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Exact many-body sum rule for the magneto-optical spectrum of solids

J. Kunesˇ
Institute of Physics, Academy of Sciences, Cukrovarnicka´ 10, CZ-162 53 Prague, Czech Republic

P. M. Oppeneer
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~Received 14 December 1999!

Using a many-body formulation we show that the integral over the imaginary part of the off-diagonal optical
conductivity gives—at zero temperature—exactly the many-electron center of mass angular moment in the
volume, i.e.,*0

`Im@sxy(v)#dv}^(R3P)z&, with R the center of mass coordinate andP the total relativistic
momentum. At elevated temperatures the sum rule is no longer exactly fulfilled, but the temperature-related
correction is estimated to be very small. In a single-particle description the sum rule leads to the total orbital
moment in the volume plus an additional term.
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I. INTRODUCTION

In recent years x-ray magneto-optical~MO! spec-
troscopies, like x-ray magnetic circular dichrois
~XMCD!,1,2 x-ray magnetic scattering,3 the x-ray Faraday4 or
Kerr effect,5 have become available as valuable tools to
vestigate magnetic properties of solids. The usefulnes
XMCD in particular has been much increased by the XMC
sum rules, which allow one to obtain the spin or orbital m
ment of an atom from an energy integral over a finite XMC
spectrum.6,7 Together with the sum rules, XMCD is such
powerful tool because it can provide element-specific inf
mation on an atom in a solid. A drawback of the sum rul
however, is that these have been derived for atoms. When
‘‘atomic’’ sum rules are applied to XMCD spectra measur
for solids, this implies that the extended valence band o
transition metal element in that solid is approximated sim
by atomic states. Furthermore, the nonspherical potentia
an atom in the solid is approximated by the spherical pot
tial of an isolated atom. In addition, there are a number
other, less important approximations involved. In spite
this, the atomic sum rules have given reasonable values
the spin and orbital moments of various materials.8,9

In optics there exist also exact sum rules, such as, e.g.
so-calledf sum rule, which relates the total number of ele
trons in the volume to an integral over the absorptive par
the diagonal optical conductivity. Thef sum rule is valid for
solids as well as atoms. Naturally, the question arises
similarly, MO sum rules exist that would be valid for solid
Recently, one of the present authors has given a sum rule
the absorptive part of the off-diagonal optical conductivi
for which the energy integral gives the total orbital mome
within the volume, but there was a second term, which w
estimated to be small.10 That derivation was, however, base
on an independent-particle expression for the optical cond
tivity tensor. A better and more appropriate approach wo
obviously be to use a many-particle formulation.

In the following we present the derivation of a MO su
rule that is valid for solids, starting from a many-body fo
mulation. We obtain thereby a fundamental relationship
tween the MO conductivity spectrum and the many-elect
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center of mass~CM! angular moment, which is exactly vali
at zero temperature. The correction term for elevated te
peratures will be shown to be negligible. The CM angu
moment is, however, not equal to the total many-elect
orbital moment. Within a single-particle formulation it ca
be shown that the CM angular moment leads to the to
orbital moment plus a supplementary term, in accorda
with the previous single-particle investigation.10 The impor-
tance of the many-electron MO sum rule is, first, that it
exact, and may therefore serve as the appropriate sta
point for making various controllable approximations, e.
for deriving sum rules for atoms in a finite frequency rang
Second, as we shall show, thef sum rule and the MO sum
rule can be formulated in a unified manner as a bilinear pr
uct of R andP.

II. DERIVATION

A. Many-body formulation

Our derivation starts from the Kubo linear-response f
mula for the componentssmn of the optical conductivity
tensor. A useful, short notation forsmn(v) is ~see, e.g., Refs
11,12!

smn~v!52
i\

V (
kk8

1

Z S e2bEk2e2bEk8

Ek2Ek8
D Jkk8

m Jk8k
n

\v12~Ek82Ek!
,

~1!
wherek and Ek denote the many-electron state and its e
ergy, Jkk8

n is the matrix element of the current operator,b
5(kBT)21, V is the unit cell volume, andZ is the partition
function, i.e., Tr@exp(2bH)#. The many-particle current op
erator is given by

