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Early-stage relaxation of hot electrons by LO phonon emission
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Ultrafast spectroscopy gives insight into the relaxation and dephasing of electrons during the first femtosec-
onds after an optical excitation. A theoretical description of this early-time regime requires a proper treatment
of retardation effects for the different scattering processes. The scattering of electrons by optical phonons is
investigated within theS-matrix formalism. This perturbative scheme, equivalent to the non-equilibrium
Green’s function technique of Kadanoff and Baym@Quantum Statistical Mechanics~Benjamin, New York,
1962!#, reproduces the phonon oscillations observed in four-wave mixing experiments on GaAs. The differ-
ential transmission spectrum, however, shows a sharper phonon replica than in experiments where additional
dephasing mechanisms such as electron correlation effects may further broaden the replica.
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I. INTRODUCTION

Ultrafast spectroscopy has brought much insight into
scattering of charge carriers during the first femtoseco
after an optical excitation.1 In this early-time regime, both
the coherence of the scattering processes and the energ
certainty play essential roles.

The coherence induced by the laser is not completely
during the first scattering processes, and quantum inte
ence effects may lead to beatings in the optical respons
the system. In particular oscillations with the LO-phon
frequency have been observed in four-wave mixing~FWM!
experiments on GaAs, which were interpreted as evidenc
memory effects.2

Non-energy-conserving processes play a significant
for times shorter than typical transition energies. In particu
a sharpening of phonon satellites has been observed in
ferential transmission~DT! experiments, and interpreted as
signature of energy uncertainty in the early-time relaxatio3

The theory usually describes the excitation of charge c
riers by the laser within semiconductor Bloch equatio
~SBE’s!, which give the time evolution of the density distr
butions in both bands, and of the interband polarization.4 The
scattering processes, however, are taken into account b
stantaneous scattering rates as in Boltzmann equations,
treating relaxation as totally incoherent and ene
conserving.5

One of the most successful theoretical approach go
beyond semiclassics is quantum kinetics, which describes
coupling to the light field as in SBE’s, while the scatterin
terms depend on the system’s past history.6,7 These memory
or so-called non-Markovian terms are deduced from n
equilibrium perturbation theory8 by expressing two-time
Green’s functions with one-time density matrices, a pro
dure strictly valid only for noninteracting particles.9 Despite
this uncontrolled approximation, the quantum kinetics eq
tions have successfully reproduced many of the experime
features of the coherent regime, such as phonon oscillatio2
PRB 610163-1829/2000/61~23!/15827~10!/$15.00
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broad phonon satellites,10 or the buildup of screening by ex
cited carriers.11

Another approach to ultrafast dynamics describes
scattering processes via a hierarchy of equations for ma
particle correlation functions, which is truncated to a clos
set of equations by mean-field arguments. These meth
encompass both the density-matrix approach which perfo
an expansion in coupling strength,12–14and the expansion in
powers of the light field by Victoret al.15 They have been
extensively applied to relaxation by phonon emission13,16,17

and Coulomb correlation effects.18

Purely quantum approaches, which avoid any of
above approximations necessary to have a closed set of e
tions, are usually not able to simulate nonlinear experime
on realistic models. Nonequilibrium Green’s-function theo
which has been applied to both coupling to phonons19 and to
Coulomb correlations,20 requires a large computational effo
due to the explicit dependence of Green’s functions on tw
time variables. Several variational methods have also gi
insight into the memory effects for simplified low
dimensional models.21,22 Recently, however, nonequilibrium
Green’s-function equations have been solved numeric
with no further approximation for a realistic model of
semiconductor excited by a single pulse.23

The present work expands theS-matrix formalism intro-
duced in Ref. 24 for electron interactions, to the coupling
electrons with phonons. This perturbative method is a pur
quantum approach equivalent to the Green’s-function the
as shown explicitly here. However, it allows one to desi
approximations very similar to the variational methods, e
to restrict the scattering processes to states with
phonons. In contrast to the variational methods, the sch
is applied to realistic models for a bulk semiconductor and
nonlinear optical probes such as FWM or DT. An efficie
algorithm is presented which solves Dyson’s equation wh
avoiding any storage of two-time quantities.

In Sec. II, the model and the main results are describ
Section III presents the formalism and the one-phonon
proximation. Section IV illustrates the effect of energy u
15 827 ©2000 The American Physical Society
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15 828 PRB 61HERVÉ CASTELLA AND JOHN W. WILKINS
certainty on the phonon replica for a solvable on
dimensional model. The simulations of the DT experime
on GaAs are presented in Sec. V. The phonon oscillatio
FWM is first studied for a solvable two-level system in Se
VI, and for bulk GaAs in Sec. VII.

II. MODEL AND RESULTS

A two-band model describes a bulk semiconductor wit
direct gap EG and with band dispersionseck5\2k2/2mc
1EG and evk52\2k2/2mv for the conduction and valenc
bands, respectively. The electrons interact via the Coulo
interaction U(q)5e2/e0q2. An external electromagneti
field E(t) excites electrons from one band to the other wit
dipole matrix elementm which is assumed to be independe
of wave vector. Finally the electrons interact with an optic
phonon mode of flat dispersion at the frequencyV via a
Frölich coupling25 Mq

25\Ve2(1/e`21/e0)/2q2:

Ĥ5Ĥel1Ĥph1Ĥ int ,

Ĥel5(
ak

eakaak
† aak2S mE~ t !(

k
avk

† ack1H.c.D
1

1

V (
abkk8q

U~q!aak1q
† abk8abk82q

† aak ,

~1!

