PHYSICAL REVIEW B VOLUME 61, NUMBER 23 15 JUNE 2000-I

Early-stage relaxation of hot electrons by LO phonon emission
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Ultrafast spectroscopy gives insight into the relaxation and dephasing of electrons during the first femtosec-
onds after an optical excitation. A theoretical description of this early-time regime requires a proper treatment
of retardation effects for the different scattering processes. The scattering of electrons by optical phonons is
investigated within theSmatrix formalism. This perturbative scheme, equivalent to the non-equilibrium
Green'’s function technique of Kadanoff and Bay@uantum Statistical MechanigBenjamin, New York,

1962], reproduces the phonon oscillations observed in four-wave mixing experiments on GaAs. The differ-
ential transmission spectrum, however, shows a sharper phonon replica than in experiments where additional
dephasing mechanisms such as electron correlation effects may further broaden the replica.

[. INTRODUCTION broad phonon satellité$,or the buildup of screening by ex-
cited carriers!

Ultrafast spectroscopy has brought much insight into the Another approach to ultrafast dynamics describes the
scattering of charge carriers during the first femtosecondscattering processes via a hierarchy of equations for many-
after an optical excitatioh.In this early-time regime, both particle correlation functions, which is truncated to a closed
the coherence of the scattering processes and the energy et of equations by mean-field arguments. These methods
certainty play essential roles. encompass both the density-matrix approach which performs

The coherence induced by the laser is not completely losan expansion in coupling strengtfr;**and the expansion in
during the first scattering processes, and quantum interfepowers of the light field by Victoet al'® They have been
ence effects may lead to beatings in the optical response @tensively applied to relaxation by phonon emis$idfi*’
the system. In particular oscillations with the LO-phononand Coulomb correlation effects.

frequency have been observed in four-wave mixig/M) Purely quantum approaches, which avoid any of the
experiments on GaAs, which were interpreted as evidence Gf00Ve approximations necessary to have a closed set of equa-
memory effect2 tions, are usually not able to simulate nonlinear experiments

gn realistic models. Nonequilibrium Green’s-function theory,
which has been applied to both coupling to phortdasd to
f_:oulomb correlationé requires a large computational effort

Non-energy-conserving processes play a significant rol
for times shorter than typical transition energies. In particulal

a sharpening of phonon satellites has been observed in didue to the explicit dependence of Green’s functions on two-
ferential transmissio(DT) experiments, and interpreted as a _; . P P e )

i A X .~ time variables. Several variational methods have also given
signature of energy uncertainty in the early-time relaxation. ;

. 7 insight into the memory effects for simplified low-
The theory usually describes the excitation of charge Cargimensional modeld:22 Recently, however, nonequilibrium

riers by the laser within semiconductor Bloch equationsgeen's function equations have been solved numerically
(SBE’S), which give the time evolution of the density distri- \ith no further approximation for a realistic model of a
butions in both bands, and of the interband polarizatidhe semiconductor excited by a single pufée.
scattering processes, however, are taken into account by in- The present work expands tiSematrix formalism intro-
stantaneous scattering rates as in Boltzmann equations, thygced in Ref. 24 for electron interactions, to the coupling of
treating relaxation as totally incoherent and energyelectrons with phonons. This perturbative method is a purely
conserving guantum approach equivalent to the Green’s-function theory,
One of the most successful theoretical approach goings shown explicitly here. However, it allows one to design
beyond semiclassics is quantum kinetics, which describes thepproximations very similar to the variational methods, e.g.,
coupling to the light field as in SBE’s, while the scatteringto restrict the scattering processes to states with few
terms depend on the system’s past hisfofiflhese memory phonons. In contrast to the variational methods, the scheme
or so-called non-Markovian terms are deduced from nonis applied to realistic models for a bulk semiconductor and to
equilibrium perturbation theofyby expressing two-time nonlinear optical probes such as FWM or DT. An efficient
Green’s functions with one-time density matrices, a procealgorithm is presented which solves Dyson’s equation while
dure strictly valid only for noninteracting particléespite  avoiding any storage of two-time quantities.
this uncontrolled approximation, the quantum kinetics equa- In Sec. Il, the model and the main results are described.
tions have successfully reproduced many of the experiment&ection Ill presents the formalism and the one-phonon ap-
features of the coherent regime, such as phonon oscillationsproximation. Section IV illustrates the effect of energy un-
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certainty on the phonon replica for a solvable one- 6 w . .
dimensional model. The simulations of the DT experiments
on GaAs are presented in Sec. V. The phonon oscillation in 4
FWM is first studied for a solvable two-level system in Sec. 5
VI, and for bulk GaAs in Sec. VII. 7
‘20
Il. MODEL AND RESULTS E
6
A two-band model describes a bulk semiconductor with a 3
direct gapEg and with band dispersions.,=#2k?/2m; E4
+Eg and e,= —#2k?/2m, for the conduction and valence
bands, respectively. The electrons interact via the Coulomb 2
interaction U(q)=e%/€,9°>. An external electromagnetic
field E(t) excites electrons from one band to the other with a
dipole matrix element. which is assumed to be independent ) ‘ . .
of wave vector. Finally the electrons interact with an optical- 16 1.65 17
energy € [eV]

phonon mode of flat dispersion at the frequeneyvia a

Frolich couplingf® M§=ﬁﬂez(1/ew— 1/eo) /29 FIG. 1. Differential transmissiofDT) signal computed witlta)

