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Ab initio prediction of the electronic and optical excitations in polythiophene: Isolated chains
versus bulk polymer
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We calculate the electronic and optical excitations of polythiophene using the GW~G stands for one-electron
Green function, W for the screened Coulomb interaction! approximation for the electronic self-energy, and
include excitonic effects by solving the electron-hole Bethe-Salpeter equation. Two different situations are
studied: excitations on isolated chains and excitations on chains in crystalline polythiophene. The dielectric
tensor for the crystalline situation is obtained by modeling the polymer chains as polarizable line objects, with
a long-wavelength polarizability tensor obtained from theab initio polarizability function of the isolated chain.
With this model dielectric tensor we construct a screened interaction for the crystalline case, including both
intra- and interchain screening. In the crystalline situation both the quasiparticle band gap and the exciton
binding energies are drastically reduced in comparison with the isolated chain. However, the optical gap is
hardly affected. We expect this result to be relevant for conjugated polymers in general.
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I. INTRODUCTION

Semiconducting conjugated organic polymers have
ceived increasing interest in recent years, especially since
discovery of electroluminescence1 of these materials. The
charge carriers and excitations in these materials have
studied extensively both experimentally and theoretica
but many important fundamental issues still remain u
solved. For instance, the magnitude of the exciton bind
energy in these materials is still disputed.2 This is a very
important quantity, since, e.g., in photovoltaic devices~solar
cells! one would like to have a small binding energy, whi
facilitates the fast separation of charges, while in electro
minescent devices such as light-emitting diodes~LEDs! a
larger exciton binding energy, to increase the probability
fast ~radiative! annihilation of electron-hole pairs, is desi
able.

In conventional semiconductors such as Si and GaAs
optical excitations are well described in terms of very wea
bound electron-hole pairs~so-called Wannier excitons! with
a binding energy of the order of 0.01 eV. In crystals made
small organic molecules such as anthracene, the excito
essentially confined to a single molecule~Frenkel exciton!,
leading to a binding energy of the order of 1 eV. The qu
tion is where exactly conjugated polymers fit in betwe
conventional semiconductors, on the one hand, and mol
lar crystals, on the other. Negligibly small~0.1 eV or less3!,
intermediate@;0.5 eV ~Ref. 4!#, and large@;1.0 eV ~Refs.
5–7!# binding energies have been proposed.

Ab initio calculations, on a variety of conjugated pol
mers, within the local density approximation of density fun
tional theory ~DFT-LDA! yield equilibrium structures in
very good agreement with experiment.8–11 The Kohn-Sham
gaps in these calculations are typically 40% smaller than
PRB 610163-1829/2000/61~23!/15817~10!/$15.00
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optical band gap~absorption gap!. In cases where calcula
tions for both isolated chains and the crystalline situat
were performed, small differences~0.1 to 0.2 eV for gaps of
;3.0 eV) in Kohn-Sham band gaps were found.10,11 How-
ever, it is well known that the Kohn-Sham eigenvalues f
mally cannot be interpreted as excited state energies.12 More-
over, excitonic effects are not taken into account in the
calculations.

An ab initio many-body calculation within the GW~G
stands for one-electron Green function, W for the scree
Coulomb interaction! approximation13 ~GWA! was per-
formed for poly-acetylene~PA! by Ethridgeet al.14 They
claim that their quasiparticle~QP! gap, excluding excitonic
effects, is in agreement with the experimental absorpt
gap. This result seems to be in contrast with a more rec
calculation by Rohlfing and Louie15 of both one-~QP! and
two-particle ~exciton! excitation energies for PA and poly
phenylene-vinylene~PPV! chains. Their absorption gaps a
in good agreement with experiments, but the inclusion
excitonic effects proves to be crucial for this. However, th
exciton binding energy of 0.9 eV for PPV is much larg
than recently obtained experimental values: 0.3560.15 eV
for an alkoxy-substituted PPV,4 and 0.4860.14 eV~Ref. 16!
for unsubstituted PPV.

In a recent paper,17 hereafter referred to as I, we focuse
on the differences in excitations between an isolated po
thiophene ~PT! chain, see Fig. 1, and crystalline poly
thiophene. For the isolated chain, we found an absorp
gap in good agreement with experiment, but the energy
ferences between the various exciton levels were too larg18

After including the screening by the surrounding chains, b
the optical gap and the exciton transition energies were
good agreement with the experimental values. The differe
in screening between an isolated polymer chain and a c
densed polymer medium can be explained as follows. Fo
isolated quasi-one-dimensional system, such as a si
15 817 ©2000 The American Physical Society
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15 818 PRB 61J.-W. van der HORSTet al.
polymer chain in vacuum, there is no long-ran
screening.19–21 A way to understand this is to realize that
we have two charges on a polymer chain with a separa
larger than the width of the chain (;7 a.u.), most field lines
connecting the charges will be outside the chain. If the ch
is embedded in a medium~possibly, but not necessarily, con
sisting of similar chains!, the medium will provide a long-
range screening of the Coulomb interaction. The scree
Coulomb interaction determines both the QP energies~in-
cluding the band gap! and the exciton energies. Long-rang
screening reduces both the QP band gap and the ex
binding energies. Apparently, there is a near cancellation
tween the change of the QP gap and the exciton bind
energy, meaning that the optical absorption gap, which is
difference between the two, is influenced much less by in
ducing screening.