J[2
e

m
P52

e

m (
n

N

Pn , ~2!

wheren labels theN electrons present in the volume,P is the
total momentum, andP is the one-particle momentum op
erator. In the nonrelativistic approximation, one has for
one-particle momentum operator simplyP5p52 i\“. We
15 774 ©2000 The American Physical Society
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assume here that there is no external magnetic field, but
there is an internal magnetic field that is due to the s
polarization of the electrons. It is known that for magne
optics a relativistic formulation is required, since MO effec
only occur when spin polarization and spin-orbit coupli
are present simultaneously.13,14 It is imperative that these ef
fects are present in the energies and electron wave funct
but the relativistic contribution to the momentum operator
not important. In a relativistic description one hasP5mca,
wherea is the standard 434 Dirac matrix. The difference
between the two ways of writing the one-particle moment
operators is in effect very small, since it can be shown t
mca5p1O(1/c2).15

From Eq.~2! it can be recognized that formÞn the ab-
sorptive part ofsmn equals the imaginary part ofsmn , which
we shall denote bysmn

(2) . It can be rewritten as

smn
(2)~v!52

pe2\

m2V
(
kk8

1

Z S e2bEk2e2bEk8

Ek2Ek8
D

3Im~Pkk8
m Pk8k

n
!d„\v2~Ek82Ek!…. ~3!

To bring this expression into a form that is more conveni
for our present purpose, we make use of the equality

P5
im

\
@H,R#, ~4!

which leads to

^^kuRmuk8&&~Ek2Ek8!5
\

im
^^kuPmuk8&&. ~5!

HereR[(nrn is N times the center of mass coordinate of t
electrons in the volume, and̂̂ •••&& denotes the Hilbert
space integration. For the imaginary part of the conductiv
one obtains

smn
(2)~v!52

pe2

mV (
kk8

1

Z
~e2bEk2e2bEk8!

3Re~Rkk8
m Pk8k

n
!d„\v2~Ek82Ek!…. ~6!

The integration over the frequency is the next step in
derivation of the sum rule. This leads, formÞn, to

E
0

`

smn
(2)~v!dv52

pe2

mV\ (
k

(
k8.k

1

Z
~e2bEk2e2bEk8!

3Re~Rkk8
m Pk8k

n
!. ~7!

The sum overk8 has become restricted by the positive e
ergy branch, and the term withk5k8 disappears, becaus
when replacingRkk8

m by Pkk8
m again, it can be shown that th

real part is zero. The terms in Eq.~7! can be rearranged a
follows:
at
n
-

ns,
s

t

t

y

e

-

E
0

`

smn
(2)~v!dv52

pe2

mV\ S (
k

(
k8Þk

e2bEk

Z
Re~Rkk8

m Pk8k
n

!

22(
k

(
k8.k

e2bEk8

Z
Re~Rkk8

m Pk8k
n

!D . ~8!

To arrive at the MO sum rule we now consider the man
electron CM angular moment defined byK5R3P. The ex-
pectation value of itsz component is

^Kz&5(
k

e2bEk

Z
^^kuRxPy2RyPxuk&&. ~9!

Using Eq. ~5! and the closure relation for many-partic
states, this can be expressed as

^Kz&52(
k

(
k8Þk

e2bEk

Z
Re~Rkk8

x Pk8k
y

!. ~10!

Comparison of Eqs.~10! and ~8! leads directly to the MO
sum rule,

E
0

`

sxy
(2)~v!dv52

pe2

2mV\
^~R3P!z&1Rxy , ~11!

where the remainderRxy(T) is given by

Rxy~T!5
2pe2

mV\ (
k

(
k8.k

e2bEk8

Z
Re~Rkk8

x Pk8k
y

!. ~12!

Thus, apart fromRxy , the integral over the absorptive part o
sxy(v) gives the CM angular moment times a prefactor. T
remainderRxy(T) can be shown to vanish at zero tempe
ture, since at zero temperature only the ground state is po
lated. As the sum overk8 in Eq. ~12! starts from at least the
first excited state,Rxy(0)50 due to the thermal populatio
factor. Thus, forT50, we obtain theexactsum rule,

E
0

`

sxy
(2)~v!dv52

pe2

2mV\
^~R3P!z&. ~13!