A R R the Smatrix formalism andb) the semiconductor Bloch equations
H=He+Hpn+tHint, (SBE’s) using as input th&matrix results for the density distribu-
tion and for the interband polarization created by the pump pulse.
The Smatrix results show a sharp phonon replica at lower energy

- T _ T
Hei= ; €ak@akBak /'LE(t)Ek aacktH.C. even for zero time delay=0, while the replica is very broad with

the SBE's.
1
t T i i ; ) }
+ v > U(a) @+ q@pk Bpp — qAak s sion and reabsorption of one virtual phonon: the so-called
apkk'q Born approximation. We now summarize the main results of

(1)  this work.
(1) We show in Sec. Il that th&matrix formalism is
g hZﬁQE bib, , equivalent to nonequilibrium perturbation theory. However,
P T 4 it allows one to design variational-like approximations in-
cluding a maximal number of phonons.

. (2) An efficient algorithm is developed which does not
Hine=1, > Mq(aIkJrqack_ avk+qazk)(biq+ bg)- require the storage of two-time quantities, and thus avoids
V7= ka much of the numerical problems encountered in Green’s-

. L functions calculation&®?°This procedure allows the simula-
We focus here on opfical excitations by short laser pleses‘[‘ion of nonlinear optical prot?es in a realistic model of a

where electrons initially in the filled valence band are pro- emiconductor within a fully quantum aoproach
moted into the conduction band and emit phonons. We wart (3) The Smatrix formaxllisqm correctrp e ro.duces the
to describe the optical properties of the semiconductors in Co orrectly rep

road phonon replica in the density distribution of an elec-

. b
the first femtoseconds after the pulse when only a feV\fron relaxing by emission of phonons, as checked for both a

phonons are created, and the electrons have not totally logglvable one-dimensional model in Sec. IV and for an opti-
:ir;en phase coherence they acquired during the optical eXCIt%hIIy excited semiconductor in Sec. V. The width of the rep-
; lica is attributed to energy uncertainty which allows non-
energy-conserving transitions for times smaller than the
gphonon period.

(4) The phonon replica in the DT signal shown in Fig.

A description of this early-time regime requires a proper
treatment of retardation effects for the different scatterin
processes. We use tlematrix formalism, which performs a

perturbative expansion of creation and annihilation operatori(a) is significantly sharper than in experiments on GaAs

in different scattering channefS. This_expansion is dis- il'his result suggests that energy uncertainty alone cannot ac-

cus;ed n detail in Sec. lll. The remaining part of .the PrESENt sunt for the broad replica observed experimentally, and that
section gives a brief account of the approximation used in

. . . additional dephasing mechanisms such as electron correla-
our calculations and summarizes the main results. ion effects have to be included to reproduce the experimen-
The approximation restricts the scattering processes t b P

X . ! | findings.
those channels with at most one phonon in the final state, ang o .
treats the Coulomb interaction at the Hartree-Fock level. Thef\ur(s) The sharp replica in DT contrasts with the broad fea-

coupling to the lightE(t), however, is computed exactly in es seen in the density distribution. In analogy to Ref. 16,

; . this difference is attributed to interferences between phonon-
order to have access to the nonlinear regime. The electron

annihilation operatora,(t) have both a single-particle con- Scattering effects and optical excitation processes as dis-

o~ N 77 cussed in Sec. V.
tribution g,4(t,0)agc and a phonon contribution which in- () The quantum beats in FWM are studied in Sec. VI for

volves products of electron and phonon operators such ag two-level system where tf@matrix results compare very
gk q(0q+bT ). The retarded Green's functiam satisfies  well with the exacty(®) response except for a renormaliza-
Dyson’s equation, with a self-energy accounting for emis-tion of the beating frequency.
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10' one—phonon term] any phonon. The orthogonality is achieved via the n_orma_l
ordering of electron and phonon operators, as explained in
Appendix A.

The zeroth-order tera(%), describes the scattering of one
electron initially in bandy into bandg without changing the
number of phonons. It involves a single-electron operator
and its amplitude is the retarded electron Green’s funéfion

6&,8 k(tvo):
al(t)=({aw(t),af(0)Hag=i0,4 «(t.0ag. (2

The first ordera®) accounts for the emission or absorp-
Xy tion of one phonon. It involves both an electron and a pho-
w0 L . , ) non operator, and its amplitude is a three-point correlation
800 function with mixed electron and phonon characters:

integrated FWM [arb. units]
=)

—-—-- m,=3m, zero—phonon term

100 200
time delay 7 [fs]