In I, a method for the calculation of the dielectric tens
of crystalline polythiophene from theab initio single chain
polarizability function was introduced, without giving an
details. Further, some novel technical procedures in
GWA calculation were used, in particular in the handling
the Coulomb divergence both in real and reciprocal spa
Details of these approaches, as well as of the calculatio
the quasiparticle energies and exciton binding energies,
be explained here. The paper is organized as follows. In S
II we explain the computational methods employed to cal
late the quasiparticle band structure, to regularize Coulo
interaction, to calculate the exciton binding energies and
dielectric tensor. In Sec. III, we will present results for t
electronic and optical excitations of both the isolated ch
and bulk PT. In Sec. IV we will discuss these results a

FIG. 1. Monomer and crystal structure of polythiophene. T
panel: A single chain of polythiophene. Black atoms are carb
gray, sulfur; white, hydrogen. Bottom panel: crystal structure~from
Ref. 29! as seen perpendicular to the chain directiona
514.5 a.u.,b510.5 a.u.,c514.8 a.u.,a531.2°).
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compare them to other calculations, and draw our conc
sions.

II. COMPUTATIONAL METHODS

Many successfulab initio calculations of the QP band
structure of conventional anorganic semiconductors h
been performed within the GWA~Ref. 13! for the electronic
self-energyS of the one-particle Green function. Very re
cently, progress has been made in the evaluation of the t
particle Green function,22–24 from which the optical proper-
ties can be obtained. This is done by solving the Bet
Salpeter equation25,26 ~BSE!, which can be mapped onto
two-body Schro¨dinger equation for an electron and a ho
forming an exciton. We will use these approaches to cal
late the QP band structure and exciton binding energie
PT. The calculational scheme is as follows: first we perfo
a DFT-LDA-based Car-Parrinello calculation, from whic
we obtain atomic positions, wave functions, and ground-s
energies. We use these as input for the GWA calculat
which yields the QP excitation energies. With the DFT-LD
wave functions and the QP energies we calculate the t
particle excitations by solving the BSE. This scheme is fi
applied to the single chain and next to the crystal. We
sume the same atomic geometry for the ground and exc
states, i.e., the coupling between electronic and lattice
grees of freedom is neglected. Experimental data18 indicate
that energy shifts due to lattice relaxations are of the orde
0.1 eV in PT. DFT-LDA calculations27 predict a hole-
polaron relaxation energy of 0.04 eV for 16T (nT is an oli-
gomer consisting ofn thiophene-rings!. A similar calculation
predicts a triplet exciton relaxation energy of 0.2 eV f
12T.28 Singlet relaxation energies are typically smalle
These values, calculated for oligomers, are upper bounds
the values in the polymer, since in the oligomers the exc
tion is confined, leading to a larger local deviation from t
ground-state density and hence to a larger relaxation en
than in the polymer.

A. The quasiparticle equation

We start our calculations with a pseudopotential pla
wave DFT-LDA calculation9 of a geometry-relaxed PT chai
in a tetragonal supercell. The plane-wave cutoff energy is
Ry. The length in the chain directionax was optimized and
found to beax514.80 a.u.@experimental values range from
14.65 a.u.~Ref. 29! to 15.18 a.u.~Ref. 30!#. In the perpen-
dicular directions we found that a separation ofay5az
515.0 a.u. is enough to consider the chains in the DFT-LD
calculation as noninteracting. The two rings in the unit c
are found to be co-planar and we choose them in they5z
plane. We use Hartree atomic units~with the Bohr radiusa0
as unit of length and the Hartree as unit of energy! through-
out this article, unless specified otherwise. The one-part
excitation energies are evaluated by solving the QP equa

F2
¹2

2
1VH~r !Gfnk~r !1E @VPP~r ,r 8!

1S~r ,r 8,Enk!#fnk~r 8!d3r 85Enkfnk~r !, ~1!

;
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whereVH is the Hartree potential,VPP the nonlocal pseudo
potential of the atomic core, andS the electronic self-energy
Since in practice the DFT-LDA wave functions and the Q
wave functions are almost identical, we use the former in
calculations. In DFT-LDA,S is approximated by

S~r ,r 8,v!5Vxc~r !d~r2r 8!, ~2!

whereVxc is the exchange-correlation potential of the hom
geneous electron gas. In the GWA,S is approximated by the
first term of the many-body expansion in terms of the o
particle Green functionG and the screened Coulomb inte
actionW of the system.13 In order to calculateS, we follow
the real-space imaginary-time formulation of the GWA
Rojaset al.,31 in its mixed-space formulation.32 In this for-
mulation, we transform nonlocal functionsF(r ,r 8) to func-
tions Fk(r ,r 8),

Fk~r ,r 8!5 (
n51

nk

F~r1naxx̂,r 8!e2 ik(x1nax2x8), ~3!

F~r ,r 8!5
1

nk
(

k
Fk~r ,r 8!eik(x2x8), ~4!

wherenk is the number of equidistantk points in the one-
dimensional ~1D! Brillouin zone ~BZ!. We use periodic
boundary conditions: F(r1nkaxx̂,r 8)5F(r ,r 81nkaxx̂)
5F(r ,r 8). The functionsFk(r ,r 8) are fully periodic:Fk(r
1axx̂,r 8)5Fk(r ,r 81axx̂)5Fk(r ,r 8), so thatr and r 8 can
be chosen in the unit cell. We calculate the one-part
Green function for imaginary times

Gk~r ,r 8,i t!

