 eV. Surprisingly, the present pseudopotential ca
lation of the positron affinity, when the GGA positron corr
lation energy is considered, agrees quite well with exp
ment.

The positron lifetime in 3C-SiC calculated here agree
reasonably with the experimental value of 140 ps given
6H-SiC in Ref. 10~we do not expect that the 3C-SiC value
will differ significantly from the 6H-SiC one10!. More spe-
cifically, the pseudopotential calculations slightly overes
mate the experimental values, whereas the LMTO-A
method gives slightly smaller values.

The experimental positron diffusion constantD1 in SiC is
found to vary in the range 0.3–0.8 cm2 s21 at room
temperature.41 The value ofcL @see Eq.~1!# in SiC is esti-
mated as 4.793 1012 dynes cm2. Taking the positron effec-
tive mass to be 1.5me , the theoretical value ofD1 is found
to vary in the range 3.6–3.8 cm2 s21 ~taking into account
values in Tables II and IV!, which is much higher than the
value given by experiment. LMTO-ASA calculations lead
even slightly higher values. This indicates that the acou
phonon scattering is not important in SiC at room tempe
ture. It has been found in GaAs that the positron scatters o
with optical phonons in the temperature range 50–500 K~see
s
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Ref. 42!. From our results it appears that other scatter
phenomena such as optical phonon scattering and ion
impurity scattering together with shallow trapping36 are re-
sponsible for reducing the deformation potential in SiC.

D. Boron nitride

We have calculated the positron lifetime, affinity, and d
formation potential in boron nitride. These positron prop
ties for BN are close to those found for diamond. This
probably due to the similar lattice constants and atomic c
stituents in both semiconductors~the atomic numbers of B
and N differ just by 1 from that of diamond!, which results in
a similar electron distribution as the background for deter
nation of positron properties.

Recently, proposals43–45 have appeared to use rare g
solids, diamond, and SiC as field assisted moderators. V
ous other semiconductors have also been examined with
spect to this purpose in Ref. 46. The similarity of the calc
lated parameters of BN and diamond suggests that it is w
trying to study BN as a field assisted moderator as well.

IV. CONCLUSIONS

Positron lifetimes, affinities, and deformation potentia
have been calculated in the LDA and GGA formalisms
diamond, Si, SiC, and BN and compared with available
perimental data. Results are often found to be slightly diff
ent from those given by the conventional LMTO-AS
method. Positron lifetimes usually agree quite well with e
perimental data, which is not the case for positron affiniti
Positron deformation potentials can usually be compa
with experiment only indirectly using data about positr
diffusion. Unfortunately, there are not yet enough expe
ments to compare and judge the accuracy of this work
detail. This is principally the case for boron nitride.

Regarding positron affinity calculations, we observe th
the results depend only slightly on the treatment of electr
~LDA or GGA!, but the GGA approach for positrons resu
in A1 values that are apparently closer to experimental o
~if available! than those originating from the LDA approac
On the other hand, such an improvement is not sufficie
except for SiC and the pseudopotential method. This, in
opinion, indicates that even the GGA for positrons does
satisfactorily describe electron-positron correlations in se
conductors, as discussed in more detail in Ref. 11. We do
have any explanation for the relative success of the GGA
SiC, and further studies using precise electronic struct
methods are needed to clarify this point. In this context, i
worth mentioning that even in metals, where the differen
in A1 values between theory and experiment are evide
smaller than in semiconductors, the situation is somew
ambiguous,27,28 as in 3d metals the GGA scheme for pos
trons improves the agreement of theory and experiment,
not in otherd metals.

From the experimental point of view the determination
the positron affinity in semiconductors is a quite difficult ta
comprising measurement of electron and positron work fu
tions. Various surface effects2 can influence the resulting
positron affinity, which is a critical issue for compariso
with theory that determines the positron affinity as a bu
property not related to the surface. This point has to be
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cussed for every particular case as it depends on the sy
studied and also on the methods used to measure both
functions.

As concerns positron affinity measurements in gene
there are not many semiconductors known having a nega
positron work function, which is a prerequisite for such me
surements. If the positron work function is positive, conve
tional positron emission spectroscopy method cannot be
ployed to determine the positron affinity. However, We
et al.47 have proposed that the positron affinity for a sam
with positive positron work function can also be measu
from the kinetic edge of the positron induced secondary e
tron emission. Unfortunately, this method is not yet fu
n
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established to provide experimental affinity data in semic
ductors.
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