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Exact many-body sum rule for the magneto-optical spectrum of solids
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Using a many-body formulation we show that the integral over the imaginary part of the off-diagonal optical
conductivity gives—at zero temperature—exactly the many-electron center of mass angular moment in the
volume, i.e..f5Im[ oy (w)]dw=((RXP),), with R the center of mass coordinate aRdhe total relativistic
momentum. At elevated temperatures the sum rule is no longer exactly fulfilled, but the temperature-related
correction is estimated to be very small. In a single-particle description the sum rule leads to the total orbital
moment in the volume plus an additional term.

[. INTRODUCTION center of mas$CM) angular moment, which is exactly valid
at zero temperature. The correction term for elevated tem-

In recent years x-ray magneto-opticdMO) spec- peratures will be shown to be negligible. The CM angular
troscopies, like x-ray magnetic circular dichroism moment is, however, not equal to the total many-electron
(XMCD),}? x-ray magnetic scatteringthe x-ray Faraddyor ~ orbital moment. Within a single-particle formulation it can
Kerr effect’ have become available as valuable tools to in-0€ shown that the CM angular moment leads to the total
vestigate magnetic properties of solids. The usefulness @rbital moment plus a supplementary term, in accordance
XMCD in particular has been much increased by the XMCDWith the previous single-particle investigatithThe impor- -
sum rules, which allow one to obtain the spin or orbital mo-tance of the many-electron MO sum rule is, first, that it is
ment of an atom from an energy integral over a finite XMCD€Xact, and may therefore serve as the appropriate starting
spectrunf” Together with the sum rules, XMCD is such a Point for making various controllable approximations, e.g.,
powerful tool because it can provide element-specific inforfor deriving sum rules for atoms in a finite frequency range.
mation on an atom in a solid. A drawback of the sum rulesSecond, as we shall show, theum rule and the MO sum
however, is that these have been derived for atoms. When tHgle can be formulated in a unified manner as a bilinear prod-
“atomic” sum rules are applied to XMCD spectra measureduct of R andP.
for solids, this implies that the extended valence band of a
transition metal element in that solid is approximated simply Il. DERIVATION
by atomic states. Furthermore, the nonspherical potential of
an atom in the solid is approximated by the spherical poten-
tial of an isolated atom. In addition, there are a number of Our derivation starts from the Kubo linear-response for-
other, less important approximations involved. In spite ofmula for the components,, of the optical conductivity
this, the atomic sum rules have given reasonable values fdensor. A useful, short notation fer, () is (see, e.g., Refs.

A. Many-body formulation

the spin and orbital moments of various materfals. 11,12
In optics there exist also exact sum rules, such as, e.g., the
so-calledf sum rule, which relates the total number of elec- i « 1[e PE—e FEx N[N
trons in the volume to an integral over the absorptive part of T un( @)=~ V2 > 7 E_E P ey
KK K «! w (EKr EK)

the diagonal optical conductivity. THesum rule is valid for

solids as well as atoms. Naturally, the question arises if, @)
similarly, MO sum rules exist that would be valid for solids. Where x and E, denote the many-electron state and its en-
Recently, one of the present authors has given a sum rule f@rgy, J. , is the matrix element of the current operatgr,
the absorptive part of the off-diagonal optical conductivity, = (kgT) %, V is the unit cell volume, and is the partition
for which the energy integral gives the total orbital momentfunction, i.e., Tfexp(— 8H)]. The many-particle current op-
within the volume, but there was a second term, which wagrator is given by

estimated to be smalf. That derivation was, however, based

on an independent-particle expression for the optical conduc- e e

tivity tensor. A better and more appropriate approach would ="m P=- m En: I, (2
obviously be to use a many-particle formulation.

In the following we present the derivation of a MO sum wheren labels theN electrons present in the voluntejs the
rule that is valid for solids, starting from a many-body for- total momentum, andl is the one-particle momentum op-
mulation. We obtain thereby a fundamental relationship beerator. In the nonrelativistic approximation, one has for the
tween the MO conductivity spectrum and the many-electrorone-particle momentum operator simdli=p=—iAV. We
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there is an internal magnetic field that is due to the spin

polarization of the electrons. It is known that for magneto-

optics a relativistic formulation is required, since MO effects

only occur when spin polarization and spin-orbit coupling pv

are present simultaneousty* It is imperative that these ef- -22 2 Re( RecPed |- ®

fects are present in the energies and electron wave functions,

but the relativistic contribution to the momentum operator is  To arrive at the MO sum rule we now consider the many-

not important. In a relativistic description one Hds- mce, electron CM angular moment defined Ky= Rx P. The ex-

where e is the standard % 4 Dirac matrix. The difference pectation value of itz component is

between the two ways of writing the one-particle momentum

operators is in effect very small, since it can be shown that (K,)= 2

mca=p+0(1/c?).1® z
From Eq.(2) it can be recognized that fqe+# v the ab-

PZ’K)

assume here that there is no external magnetic field, but that .
f (@)
0

mVﬁgg

K k'>k

<<K|RXPy RPY|x)). ©9)

Using Eq. (5) and the closure relation for many-particle

sorptive part ofr,, equals the imaginary part of,,, which  ¢iatas this can be expressed as
we shall denote byr(z) It can be rewritten as ’
(Kp=22 P (10
o) me’h « 1[e PEx—e PEL oK #K
S(w)=— M2y E 7 E_E Comparison of Egs(10) and (8) leads directly to the MO

sum rule,
2

XIm(P* ,P?, Yé(hw—(E,. —E,)). (3 e
KK K K f (2) T
0 y(w)d 2mVﬁ<( XP)2)+ Ry, (1D

To bring this expression into a form that is more convenient
for our present purpose, we make use of the equality where the rema|nde€RXy(T) is g|ven by