Ĥph5\V(
q

bq
†bq ,

Ĥ int5
1

V1/2 (
k,q

Mq~ack1q
† ack2avk1qavk

† !~b2q
† 1bq!.

We focus here on optical excitations by short laser puls
where electrons initially in the filled valence band are p
moted into the conduction band and emit phonons. We w
to describe the optical properties of the semiconductors
the first femtoseconds after the pulse when only a f
phonons are created, and the electrons have not totally
the phase coherence they acquired during the optical ex
tion.

A description of this early-time regime requires a prop
treatment of retardation effects for the different scatter
processes. We use theS-matrix formalism, which performs a
perturbative expansion of creation and annihilation opera
in different scattering channels.24 This expansion is dis-
cussed in detail in Sec. III. The remaining part of the pres
section gives a brief account of the approximation used
our calculations and summarizes the main results.

The approximation restricts the scattering processes
those channels with at most one phonon in the final state,
treats the Coulomb interaction at the Hartree-Fock level. T
coupling to the lightE(t), however, is computed exactly i
order to have access to the nonlinear regime. The elec
annihilation operatorsaak(t) have both a single-particle con
tribution g̃abk(t,0)abk and a phonon contribution which in
volves products of electron and phonon operators such
abk1q(bq1b2q

† ). The retarded Green’s functiong̃ satisfies
Dyson’s equation, with a self-energy accounting for em
-
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sion and reabsorption of one virtual phonon: the so-ca
Born approximation. We now summarize the main results
this work.

~1! We show in Sec. III that theS-matrix formalism is
equivalent to nonequilibrium perturbation theory. Howev
it allows one to design variational-like approximations i
cluding a maximal number of phonons.

~2! An efficient algorithm is developed which does n
require the storage of two-time quantities, and thus avo
much of the numerical problems encountered in Green
functions calculations.19,20This procedure allows the simula
tion of nonlinear optical probes in a realistic model of
semiconductor within a fully quantum approach.

~3! The S-matrix formalism correctly reproduces th
broad phonon replica in the density distribution of an ele
tron relaxing by emission of phonons, as checked for bot
solvable one-dimensional model in Sec. IV and for an op
cally excited semiconductor in Sec. V. The width of the re
lica is attributed to energy uncertainty which allows no
energy-conserving transitions for times smaller than
phonon period.

~4! The phonon replica in the DT signal shown in Fi
1~a!, is significantly sharper than in experiments on GaA3

This result suggests that energy uncertainty alone canno
count for the broad replica observed experimentally, and
additional dephasing mechanisms such as electron cor
tion effects have to be included to reproduce the experim
tal findings.

~5! The sharp replica in DT contrasts with the broad fe
tures seen in the density distribution. In analogy to Ref.
this difference is attributed to interferences between phon
scattering effects and optical excitation processes as
cussed in Sec. V.

~6! The quantum beats in FWM are studied in Sec. VI f
a two-level system where theS-matrix results compare very
well with the exactx (3) response except for a renormaliz
tion of the beating frequency.

FIG. 1. Differential transmission~DT! signal computed with~a!
the S-matrix formalism and~b! the semiconductor Bloch equation
~SBE’s! using as input theS-matrix results for the density distribu
tion and for the interband polarization created by the pump pu
The S-matrix results show a sharp phonon replica at lower ene
even for zero time delayt50, while the replica is very broad with
the SBE’s.
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~7! The FWM is simulated in Sec. VII for the two-ban
model of GaAs. TheS-matrix formalism quantitatively re-
produces the phonon oscillations observed in experimen2

Figure 2 illustrates the dependence of the beating period
the mass ratiomv /mc , which is particularly clear in the one
phonon contribution to the signal, as shown in the inset.

III. FORMALISM

The S-matrix formalism perturbatively computes the tim
evolution of creation and annihilation operators in t
Heisenberg picture. The diagrammatic technique was de
oped in Ref. 24, and applied to excitonic effects at
Hartree-Fock level. Here we implement the scheme for
electron-phonon model of Eq.~1! beyond the mean-field ap
proximation to account for emission or absorption of a sin
phonon. We also outline the equivalence with the noneq
librium perturbation theory,8 and use the notation of Green
functions26 instead of the originalS-matrix language.

The section presents the general procedure for
S-matrix expansion, and then works out the mean-field
proximation for the Coulomb interaction between electro
and the non-self-consistent Born approximation for the c
pling to phonons. Section III D gives the equations for t
density matrix, and Sec. III E a brief account of the nume
cal algorithm.