5H i(
v

uvk~r !uvk* ~r 8!e2(evk2eF)t for t,0,

2 i(
c

uck~r !uck* ~r 8!e2(eck2eF)t for t.0,

~5!

whereunk(r )5fnk(r )e2 ikx andenk ~with n5c,v) are DFT-
LDA wave functions and the corresponding energies~with v
and c referring to valence and conduction states, resp
tively!. eF is the Fermi energy~set in the middle of the
DFT-LDA gap!. We further calculate the irreducible single
chain polarizability function in the random phase approxim
tion ~RPA!

Pk~r ,r 8,i t!522i(
q

Gq~r ,r 8,i t!Gq2k~r 8,r ,2 i t!, ~6!

the screened Coulomb interaction

Wk~r ,r 8,iv!5@ ṽk
21~r ,r 8!2Pk~r ,r 8,iv!#21, ~7!

where ṽk(r ,r 8) is a cutoff Coulomb interaction in mixed
space, discussed in Sec. II B, and we calculate the electr
self-energy

Sk~r ,r 8,i t!5 i(
q

Gq~r ,r 8,i t!Wk2q~r ,r 8,i t!. ~8!
ll

-

-

e

c-

-

ic

We calculate all the above two-point functions on a dou
24324324 real-space grid forr andr 8 in the unit cell. This
corresponds to a plane-wave cutoff of 25 Ry. The total nu
ber of valence and conduction bands taken into account
300. In Eqs.~6!, ~7!, and ~8! we switch between time and
frequency domain using Fourier transforms. Our imagina
time grid has an exponential spacing~0.25 a.u. neart50, up
to a spacing 6 a.u. neartmax532.0 a.u.) and we interpolate t
a linear grid when using the fast Fourier transform~FFT! to
imaginary frequency. A similar exponential grid is used f
the imaginary frequency. We split the self-energy in an e
change partSx and a correlation partSc:

Sk
x~r ,r 8!5(

q
iGq~r ,r 8,2 id!ṽq2k~r 8,r !, ~9!

Sk
c~r ,r 8,i t!5(

q
iGq~r ,r 8,i t!Wq2k

scr ~r ,r ,i t!, ~10!

whered is an infinitesimally small positive time, andWscr is
the screening interaction:

Wk
scr~r ,r 8,iv![Wk~r ,r 8,iv!2 ṽk~r ,r 8!. ~11!

In the calculation ofSx we use a 1D Brillouin-zone samplin
of ten equally spacedk points, and in the calculation ofSc

four k points~since the screening interaction is short rang
the convergence ofSc with respect to the number ofk points
is faster than that ofSx). With the above parameters, th
calculated QP gap has converged to within about 0.05
From a two-pole fit on the imaginary-frequency axis an a
lytical continuation to the real-frequency axis is obtaine
Sc( iv)→Sc(v).31 Subsequently, the QP equation~1! can be
solved by replacing the QP wave functions by the DFT-LD
wave functions and obtainingEnk iteratively:

Enk5enk1^fnkuSk
c~Enk!1Sk

x2Vxcufnk&. ~12!

B. Treatment of the Coulomb interaction

We have developed a procedure to deal with thek50 and
r5r 8 singularities of the Coulomb interactionvk(r ,r 8). We
will first describe the procedure for a three-dimensional~3D!
system and later explain the specific adaptations of this p
cedure we used for our quasi-1D system.

In reciprocal space the Coulomb interaction is given b

vk~K ,K 8!5
4p

uk1K u2
dK ,K8 . ~13!

We replacev0(0,0), which would be infinite in Eq.~13! by a
finite value, which is obtained in the following way. W
evaluate the integral over all space of the Coulomb inter
tion multiplied by a Gaussian:

I a5E d3q
4p

q2
e2aq2

58p2Ap

a
, ~14!

and evaluate the corresponding sum,excludingthe singular-
ity for K5k50,



t

rit
e

a
e

ns
r

an
io

-
-

nc

a
ive
an

e
ar
in
d

,

-

ace
ght

ig-
n
ing

ach
he

e-
t a

m,
no

our
ed
-
lat-
A
ut

bi-
ent
e-

or-
ing
e-

l to
of

o-

15 820 PRB 61J.-W. van der HORSTet al.
Sa5DV(
k,K

8 vk~K ,K !e2auk1K u2, ~15!

wherekP1 BZ, the first Brillouin zone of the 3D lattice.DV
is the volume per (k,K ) point and the prime indicates tha
k5K50 is excluded in this sum. We now put

vk50~K50,K 850![ lim
a→0

@ I a2Sa#. ~16!

Finally, we obtainv(r2r 8) by a discrete FFT ofvk(K ,K 8)
to real space. We find a finite value forv(r2r 850), solving
at the same time the problem with the Coulomb singula
for r2r 850. In the original formulation of the space-tim
method,31 the authors used a grid forr 8 offset with respect
the r grid in order to avoid this singularity.

In order to study a truly isolated chain, which is
quasi-1D system, we have to avoid ‘‘crosstalk’’ between p
riodic images of the chain in the perpendicular directio
We do this by dividing space into regions of points that a
closer to the atoms of a specific chain than to those of
other. Subsequently, we cut off the Coulomb interact
v(r2r 8), obtained in the way described above, by setting
at zero if r and r 8 belong to different regions. Thus we ob
tain an interactionṽ(r ,r 8). In the construction of the Cou
lomb interactionv(r2r 8), we take a regular grid ofk points
with a spacing in they andz direction approximately equal to
that in thex direction. From the cutoff interactionṽ(r ,r 8) we
obtain ṽk(r ,r 8) in mixed space from Eq.~3! with k now in
the 1D Brillouin zone.