FIG. 2. Integrated four-wave mixinFWM) signal as a func- (1) 1 T +
tion of time delayr for a pump pulse of 15-fs duration centered at  @ak (1) = VT > ({aak(t),ag(0)b_4(0)})agksgb—q
the exciton resonance of bulk GaAs. The oscillations due to phonon q
memory effects are particularly visible in the one-phonon contribu- T T
tion plgted in the ir?set. The );)eriod of the modL?Iation is shorter {8ak(V), i1 4(0)Pa(0) 1) Bgic+abg @
than the bare phonon peridd,=115 fs, and depends on the mass  Higher-order terms involve more complicated processes
ratiom,/m., as illustrated by changing the GaAs value of 7 to 3. such as the emission of two phonons or the creation of a
particle-hole pair. Appendix A describes the general proce-
(7) The FWM is simulated in Sec. VII for the two-band dure to construct orthogonal scattering chanral8, and
model of GaAs. TheSmatrix formalism quantitatively re- derives Eqs(2) and (3). The rest of the paper, however, is
produces the phonon oscillations observed in experinfentsrestricted to the first two terms in the expansion.
Figure 2 illustrates the dependence of the beating period on The previous equations establish the connection between
the mass ration, /m., which is particularly clear in the one- nonequilibrium Green’s functions and ti&matrix formal-
phonon contribution to the signal, as shown in the inset. ism in contradiction to the claim of Ref. 24 that no such
relation exists. In particular the usual diagrammatic tech-
nigue for Green's function may be used to evaluate the
Ill. FORMALISM Smatrix amplitudes as well. Th&matrix formalism, how-

, i ) . ever, gives a clear picture of the many-body states involved
The Smatrix formalism perturbatively computes the time ¢, 5 given approximation.

evolution of creation and annihilation operators in the
Heisenberg picture. The diagrammatic technique was devel-
oped in Ref. 24, and applied to excitonic effects at the
Hartree-Fock level. Here we implement the scheme for the We first consider the mean-field equations for the Cou-
electron-phonon model of E@l) beyond the mean-field ap- lomb interaction without any coupling to phonons, as derived
proximation to account for emission or absorption of a singlen Ref. 24. The retarded Green’s function is & 2 matrix in
phonon. We also outline the equivalence with the nonequithe band indices with nonzero off-diagonal elements, since
librium perturbation theor,and use the notation of Green’s both the electric field and the Coulomb interaction couple the
functiong® instead of the originaS-matrix language. two bands. It satisfies a Scliager equationid,g(t,t")

The section presents the general procedure for the- H(ko)(t)gk(t,t’), with the following Hamiltonian matrix:
S matrix expansion, and then works out the mean-field ap-
proximation for the Coulomb interaction between electrons, (0) €ck —nE(t) 1
and the non-self-consistent Born approximation for the cou- H (D)= — pE* (1)

B. Mean-field approximation

€ Y
pling to phonons. Section Ill D gives the equations for the vk
density matrix, and Sec. Il E a brief account of the numeri- -
cal algorithm. X% Ugl9icsq(t.) —p]- )

The Green'’s functions depend explicitly on both times
andt’ due to the external light field which drives the system

The electron annihilation operator at timds formally  out of equilibrium. The Hartree-Fock term involving so-
expanded in scattering channels k(t)zEnag‘)k(t), where  called lesser Green’s functith gjﬁk(t,t’)
the channels involve an increasing number of phonons 0#(a£k(t)aﬁk(t’)>, accounts for the dynamical energy renor-
particle-hole excitations with increasing orderThe differ-  malization and for the excitonic coupling to the interband
ent channels are orthogonéx{,ag‘)k(t),ag“)k T(t)})=0 forn polarization. The last term, depending on the initial density
#m, with the average computed in the initial state, i.e., amatrix p,z= d,,85, , cCOmpensates for the interaction among
filled valence band and an empty conduction band withouvalence electrons which is already included in the band gap.

A. General expansion
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(a) The subtle mixture of renormalized and bare Green’s
function in the above equation, that we have motivated in

= = —— physical terms, is necessary to provide consistent approxima-
tions for botha®) and the self-energy. In particular it ensures

that the Green’s function obtained by inserting the operator
i i a=2a%+all) into the definition of the retarded Green’s
+ —— function gy(t,t") = —i({au(t),a(t’)})O(t—t’) does sat-

isfy Dyson’s equation. This procedure corresponds graphi-
cally to combining two diagrams of Fig.(® into the self-
energy contribution of Fig. (3).

D. Density matrix

Finally, we need to compute the observables at tine.,
> >

0 ¢ t the renormalized lesser Green’s funct@ﬁ(t,t) or the den-
1 sity matrix. The orthogonal channels give separate contribu-
tions to the density matrix:

FIG. 3. Diagrams for the amplitude ¢d) the zero-phonon term,
i.e., the retarded Green'’s function, and(bf the one-phonon term.

~< _ /a0t 0 1)t 1
Single straight lines are the unrenormalized electron Green’s func- gaﬁk(tvt)_<a(ﬁk) (t)a&k)(t)>+<a§;k) (malt), (@®
tion in the presence of the light field and with excitonic effects at
the Hartree-Fock level, and double lines the renormalized Green’s <a,(80k)T(t)a(aOk)(t)>:(ak(taO)Pal(tyo))aﬂy 9)

function in the non-self-consistent Born approximation(@f Wig-
gly lines denote the bare LO-phonon propagator.