A. General expansion

The electron annihilation operator at timet is formally
expanded in scattering channelsaa k(t)5(naa k

(n) (t), where
the channels involve an increasing number of phonons
particle-hole excitations with increasing ordern. The differ-
ent channels are orthogonal,^$aa k

(n) (t),aa k
(m) †(t)%&50 for n

Þm, with the average computed in the initial state, i.e.
filled valence band and an empty conduction band with

FIG. 2. Integrated four-wave mixing~FWM! signal as a func-
tion of time delayt for a pump pulse of 15-fs duration centered
the exciton resonance of bulk GaAs. The oscillations due to pho
memory effects are particularly visible in the one-phonon contri
tion plotted in the inset. The period of the modulation is shor
than the bare phonon periodTph5115 fs, and depends on the ma
ratio mv /mc , as illustrated by changing the GaAs value of 7 to
s.
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any phonon. The orthogonality is achieved via the norm
ordering of electron and phonon operators, as explaine
Appendix A.

The zeroth-order termaa k
(0) describes the scattering of on

electron initially in banda into bandb without changing the
number of phonons. It involves a single-electron opera
and its amplitude is the retarded electron Green’s functio27

g̃ab k(t,0):

aak
(0)~ t !5^$aak~ t !,abk

† ~0!%&abk5 i g̃ab k~ t,0!abk . ~2!

The first ordera(1) accounts for the emission or absor
tion of one phonon. It involves both an electron and a ph
non operator, and its amplitude is a three-point correlat
function with mixed electron and phonon characters:

aak
(1)~ t !5

1

V1/2 (
q

^$aak~ t !,abk1q
† ~0!b2q

† ~0!%&abk1qb2q

1^$aak~ t !,abk1q
† ~0!bq~0!%&abk1qbq

† . ~3!

Higher-order terms involve more complicated proces
such as the emission of two phonons or the creation o
particle-hole pair. Appendix A describes the general pro
dure to construct orthogonal scattering channelsa(n), and
derives Eqs.~2! and ~3!. The rest of the paper, however,
restricted to the first two terms in the expansion.

The previous equations establish the connection betw
nonequilibrium Green’s functions and theS-matrix formal-
ism in contradiction to the claim of Ref. 24 that no su
relation exists. In particular the usual diagrammatic te
nique for Green’s function may be used to evaluate
S-matrix amplitudes as well. TheS-matrix formalism, how-
ever, gives a clear picture of the many-body states invol
for a given approximation.

B. Mean-field approximation

We first consider the mean-field equations for the Co
lomb interaction without any coupling to phonons, as deriv
in Ref. 24. The retarded Green’s function is a 232 matrix in
the band indices with nonzero off-diagonal elements, si
both the electric field and the Coulomb interaction couple
two bands. It satisfies a Schro¨dinger equationi ] tgk(t,t8)
5Hk

(0)(t)gk(t,t8), with the following Hamiltonian matrix:

Hk
(0)~ t !5S eck 2mE~ t !

2mE* ~ t ! evk
D 2

1

V

3(
q

Uq@gk1q
, ~ t,t !2r#. ~4!

The Green’s functions depend explicitly on both timet
andt8 due to the external light field which drives the syste
out of equilibrium. The Hartree-Fock term involving so
called lesser Green’s function26 gabk

, (t,t8)
5^aak

† (t)abk(t8)&, accounts for the dynamical energy reno
malization and for the excitonic coupling to the interba
polarization. The last term, depending on the initial dens
matrix rab5davdbv , compensates for the interaction amo
valence electrons which is already included in the band g

n
-
r
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C. Coupling to phonons

Our approximation restricts the scattering processes to
emission or absorption of at most one phonon, i.e., reta
only a(0) anda(1) in the expansion. The consequent appro
mation for the renormalized retarded Green’s functiong̃k
selects the diagrams describing the emission and reabs
tion of one virtual phonon at a time, as depicted in Fig. 3~a!.
Within the self-energysk the electron propagator is no
renormalized since one virtual phonon is already pres
Dyson’s equations in this non-self-consistent Born appro
mation reads19

g̃k~ t,t8!5gk~ t,t8!1E
t8

t

dt1dt2g̃k~ t,t1!sk~ t1 ,t2!gk~ t2 ,t8!,

~5!

sk~ t,t8!5
2 i

V (
q

Mq
2Q~ t2t8!@gk1q

, ~ t,t8!eiV(t2t8)

1gk1q
. ~ t,t8!e2 iV(t2t8)#. ~6!

The amplitudes ofa(1) in Eq. ~3! are approximated simi
larly by selecting diagrams with at most one phonon line a
time as shown in Fig. 3~b!. The electron Green’s function i
not renormalized for times smaller thant1 since a real pho-
non is present, and no virtual phonon excitations are allow
At later times, however, the real phonon has been absor
and virtual phonon excitations are taken care of within
renormalizedg̃k . The corresponding formula fora(1) reads

aak
(1)~ t !5 i E

0

t

dt1g̃ab k~ t,t1!
1

V1/2 (
q

Mq~eiVt1bq
†

1e2 iVt1b2q!gbg k1q~ t1,0!ag k1q . ~7!

FIG. 3. Diagrams for the amplitude of~a! the zero-phonon term
i.e., the retarded Green’s function, and of~b! the one-phonon term
Single straight lines are the unrenormalized electron Green’s fu
tion in the presence of the light field and with excitonic effects
the Hartree-Fock level, and double lines the renormalized Gre
function in the non-self-consistent Born approximation of~a!. Wig-
gly lines denote the bare LO-phonon propagator.
he
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The subtle mixture of renormalized and bare Gree
function in the above equation, that we have motivated
physical terms, is necessary to provide consistent approxi
tions for botha(1) and the self-energy. In particular it ensur
that the Green’s function obtained by inserting the opera
aak5aak

(0)1aak
(1) into the definition of the retarded Green

function g̃k(t,t8)52 i ^$aak(t),abk
† (t8)%&Q(t2t8) does sat-

isfy Dyson’s equation. This procedure corresponds grap
cally to combining two diagrams of Fig. 3~b! into the self-
energy contribution of Fig. 3~a!.