C. The Bethe-Salpeter equation

The two-body electron-hole Schro¨dinger equation related
to the BSE is solved by expanding the exciton wave fu
tions F(re ,rh) in products of conductionfck(re) and va-
lence wave functionsfvk(rh) ~Refs. 22–26!,

F~re ,rh!5 (
k,c,v

Akcvfck~re!fvk* ~rh!. ~17!

Here we have restricted our discussion to excitons that h
zero total momentum, since only these are optically act
As we are interested in the lowest lying excitons, an exp
sion in the highest occupied valence (p) and lowest unoccu-
pied conduction (p* ) bands is sufficient to converge th
exciton energies to within 0.1 eV; energy differences
converged even better. Below, we will give all energies
eV with a precision of two decimal places. The exciton bin
ing energies Eb follow from the Schro¨dinger-like
equation:22–24

@Eck2Evk2Eg1Eb#Akcv1 (
k8c8v8

@2Vkcv,k8c8v8
x ds,0

2Wkcv,k8c8v8#Ak8c8v850, ~18!

whereEg is the QP band gap,Eb the exciton binding energy
and Wkcv,k8c8v8 are the matrix elements of the static (v
50) screened interaction
y

-
.

e
y

n
it

-

ve
.
-

e

-

Wkcv,k8c8v85E drE dr 8fvk~r 8!fck* ~r !

3W~r ,r 8,v50!fv8k8
* ~r 8!fc8k8~r !, ~19!

and Vkcv,k8c8v8
x the exchange matrix elements~present for

singlet excitons,s50, only! of the bare Coulomb interac
tion:

Vkcv,k8c8v8
x

5E drE dr 8fv8k8
* ~r !

3fck* ~r 8!ṽ~r ,r 8!fvk~r 8!fc8k8~r !. ~20!

The integrals over space in Eqs.~19! and ~20! are in the
calculations replaced by summations over our real-sp
grid. We use wave functions and energies on a grid of ei
k points and extrapolate to a grid of 100k points.

Formally, dynamical screening effects may only be
nored in the BSE ifEg@Eb . However, since it has bee
shown that dynamical effects in the electron-hole screen
and in the one-particle Green function largely cancel e
other,33 this approximation is nevertheless valid, even if t
relationEg@Eb does not strictly hold.

We calculate an approximate exciton sizeaex by fitting
the exciton coefficientsAkcv to the hydrogenlike form:

Akcv5
Ak50,cv

~11aex
2 k2!2

. ~21!

Note that in fact the exciton is highly anisotropic. Neverth
less, Eq.~21! gives pretty good fits and can be used to ge
qualitative impression of the~relative! size of the excitons.

D. Inclusion of interchain screening

As mentioned in the Introduction, in a quasi-1D syste
such as an isolated chain of a polymer in vacuum, there is
long range screening. For a meaningful comparison of
calculations to the experimental data, which are obtain
from either films or bulk polymer material, both the intra
and the interchain screening are important, and only the
ter is long ranged. It would be desirable to perform a GW
and exciton calculation for a 3D crystal structure of PT, b
the amount of computational work involved is as yet prohi
tively large. Since PT samples prepared in many differ
ways show very similar optical behavior, we expect the d
tails of the interchain screening not to be extremely imp
tant. This consideration leads us to propose the follow
approximation for the interchain screening interaction, d
fined analogously to Eq.~11!:

Winter
scr ~r ,iv!5~12e2r /r inter!$@«'

2 ~ iv!x2

1« uu~ iv!«'~ iv!~y21z2!#21/22v~r !%,

~22!

where «'( iv) and « uu( iv) are the ab initio frequency-
dependent dielectric constants perpendicular and paralle
the chain, respectively. The counterintuitive combination
dielectric constants and coordinates in Eq.~22! results from
solving the Laplace equation for a point charge in a hom
geneous, anisotropic medium with dielectric constants« uu
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and «' .34 The prefactor takes care of a smooth cutoff f
distances smaller thanr inter, for which the interchain screen
ing should be replaced by the intrachain screening. Equa
~22! has the correct behavior for distances larger than
interchain distancer inter, for which we take 10 a.u., which i
typical for the experimental crystal structures of Refs. 29 a
30.

The total screened interaction for the bulk system th
becomes

Wtotal~r ,r 8,iv!5Wintra
scr ~r ,r 8,iv!

1Winter
scr ~r2r 8,iv!1v~r2r 8!, ~23!

where Wintra
scr is the intrachain screening already calculat

with Eq. ~7!. The screened interactionWtotal is correct at
short range, where the interchain screening is vanishin
small compared to the 1/r divergence of the intrachain
screening, and at long range, where the intrachain scree
vanishes due to its quasi-1D nature. Of course, for inter
diate ranges, it is not strictly allowed to simply add the pa
representing long- and short-ranged screening, but we ex
Eq. ~22! to give a reasonable interpolation there.

Note that the interchain screening part given by Eq.~22!
is long ranged by construction, and eightk points are now
needed to converge the corresponding self-energyS inter

c from
Eq. ~10!. On the other hand, the required number of re
space grid points in order to calculateS inter

c is less than be-
fore, becauseWinter

scr is a very smooth function ofr ; a 12
312312 real space grid turns out to be sufficient. The to
self-energy can be expressed as

S total5S intra
c 1S inter

c 1Sx. ~24!

Because the self-energies in this equation are additive,
can reuse the self-energiesS intra

c and Sx, which we have
already calculated for the isolated chain.

