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We calculate the electronic and optical excitations of polythiophene using thé33tands for one-electron

Green function, W for the screened Coulomb interagtiapproximation for the electronic self-energy, and
include excitonic effects by solving the electron-hole Bethe-Salpeter equation. Two different situations are
studied: excitations on isolated chains and excitations on chains in crystalline polythiophene. The dielectric
tensor for the crystalline situation is obtained by modeling the polymer chains as polarizable line objects, with
a long-wavelength polarizability tensor obtained from #lfseinitio polarizability function of the isolated chain.
With this model dielectric tensor we construct a screened interaction for the crystalline case, including both
intra- and interchain screening. In the crystalline situation both the quasiparticle band gap and the exciton
binding energies are drastically reduced in comparison with the isolated chain. However, the optical gap is
hardly affected. We expect this result to be relevant for conjugated polymers in general.

[. INTRODUCTION optical band gapgabsorption gap In cases where calcula-
tions for both isolated chains and the crystalline situation
Semiconducting conjugated organic polymers have rewere performed, small differenc€8.1 to 0.2 eV for gaps of
ceived increasing interest in recent years, especially since the3-0€V) in Kohn-Sham band gaps were foufid™ How-
discovery of electroluminescericef these materials. The €Ver it is well known that the Kohn-Sham eigenvalues for-
charge carriers and excitations in these materials have be%ﬁ/ae"ry Z?(rc‘ﬂg;itéegggcrfsre;?g ﬁztei(;llteer? isr:?;eaecrl%i?llﬁ]rzet-hese
studied extensively both experimentally and theoreticalIy’caICL’JIations.

but many important fundamenf[al issues still _remain Un-""An ab initio many-body calculation within the GWG
solved. For instance, the magnitude of the exciton bindingstands for one-electron Green function, W for the screened
energy in these materials is still disputedhis is a very  Coulomb interaction approximatioh® (GWA) was per-
important quantity, since, e.g., in photovoltaic devitsslar  formed for poly-acetylendPA) by Ethridgeet al* They
cells) one would like to have a small binding energy, which claim that their quasiparticléQP) gap, excluding excitonic
facilitates the fast separation of charges, while in electrolueffects, is in agreement with the experimental absorption
minescent devices such as light-emitting diodeEDs) a  gap. This result seems to be in contrast with a more recent
larger exciton binding energy, to increase the probability ofcalculation by Rohlfing and Lout& of both one-(QP) and
fast (radiative annihilation of electron-hole pairs, is desir- tWo-particle (exciton) excitation energies for PA and poly-
able. phenylene-vinylenéPPV) chains. Their absorption gaps are
In conventional semiconductors such as Si and GaAs th& 9ood agreement with experiments, but the inclusion of
optical excitations are well described in terms of very weaklyexcitonic effects proves to be crucial for this. However, their
bound electron-hole pairso-called Wannier excitopsvith ~ €XCiton binding energy of 0.9 eV for PPV is much larger
a binding energy of the order of 0.01 eV. In crystals made oithan recently obta|_ned exp%rlmental values: @.8515eV
small organic molecules such as anthracene, the exciton Igr an alkoxy-substituted PPVand 0.48-0.14 eV(Ref. 1§
essentially confined to a single moleciferenkel exciton or unsubstituted PPV.

. I In a recent papet, hereafter referred to as |, we focused
'.ead'.”g t0 a binding energy of the order of 1 ?V: The AU€SHn the differences in excitations between an isolated poly-
tion is where exactly conjugated polymers fit in between

. i thiophene (PT) chain, see Fig. 1, and crystalline poly-
conventional semiconductors, on the one hand, and moleCygjophene. For the isolated chain, we found an absorption
lar crystals, on the other. Negligibly sm&0.1 eV or les$),

: ; gap in good agreement with experiment, but the energy dif-
intermediate ~0.5eV (Ref. 4], and largel ~1.0eV (Refs.  ferences between the various exciton levels were too Erge.

5-7)] binding energies have been proposed. After including the screening by the surrounding chains, both
Ab initio calculations, on a variety of conjugated poly- the optical gap and the exciton transition energies were in
mers, within the local density approximation of density func-good agreement with the experimental values. The difference
tional theory (DFT-LDA) yield equilibrium structures in in screening between an isolated polymer chain and a con-
very good agreement with experimént! The Kohn-Sham  densed polymer medium can be explained as follows. For an
gaps in these calculations are typically 40% smaller than th&olated quasi-one-dimensional system, such as a single
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compare them to other calculations, and draw our conclu-
sions.