D. Density matrix

Finally, we need to compute the observables at timet, i.e.,
the renormalized lesser Green’s functiong̃k

,(t,t) or the den-
sity matrix. The orthogonal channels give separate contri
tions to the density matrix:

g̃abk
, ~ t,t !5^abk

(0)†~ t !aak
(0)~ t !&1^abk

(1)†~ t !aak
(1)~ t !&, ~8!

^abk
(0)†~ t !aak

(0)~ t !&5~ g̃k~ t,0!rg̃k
†~ t,0!!ab , ~9!

^abk
(1)†~ t !aak

(1)~ t !&5
1

V (
q

Mq
2E

0

t

3dt1dt2eiV(t12t2)@ g̃k~ t,t1!gk1q~ t1,0!

3rgk1q
† ~ t2,0!g̃k

†~ t,t2!#ab . ~10!

The density distribution in each bandg̃aak
, is strictly posi-

tive, since the contribution of channeln is the norm of the
vector aak

(n)(t)uc(0)&, with uc(0)& denoting the initial state.
This positivity is in sharp contrast with the situation encou
tered in quantum kinetics or density-matrix formalism
where the distributions may become negative.6,13

The total number of particles is not conserved in the o
phonon approximation, since it is not self-consistent. In o
calculations, however, the number of conduction electr
and valence holes never differed more than by a few perc

E. Numerical implementation

Here we show how to avoid working explicitly with two
time Green’s functions in the numerical solution of Dyson
equations, and then we describe the main aspects of the
merical algorithm. The details are presented in Appendix

The evaluation of Eq.~10! requires Green’s functions fo
both final and intermediate timest and t8, respectively.
Working with a two-time Green’s function posed stora
problems in Ref. 19 which were resolved by drastically lim
iting the so-called memory deptht2t8, as well as the num-
ber of discretization points in momentum space. Here
show how to avoid any such problem within our non-se
consistent Born approximation.

Within the mean-field approximation, the lesser a
greater Green’s functions are related to a product of retar
Green’s functions with one time argument fixed at the init
time:

gk
,~ t,t8!5gk~ t,0!rgk

†~ t8,0!,

c-
t
’s
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gk
.~ t,t8!5gk~ t,0!~12r!gk

†~ t8,0!. ~11!

These relations have two important implications:~1! We
avoid storing the two-time Green’s function, and need
tarded functions with the second argument fixed at the in
time. The reduction of memory usage is important for sim
lations of short-pulse excitations which require a large
ergy cutoff and small time increments.~2! The self-energy in
Eq. ~6! factorizes into products of terms depending either
t or on t8. As shown explicitly in the Appendixes, this fac
torization allows us to break the second-order differen
equation into a set of first-order equations, in close anal
to the procedure used in quantum kinetics.6

The numerical solution of theS-matrix equations has th
following steps:~a! The mean-field equations~4! are solved
using a time increment sufficiently small to resolve the sh
laser pulses;~b! the retarded Green’s functionsg̃k(t,0) for a
given momentumk and final timet are computed by solving
Dyson’s equation; and~c! the one-phonon contribution in
Eq. ~10! can be simultaneously evaluated, as shown in A
pendix B.

The stability of the numerical integration of Dysons
equation allows us to work with a large time increme
Vdt.0.1 without significant loss of precision. The numb
of k points is reduced by using the rotational symmetry of
Green’s function.6 In practical calculations we used a di
cretization of energy\2k2/2me rather than momentum.

IV. SINGLE ELECTRON IN ONE DIMENSION

Here we illustrate the importance of the energy unc
tainty within the simplified problem of a single electron r
laxing by emission of optical phonons. In the early-time
gime the phonon satellites in the energy distribution funct
are very broad, and sharpen after typically one phonon
riod. Furthermore we compare the exact electron distribu
function to Boltzmann kinetics and to theS-matrix predic-
tions for a solvable one-dimensional model.28 The bench-
marking results show that the broad phonon replicas are
captured by semiclassics,13,16,21but are correctly reproduce
in early times by theS-matrix formalism. The one-phono
approximation, however, breaks down for times larger th
the electron lifetime when two-phonon processes beco
important.

The one-dimensional model describes a single electro
a conduction band with linear dispersioneck5k and a single
branch extending to6`. The coupling to phonons is inde
pendent of the momentum transferMq5h. The electron is
initially prepared at an energyk0 high in the band in order to
mimic the nonequilibrium situation created by an optical e
citation.

Within Boltzmann kinetics, the energy-distribution fun
tion consists of d functions at energiesk02mV, m
50,1, . . . , with weights exp(2ht)(ht)m/(m!). The ampli-
tude of the main peak atk0 decays exponentially with a
typical lifetime h21, while the mth phonon satellite grows
within a time interval ofmh21.