The overlap between wave functions, and therefore
electronic coupling between neighboring chains, is ve
small. This means that we can use the isolated-chain w
functions to calculate the Green function and self-ener
This obviously implies that in our exciton calculations w
restrict ourselves to excitons in which we take the elect
and hole are on the same chain~so-called intrachain exci
tons!. In summary, the only, but essential, difference b
tween our calculations for the isolated PT chain and bulk
is in the use of an interchain screened interaction.

E. Dielectric tensor of crystalline PT

In order to construct the screened interaction of Eq.~22!,
we have to calculate the dielectric tensor of bulk PT. We
this for the crystalline structure of Ref. 29, which is repr
duced in Fig. 1. We use a model in which the chains
replaced by polarizable line objects with a polarizability te
sor obtained from the single-chain polarizability functio
The principal axes of the chain are the following:

x̂15 x̂, x̂25
1

A2
~ ẑ1 ŷ!, x̂35

1

A2
~ ẑ2 ŷ!. ~25!
n
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The full polarizability functionX(r ,r 8,iv) of a single chain
is given by

X~r ,r 8,iv!

5P~r ,r 8,iv!1E E dr 9dr-P~r ,r 9,iv!

3Wintra~r 9,r-,iv!P~r-,r 8,iv! ~26!

[X(0)~r ,r 8,iv!1X(1)~r ,r 8,iv!. ~27!

The long-wavelength (q→0) polarizability tensorx per unit
of chain length of a single chain in the (x1 ,x2 ,x3) coordinate
system is diagonal and has diagonal elements given by

x1~ iv!5 lim
q→0

F 1

q2E E drdr 8e2 iq(x12x18)X~r ,r 8,iv!G ,

~28!

and for j 52,3,

x j~ iv!5E E drdr 8xjX~r ,r 8,iv!xj8 . ~29!

The calculation ofx j ( iv) has been performed with fou
k-points, with the exception ofx1

(0) , for which it proved to
be necessary to use eightk points.

If we now approximate the chains by polarizable line o
jects with the above polarizability tensor, we can calcul
the macroscopic dielectric tensor of the crystal29 of these
chains. This is done by a procedure of which the details
given in the Appendix. The axes of the crystal unit cell a
denoted byâ, b̂, andĉ5 x̂5 x̂1. Dropping the frequency de
pendence in the notation, we find the following express
for «c :

«c511
4px1

A
, ~30!

whereA is the surface area per chain in the plane perp
dicular to the chain. For«a and«b we find

«g5
1

12
4p

A
x̃g

, ~31!

where g5a,b and x̃g is the effective polarizability of the
chain along theg axis. In the Appendix details of the calcu
lation of «a , «b , and«c are given.

To retain the tetragonal symmetry in our calculation~in
order keep the computations feasible!, we average«a( iv)
and«b( iv), which are not very different, to obtain«'( iv).
For « uu( iv) we take«c( iv). Note that for using the screene
interaction of Eq.~22! in the implementation of the GWA
formalism presented in Sec. II A, we have calculated the
electric constants«'( iv) and « uu( iv) along the imaginary
frequency axis.
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III. RESULTS

A. Isolated chain

The calculated GWA QP band structure~together with the
DFT-LDA band structure! is shown in Fig. 2, left panel. We
find a minimal band gapEg at G of 3.59 eV, which is quite
large compared to the DFT-LDA value of 1.22 eV. The e
fective masses,m* 51/\2(]2E/]k2)21, of the p and p*
bands atG, which are 0.15 and 0.17me ~with me the free
electron mass! in DFT-LDA, are reduced by about 15% i
the GWA to 0.13 and 0.15me . This corresponds to an in
crease of the band width from 1.96 and 1.51 eV in DF
LDA to 2.48 and 1.81 eV in the GWA, for thep and p*
bands, respectively. In an earlier GWA study, a similar
crease of the bandwidth was found for a wide variety
materials.36

The lowest-lying singlet exciton (1Bu) has a binding en-
ergy Eb of 1.85 eV. The sizeaex of this exciton, calculated
using Eq.~21!, is 12 a.u., i.e., less than two thiophene ring
To give an impression of the exciton wave functio
F(re ,rh), we have plotted in Fig. 3~top panel! the probabil-
ity of finding the hole at a distancexh along the chain from
the electron,

Prob~xh!;E dyhdzhuF~re ,rh!u2, ~32!

where the electron coordinatere is taken 1 a.u. from the
inversion center, in the direction perpendicular to the po
mer plane~for the electron coordinatein the inversion center
this probability would be zero due to symmetry!. We have
plotted Prob(xh) for both the 1Bu and 1Ag excitons.

As the optical gap is given byEo5Eg2Eb , we have
Eo51.74 eV, in good agreement with the experimental va

FIG. 2. The quasiparticle band structure of both an isola
chain of PT~full lines, left! and bulk PT~full lines, right! compared
to the DFT-LDA band structure~dashed lines in both pictures!.
-

-
f

.