1 t
@' walo)=y S w2
C. Coupling to phonons q 0
Our approximation restricts the scattering processes to the ><dtldtzeiQ(tl_t2)[§k(t,t1)gk+q(t1,0)
emission or absorption of at most one phonon, i.e., retains ~
only a(® anda®® in the expansion. The consequent approxi- X PO o(12,.0094(t,t2) T (10)

mation for the renormalized retarded Green’s functmn
selects the diagrams describing the emission and reabsorp- The density distribution in each baig,, is strictly posi-
tion of one virtual phonon at a time, as depicted in Fi@)3 tive, since the contribution of channelis the norm of the
Within the self-energyoy the electron propagator is not vectora{}(t)|#(0)), with [¢(0)) denoting the initial state.
renormalized since one virtual phonon is already presentrhis positivity is in sharp contrast with the situation encoun-
Dyson’s equations in this non-self-consistent Born approxitered in quantum kinetics or density-matrix formalism,
mation read® where the distributions may become negafivé.
The total number of particles is not conserved in the one-
_ t - phonon approximation, since it is not self-consistent. In our
gk(t,t')=9k(t.t’)+f,dtldtzgk(t'tl)ﬂk(tl,tz)gk(tz,t')' calculations, however, the number of conduction electrons
‘ (5) and valence holes never differed more than by a few percent.

E. Numerical implementation

—i _
NNe— 2 Y < NalQt-t") . i . i
o(t,t") Y, Eq: MO (t—t)[ g q(t,t")e Here we show how to avoid working explicitly with two-
time Green’s functions in the numerical solution of Dyson’s
+gk>+q(t,t’)e*iQ(H')]. (6) equations, and then we describe the main aspects of the nu-

merical algorithm. The details are presented in Appendix B.
The evaluation of Eq(10) requires Green'’s functions for
larly by selecting diagrams with at most one phonon line at oth _f|nal gnd |nterrr_1ed|ate t|m,e's and L respectively.
orking with a two-time Green’s function posed storage

time as shown in Fig. ®). The electron Green’s function is . . - -
not renormalized for times smaller thapsince a real pho- problems in Ref. 19 which were resolved by drastically lim-

. ) 8 )
non is present, and no virtual phonon excitations are aIIowecg'enrg ;P%iz,?:rgzlzlz(tjiom]eng)?r:i/sdiipﬁotm,e?]?uvr\:]e”s a;‘Ctehel_ng we
At later times, however, the real phonon has been absorbe P pace.

and virtual phonon excitations are taken care of within theShOW how 1o avoid any such problem within our non-self-

o i 1) consistent Born approximation.
renormalizedyy. The corresponding formula fa'® reads Within the mean-field approximation, the lesser and

greater Green'’s functions are related to a product of retarded

@) [t~ 1 Ot Green'’s functions with one time argument fixed at the initial
aak(t)zljodtlgaﬁ k(ttl)v—l,zzq: Mq(e'™1bg time:

The amplitudes o0& in Eq. (3) are approximated simi-

e %b_)gs g0, g, (D) g (t.t)=gu(t.0)pgi(t'.0),
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Oic (6)=ge(t,0(1—p)gi(t’,0). (1D 1
08 - 1D model ]

These relations have two important implicatiofk: We L
avoid storing the two-time Green’s function, and need re- o6 lifetime 2T, 1
tarded functions with the second argument fixed at the initial 04 - initial energy 3.5Q |
time. The reduction of memory usage is important for simu-
lations of short-pulse excitations which require a large en- 02 a) T=Tph/3 ]
ergy cutoff and small time increment®) The self-energy in 0 —1 :
Eq. (6) factorizes into products of terms depending eitheron g
t or ont’. As shown explicitly in the Appendixes, this fac- 2 08 F exact 7
torization allows us to break the second-order differential 2 wl T S-matrix 1
equation into a set of first-order equations, in close analogy é ’ Boltzmann
to the procedure used in quantum kinefics. B 04t .

The numerical solution of th&matrix equations has the %‘ 02 | ]
following steps:(a) The mean-field equationg) are solved > b) WZE/VIL\
using a time increment sufficiently small to resolve the short = o = — T
laser pulsestb) the retarded Green’s functiomgs(t,0) for a 08 | i
given momentunk and final timet are computed by solving
Dyson’s equation; andc) the one-phonon contribution in 06 - 1
Eq. (10) can be simultaneously evaluated, as shown in Ap- 04 - ¢) 7=T . ]
pendix B. ph

The stability of the numerical integration of Dysons’s 02 - ]
equation allows us to work with a large time increment 0 .
Qdt=0.1 without significant loss of precision. The number o 4
of k points is reduced by using the rotational symmetry of the energy &/Q

Green’s functiorf. In practical calculations we used a dis-

o FIG. 4. Electron-density distributi a function of ene
cretization of energyi’k?/2m, rather than momentum. G ectron-gensity distribution as "9y

for a single electron coupled to LO phonons in the exactly solvable
one-dimensional model with linear band dispersion. The electron is
IV. SINGLE ELECTRON IN ONE DIMENSION prepared initially atr—=0 with an energy= 3.5, and the electron
lifetime is twice the phonon period. The phonon replica eat

Here we illustrate the importance of the energy UNCer—_, sq is initially very broad within the exact solution, in contrast

tair_lty within t_he_ Simplifie(_j problem of a single electron '®- {0 the Boltzmann result which consists ®functions building up as
laxing by emission of optical phonons. In the early-time re-(ime increases. The broad phonon replica is well reproduced by the
gime the phonon satellites in the energy distribution functions matrix formalism at early times, while discrepancies with the ex-

are very broad, and sharpen after typically one phonon pesct solution show up at=T,, when the second phonon replica
riod. Furthermore we compare the exact electron distributiombegins to develop.

function to Boltzmann kinetics and to tlf&matrix predic-
tions for a solvable one-dimensional modIThe bench- & function in Boltzmann’s result, is initially very broad for
marking results show that the broad phonon replicas are nahe exact result, and only after one phonon cyKlg does a
captured by semiclassicd!®?*but are correctly reproduced well-defined maximum appears at the enekgy- Q= 2.50.
in early times by theSmatrix formalism. The one-phonon This discrepancy is caused by non-energy-conserving transi-
approximation, however, breaks down for times larger thanjons which are not included in semiclassics, but play an
the electron lifetime when two-phonon processes becomegssential role in the exact solution for times shorter than the
important. phonon period.