The exact distribution function computed in Ref. 28
compared in Fig. 4 to Boltzmann kinetics for different tim
t. The main peak at energyk053.5V is exactly described by
semiclassics. The first phonon satellite, however, which
-
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d function in Boltzmann’s result, is initially very broad fo
the exact result, and only after one phonon cycleTph does a
well-defined maximum appears at the energyk02V52.5V.
This discrepancy is caused by non-energy-conserving tra
tions which are not included in semiclassics, but play
essential role in the exact solution for times shorter than
phonon period.

Now we turn to theS-matrix formalism, where the time
evolution of the distributiong̃k

,(t,t) is readily computed
analytically. The decay of the peak atk0 is exact, while the
first phonon satellite has a Lorentzian shape centered ak0
2V:

g̃k
,~t,t!5e2htS d~k2k0!1h2Ueht/21 i (V1k2k0)t21

h/21 i ~V1k2k0!
U2D .

~12!

Figure 4 shows how the broad first phonon satellite
correctly reproduced by theS matrix for t,Tph in sharp
contrast to Boltzmann kinetics. TheS-matrix result, how-
ever, departs from the exact distribution when the sec
phonon replica starts to grow at times larger than the elec
lifetime t.h2152Tph . This failure is clearly due to our
approximation retaining only one-phonon processes.

FIG. 4. Electron-density distribution as a function of energye
for a single electron coupled to LO phonons in the exactly solva
one-dimensional model with linear band dispersion. The electro
prepared initially att50 with an energye53.5V, and the electron
lifetime is twice the phonon period. The phonon replica ate
.2.5V is initially very broad within the exact solution, in contra
to the Boltzmann result which consists ofd functions building up as
time increases. The broad phonon replica is well reproduced by
S-matrix formalism at early times, while discrepancies with the e
act solution show up att5Tph when the second phonon replic
begins to develop.
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V. DIFFERENTIAL TRANSMISSION

This section studies the growth of phonon satellites
the two-band model of Eq.~1! for bulk GaAs. We compute
both the density of carriers excited by the pump pulse
the full DT signal. The phonon replicas in the density dist
bution are broad at early times due to energy uncerta
while the DT signal shows sharper structures due to inter
ences between scattering with phonons and optical ex
tion.

Figure 5 shows the total density distribution of conducti
electrons and valence holes as a function of interband e
tation energyecv2evk for different times after the pump
pulse. The system is excited by a 120-fs pulse centere
150 meV above the band gap as in Ref. 3’s experiment
early times the main peak at 1.67 eV shows a broad tai
the low-energy side. At 40 fs after the pulse a distinct ma
mum appears at 1.63 eV, where the phonon replica star
grow. The energy separation between the main peak and
satellite is (11mc /mv)\V540 meV, which is larger than
the phonon frequency\V536 meV due to the band
dispersion.3 The width of the replica changes from approx
mately 40 meV att540 fs to 25 meV att5120 fs, which is
significantly larger than the main peak width of 20 meV.

The broad tail at early times and the sharpening of
replica can be attributed to the energy uncertainty as in
one-dimensional~1D! model of Sec. IV. Indeed for time
smaller than the phonon period non-energy-conserving
cesses cause the broad features in Fig. 4~a!, which are very
similar to the present observations. Semiclassical calc
tions do not capture these memory effects in both two-b
and 1D models since they predict the same width for both
phonon replica and the main peak.10,16

Our results compare very well with the density-mat
simulation of Ref. 16, where memory effects were includ
via electron-phonon correlation functions. The quantum
netics calculations of Ref. 10, however, show broader re
cas with a well-defined maximum only for delays larger th
100 fs. The discrepancy may be attributed to a tendenc
quantum kinetics to overestimate the self-energy effects.

FIG. 5. Total density distribution as a function of excitatio
energyeck2evk for bulk GaAs excited by a 120-fs pulse of 150
meV excess energy. The phonon satellite at 1.63 eV is initially v
broad, and starts peaking at 80 fs after the pulse.
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low we show that this difference is even more pronounced
the DT signal.

The DT response is the change in transmission of
probe pulse induced by the pump, and roughly measures
occupation of the conduction band by optically excited el
trons. The transmission is computed numerically by us
the well-known projection of the polarization onto the tran
mitted directionq2, where q2 and q1 are the propagation
directions of the probe pulseE2 and the pump pulseE1,
respectively.30 The spatial dependence of the slowly varyin
fields is replaced by a fixed phase differencef, E1(t)
5E(t) andE2(t)5eifE(t2t), with a Gaussian pulse shap
E(t)5E0eiv0texp„2(Dt)2

… in the rotating-wave approxima
tion. The interband polarization is computed for differe
phasesf, and the DT signal is obtained by numerical pr
jection onto the first harmonics exp(if).

Figure 1~a! shows the DT signal computed with th
S-matrix formalism for the same excitation conditions as
Fig. 5, and various time delayst. The main peak at 1.66 eV
is redshifted compared to the density distribution and a
crease in transmission occurs 1.68 eV due to exciton eff
as seen in experiments3 and in quantum-kinetic
calculations.10 However a maximum at 1.62 eV is observe
even for zero time delay, and the phonon replica is mu
sharper than both in experiments and in the density distr
tion plotted in Fig. 5. Below we discuss first the differen
between DT and density, and finally the discrepancy w
experiments.