-

e

of 1.8 eV~Ref. 18! ~see Table I!. While there is good agree
ment for the optical gap, thedifferencebetween the1Bu and
1Ag binding energies of the isolated PT chain is definite
not in agreement with experiment,18 see Table I. Moreover
the 1Bu exciton binding energy of 1.85 eV is very larg
compared to values currently discussed in the literatu
which range from;0.1 to;1.0 eV.2

B. Dielectric properties

We calculate the polarizabilities per unit lengthx j ( iv)
with Eqs.~28! and~29!. The obtainedv50 values are listed
in Table II. Note that the polarizability along the chain, i.e

TABLE I. Quasiparticle (Eg) and optical (Eo) gaps and binding
energies (Eb), for the cases ‘‘intra,’’ using intrachain screenin
only ~isolated chain!, and ‘‘intra1inter,’’ using both intra- and in-
terchain screening~bulk! for three different values of the cutof
distancer inter @see Eq.~22!#. Exciton transition energies are als
listed. Experimental data from Ref. 18. All data in eV.

r inter (a.u.) Intrachain

Intra 1 interchain

Experiment8.0 10.0 12.0

Eg 3.59 2.32 2.49 2.69
Eb(1Bu) 1.85 0.64 0.76 0.86
Eo 1.74 1.68 1.73 1.73 1.8
3Bu→1Bu 0.51 0.34 0.39 0.45 0.45
1Bu→1Ag 0.89 0.45 0.53 0.58 0.55

d

FIG. 3. The hole probability along the chain with the electr
fixed at 1 a.u. above the inversion center for the two lowest sin
excitons,1Bu ~above axis! and 1Ag ~below axis!, for both the iso-
lated chain~top! and the bulk situation~bottom!.
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in the direction of the extended carbonp system, is much
larger than those in the perpendicular directions. This diff
ence is reflected in the dielectric constants«g( iv) calculated
using Eqs.~30! and ~31!; the dielectric constant along th
chain is much larger than those in the perpendicular dir
tions. In real systems with disorder the conjugation len
will be finite, which will reduce« uu . Note, however, that the
perpendiculardielectric constant«' plays the dominant role
in the interchain screening of Eq.~22! along the chain.

C. Crystalline polythiophene

The resulting band structure, calculated using the b
screening from Eqs.~22! and ~23! is given in Fig. 2, right
panel. The QP gapEg has decreased to 2.49 eV; the1Bu
exciton binding energy is 0.76 eV~see Table I!. Hence, the
predicted optical gap is 1.73 eV, virtually unchanged fro
the isolated chain results of 1.74 eV and in good agreem
with experiment.18 Note that theabsorptiongap of Ref. 18 is
2.0 eV, also found in earlier work on PT,35 but thelumines-
cencegap is 1.8 eV. There are two reasons why we sho
compare our result to the latter gap. The first reason is
absorption occurs everywhere in a sample, both in the
dered and disordered parts, but luminescence occurs
dominantly in the most ordered parts with the longest con
gation lengths. This is because, prior to recombinati
excitons diffuse to those parts of the sample where they h
the lowest energy.37 The second reason is that after photoe
citation, the rings, which may be twisted around their co
mon C-C bond, tend to co-planarize in the excited state,
to the fact that the excited state is slightly more quinoid th
the aromatic ground state.2 As we are performing our calcu
lations for a perfect, co-planar chain of PT, we should the
fore compare our optical gap to the luminescence gap. N
that in principle it is possible that excitons trapped in defe
or disordered parts of the sample to have a lower energy
in a fully conjugated, defect-free polymer. However, the
minescence spectrum of Ref. 18 can be fully understoo
terms of the1Bu exciton decay and its vibronic side band
which means that such defects are either rare or that exc
trapped by such defects decay nonradiatively.

What is very important is that therelative exciton ener-
gies ~also listed in Table I! are now also in good agreeme
with experiment. The sizes of the excitons have increased
;50%; the1Bu sizeaex is now 18 a.u., or slightly more tha
two rings. In Fig. 3~bottom panel! it is clearly seen that the
excitons are larger than the corresponding excitons on
isolated chain~top panel!.

In order to test the sensitivity of our results to the prec
value of the cutoff distancer inter in Eq. ~22! we performed

TABLE II. The zero-frequency polarizabilities of the sing
chain per unit length~in a0

2) and the dielectric constants of the bu
along the principal axes of the chain and the crystal.

Polarizabilities Dielectric constants
Direction j x i(v50) Crystal axisg «g(v50)

1 60.4 c 10.8
2 16.3 b 3.3
3 8.1 a 2.6
r-
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similar calculations forr inter58 a.u. andr inter512 a.u. These
data are also listed in Table I. The QP band gaps are 2.32
2.61 eV, respectively. The1Bu binding energies are 0.64 an
0.86 eV and hence the optical gaps are 1.68 and 1.73
respectively. This means that the optical gap is quite ins
sitive to the choice ofr inter. This is consistent with the fac
that in the limitr inter→`, which corresponds to no interchai
screening, we should find the isolated chain absorption
of 1.74 eV. The energy differences between the excitons
even less sensitive tor inter. The good agreement with exper
ment and the fact that especially the optical gap and
energy separation between the excitons are hardly influen
by varying r inter are alsoa posteriori justifications for our
model screening interaction Eq.~23!.

IV. CONCLUSIONS AND DISCUSSION

Summing up, we have calculated the quasiparticle b
structure and lowest-lying exciton binding energies of an i
lated polythiophene chain and crystalline polythiophene.
the isolated chain~where there is only intrachain screenin!
we find a large band gap and large exciton binding energ
due to the absence of long-range screening. After includ
interchain screening, which is responsible for the long-ran
screening in bulk polythiophene, we find that both the ba
gap and exciton binding energies are drastically reduc
However, the optical gap is hardly affected. We suggest
these conclusions hold for conjugated polymers in gener