The one-dimensional model describes a single electron in Now we turn to theS-matrix formalism, where the time
a conduction band with linear dispersieg=k and a single - g\ o1ytion of the distributiorg; (=, 7) is readily computed
branch extending ta-. The coupling to phonons is inde- o vrically. The decay of the peak kg is exact, while the

pendent of the momentum transfity = ». The electron IS 5t hhonon satellite has a Lorentzian shape centerdg at
initially prepared at an enerdss high in the band in order to .

mimic the nonequilibrium situation created by an optical ex-

citation. _ nT/2+i(Q+k=ko)7_ 1| 2
Within Boltzmann kinetics, the energy-distribution func- 9x (7.7)=€~ ”T< S(k—ko)+7° 20 Tk—kg) | |
tion consists of § functions at energieko—m(, m K 0 (12)

=0,1,...,with weights expt 770 (»7)™(m!). The ampli-

tude of the main peak &, decays exponentially with a Figure 4 shows how the broad first phonon satellite is
typical lifetime %1, while themth phonon satellite grows correctly reproduced by th& matrix for 7<Tpp in sharp
within a time interval ofm» 1. contrast to Boltzmann kinetics. Th&matrix result, how-

The exact distribution function computed in Ref. 28 is ever, departs from the exact distribution when the second
compared in Fig. 4 to Boltzmann kinetics for different times phonon replica starts to grow at times larger than the electron
7. The main peak at enerdyy= 3.5() is exactly described by lifetime 7> 7;*1=2Tph. This failure is clearly due to our

semiclassics. The first phonon satellite, however, which is @approximation retaining only one-phonon processes.
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' low we show that this difference is even more pronounced in
0.001 bulk GaAs !'\'\ 1 the DT Signal'
excitation at 1.67 eV " i The DT response is the change in transmission of the
- duration 120 fs ','/‘\“-\ probe pglse induced by th_e pump, and ro_ughly measures the
g 0 12120 fs i occupation of the conduction band by optically excited elec-
2 o =80fs '.‘/ ‘ trons. The transmission is computed numerically by using
N 7240 fs i th_e well-!<novyn projection of the polarization onto the trans-
& 0.0005 e =) 1 ] mitted directiong,, whereq, and q; are the propagation
g 1=—40 fs i p directions of the probe pulsg, and the pump pulsé&,,
; i 4 respectively’® The spatial dependence of the slowly varying
2 11 /\’e fields is replaced by a fixed phase differenge Ej(t)
A =E(t) andE,(t) =€e'?E(t— 7), with a Gaussian pulse shape
! E(t) =Eqe'“o'exp(— (At)?) in the rotating-wave approxima-
P T tion. The interband polarization is computed for different

155 excitation energ;gi_EVk 7 phasesg, and the DT signal is obtained by numerical pro-
jection onto the first harmonics exg).

FIG. 5. Total density distribution as a function of excitation  Figure Xa) shows the DT signal computed with the
energyeq— €,x for bulk GaAs excited by a 120-fs pulse of 150- Smatrix formalism for the same excitation conditions as in
meV excess energy. The phonon satellite at 1.63 eV is initially very~ig. 5, and various time delays The main peak at 1.66 eV
broad, and starts peaking at 80 fs after the pulse. is redshifted compared to the density distribution and a de-
crease in transmission occurs 1.68 eV due to exciton effects
as seen in experimefits and in quantum-kinetic
calculationsi® However a maximum at 1.62 eV is observed

This section studies the growth of phonon satellites for€VeN for zero time delay, and the phonon replica is much
the two-band model of Eq1) for bulk GaAs. We compute sharper than both in experiments and in the density distribu-

both the density of carriers excited by the pump pulse an(éi)on plotted in Fig. 5. Below we discuss first the difference
the full DT signal. The phonon replicas in the density distri- etween DT and density, and finally the discrepancy with

. . ._experiments.
bution are broad at early times due to energy uncertainty Here we show that the difference between DT and density

while the DT signal shows sharper structures due to interferg,as not come from a simple interference between the pump

ences between scattering with phonons and optical excitag,q probe pulse. We compute the DT response within the
tion. S _ SBE equations of Ref. 31, using as input Smatrix calcu-
Figure 5 shows the total density distribution of conduction|ations of the density distribution and of the interband polar-
electrons and valence holes as a function of interband excization due to the pump alone. This procedures differs from
tation energye., — €, for different times after the pump the one in Refs. 3 and 32, where the density distribution from
pulse. The system is excited by a 120-fs pulse centered ahe 1D model was used while the polarization effects were
150 meV above the band gap as in Ref. 3's experiment. Aheglected. The DT signal from the SBE plotted in Fi¢h)1
early times the main peak at 1.67 eV shows a broad tail oshows a much broader phonon replica than in $heatrix
the low-energy side. At 40 fs after the pulse a distinct maxi-results. Therefore the sharp replica observed with the
mum appears at 1.63 eV, where the phonon replica starts &matrix approach cannot be attributed to a simple interfer-
grow. The energy separation between the main peak and tiefce effect between pump and probe which would be cap-
satellite is (1 m,/m,)% Q=40 meV, which is larger than tured by the SBE’s. S .
the phonon frequencyiQ=36 meV due to the band  The sharp replica must have its origin in more subtle in-
dispersior? The width of the replica changes from approxi- terference effects which are absent from the SBE calcula-
mately 40 meV at=40 fs to 25 meV at= 120 fs, which is tions. In particular we attribute the sharp phonon replica to