Here we show that the difference between DT and den
does not come from a simple interference between the pu
and probe pulse. We compute the DT response within
SBE equations of Ref. 31, using as input theS-matrix calcu-
lations of the density distribution and of the interband pol
ization due to the pump alone. This procedures differs fr
the one in Refs. 3 and 32, where the density distribution fr
the 1D model was used while the polarization effects w
neglected. The DT signal from the SBE plotted in Fig. 1~b!
shows a much broader phonon replica than in theS-matrix
results. Therefore the sharp replica observed with
S-matrix approach cannot be attributed to a simple interf
ence effect between pump and probe which would be c
tured by the SBE’s.

The sharp replica must have its origin in more subtle
terference effects which are absent from the SBE calc
tions. In particular we attribute the sharp phonon replica
interferences between phonon scattering and optical ex
tion by the probe, in analogy to the density-matrix calcu
tions of Ref. 16, where such interference terms have p
duced a sharpening of the replica.

In conclusion we discuss the discrepancy between
computed DT signal and the experiments. Our calculati
show that the phonon replica in DT are very sensitive to
coherence between phonon scattering and optical excita
Additional dephasing mechanisms such as electron corr
tion effects would reduce this coherence, and further broa
the phonon replica. A full self-consistent treatment of Dy
on’s equation could also contribute to a further broadeni
as seen in the quantum-kinetic calculations of Ref. 10.

VI. TWO-LEVEL SYSTEM

In this section, an exactly solvable two-level system giv
us insight into the origin of the quantum beats observed

y
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FWM experiments2 on GaAs, as well as benchmarking r
sults for theS matrix in the weak-coupling regime. For bot
linear response to the field and the FWM signal, the m
discrepancy betweenS-matrix and exact results is the reno
malization of the beating frequency.

The two-level model describes an electron coupled t
single oscillator, and mimics in a crude way the valence a
conduction bands of the semiconductor. An electric fi
E(t) causes interlevel transitions:

Ĥ25(
i 50

1

e iai
†ai1Vb†b1ha1

†a1~b1b†!2E~ t !a0
†a1

2E* ~ t !a1
†a0 . ~13!

The exact eigenstates forE(t)50 are polaronic states
i.e., superpositions of states with different numbers
phonons.33 The energy levels for a fixed electronic level a
separated by exactly the phonon energy:E0n5e01nV and
E1n5e11nV2h2/V for levels 0 and 1, respectively.

The interlevel polarizationg̃10
, (t,t) in linear response to

the field was computed exactly in Ref. 25 in connection
phonon broadening of impurity levels. It has oscillations
multiples of the phonon period, which are a signature of
polaronic nature of the eigenstates:

g̃10
, ~ t,t !5 iQ~ t !expF2 i S e12

h2

V
2e0D •t

2S h

V D 2G (
m50

` S h

V D 2m

e2 imVt. ~14!

We now compare the exact linear response to theS-matrix
result. The 232 self-energy matrixs i j in the level indices
has only a single nonvanishing term fori 5 j 51, since the
oscillator couples to the upper level only. In close analogy
Eq. ~6!, it reads

s11~ t,t8!52 ih2Q~ t2t8!@eiV(t2t8)g11
, ~ t,t8!

1e2 iV(t2t8)g11
. ~ t,t8!#. ~15!

In addition to this contribution, a Hartree-Fock~HF! term
remains,34 which is absent in the two-band model because
orderV21/2 in the volumeV:

s11
HF~ t,t8!522h2d~ t2t8!E

0

t

sin@V~ t2t1!#g11
, ~ t1 ,t1!dt1 .

~16!

Within the S-matrix formalism the polarization to linea
order has only two oscillating contributions at frequenc
v65V(16x)/2 with x5A114(h/V)2:

g̃10
, ~ t,t !5 iQ~ t !e2 i (e12e0)t@~11x!e2 iv2t

1~x21!e2 iv1t#/2x. ~17!

Comparing the exact polarization to theS-matrix result,
we see that the lowest frequencyv2 is correctly reproduced
to second order inh, while the excitation energyv12v2
n

a
d
d

f

o
t
e

o

f

s

5xV is too large by an amount 2h2/V. As shown below this
discrepancy is also present in the FWM result.

The FWM response comes from the diffraction of t
probe in direction 2q22q1 by the polarization created by
first pulse, whereq1 andq2 are the propagation directions o
the first and second pulses, respectively. It is computed
merically within theS-matrix formalism with the same pro
jection technique presented in the previous section for
DT signal. Here the polarization is projected onto the seco
harmonics exp(2if) to pick up the right diffracted direction

Figure 6 shows the FWM intensity integrated over re
time t as a function of time delayt, with an additional phe-
nomenological dampingG50.8/Tph to perform the time in-
tegration. It compares theS-matrix result to the exact third
order response35 x (3) in the weak-coupling regimeh
50.2V. TheS-matrix formalism reproduces the weak osc
lations at positive time delay due to quantum beats betw
states with different number of phonons. As in linear r
sponse, the slight change in oscillation frequency is att
uted to the wrong excitation frequencyv12v2.1.08V in-
stead of the bare phonon frequency.

From the benchmarking results on the two-level syste
we can conclude that theS-matrix formalism does reproduc
the quantum beats due to emission of virtual phonons,
introduces an erroneous renormalization of the oscillat
frequency.