Il. COMPUTATIONAL METHODS

Many successfublb initio calculations of the QP band
- —n structure of conventional anorganic semiconductors have
been performed within the GWARef. 13 for the electronic
e self-energy?, of the one-particle Green function. Very re-
cently, progress has been made in the evaluation of the two-
particle Green functio”?~2*from which the optical proper-
ties can be obtained. This is done by solving the Bethe-
Salpeter equatién®® (BSE), which can be mapped onto a
two-body Schrdinger equation for an electron and a hole
B forming an exciton. We will use these approaches to calcu-
b late the QP band structure and exciton binding energies of
o PT. The calculational scheme is as follows: first we perform
a DFT-LDA-based Car-Parrinello calculation, from which
we obtain atomic positions, wave functions, and ground-state
energies. We use these as input for the GWA calculation,
a which yields the QP excitation energies. With the DFT-LDA
A wave functions and the QP energies we calculate the two-
particle excitations by solving the BSE. This scheme is first
applied to the single chain and next to the crystal. We as-

FIG. 1. _Monome_r and crystgl structure of polythiophene. Topg;me the same atomic geometry for the ground and excited
panel: A single chain of polythiophene. Black atoms are carbonétates, i.e., the coupling between electronic and lattice de-
gray, sulfur; white, hydrogen. Bottom panel: crystal structfiem

Ref. 29 as seen perpendicular to the chain directioa ( grees of freedpm s negIeCFed. Experlimental Uedaicate
—145au. be105al. cm14.8au. ae31 2) that energy shifts due to lattice rela>_<at|ons are of the order of
> A I e e 0.1 eV in PT. DFT-LDA calculatiorf predict a hole-

polaron relaxation energy of 0.04 eV for 16MT is an oli-
polymer chain in vacuum, there is no long-rangegomer consisting of thiophene-rings A similar calculation
screening®~?* A way to understand this is to realize that if predicts a triplet exciton relaxation energy of 0.2 eV for
we have two charges on a polymer chain with a separation27 Singlet relaxation energies are typically smaller.
larger than the width of the chain{(7 a.u.), most field lines  These values, calculated for oligomers, are upper bounds for
connecting the charges will be outside the chain. If the chaithe values in the polymer, since in the oligomers the excita-
is embedded in a mediufpossibly, but not necessarily, con- tion is confined, leading to a larger local deviation from the

sisting of similar chains the medium will provide a long- ground-state density and hence to a larger relaxation energy
range screening of the Coulomb interaction. The screeneghan in the polymer.

Coulomb interaction determines both the QP energies
cluding the band ggpand the exciton energies. Long-range o _
screening reduces both the QP band gap and the exciton A. The quasiparticle equation

binding energies. Apparently, there is a near cancellation be- \ve start our calculations with a pseudopotential plane-

tween the change of the QP gap and the exciton bindingyave DFT-LDA calculatiof of a geometry-relaxed PT chain

energy, meaning that the optical absorption gap, which is thg, 3 tetragonal supercell. The plane-wave cutoff energy is 40

difference between the two, is influenced much less by introRy. The length in the chain directiom, was optimized and

ducing screening. _ ) ) found to bea,=14.80 a.u[experimental values range from
In 1, a method for the calculation of the dielectric tensor 14 g5 a.u.(Ref. 29 to 15.18 a.u(Ref. 30]. In the perpen-

of crystal_li_ne polyt_hiophene_ from thab ini;io singlg .chain dicular directions we found that a separation af=a,

polarizability function was introduced, without giving any —15 04 u. is enough to consider the chains in the DFT-LDA

details. Further, some novel technical procedures in th@gicylation as noninteracting. The two rings in the unit cell

GWA calculation were used, in particular in the handling of 5.« tound to be co-planar and we choose them inythe

the Coulomb divergence both in real and reciprocal SPaC&yane. We use Hartree atomic unitith the Bohr radius,

Details of these approaches, as well as of the calculation ofg hit of length and the Hartree as unit of engriyough-

the quasiparticle energies and exciton binding energies, wilh ¢ his article, unless specified otherwise. The one-particle

be explained here. The paper is organized as follows. In Segyitation energies are evaluated by solving the QP equation:
Il we explain the computational methods employed to calcu-

late the quasiparticle band structure, to regularize Coulomb

interaction, to calculate the exciton binding energies and the 2

dielectric tensor. In Sec. Ill, we will present results for the [— 7+VH(r)}¢nk(r)+j [Vpp(r,r’)

electronic and optical excitations of both the isolated chain

and bulk PT. In Sec. IV we will discuss these results and +3(r,r" End10nk(r A3 =Eidn(r), (1)
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whereVy is the Hartree potentialWpp the nonlocal pseudo-
potential of the atomic core, ariithe electronic self-energy.
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We calculate all the above two-point functions on a double
24X 24% 24 real-space grid far andr’ in the unit cell. This

Since in practice the DFT-LDA wave functions and the QPcorresponds to a plane-wave cutoff of 25 Ry. The total num-
wave functions are almost identical, we use the former in alber of valence and conduction bands taken into account was

calculations. In DFT-LDAY, is approximated by

S(rr',w)=V(r)dr—r’), 2

whereV,. is the exchange-correlation potential of the homo-

geneous electron gas. In the GW2\is approximated by the

first term of the many-body expansion in terms of the one
particle Green functiorG and the screened Coulomb inter-

actionW of the systent? In order to calculat&, we follow

the real-space imaginary-time formulation of the GWA of

Rojaset al,*! in its mixed-space formulatiotf. In this for-

mulation, we transform nonlocal functio®gr,r") to func-
tions Fy(r,r'),

Nk

Fu(r,r')= >, F(r+nagx,r’)e kxrnac—x")
n=1

©)