significantly larger than the main peak width of 20 meV interferences between phonon scattering and optical excita-
: éion by the probe, in analogy to the density-matrix calcula-

replica can be attributed to the energy uncertainty as in th ons of Ref. 16,.where such |_nterference terms have pro-

one-dimensionall1D) model of Sec. IV. Indeed for times uced a sharpenlng of'the replica. .

smaller than the phonon period non-energy-conserving pro- In CO”C'“S'OU we discuss the d!screpancy between_ the

cesses cause the broad features in Fig), 4vhich are very computed DT signal and Fhe experiments. Our c_a_lculanons
show that the phonon replica in DT are very sensitive to the

similar to the present observations. Semiclassical calcula . . I
tions do not capture these memory effects in both two-ban oherence between phonon scattering and optical excitation.
dditional dephasing mechanisms such as electron correla-

and 1D models since they predict the same width for both th tion effects would reduce this coherence, and further broaden

phonon replica and the main pefk'® . ;

Our results compare very well with the density-matrix the: phonor_l replica. A full self-_con5|stent treatment of Dys-
simulation of Ref. 16, where memory effects were included®" S equation could also c_:ontpbute to a further broadening,
via electron-phonon correlation functions. The quantum ki-2S S€en in the quantum-kinetic calculations of Ref. 10.
netics calculations of Ref. 10, however, show broader repli-
cas with a well-defined maximum only for delays larger than
100 fs. The discrepancy may be attributed to a tendency of In this section, an exactly solvable two-level system gives

quantum kinetics to overestimate the self-energy effects. Beds insight into the origin of the quantum beats observed in

V. DIFFERENTIAL TRANSMISSION

VI. TWO-LEVEL SYSTEM
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FWM experiments on GaAs, as well as benchmarking re- 10°
sults for theS matrix in the weak-coupling regime. For both
linear response to the field and the FWM signal, the main
discrepancy betweeB&matrix and exact results is the renor-
malization of the beating frequency.

The two-level model describes an electron coupled to a
single oscillator, and mimics in a crude way the valence and
conduction bands of the semiconductor. An electric field
E(t) causes interlevel transitions:

integrated FWM
3

two—level model

1
N ot + + o + n=0.2Q
A, |:20 €ala;+Qb'b+ nala;(b+b"—E(t)aja, S
exactxm
—E*(t)ala,. (13 .
10 L L
0 1 2
The exact eigenstates f@(t)=0 are polaronic states, time delay T/T,

i.e., superpositions of states with different numbers of
phonons® The energy levels for a fixed electronic level are
separated by eXZaCtly the phonon energy, = 60+. n) and single-phonon mode. Th&matrix result is compared to the exact
Ein=€,tNnQ— n7/Q for levels 0 and 1, respectively. third-order res ) Ise durati
) o~ T ponsg'* for a pulse duration of 0.1, and a

The interlevel polarizatiom,(t,t) in linear response t0 \eak-field amplitudexE,=0.1Q. The amplitude of the phonon
the field was computed exactly in Ref. 25 in connection topscillations in the exact result are very well reproduced byShe
phonon broadening of impurity levels. It has oscillations atmatrix, while their period is slightly smaller than the phonon period
multiples of the phonon period, which are a signature of ther,, due to the erroneous renormalization of the excitation fre-

FIG. 6. Integrated FWM intensity as a function of time delay
within the two-level model with a weak couplingy&0.2Q0) to a

polaronic nature of the eigenstates: quency.

2 . .
~_ iy T =x() is too large by an amount#/Q). As shown below this
glO(trt)_l(t)eXF{ e~ 60) 't discrepancy is also present in the FWM result.

. The FWM response comes from the diffraction of the
7\? E 7" —imOt probe in direction B8,—q4 by the polarization created by a
lal & la € ' (14) first pulse, wherg; andq, are the propagation directions of

the first and second pulses, respectively. It is computed nu-
We now compare the exact linear response tc&heatrix ~ merically within theSmatrix formalism with the same pro-
result. The 22 self-energy matrix;; in the level indices jection technique presented in the previous section for the
has only a single nonvanishing term for j=1, since the DT signal. Here the polarization is projected onto the second
oscillator couples to the upper level only. In close analogy tdharmonics exp(@) to pick up the right diffracted direction.