VII. FOUR-WAVE MIXING

This section presents the simulation of the FWM expe
ments on bulk GaAs using the two-band model and the p
jection technique outlined in Sec. V. The integrated FW
oscillates as a function of time delay with a period smal
than the bare phonon period due to band-dispersion effe
This renormalization of the period is not an artifact of pe

FIG. 6. Integrated FWM intensity as a function of time delayt
within the two-level model with a weak coupling (h50.2V) to a
single-phonon mode. TheS-matrix result is compared to the exa
third-order responsex (3) for a pulse duration of 0.12Tph and a
weak-field amplitudemE050.1V. The amplitude of the phonon
oscillations in the exact result are very well reproduced by thS
matrix, while their period is slightly smaller than the phonon peri
Tph due to the erroneous renormalization of the excitation f
quency.



n
-
re
m

o

na
ge
-
ee
o

ith
co

e
r
e

a
h

at
w

el
p

in-
rgy

o-
it-

ch
ula-
ons
dge
n-
. V.
on
e
po-

s

atio

r-
the
en-
:

-
her
s as

ith
sm
at

the
oxi-
ent

e
ry,
tu-

ns
ho-
d
non
er

een
be-

an
nal
ering
re

nts
he

es
ota

b
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turbation theory as in the two-level model. The FWM inte
sity in real time shows no modulation with the LO fre
quency, but is dominated by excitonic effects. Both featu
are consistent with experimental data and with quantu
kinetic results.2

Figure 7 shows the total FWM intensity as a function
real time for two pulses of 15-fs duration delayed byt
5100 fs, and resonant with the excitonic level. The sig
starts at timet52t as a typical echo and shows a lar
maximum att52t15Tph due to excitonic effects. The sig
nal is dominated by the excitonic resonance which is ind
undamped at zero temperature, since the states close t
band edge cannot emit any real LO phonon.

While the total signal does not show any modulation w
the phonon period, the zero- and one-phonon channels
tribute oscillating termsP(0)(t,t) and P(1)(t,t), respec-
tively. The modulation at frequencyV, which is present in
the zero-phonon contributionuP(0)u2, is suppressed by th
mixed term P(0)P(1)* oscillating out of phase. A simila
cancellation occurs in the linear-response polarization du
vertex corrections.36

Figure 2 shows the integrated intensityI (t) as a function
of time delayt:

I ~t!5E e2GtuP(0)~ t,t!1P(1)~ t,t!u2dt. ~18!

In contrast to the real-time behavior, the oscillations
approximately the phonon period are clearly present bot
the total signal and in the one-phonon contribution.

The period of the oscillations depends on the mass r
mv /mc between valence and conduction band, as sho
clearly in the inset of Fig. 2. While the two-level mod
predicted oscillations at the bare phonon frequency, the

FIG. 7. FWM intensity as a function of real time for 15-fs puls
delayed by 100 fs and resonant with the excitonic level. The t
signal is separated into a zero- and one-phonon contributions,P(0)

and P(1), respectively. The total intensityuP(0)1P(1)u2 is domi-
nated by the undamped oscillations at the excitonic frequency
shows no modulation at the LO-phonon frequencyV. The zero-
phonon termuP(0)u2 shows weak oscillations at the frequencyV,
which are totally compensated for by the mixed termP(0)P(1)* .
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riod here changes fromTph5115 fs to approximately 100 fs
for a mass ratiomv /mc57 as in GaAs, and to 85 fs for a
ratio of 3.

The change in period was interpreted in Ref. 2 as an
terference between two interband transitions whose ene
differ by V(11mc /mv). The first transition at momentumk
has energyeck2evk , and the second one occurs at the m
mentumk8, where the conduction electron decays after em
ting one phonon:eck85eck2V. The energy differenceeck8
2evk82eck1evk gives the above-mentioned energy whi
correctly reproduces the frequency observed in the sim
tions. This argument, however, does not apply to excitati
at the exciton level since an electron close to the band e
cannot emit any real phonon. It is more relevant to no
resonant excitations well above the band edge as in Sec

This period change is not an artifact of perturbati
theory, as in the two-level model. Following Ref. 29 th
erroneous frequency renormalization, which is due to the
laron shift, can be estimated for an exciton in the 1S state to
be VaFAmv /mc/16, whereaF is the polaron constant. Thi
very small shift of approximately 0.01V for GaAs param-
eters would also decrease with decreasing mass r
mv /mc , in contrary to what is seen in Fig. 2.

The absence of oscillations in real time, points to diffe
ences with the simple quantum-beat picture drawn from
two-level system where the superposition of states with
ergy differenceV causes oscillations in the FWM intensity
uP(0)1P(1)u2}g2u2eiVt2eiVt21u2. The absence of oscilla
tions in the three-beam experiment of Ref. 37 is anot
indication of the difference between simple quantum beat
observed in quantum dots,38 and the LO-phonon oscillation
observed in bulk GaAs.

VIII. CONCLUSIONS

In this work we have developed theS-matrix formalism
for a nonlinear optical probe of a bulk semiconductor w
coupling to LO phonons. We have shown that the formali
is equivalent to nonequilibrium perturbation theory, but th
it allows one to design simple physical approximations in
same spirit as variational methods. The one-phonon appr
mation has been implemented numerically with an effici
numerical algorithm which avoids the storage of two-tim
correlation functions as is typical in Green’s function theo
and which allows us to simulate realistic experimental si
ations.