This sheds light on the fact that the calculations by Roh
ing and Louie15 on isolated chains of PA and PPV yield goo
results for the optical gaps, whereas their lowest-lying sing
exciton binding energy of 0.9 eV for PPV is in excess
recent experimental values of 0.3560.15 eV,4 obtained by a
direct STM measurement for an alkoxy-substituted PPV, a
0.4860.14 eV for unsubstituted PPV.16 The inclusion of in-
terchain screening effects will drastically reduce their cal
lated binding energy and may well lead to agreement w
this experiment. Clearly, it would also be very interesting
repeat the experiment in Ref. 4 for polythiophene and po
acetylene. Interestingly enough, a value of 0.4 eV is obtai
for the exciton binding energy in PPV by means of
effective-mass appromixation in which the electron-hole
teraction is derived from a bulk dielectric tensor.38 The dif-
ference of about a factor of 2 in exciton binding energy b
tween crystalline PT and PPV can, at least qualitatively,
explained by the differences in reduced massesm (1/m
51/mp11/mp* ) of PT and PPV, for which we findmPT

50.08me , while mPPV50.04me ~Ref. 38!, both in DFT-
LDA, and by the fact that in an effective-mass approxim
tion the binding energy is proportional tom. Of course, these
arguments, which are qualitative only, do not take away
need forab initio calculations on the crystalline phase
PPV.

Further, the apparent discrepancy of the results for PA
Ethridgeet al.14 and those of Rohlfing and Louie15 can be
understood. The latter find, for an isolated chain, a QP ga
2.1 eV and an exciton binding energy of 0.4 eV, yielding
absorption gap of 1.7 eV. The former find a QP gap of 1
eV and do not include excitonic effects. This calculatio
however, is performed for one PA chain in the same volu
as a PA chain in a crystal would have. Therefore, this cal
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lation is in fact one for a bulk situation, which means th
this QP gap is by our arguments expected to be smaller
that of Rohlfing and Louie. Furthermore, our arguments p
dict an exciton binding energy in bulk PA considerab
smaller than the 0.4 eV of Rohlfing and Louie.

We conclude that a correct many-body description of
electronic and optical properties of bulk polymer syste
should include the effect of interchain screening. An imp
tant consequence of this conclusion is that neither Hart
Fock nor DFT-LDA calculations should be relied upon
this context, since Hartree-Fock does not contain scree
effects at all and since the exchange-correlation potentia
DFT-LDA only depends on the local density and cannot
scribe the nonlocal effects due to the long-range screen
Moreover, since exciton effects play such a large role
conjugated polymers, it is essential to take these effects
account.
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APPENDIX: CALCULATION OF THE CRYSTAL
DIELECTRIC TENSOR WITHIN A LINE-DIPOLE MODEL

We apply an electric fieldEappl(r )5E0eik•r ~and we will
take the limitk→0), whereE0 andk are parallel to thea, b,
or c axis of the crystal~see Fig. 1! to calculate«a , «b , and
«c , respectively. The applied fieldEappl leads to an induced
field Eind(r ); the total microscopic fieldEmicr(r ) is then
given by

Emicr~r !5Eappl~r !1Eind~r !. ~A1!

We definerW 5uâ1vb̂ with r25u21v2. Note that there are
two different chains: theA type, at the corners of the un
cell, and theB type at the center of the unit cell. For theA
andB chain we have

pA~x!5xI A•Emicr8 ~x,rW 50!, ~A2!

pB~x!5xI B•Emicr8 ~x,rW 5 1
2 â1 1

2 b̂! ~A3!

with pA(x)@pB(x)# the long-wavelength dipole moment p
unit length of theA (B) chain andxI A (xI B) the polarizability
tensor of theA (B) chain. Equations~A2! and ~A3! were
calculated with Eqs.~28! and ~29! and using the relations

xI A5UI A
21

•xI •UI A , xI B5UI B
21

•xI •UI B , ~A4!

with UI A and UI B the rotation matrices relating the (x2 ,x3)
coordinate system to the (a,b) coordinate system (ĉ5 x̂1)

UI A5S cosS p

4
2a D 2sinS p

4
2a D

sinS p

4
2a D cosS p

4
2a D D , ~A5!
t
an
-

e
s
-
e-

ng
in
-
g.
n
to

-
h

UI B5S cosS 3p

4
2a D sinS 3p

4
2a D

2sinS 3p

4
2a D cosS 3p

4
2a D D . ~A6!

The prime in Eqs.~A2! and ~A3! indicates that the field
caused by the chain itself is excluded. We will refer to o
model, in which a PT chain is represented by an homo
neous line with a certain dipole moment per unit lengthp, as
a ‘‘line dipole.’’

In Gaussian units the dielectric tensor«I is defined as

E~r !14pP~r !5«I •E~r !, ~A7!

whereE(r ) is the macroscopic field, andP(r ) is the macro-
scopic polarization. For each direction of the applied fie
we will calculate Eind(r ), evaluate the macroscopic field
E(r ) andP(r ) by averaging, and solve Eq.~A7! to obtain the
dielectric tensor«I .

1. Calculation of «c

For Eappl andk parallel tox̂ ~and hence toĉ and alsox̂1),
we have for both theA andB chain from Eqs.~A2! and~A3!

px~x!5x1Ex8~x!. ~A8!

The field induced by a line dipole on thex axis is given by

Eind~r !52¹W F~r !52¹W E pxe
ikx8~x2x8!

ur2r 8u3
dx8, ~A9!

whereF is the electrostatic potential and we have used
fact thatpx(x8)5pxe

ikx8. Evaluation of Eq.~A9! yields

Eind,x~r !522k2pxK0~rk!eikx, ~A10!

whereK0 is a zeroth-order Bessel function of the third kin
From here on, we omit the factoreikx. We can calculate the
total microscopic field at thex axis, due to both applied an
induced fields, for a crystal of line-dipoles, by summing ov
all line-dipoles but the one at the origin

Emicr,x8 ~rW 50!5Eappl,x~rW 50!1 (
rW iÞ0

Eind,x~2rW i !,

~A11!

where the positions of the other chains are given byrW i . In
the limit k→0, we can replace the sum by an integral

lim
k→0

(
rW iÞ0

Eind,x~rW i !5
2ppx

A E
0

`

r8dr8K0~r8! ~A12!