Eq. (6), it reads . Figure 6 shoyvs the.FWM intensjty integra_tgd over real
timet as a function of time delay, with an additional phe-
ou(tt)=—i720(t—t")[e g (t,t") nomenological damping'=0.8/T,, to perform the time in-
tegration. It compares th&matrix result to the exact third-
+e I g= g )], (15)  order responsé x® in the weak-coupling regimez

=0.2). The Smatrix formalism reproduces the weak oscil-
In addition to this contribution, a Hartree-FoHF) term  lations at positive time delay due to quantum beats between
remains>* which is absent in the two-band model because ofstates with different number of phonons. As in linear re-
orderV~—*2in the volumeV: sponse, the slight change in oscillation frequency is attrib-
uted to the wrong excitation frequeney, — w_=1.08) in-
t stead of the bare phonon frequency.
oir ()= _27725“_'[,)fos'r[Q(t_tl)]gfl(tl'tl)dtl' From the benchmarking results on the two-level system,
(169 ~ we can conclude that tf@matrix formalism does reproduce
the quantum beats due to emission of virtual phonons, but
Within the Smatrix formalism the polarization to linear introduces an erroneous renormalization of the oscillation
order has only two oscillating contributions at frequenciesfrequency.

w.=Q(1=x)/2 with x= 1+ 4(5/Q)%

Ot H=i0 (e (1= (1+x)e -t

VIl. FOUR-WAVE MIXING

This section presents the simulation of the FWM experi-
+(x—1)e @+t/2x. (17) ments on bulk GaAs using the two-band model and the pro-
jection technique outlined in Sec. V. The integrated FWM
Comparing the exact polarization to tl&matrix result, oscillates as a function of time delay with a period smaller
we see that the lowest frequeney is correctly reproduced than the bare phonon period due to band-dispersion effects.
to second order inp, while the excitation energw, —w_ This renormalization of the period is not an artifact of per-
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100 ' ' riod here changes from,,= 115 fs to approximately 100 fs
bulk GaAs for a mass ratian,/m;=7 as in GaAs, and to 85 fs for a

g |  15fs pulse T=100fs ratio of 3. - . . _ .
______ o2 The change in period was interpreted in Ref. 2 as an in-
———- 2Re(PP™) terference between two interband transitions whose energy

ol —— PO+PYP differ by Q(1+m./m,). The first transition at momentukn

has energy.— €,,, and the second one occurs at the mo-
mentumk’, where the conduction electron decays after emit-
ting one phonone., = e.,— (). The energy differencey.

— €, — €ckT €,k Oives the above-mentioned energy which
correctly reproduces the frequency observed in the simula-
tions. This argument, however, does not apply to excitations
at the exciton level since an electron close to the band edge
cannot emit any real phonon. It is more relevant to non-
10 resonant excitations well above the band edge as in Sec. V.
This period change is not an artifact of perturbation

FIG. 7. FWM intensity as a function of real time for 15-fs pulses theory, as in the two-level m.odell. Follqwmg Ref. 29 the
delayed by 100 fs and resonant with the excitonic level. The totaP”O”eO‘_JS frequency r_enormal'zat'on' Wh'Ch_ is due to the po-
signal is separated into a zero- and one-phonon contributidfls, aron shift, can be estimated for an exciton in tfeslate to
and P®, respectively. The total intensityp@+ P12 is domi-  be Qapym,/m/16, whereap is the polaron constant. This
nated by the undamped oscillations at the excitonic frequency butery small shift of approximately 0.01 for GaAs param-
shows no modulation at the LO-phonon frequer®y The zero- eters would also decrease with decreasing mass ratio
phonon term/P(®]2 shows weak oscillations at the frequen@y ~ m,/m,, in contrary to what is seen in Fig. 2.
which are totally compensated for by the mixed tepfPPM)* The absence of oscillations in real time, points to differ-

ences with the simple quantum-beat picture drawn from the

turbation theory as in the two-level model. The FWM inten- tWO-level system where the superposition of states with en-
sity in real time shows no modulation with the LO fre- &'9¥ dlffzalr)e?ce(zl causes i%StCIHatZIOI’]S in the FWM intensity:
quency, but is dominated by excitonic effects. Both featuresP ~+ P*”|**g?|2e™"— e~ 1| The absence of oscilla-

are consistent with experimental data and with quantumtions in the three-beam experiment of Ref. 37 is another
kinetic result< indication of the difference between simple quantum beats as

Figure 7 shows the total FWM intensity as a function of ©bserved in quantum dot8,and the LO-phonon oscillation

real time for two pulses of 15-fs duration delayed by ©observed in bulk GaAs.

=100 fs, and resonant with the excitonic level. The signal

starts at timet=2r as a typical echo and shows a large VIIl. CONCLUSIONS

maximum att=27+5T,, due to excitonic effects. The sig- _ _ _

nal is dominated by the excitonic resonance which is indeed In this work we have developed tf®matrix formalism

undamped at zero temperature, since the states close to tf§ @ nonlinear optical probe of a bulk semiconductor with

band edge cannot emit any real LO phonon. coupling to LO phonons. We have shown that the formalism
While the total signal does not show any modulation withis equivalent to nonequilibrium perturbation theory, but that

the phonon period, the zero- and one-phonon channels cofi-allows one to design simple physical approximations in the

tribute oscillating termsP©(t,7) and P()(t,7), respec- Same spirit as variational methods. The one-phonon approxi-

tively. The modulation at frequenc§, which is present in Mmation has been implemented numerically with an efficient

the Zero_phonon Contributio"P(O)F, is Suppressed by the numel’i(?al algori.thm Wh|Ch aVO|dS the Storage Of two-time

mixed term P@P®* oscillating out of phase. A similar correlation functions as is typical in Green’s function theory,

cancellation occurs in the linear-response polarization due t8nd which allows us to simulate realistic experimental situ-