1 o
F(r,r’)=n—k; Fi(r,r)elke=x), (4)

wheren, is the number of equidistatikt points in the one-
dimensional (1D) Brillouin zone (BZ). We use periodic
boundary conditions: F(r+nea,X,r’)=F(r,r' +na.x)
=F(r,r"). The functionsF(r,r") are fully periodic:F(r
+aX,r')=F(r,r'+ax)=F(r.r'), so thatr andr’ can

300. In Egs.(6), (7), and (8) we switch between time and
frequency domain using Fourier transforms. Our imaginary-
time grid has an exponential spacif@25 a.u. near=0, up

to a spacing 6 a.u. neap,,,= 32.0 a.u.) and we interpolate to
a linear grid when using the fast Fourier transfoififT) to
imaginary frequency. A similar exponential grid is used for

the imaginary frequency. We split the self-energy in an ex-
change parE* and a correlation pai ®:

X =2 iGy(r,r', —idvgk(r',r), 9
q

S i) =2 iG(r,r i DWW (r.rin), (10
q

whereé is an infinitesimally small positive time, an**" is
the screening interaction:

SO, i) =Wi(r,r o) —vi(r,r'). (12)
In the calculation oB* we use a 1D Brillouin-zone sampling
of ten equally spaceH points, and in the calculation &°
four k points(since the screening interaction is short ranged,

the convergence & ¢ with respect to the number &fpoints
is faster than that ok*). With the above parameters, the

be chosen in the unit cell. We calculate the one-particlecalculated QP gap has converged to within about 0.05 eV.

Green function for imaginary times

Gy(r,r',i7)

i > Uy (NuX(rHe (k)™ for 7<0,
- 5
_iz Uck(r)utk(r,)ei(ecré':)f for >0,
C

whereu,(r)= ¢, (r)e " andep (with n=c,v) are DFT-

LDA wave functions and the corresponding energiesh v

From a two-pole fit on the imaginary-frequency axis an ana-
lytical continuation to the real-frequency axis is obtained:
3 %(iw)—3%(w).3! Subsequently, the QP equatiti) can be
solved by replacing the QP wave functions by the DFT-LDA
wave functions and obtaining,, iteratively:

Enk= €nkt (dnd Zk(Eni) + 2k— VI dni0).- (12

B. Treatment of the Coulomb interaction

We have developed a procedure to deal withkked and
r=r' singularities of the Coulomb interactian(r,r’). We

and c referring to valence and conduction states, respecyj first describe the procedure for a three-dimensic3al)

tively). er is the Fermi energyset in the middle of the

system and later explain the specific adaptations of this pro-

DFT-LDA gap). We further calculate the irreducible single- cequre we used for our quasi-1D system.

chain polarizability function in the random phase approxima-

tion (RPA)

Pi(r,r,im)=—=2i > Gy(r,r',in)Gq y(r',r,—ir), (6)
q
the screened Coulomb interaction
Wi (r,r'iw)=[v X(r,r )= P(r,r'iw)] %,

()

where v, (r,r') is a cutoff Coulomb interaction in mixed

space, discussed in Sec. Il B, and we calculate the electronic

self-energy

S (rrin) =12 Gy(r,r i)W o(r,r',i7).  (8)
q

In reciprocal space the Coulomb interaction is given by

v(K,K")= (13

— Sk k' -
kK2 K
We replacea((0,0), which would be infinite in Eq13) by a
finite value, which is obtained in the following way. We
evaluate the integral over all space of the Coulomb interac-
tion multiplied by a Gaussian:

4
l,= f d‘?’q—727e““12=87r2 \/E
q o

and evaluate the corresponding swexrcludingthe singular-
ity for K=k=0,

(14)
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S,=AVY,’ Uk(K,K)e_“|k+K|2. (15 Wka,k’C’v’:f drf dr’ ¢,k(r") e(r)
K
' _ * ’
wherek e 1 BZ, the first Brillouin zone of the 3D latticé\ v XW(r,r",0=0)¢, . (r") e (r), (19)

is the volume perK,K) point and the prime indicates that and V*

k=K =0 is excluded in this sum. We now put ke krcrpe the exchange matrix elemengpresent for

singlet excitonss=0, only) of the bare Coulomb interac-

) tion:
V=o(K=0K'"=0)=Ilim[l,—S,]. (16)

a—0

Vicv,k’c’v’:f drf dr,¢:’k’(r)

Finally, we obtainv(r—r") by a discrete FFT o (K,K")
to real space. We find a finite value fofr —r’ =0), solving * e\ (r Neboris
at the same time the problem with the Coulomb singularity X bl o) o) berie (1) (20)
for r—r’=0. In the original formulation of the space-time The integrals over space in Egd9) and (20) are in the
method®! the authors used a grid for offset with respect ~calculations replaced by summations over our real-space
ther grid in order to avoid this singularity. grid. We use wave functions and energies on a grid of eight