52
4p

A
px , ~A13!

where r85rk and A5ab/2 is the area of the two-
dimensional unit cell per chain. Substitution of Eqs.~A13!
and ~A11! in Eq. ~A8! yields

px5
x1A

A14px1
Eappl,x. ~A14!
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SincePx5px /A, we have

Px5
x1

A14px1
Eappl,x . ~A15!

The macroscopic fieldEx is the average over the two
dimensional unit cell of the microscopic field as given by E
~A11! for generalrW , but now we include the chain atrW i50
in the sum

Ex5Eappl,x1 lim
k→0

1

2AEunit cell
d2rW(

rW i

Eind,x~rW 2rW i !

~A16!

5Eappl,x1 lim
k→0

2p

A E rdr(
rW i

Eind,x~rW 2rW i !

~A17!

5Eappl,x2
4ppx

A
. ~A18!

Combining this with Eqs.~A7! and~A15! we obtain Eq.~30!

«c511
4px1

A
. ~A19!

2. Calculation of «a and «b

We now takeEappl(r ) andk parallel toâ. The derivation
for Eappl(r ) and k parallel to b̂ is equivalent. The dipole
moments of the chains must satisfy Eqs.~A2! and~A3!. The
field induced by the chain at the origin is given by

Eind~r !52¹F~r !52¹E pA•r

ur2r 8u3
dx8 ~A20!

5MI ~r!•pA , ~A21!

where

MI ~r¢ ![S 4u2

r4
2

2

r2

4uv

r4

4uv

r4

4v2

r4
2

2

r2

D ~A22!

in the two-dimensional (a,b) coordinate system~the dipole
moment in thec direction is zero and hence we work wit
232 instead of 333 matrices!. The microscopic electric
field Emicr8 at the origin, excluding the field induced by cha
at the origin itself, is given by

Emicr8 ~rW 50!5Eappl~rW 50!1MI A•pA1MI B•pB ,
~A23!

where

MI A[ lim
k→0

(
rW iPA,rW i5” 0

MI ~rW i !coskui , ~A24!
.

MI B[ lim
k→0

(
rW iPB

MI ~rW j !coskuj . ~A25!

These sums are evaluated in the next subsection. Substit
of Eq. ~A23! into Eq. ~A2! and solving yields

x̃a[pA,a /Eappl,a5~xI A@1I 2xI A•MI A2xI B•MI B#21!aa ,

~A26!

with xI A and xI B as defined in Eq.~A4!. Analogous to the
derivation given by Jackson39 for a point dipole, we can
derive the electric field of a line dipole atrW 50 ~Ref. 40!

E~rW !5~MI ~rW !22pd~rW !1I !•p, ~A27!

where the convention in Eq.~A27! is that the field within the
line dipole atrW 50 is given by the term22pd(rW )p and the
Cauchy principal value of the integral should be taken
integrals across the 1/r2 singularity at rW 50. The macro-
scopic field is given by the average over the microsco
field of Eq. ~A23! for generalrW including the chain at the
origin. Note that since, by symmetry,pA,b52pB,b , the b
components do not contribute to the macroscopic field. A
by symmetry, we havepA,a5pB,a5pa . We then have for
the macroscopic fieldEa(rW ):

Ea~rW !5Eappl,a1 lim
k→0

1

2A
PE

unit cell
d2rW(

rk

Maa

3~rW 2rW k!cos~kuk!pa2
2p

A
pa ~A28!

5Eappl,a1 lim
k→0

1

A
PE d2rW Maa~rW !cos~ku!pa

2
2p

A
pa ~A29!

5Eappl,a2
4ppa

A
. ~A30!

Substituting this result in Eq.~A7! and using the fact tha
Pa5pa /A, we find Eq.~31!

«a5
1

12
4p

A
x̃a

. ~A31!

A similar result is obtained for«b .

3. Evaluation of MO A and MO B

From the symmetry of Eqs.~A22!, ~A24!, and~A25!, we
see thatMI A,ab5MI A,ba505MI B,ab5MI B,ba50 and MI A,aa
52MI A,bb and MI B,aa52MI B,bb . This leaves us with only
one element of each matrix to be determined. Conside
MI A first, we split the summation of Eq.~A24! into two parts.
For r i,R ~with R large! we perform the summation explic
itly ~taking k50), while for r i>R we replace the summa
tion by an integral
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MI A,aa5 (
rW iPArW i5” 0r i,R

MI aa~rW i !

1 lim
k→0

1

2AER

`

rdrE
0

2p

dfMI aa~r!cos~kr cosf!,

~A32!

which is exact in the limitR→`. The sum is evaluated nu
merically; its value is20.009 677a0

22 in the limit R→`.
The integral becomes2p/(2A) after first taking the limit
s,
re

y

rd

y

hy

g,

.

s

to

e

k→0 andthenthe limit R→`. We can calculateMI B,aa in a
similar way. The sum yields 0.012 035a0

22 and the integral
becomes again2p/(2A). Therefore,MI A andMI B are

MI A5S 20.030 068a0
22 0

0 0.030 068a0
22D , ~A33!

MI B5S 20.008 357a0
22 0

0 0.008 357a0
22D . ~A34!
ev.

nds
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