40 |

FWM intensity

20 -

5
real time (t—2’|:)/Tpll

vertex correctiong® ations. _ o
Figure 2 shows the integrated intensiifyr) as a function The relaxation of electrons by the emission of phonons
of time delay7: has been studied for an ultrafast optical excitation. The pho-

non replica in the density distribution is initially very broad
due to energy uncertainty, and sharpens after one phonon
B Tt p(0) o ) period. The DT signal, _however, exhibit_s much sharper
I(n)= | e "[PT(t, 1)+ PU(t, 7)|“dt. (18 structures even at zero time delay. This difference between
DT and density is explained in terms of interferences be-
tween phonon scattering effects and optical excitation.

In contrast to the real-time behavior, the oscillations at The phonon replica in DT are also much sharper than
approximately the phonon period are clearly present both iexperimentally observed. This suggests that additional
the total signal and in the one-phonon contribution. dephasing mechanisms such as electron-electron scattering

The period of the oscillations depends on the mass ratizvhich would partially destroy the interference effect, are
m, /m; between valence and conduction band, as shownecessary to explain the experimental broad replicas.
clearly in the inset of Fig. 2. While the two-level model  The phonon oscillations observed in FWM experiments
predicted oscillations at the bare phonon frequency, the pesn GaAs are correctly reproduced by our simulations. The
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period of the oscillations is consistent with the band disper- APPENDIX B: NUMERICAL ALGORITHM
sion effect proposed in Ref. 2. However, it is still unclear
why such explanation involving excitations high in the band,
should apply to an excitation at the band edge as in th
experiments.

In conclusion, theS-matrix formalism provides a fully
guantum approach to ultrafast dynamics in semiconducto
which captures most of the memory effects. Since it is a
expansion in number of phonons, it is restricted to the early-

This appendix presents the algorithm to solve Dyson’s
quations and to compute the renormalized lesser Green's
unctions. The time evolution of the bare Green’s function

0y (t,0) is first computed straightforwardly by solving the

; ean-field equation for the>22 Hamiltonian matrix in Eq.

’_Ezl). The renormalized retarded and lesser Green'’s functions
or a given momentunk and final timet are obtained by

time regime, where only a few phonons are emitted. solving a linear equation for a large vectgt’) whose first
element is proportional to the retarded Green’s function:
ACKNOWLEDGMENTS yo(t") =§k(t,t’)gk(t’ ,0). The other components describe the

) amplitude of probability for the states with one phonon and
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Ym(t ):|ft,y0(t1)hm(tl)v (B1)

APPENDIX A: SMATRIX FORMALISM
A —iQt’ . iQt' 74T ’ Trer
This appendix gives the general procedure to expand the hm(t')=[pe™"" +(1-p)e ]gkm(t 0)gi(t",0).

electron operatoa,, in scattering channels and proves Egs. (B2
(2) and(3) relating theS-matrix formalism to nonequilibrium .
Green's-function theor. ~ The vectory(0) at the initial time directly gives the den-
A perturbative expansion of the annihilation operatgg  SIty matrix at timet:
in the electron-phonon coupling;,,; generates commutators N
such ay .. .[au.Hintl - .. Hind which involve products gc(tt)= 20 ym(0)py ! (0). (B3)
-

of many annihilation or creation operators in various orders.
A well-defined expansion requires a specification of the or- . .
dering of operators, and here we use the normal ordering In order to compute the density matrix we need to evolve
with respect to the noninteracting initial state, i.e., a filledy backward in time with the initial conditiony(t)
valence band and an empty conduction band with no phonof 9«(t,0)dmo- The time evolution is given by a Schtinger
present. This choice provides an expansigp=3,a"(t)  equationid, y(t')=y(t')A(t") with a sparse Hamiltonian
in orthogonal contributionga)Tal’)=0 for n#m, since  matrix A:

the average of two normal-ordered operatofg :..A;:

and B, ...B,: vanishes unless they are Hermitian conju- 0 hy(t’) -+ hy(t)
gate to each other, up to a sign change. hI(t') 0 o 0
The main outcome of the previous formal manipulations A(t')= . . . (B4
is the equivalence between tBamatrix formalism and non- : ;
equilibrium Green'’s functions. Indeed the amplitude of the hL(t’) 0 0

first terma(()= S}, (t,to)a, is proportional to the retarded

Green's functiong,, due to the orthogonality betweer®
and higher-order terms:

The form of the matrix allows us to compute the time
evolution directly during a time intervalt whenA(t) may
be considered constant. The integration which preserves the
’“a £,0)=—i({a,t al norm of the vector is very stable, and allows us to work with
Gupi(1.0) ({2 Bk}> rather large time increment. Using the relatidfi=\A with
=—i({alQt),ah ) =—iSh(t,0. (A1)  A=34MZV, one finds

In a similar way the scattering chanr&l) involves prod- . sin(dt\)
ucts of operatorsig,_ by which are orthogonal tag and y(t'—dt)=| 1+i TA(t’)
any other higher-order channels, and whose amplitude is the
three-point correlation function as given by E8): +Cos{dt)\)—lA2(t,) ) s
({auk(t),afobi) = (a0 af bl)).  (A2) "2 Y
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