In order to study a truly isolated chain, which is a Kk points and extrapolate to a grid of 1@(Qoints.
quasi-1D system, we have to avoid “crosstalk” between pe- Formally, dynamical screening effects may only be ig-
riodic images of the chain in the perpendicular directionshored in the BSE ifE;>Ey. However, since it has been
We do this by dividing space into regions of points that areshown that dynamical effects in the electron-hole screening
closer to the atoms of a specific chain than to those of anjnd |n the one-particle Green function largely cancel each
other. Subsequent]y' we cut off the Coulomb |nteract|on0ther this apprOX|mat|on is nevertheless valid, even if the
v(r—r'), obtained in the way described above, by setting itrelation E,>E, does not strictly hold.
at zero ifr andr’ belong to different regions. Thus we ob- ~ We galculate an approximate exciton sig by fitting
tain an interactiorv(r,r'). In the construction of the Cou- the exciton coefficients, to the hydrogenlike form:

lomb interactiorv (r —r'), we take a regular grid d points

with a spacing in the andz direction approximately equal to ‘o :M_ (21)

that in thex direction. From the cutoff interactian(r,r') we (1+azk?)?

obtainv,(r,r’) in mixed space from Eq3) with k now in - Note that in fact the exciton is highly anisotropic. Neverthe-
the 1D Brillouin zone. less, Eq.(21) gives pretty good fits and can be used to get a

qualitative impression of th&elative size of the excitons.

C. The Bethe-Salpeter equation

The two-body electron-hole Schtimger equation related D. Inclusion of interchain screening

to the BSE is solved by expanding the exciton wave func- As mentioned in the Introduction, in a quasi-1D system,
tions ®(r,,r,) in products of conductionp.(r.) and va- such as an isolated chain of a polymer in vacuum, there is no
lence wave function®,(rn) (Refs. 22—28 long range screening. For a meaningful comparison of our
calculations to the experimental data, which are obtained

from either films or bulk polymer material, both the intra-
q)(revrh)ZKE Ay Pei(Te) dui(rn)- (170 and the interchain screening are important, and only the lat-

e ter is long ranged. It would be desirable to perform a GWA

nd exciton calculation for a 3D crystal structure of PT, but

Here we have restricted our discussion to excitons that ha . : . o
zero total momentum, since only these are optically activel'® @amount of computational work involved is as yet prohibi-

As we are interested in the lowest lying excitons, an expantVely 1arge. Since PT samples prepared in many different
sion in the highest occupied valence)(and lowest unoccu- ways show very similar optical behavior, we expect the de-
pied conduction ¢*) bands is sufficient to converge the tails of the |nter.cha|n. screening not to be extremely |mp9r—
exciton energies to within 0.1 eV; energy differences aré dant. This consideration leads us to propose the following
converged even better. Below, we will give all energies InapprOX|mat|on for the interchain screening interaction, de-
eV with a precision of two decimal places. The exciton bind—flned analogously to Eq11):

g\(?uat?gnezggﬁs Ep, follow from the Schrdinger-like WES (1 iw)=(1—e Mimen {[ 2 (i ) X2

te(io)e (o) (y?+2°)] v (n)},

[Eck—Euk—Eg*EnlAet 2 [2Vig, peryr S50 22
kic'o where ¢, (iow) and g (iw) are theab initio frequency-
Wi krcror JAkrerpr =0, (18)  dependent dielectric constants perpendicular and parallel to

the chain, respectively. The counterintuitive combination of
whereE, is the QP band gajk;, the exciton binding energy, dielectric constants and coordinates in E2p) results from
and Wy, w¢r,» are the matrix elements of the statim ( solving the Laplace equation for a point charge in a homo-
=0) screened interaction geneous, anisotropic medium with dielectric constas
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and e, .3* The prefactor takes care of a smooth cutoff for The full polarizability functionX(r,r’,iw) of a single chain
distances smaller tham,,, for which the interchain screen- is given by
ing should be replaced by the intrachain screening. Equation
(22) has the correct behavior for distances larger than the X(r,r'iw)
interchain distance;.,,, for which we take 10 a.u., which is
typical for the experimental crystal structures of Refs. 29 and
30.

The total screened interaction for the bulk system then
becomes

=P(r,r’,iw)+f fdr”dr”’P(r,r”,iw)

XWipga(r" 1" i) P(r" 1" iw) (26

Wigtal(,F i) =W (1 1" i w) =XOUr,r"iw)+XO(r,1"iw). (27)

+Wiiedr—r'iw)+v(r—r’), (23)  The long-wavelengthq— 0) polarizability tensory per unit

_ _ _ _ of chain length of a single chain in th&,(,x,,X3) coordinate

where Wi, is the intrachain screening already calculatedsystem is diagonal and has diagonal elements given by
with Eq. (7). The screened interactiow,yy is correct at

short range, where the interchain screening is vanishingly 1
small compared to the r/divergence of the intrachain x1(iw)=lim _j fdrdr’e_iQ(Xl_xi)X(r’r"iw) ,
screening, and at long range, where the intrachain screening a0 0

vanishes due to its quasi-1D nature. Of course, for interme- (28
diate ranges, it is not strictly allowed to simply add the parts
representing long- and short-ranged screening, but we expeand forj=2,3,
Eq. (22) to give a reasonable interpolation there.