It should be emphasized that the CM angular momentK is
not identical to the total angular moment of the electrons
the volume, which is defined asl5(n(rn3pn). The angular
momentum is related to the orbital momentMl throughMl

z

52^ l z&mB /\. Therefore, while the MO sum rule is exact,
does not lead to the orbital moment, as one might h
wished. Only for one-electron systems does the MO sum
~13! yield the orbital moment. The CM angular momentK
can obviously be written asl plus a correction term. To un
derstand, first, what the correction term means and how
portant it is, and to estimate, second, the importance ofRxy
at elevated temperatures, it is more convenient to ado
single-particle description. This we shall do in what follow

B. Single-particle formulation

To start with, we mention that the quantity that is
physical interest is the angular momentumlz5(n(rn
3pn)z , which contains the canonical momentump instead of
the relativistic momentum. As already mentioned, the diff
ence between the relativisticP andp is O(1/c2), which is, in
Rydberg units,'131025. Therefore, in practical applica
tions the difference between the two operators can be
glected. This holds even for uranium compounds.15
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The expression for̂Kz& can be reformulated using secon
quantization. Introducing the creation and annihilation ope
torsai

† ,ai for single-particle statesi, one obtains for the CM
angular moment

^Kz&52 (
i , j ,k,l

Re~Ri j
x Pkl

y !^ai
†ajak

†al&

52(
i , j

Re~Rii
x Pj j

y !^ai
†aiaj

†aj&

12(
i , j

Re~Ri j
x Pji

y !^ai
†ajaj

†ai&, ~14!

where the many-body states are still contained in the exp
tation values. The first term in Eq.~14! is zero because th
real part vanishes, and for the same reason the second
becomes

2(
iÞ j

Re~Ri j
x Pji

y !^ai
†aiajaj

†&. ~15!

For iÞ j the expectation value can be approximated by

^ai
†aiajaj

†&5^ai
†ai~12aj

†aj !&

'^ai
†ai&^12aj

†aj&5 f ~e i !@12 f ~e j !#. ~16!

Here f (e i) is the Fermi-Dirac distribution function, which
follows from f (e i)5^ai

†ai&. The single-particle expressio
for ^Kz& thus becomes

^Kz&52(
i . j

Re~Ri j
x Pji

y !@ f ~e i !1 f ~e j !22 f ~e i ! f ~e j !#.

~17!

This expression for̂ Kz& has to be compared tôl z& in
order to extract the difference between the two quantit
The single-particle equation for^ l z& is

^ l z&5(
i

f ~e i !^^ i u~r3p!zu i &&. ~18!

Ignoring the tiny difference betweenp and P, this can be
rewritten as

^ l z&52(
i . j

Re~Ri j
x Pji

y !@ f ~e i !1 f ~e j !#. ~19!

We therefore find the following relationship between^Kz&
and ^ l z&:

^Kz&5^ l z&24(
i . j

Re~Ri j
x Pji

y ! f ~e i ! f ~e j !. ~20!

Relationship~20! shows that^Kz& and ^ l z& are closely
related, but the additional term does not vanish in gene
For T50 it yields a sum over statesi , j that are both occu-
pied. The immediate consequence of Eq.~20! is that even at
T50 one cannot straightforwardly obtain the orbital mo
ment from an integral over the absorptive part of the o
diagonal conductivity. Only for systems with one electron i
the angular moment without additional term obtained.
-

c-

rm

s.

l.

-

At elevated temperatures there exists furthermore in
many-body formulation the termRxy . Rxy can be expressed
in a single-particle formulation, which can be done mo
conveniently by using Eq.~11! together with the single-
particle expressions forsxy

(2) and ^(R3P)z&. The required
single-particle expression forsxy(v) which follows16 from
the many-body expression~1! is

sxy~v!52
e2

mV (
i j

@ f ~e i !2 f ~e j !#
Ri j

x Pji
y

\v12~e j2e i !
,

~21!

which yields forRxy

Rxy5
2pe2

mV\ (
i . j

Re~Ri j
x Pji

y ! f ~e i !@12 f ~e j !#. ~22!