The relaxation of electrons by the emission of phono
has been studied for an ultrafast optical excitation. The p
non replica in the density distribution is initially very broa
due to energy uncertainty, and sharpens after one pho
period. The DT signal, however, exhibits much sharp
structures even at zero time delay. This difference betw
DT and density is explained in terms of interferences
tween phonon scattering effects and optical excitation.

The phonon replica in DT are also much sharper th
experimentally observed. This suggests that additio
dephasing mechanisms such as electron-electron scatt
which would partially destroy the interference effect, a
necessary to explain the experimental broad replicas.

The phonon oscillations observed in FWM experime
on GaAs are correctly reproduced by our simulations. T

l
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period of the oscillations is consistent with the band disp
sion effect proposed in Ref. 2. However, it is still uncle
why such explanation involving excitations high in the ban
should apply to an excitation at the band edge as in
experiments.

In conclusion, theS-matrix formalism provides a fully
quantum approach to ultrafast dynamics in semiconduc
which captures most of the memory effects. Since it is
expansion in number of phonons, it is restricted to the ea
time regime, where only a few phonons are emitted.
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APPENDIX A: S-MATRIX FORMALISM

This appendix gives the general procedure to expand
electron operatoraak in scattering channels and proves Eq
~2! and~3! relating theS-matrix formalism to nonequilibrium
Green’s-function theory.8

A perturbative expansion of the annihilation operatoraak

in the electron-phonon couplingĤ int generates commutator
such as† . . . @aak ,Ĥ int#, . . . ,Ĥ int‡ which involve products
of many annihilation or creation operators in various orde
A well-defined expansion requires a specification of the
dering of operators, and here we use the normal orde
with respect to the noninteracting initial state, i.e., a fill
valence band and an empty conduction band with no pho
present. This choice provides an expansionaak5(naak

(n)(t)
in orthogonal contributionŝaak

(n)†aak
(m)&50 for nÞm, since

the average of two normal-ordered operators :A1 . . . An :
and :B1 . . . Bn : vanishes unless they are Hermitian con
gate to each other, up to a sign change.

The main outcome of the previous formal manipulatio
is the equivalence between theS-matrix formalism and non-
equilibrium Green’s functions. Indeed the amplitude of t
first termaak

(0)5Sabk
(0) (t,t0)aak is proportional to the retarde

Green’s functiong̃ak due to the orthogonality betweena(0)

and higher-order terms:

g̃abk~ t,0!52 i ^$aak~ t !,abk
† %&

52 i ^$agk
(0)~ t !,abk

† %&52 iSabk
(0) ~ t,0!. ~A1!

In a similar way the scattering channela(1) involves prod-
ucts of operatorsabk2qbq which are orthogonal toabk and
any other higher-order channels, and whose amplitude is
three-point correlation function as given by Eq.~3!:

^$aak~ t !,abk2q
† bq

†%&5^$aak
(1)~ t !,abk2q

† bq
†%&. ~A2!
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APPENDIX B: NUMERICAL ALGORITHM

This appendix presents the algorithm to solve Dyso
equations and to compute the renormalized lesser Gre
functions. The time evolution of the bare Green’s functi
gk(t,0) is first computed straightforwardly by solving th
mean-field equation for the 232 Hamiltonian matrix in Eq.
~4!. The renormalized retarded and lesser Green’s functi
for a given momentumk and final timet are obtained by
solving a linear equation for a large vectoryW (t8) whose first
element is proportional to the retarded Green’s functi
y0(t8)5g̃k(t,t8)gk(t8,0). The other components describe t
amplitude of probability for the states with one phonon a
the electron with momentumkm , where the momenta hav
been assigned a particular ordering labeled bym51,N, N
being the maximal number ofk points:

ym~ t8!5 i E
t8

t

y0~ t1!hm~ t1!, ~B1!

hm~ t8!5@re2 iVt81~12r!eiVt8#gkm

† ~ t8,0!gk
†~ t8,0!.

~B2!

The vectoryW (0) at the initial time directly gives the den
sity matrix at timet:

g̃k
,~ t,t !5 (

m50

N

ym~0!rym
† ~0!. ~B3!

In order to compute the density matrix we need to evo
yW backward in time with the initial conditionym(t)
5gk(t,0)dm0. The time evolution is given by a Schro¨dinger
equation i ] t8y

W (t8)5yW (t8)A(t8) with a sparse Hamiltonian
matrix A:

A~ t8!5S 0 h1~ t8! ••• hN~ t8!

h1
†~ t8! 0 ••• 0

A A

hN
† ~ t8! 0 ••• 0

D . ~B4!

The form of the matrix allows us to compute the tim
evolution directly during a time intervaldt whenA(t) may
be considered constant. The integration which preserves
norm of the vector is very stable, and allows us to work w
rather large time increment. Using the relationA35lA with
l5(qMq

2/V, one finds

yW ~ t82dt!5S 11 i
sin~dtl!

l
A~ t8!

1
cos~dtl!21

l2
A2~ t8!D yW ~ t8!. ~B5!
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