Note that the interchain screening part given by &2)
is long ranged by construction, and eighpoints are now Xj(iw):f f drdr"x;X(r,r',iw)x . (29
needed to converge the corresponding self-enBigy, from
Eq. (10. On the other hand, the required number of real-The calculation ofy;(iw) has been performed with four
space grid points in order to calculag,, is less than be-  k-points, with the exception of{”), for which it proved to
fore, becausaVy, is a very smooth function of; a 12  pe necessary to use eighpoints.
X12X12 real space grid turns out to be sufficient. The total If we now approximate the chains by polarizable line ob-

self-energy can be expressed as jects with the above polarizability tensor, we can calculate
the macroscopic dielectric tensor of the cryStaf these
S o= 2 et 2 oiert 2. (24)  chains. This is done by a procedure of which the details are

given in the Appendix. The axes of the crystal unit cell are

Because the self-energies in this equation are additive, weenoted bya, b, andc=x=xX,. Dropping the frequency de-
can reuse the self-energi&s,, and ¥, which we have pendence in the notation, we find the following expression
already calculated for the isolated chain. for e:
The overlap between wave functions, and therefore the
electronic coupling between neighboring chains, is very Ay,
small. This means that we can use the isolated-chain wave gc=1+ ,
. . A
functions to calculate the Green function and self-energy.
Thls_obwously implies that in our exciton calculations we whereA is the surface area per chain in the plane perpen-
restrict ourselves to excitons in which we take the electron,. . )
. . . - dicular to the chain. Fog, ande,, we find
and hole are on the same chdso-called intrachain exci-
tons. In summary, the only, but essential, difference be-

(30

tween our calculations for the isolated PT chain and bulk PT _ 1
is in the use of an interchain screened interaction. YT T Am (31)
TR

E. Dielectric tensor of crystalline PT

In order to construct the screened interaction of @3), Where y=a,b and x, is the effective polarizability of the
we have to calculate the dielectric tensor of bulk PT. We dochain along they axis. In the Appendix details of the calcu-
this for the crystalline structure of Ref. 29, which is repro-lation of e,, &y,, ande. are given.
duced in Fig. 1. We use a model in which the chains are To retain the tetragonal symmetry in our calculatiam
replaced by polarizable line objects with a polarizability ten-order keep the computations feasiblere averages (i)
sor obtained from the single-chain polarizability function.andep(iw), which are not very different, to obtai, (i w).
The principal axes of the chain are the following: FOI‘sH(i ) we takee (i w). Note that for using the screened
interaction of Eq.(22) in the implementation of the GWA
1 1 formalism presented in Sec. Il A, we have calculated the di-
X=X, Xo=—(Z+Y), Xa=——=(z—Y). (25)  electric constants, (iw) and ¢ (iw) along the imaginary

\/f \/5 frequency axis.
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FIG. 2. The quasiparticle band structure of both an isolated

chain of PT(full lines, left) and bulk PT(full lines, right compared
to the DFT-LDA band structurédashed lines in both pictures

Ill. RESULTS

A. Isolated chain

The calculated GWA QP band structitegether with the
DFT-LDA band structurgis shown in Fig. 2, left panel. We
find a minimal band gafg, atI" of 3.59 eV, which is quite

large compared to the DFT-LDA value of 1.22 eV. The ef-

fective massesm* =1/42(9°E/9k?) "1, of the = and =*
bands atl’, which are 0.15 and 0.17, (with m, the free
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FIG. 3. The hole probability along the chain with the electron
fixed at 1 a.u. above the inversion center for the two lowest singlet
excitons,'B, (above axis and *A; (below axig, for both the iso-
lated chain(top) and the bulk situatioribottom).

of 1.8 eV (Ref. 18 (see Table). While there is good agree-
ment for the optical gap, theifferencebetween the'B, and
1Ag binding energies of the isolated PT chain is definitely
notin agreement with experimefft,see Table I. Moreover,

electron magsin DFT-LDA, are reduced by about 15% in pe 1B, exciton binding energy of 1.85 eV is very large
the GWA to 0.13 and 0.16.. This corresponds to an in- compared to values currently discussed in the literature,
crease of the band width from 1.96 and 1.51 eV in DFT-ywhjch range from~0.1 to ~1.0 eV?2

LDA to 2.48 and 1.81 eV in the GWA, for the and =*
bands, respectively. In an earlier GWA study, a similar in-

. ] . B. Dielectric properties
crease of the bandwidth was found for a wide variety of prop

materials>®
The lowest-lying singlet exciton'B,) has a binding en-
ergy Ep, of 1.85 eV. The siza,, of this exciton, calculated

using Eq.(21), is 12 a.u., i.e., less than two thiophene rings.

To give an impression of the exciton wave function
d(re,rp), we have plotted in Fig. 8op panel the probabil-
ity of finding the hole at a distancg, along the chain from
the electron,

Proh(xh)~J dypdz,|®(re,rp)|?, (32

where the electron coordinatg is taken 1 a.u. from the

inversion center, in the direction perpendicular to the poly-¢

mer plangfor the electron coordinate the inversion center,
this probability would be zero due to symmetryVe have
plotted Probgy) for both the 'B, and *A4 excitons.