From this expression it can be seen directly thatRxy van-
ishes atT50, but also thatRxy must be small at elevate
temperatures. The productf (e i)@12 f (e j )# adopts the form
of a sharply peaked function at the Fermi energyEF ; there-
fore the only states that can contribute at elevated temp
tures are those very closeEF , but the statesi 5 j directly at
EF are excluded from the sum. Furthermore, taking
steepness of the Fermi-Dirac function into account, and
fact that the whole spectrum of occupied states contribute
^(R3P)z&, it is clear thatRxy bears no weight against^(R
3P)z& even at room temperature.Consequently, the many
body sum rule (13) is an accurate expression even at
evated temperatures.

III. DISCUSSION AND CONCLUSIONS

It is instructive to compare the sum rule Eq.~13! to the
well-known f sum rule which gives the total number of ele
trons in the considered volume~see, e.g., Ref. 17!. A general
form of the f sum rule can be derived from the many-bo
expression~1! for the real part ofsmn :

E
0

`

smn
(1)~v!dv52

pe2

2mV\
Im^@Pm,Rn#&. ~23!

In this form the f sum rule is valid for bothm5n and m
Þn, and also in the relativistic limit. In the nonrelativisti
limit the commutator in Eq.~23! reduces to2 i\Ndmn ,
which yields the standard expression for thef sum rule. With
regard to the MO sum rule~13!, we note, first, that the pref
actor occurring in the MO sum rule is just the same as tha
the f sum rule. Second, both thef sum rule and the MO sum
rule are expressions that contain a bilinear product ofR and
P, in one case the commutator and in the other the cr
product ofR and P. Thus there apparently exists a unifie
formulation of both thef sum rule and the MO sum rule.

In the derivation of the MO sum rule we considered t
xy element of the conductivity tensor and thez component of
the CM angular moment.sxy is the only nonzero off-
diagonal element in the so-called polar geometry, where
magnetization is parallel to thez axis and normal to the
medium’s surface. However, in a more general geome
other off-diagonal elements can be nonzero. For such ca
it is straightforward to generalize Eq.~13! to all components
of the CM angular moment,
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« i jkE
0

`

s i j
(2)~v!dv52

pe2

2mV\
^Kk&, ~24!

where« i jk is the antisymmetric tensor.
Previously an atomic sum rule applicable to atoms w

one electron was proposed.18,19 This sum rule relates the or
bital moment of the one electron to the difference of t
oscillator strengths for left- and right-circularly polarize
light. If one rewrites the oscillator strengths in terms of t
optical conductivity, it can be shown that this atomic su
rule corresponds to the one-electron limit of the MO su
rule ~13!, as one would expect~except for the volume no
accounted for in Refs. 18 and 19!.

Comparing the atomic XMCD sum rules6,7 to the one de-
rived here, we note first that the present sum rule is rela
only to the orbital-moment sum rule6 becausem12m2

'28psxy
(2)/c for x-ray frequencies, withm6 the x-ray ab-

sorption coefficients. One could think of the MO sum ru
~13! as being the sum of all atomic orbital-moment sum ru
over all edges, but the MO sum rule is not normalized by
total absorption spectrum. Moreover, the MO sum rule
exact and not subject to any of the restrictions of the ato
sum rules that were mentioned in the Introduction. Nevert
less, in spite of the serious approximations that are m
when the atomic sum rules are applied to atoms in a so
the atomic sum rules have as their main advantage tha
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principle they provide element-specific information. Th
many-body sum rule, on the other hand, has as advan
that it is exact and valid for atoms as well as solids. T
exact sum rule could therefore be used as a starting poin
study or derive approximate sum rule expressions that c
tain controllable correction terms, e.g., for those contrib
tions that originate from final states which are hybridiz
valence states instead of pure atomic states. Other
proaches to overcoming some of the restrictions of
atomic orbital-moment sum rule have been conside
recently.20,21

To conclude, we have shown that the spectral integ
over the absorptive part of the off-diagonal conductiv
gives the many-body CM angular moment of the electrons
a unit cell of a solid. This MO sum rule is exactly valid fo
T50. The temperature-induced correction term can be
glected to a very good approximation. The many-body C
angular moment is equal to the orbital moment plus an
ditional term, where the latter in general disappears only
one-electron systems.
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