As the optical gap is given b¥,=E,—E,, we have

E,=1.74¢eV, in good agreement with the experimental value

We calculate the polarizabilities per unit lengih(i )
with Eqgs.(28) and(29). The obtained»=0 values are listed
in Table Il. Note that the polarizability along the chain, i.e.,

TABLE I. Quasiparticle Eg4) and optical E,) gaps and binding
energies E,), for the cases “intra,” using intrachain screening
only (isolated chaijy and “intra+inter,” using both intra- and in-
terchain screeningbulk) for three different values of the cutoff
distancer s [S€€ EQ.(22)]. Exciton transition energies are also
listed. Experimental data from Ref. 18. All data in eV.

Intra + interchain

linter (A.U.) Intrachain 8.0 10.0 12.0 Experiment
g 3.59 232 249 269

Ep('By) 1.85 0.64 0.76 0.86

E, 1.74 1.68 1.73 1.73 1.8

3B,— 1B, 0.51 034 039 045 0.45

1B, — 1A, 0.89 045 053 0.58 0.55
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TABLE II. The zero-frequency polarizabilities of the single similar calculations for =8 a.u. and =12 a.u. These
chain per unit lengttin aé) and the dielectric constants of the bulk qat3 are also listed in Table I. The QP band gaps are 2.32 and
along the principal axes of the chain and the crystal. 2.61 eV, respectively. ThéB, binding energies are 0.64 and
0.86 eV and hence the optical gaps are 1.68 and 1.73 eV,

_ Polarizabilities Dielectric constants respectively. This means that the optical gap is quite insen-
Directionj — xi(w=0) Crystal axisy  &,(w=0) sitive to the choice of . This is consistent with the fact
1 60.4 c 10.8 that in the limitr e %, which corresponds to no interchain

2 16.3 b 33 screening, we should find the isolated chain absorption gap

3 81 a 26 of 1.74 eV. The energy differences between the excitons are

even less sensitive 1q,,. The good agreement with experi-
ment and the fact that especially the optical gap and the

in the direction of the extended carbensystem, is much €nergy separation between the excitons are hardly influenced

larger than those in the perpendicular directions. This differPY Varying riner are alsoa posteriori justifications for our
ence is reflected in the dielectric constani$i ) calculated model screening interaction E3).

using Egs.(30) and (31); the dielectric constant along the

chain is much larger than those in the perpendicular direc- IV. CONCLUSIONS AND DISCUSSION

tions. In real systems with disorder the conjugation length

will be finite, which will reduces|. Note, however, that the ~ Summing up, we have calculated the quasiparticle band
perpendiculardielectric constangé, plays the dominant role structure and lowest-lying exciton binding energies of an iso-

in the interchain screening of E(R2) along the chain. lated polythiophene chain and crystalline polythiophene. For
the isolated chairtwhere there is only intrachain screenjing

we find a large band gap and large exciton binding energies,
due to the absence of long-range screening. After including
The resulting band structure, calculated using the bulknterchain screening, which is responsible for the long-range
screening from Eqs(22) and (23) is given in Fig. 2, right screening in bulk polythiophene, we find that both the band
panel. The QP gajry has decreased to 2.49 eV; the, gap and exciton binding energies are drastically reduced.
exciton binding energy is 0.76 eléee Table). Hence, the However, the optical gap is hardly affected. We suggest that
predicted optical gap is 1.73 eV, virtually unchanged fromthese conclusions hold for conjugated polymers in general.
the isolated chain results of 1.74 eV and in good agreement This sheds light on the fact that the calculations by Rohlf-
with experiment® Note that theabsorptiongap of Ref. 18 is  ing and Louié® on isolated chains of PA and PPV yield good
2.0 eV, also found in earlier work on PT but thelumines-  results for the optical gaps, whereas their lowest-lying singlet
cencegap is 1.8 eV. There are two reasons why we shouldexciton binding energy of 0.9 eV for PPV is in excess of
compare our result to the latter gap. The first reason is thaecent experimental values of 0:88.15 eV obtained by a
absorption occurs everywhere in a sample, both in the ordirect STM measurement for an alkoxy-substituted PPV, and
dered and disordered parts, but luminescence occurs pré-48+0.14 eV for unsubstituted PPY.The inclusion of in-
dominantly in the most ordered parts with the longest conjuterchain screening effects will drastically reduce their calcu-
gation lengths. This is because, prior to recombinationjated binding energy and may well lead to agreement with
excitons diffuse to those parts of the sample where they havihis experiment. Clearly, it would also be very interesting to
the lowest energy’ The second reason is that after photoex-repeat the experiment in Ref. 4 for polythiophene and poly-
citation, the rings, which may be twisted around their com-acetylene. Interestingly enough, a value of 0.4 eV is obtained
mon C-C bond, tend to co-planarize in the excited state, duor the exciton binding energy in PPV by means of an
to the fact that the excited state is slightly more quinoid thareffective-mass appromixation in which the electron-hole in-
the aromatic ground stafeAs we are performing our calcu- teraction is derived from a bulk dielectric tensBrThe dif-
lations for a perfect, co-planar chain of PT, we should thereference of about a factor of 2 in exciton binding energy be-
fore compare our optical gap to the luminescence gap. Noteveen crystalline PT and PPV can, at least qualitatively, be
that in principle it is possible that excitons trapped in defectexplained by the differences in reduced masge€l/u
or disordered parts of the sample to have a lower energy thas 1/m_+1/m_.) of PT and PPV, for which we fing.""
in a fully conjugated, defect-free polymer. However, the lu-=0.08n,, while x"?V=0.04n, (Ref. 38, both in DFT-
minescence spectrum of Ref. 18 can be fully understood iDA, and by the fact that in an effective-mass approxima-
terms of the'B, exciton decay and its vibronic side bands, tion the binding energy is proportional to. Of course, these
which means that such defects are either rare or that excitorssguments, which are qualitative only, do not take away the
trapped by such defects decay nonradiatively. need forab initio calculations on the crystalline phase of
What is very important is that theelative exciton ener- PPV,
gies(also listed in Table)lare now also in good agreement  Further, the apparent discrepancy of the results for PA by
with experiment. The sizes of the excitons have increased bithridge et al'* and those of Rohlfing and Lourecan be
~50%; the!B, sizeag is now 18 a.u., or slightly more than understood. The latter find, for an isolated chain, a QP gap of
two rings. In Fig. 3(bottom panelit is clearly seen that the 2.1 eV and an exciton binding energy of 0.4 eV, yielding an
excitons are larger than the corresponding excitons on thabsorption gap of 1.7 eV. The former find a QP gap of 1.86
isolated chair(top panel. eV and do not include excitonic effects. This calculation,
In order to test the sensitivity of our results to the precisehowever, is performed for one PA chain in the same volume
value of the cutoff distance;,, in Eqg. (22) we performed as a PA chain in a crystal would have. Therefore, this calcu-

C. Crystalline polythiophene
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lation is in fact one for a bulk situation, which means that 37 (37
this QP gap is by our arguments expected to be smaller than COE{— - a) sm(—— a)
. : 4 4
that of Rohlfing and Louie. Furthermore, our arguments pre- Ug= . (AB)
dict an exciton binding energy in bulk PA considerably ) _sin 37 o 3m
smaller than the 0.4 eV of Rohlfing and Louie. 4 ¢ 4 ¢

We conclude that a correct many-body description of the ) , o i
electronic and optical properties of bulk polymer systems' '€ Prime in EQs.(A2) and (A3) indicates that the field
should include the effect of interchain screening. An impor-c@used by the chain itself is excluded. We will refer to our

tant consequence of this conclusion is that neither Hartred0d€l, in which a PT chain is represented by an homoge-
Fock nor DFT-LDA calculations should be relied upon in N€0US line with a certain dipole moment per unit lengflas

this context, since Hartree-Fock does not contain screening ~in€ dipole.” , , _ ,
effects at all and since the exchange-correlation potential in N Gaussian units the dielectric tensoiis defined as
DFT-LDA only depends on the local density and cannot de-
scribe the nonlocal effects due to the long-range screening.
Moreover, since exciton effects play such a large role inwhereE(r) is the macroscopic field, arfé(r) is the macro-
conjugated polymers, it is essential to take these effects intscopic polarization. For each direction of the applied field,
account. we will calculate E;,4(r), evaluate the macroscopic fields

E(r) andP(r) by averaging, and solve E(A7) to obtain the
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APPENDIX: CALCULATION OF THE CRYSTAL The field induced by a line dipole on theaxis is given by
DIELECTRIC TENSOR WITHIN A LINE-DIPOLE MODEL

1. Calculation of &,

We apply an electric fieldE () = Eoe™ " (and we will E (1)=—$0(r)= _V»f P (x=x) (49)
take the limitk—0), whereE, andk are parallel to the, b, ind lr—r'|3 ’

or c axis of the crystalsee Fig. 1to calculates,, ¢, and ) . .

5¢, respectively. The applied fielfl,py leads to an induced where® is the electrostatic potential and we have used the

field E,(r); the total microscopic fielcE, i, (r) is then fact thatp,(x')=p.e™ . Evaluation of Eq(A9) yields
. b i
given by Einax(r)=—2k?p,Ko( pk) &', (A10)

Emici(r) = Eapp() + Eind(r)- (AL) " whereK, is a zeroth-order Bessel function of the third kind.
From here on, we omit the factet**. We can calculate the
total microscopic field at th& axis, due to both applied and
induced fields, for a crystal of line-dipoles, by summing over
all line-dipoles but the one at the origin

We definep=ua+vb with p2=u?+v2. Note that there are
two different chains: the4 type, at the corners of the unit
cell, and theB type at the center of the unit cell. For the
and 5 chain we have

pA(X):XA'Er,nicr(X15:0)v (A2) E;nicr,x(ﬁzo)zEapplx(5=0)+ E Eind,x(_ﬁi)v
pi#0
P50 = Xz EpieX,p= $a+ 3) (A3) (ALY)
with p 4(x)[ps(x)] the long-wavelength dipole moment per
unit length of thed (5) chain andy 4 (x) the polarizability

where the positions of the other chains are giverﬁp.yln
the limit k— 0, we can replace the sum by an integral

tensor of theA (B) chain. EquationgA2) and (A3) were . L 2Py [
calculated with Eqs(28) and (29) and using the relations lim > Eind,x(pi):Tfo p'dp'Ko(p') (A12)
k—0 pisﬁo
xa=Uax-Ua xs=Ug'x'Us,  (A4)
- - - - 4w
with U 4, and U the rotation matrices relating thex{,xs) =T A P (A13)

coordinate system to the(b) coordinate systemcx;) where p'=pk and A—ab2 is the area of the two-

- - dimensional unit cell per chain. Substitution of E¢813)
cos( ) —sin( ) and(All) in Eq. (A8) yields

-

4
U= (AS) X1A

T T '
sin(z— a) cos(z— a) pxszappl,x- (A14)

Z—a
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SinceP,=p, /A, we have

X1

PX:A—i— 4y, Eappii-

(A15)

The macroscopic fielcg, is the average over the two-
dimensional unit cell of the microscopic field as given by Eq.

(A11) for generalp, but now we include the chain at=0
in the sum

. 1 2= - -
Ex:EappIx+ lim A | d pZ Eind,x(P_Pi)
k—0 unit cell pi

(A16)
. 2w - -
= Eappixt l'mTJ PdPZ Einax(p—pi)
k=0 pi
(A17)
47p
= Eappl,x_ TX (A18)

Combining this with Eqs(A7) and(A15) we obtain Eq(30)

4oy
A

(A19)

g.=1

2. Calculation of £, and gy,

We now takeE,,,(r) andk parallel toa. The derivation

for Eapp(r) and k parallel tob is equivalent. The dipole
moments of the chains must satisfy Eg82) and(A3). The

field induced by the chain at the origin is given by

Pa-r ,
Epg(r)=—V®&(r)=-V de (A20)
r—r

=M(p) P, (A21)
where
4u® 2 4uy
. ot p*  pt
M(p)= 5 (A22)
4uv 4p
p* p* p?

in the two-dimensionald,b) coordinate systentthe dipole
moment in thec direction is zero and hence we work with
2X2 instead of X3 matrice$. The microscopic electric
field E/,, at the origin, excluding the field induced by chain

at the origin itself, is given by
Er’nicr(F-;: 0)= Eapp“—;: 0)+M 4 pst+Mg ps,
(A23)

where

M =lim >  M(p;cosku;,

k—0 pie A,p;#0

(A24)
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Mg=lim > M(p;)cosku;. (A25)

k—0 pjeB

These sums are evaluated in the next subsection. Substitution
of Eq. (A23) into Eq.(A2) and solving yields

}aE pA,a/Eappl,a:()_(A[-l_)_(A' MA_)_(B‘ MB]_l)aa,
(A26)
with y 4 and yz as defined in Eq(A4). Analogous to the
derivation given by Jackséhfor a point dipole, we can
derive the electric field of a line dipole 5t=0 (Ref. 40

E(p)=(M(p)—2m8(p)1)-p, (A27)

where the convention in E¢A27) is that the field within the

line dipole at5=0 is given by the term- Zwﬁ(ﬁ)p and the
Cauchy principal value of the integral should be taken in

integrals across the A7 singularity at,S:O. The macro-
scopic field is given by the average over the microscopic

field of Eq. (A23) for generalp including the chain at the
origin. Note that since, by symmetrp, 4 ,=—psp, theb
components do not contribute to the macroscopic field. Also
by symmetry, we hav 4 ,=pPsa=pPa. We then have for

the macroscopic fiel@,(p):
3 1 -
Ea(p)=Eappiat lim ﬂp . d PE Maa
k—0 unit cell PK

. 2
X (5 )08 KU Pa— 5P (A28)

1 > -
:Eappl,a+ lim K,Pf dZPMaa(P)COS(kU)pa
k—0

21

- T Pa (A29)

4mp,

= Eappl,a_ A (A30)

Substituting this result in EqA7) and using the fact that
P.=pa/A, we find Eq.(31)

1
Aq.
1= axa

(A31)

€™

A similar result is obtained fog,, .

3. Evaluation of M 4 and M

From the symmetry of Eq$A22), (A24), and(A25), we
see thatM 4 ap=M 4 pa=0=Mpap=Mppa=0 and M 4 aa
=—=M 4pp aNd Mg aa=—Mpgyp. This leaves us with only
one element of each matrix to be determined. Considering
M 4 first, we split the summation of E¢A24) into two parts.
For p;<R (with R large we perform the summation explic-
itly (taking k=0), while for p;=R we replace the summa-
tion by an integral
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M 4aa= ~ 2

p Maa(pi)
pi€ Api#0pi<R

1 (= 27
w1im [ “odp | M aa(p1coskp cos)
k—0 2AJr 0

(A32)

which is exact in the limilR—o. The sum is evaluated nu-
merically; its value is—0.009 672,72 in the limit R—o.
The integral becomes- #/(2A) after first taking the limit

J.-W. van der HORSt al.
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k—0 andthenthe limit R—. We can calculat®/ 5 5, In a

similar way. The sum yields 0.012 08@2 and the integral
becomes again- 7/(2A). ThereforeM 4, and Mz are

—0.030068,2 0

M 4= ., (A33

4o 0.030 068, 2 (A33)
—0.008353,2 0

M= 2| (A34)
0 0.008 353,
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