(12

im Ru(T)= mVﬁ E I
= 7[H ) R]v (4) “
Thus, apart fronRk,,, the integral over the absorptive part of
. oyy(w) gives the CM angular moment times a prefactor. The
which leads to remainderr,,(T) can be shown to vanish at zero tempera-
ture, since at zero temperature only the ground state is popu-
7 lated. As the sum ovet’ in Eq. (12) starts from at least the
{k|R¥| k" W(E—E)=—{(x|P*|«")). (5) first excited stateR,,(0)=0 due to the thermal population
m factor. Thus, fofT=0, we obtain theexactsum rule,

2
Gi{(RxPL). (13

HereR=ZXr, is N times the center of mass coordinate of the f (2)(w)da)— _
electrons in the volume, an{{---)) denotes the Hilbert

space integration. For the imaginary part of the conductivity . .
It should be emphasized that the CM angular monkeist

one obtains ) ! .
not identical to the total angular moment of the electrons in
5 the volume, which is defined ds > ,(r,Xp,). The angular
2 e 1 _ _BE ., momentum is related to the orbital momevit throughM?
0-( )(w):—_ _(e BEK_e .BEK) i ) [
wy mv < Z =—(l)ug/h. Therefore, while the MO sum rule is exact, it

does not lead to the orbital moment, as one might have
XReRY P, )o(hw—(E,—E,)). (6) wished. Only for one-electron systems does the MO sum rule
(13) yield the orbital moment. The CM angular momet
can obviously be written asplus a correction term. To un-
derstand first, what the correction term means and how im-
portant it is, and to estimate, second, the importanc®,gf
at elevated temperatures, it is more convenient to adopt a
single-particle description. This we shall do in what follows.

The integration over the frequency is the next step in the
derivation of the sum rule. This leads, far* v, to

(2) — — BE« _ @ BE
fo (w)dow= th Z(e e )
xRe(Rf:K,p:,K)_ (7) To start with, we mention that the quantity that is of
physical interest is the angular momentuly=X,(r,

, . . X Ppn)z, Which contains the canonical momentprinstead of
The sum overc’ has become. restrlrcte.d by the positive en-e relativistic momentum. As already mentioned, the differ-
ergy branch, ang the teLm witk=«" disappears, because, gnce hetween the relativisti® andp is O(1/c?), which is, in
when replacing?, . by P, again, it can be shown that the Rydberg units,~1x 107°. Therefore, in practical applica-
real part is zero. The terms in E(7) can be rearranged as tions the difference between the two operators can be ne-
follows: glected. This holds even for uranium compouris.

K k> B. Single-particle formulation
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The expression fofK,) can be reformulated using second At elevated temperatures there exists furthermore in the
quantization. Introducing the creation and annihilation operamany-body formulation the terrR,, . R, can be expressed
torsa;‘,ai for single-particle stateis one obtains for the CM in a single-particle formulation, which can be done most
angular moment conveniently by using Eq(11) together with the single-

particle expressions foo?) and ((RXP),). The required
single-particle expression far,,(w) which follows'® from

= XpYy(alg af
(Ka) 2i,j§,l RER P (@3 the many-body expressidd) is

=22, Re(RP})(afa;a/a;) ()=~ S [He)—f(e) I
- i =—— ) — )|,
3 e [ 17 Oyl W mv i € €j ﬁw+—(e—j—5i)
(21
X ) T
+2izj Re(RjjPfi)(a/a;aja;), (14 which yields forR,,
where the many-body states are still contained in the expec- _27re2 X oy
tation values. The first term in E@l4) is zero because the Y~ mVh .E>, Re(RijPi)f(e)[1-f(e)]. (22
real part vanishes, and for the same reason the second term
becomes From this expression it can be seen directly tiRgt, van-
ishes atT=0, but also thatk,, must be small at elevated
XY\ /atan at temperatures. The produt(e;)[1—f(¢;)] adopts the form
2; Re(R PJ')<a' aa;a )- (19 of a sharply peaked function at the Fermi enekgy; there-

fore the only states that can contribute at elevated tempera-
Fori+| the expectation value can be approximated by tyres are those very clogg:, but the states=j directly at
Er are excluded from the sum. Furthermore, taking the
steepness of the Fermi-Dirac function into account, and the

%<a?ai><l—a;raj>= f(eD[1—f(e)]. (16) fact that th(_a v_vhole spectrum of occupied spates cor_ltributes to

((RXP),), it is clear thatR,, bears no weight againg{R
Here f(¢;) is the Fermi-Dirac distribution function, which xP),) even at room temperatur€onsequently, the many-
follows from f(¢)=(a'a;). The single-particle expression body sum rule (13) is an accurate expression even at el-
for (K,) thus becomes evated temperatures

(alajajaf)=(ala;(1-afa)))

<KZ>:2i2>J. Re(Rin Pjyi)[f(fi)+f(Ej)—Zf(Ei)f(ej)]. IIl. DISCUSSION AND CONCLUSIONS

(17) It is instructive to compare the sum rule E4.3) to the
well-knownf sum rule which gives the total number of elec-
This expression fo(K,) has to be compared td,) in ~ trons in the considered volunﬁeee,.e.g., Ref. 27A general
order to extract the difference between the two quantitiesform of thef sum rule can be derived from the many-body
The single-particle equation fdt,) is expressior(1) for the real part ofr,,,:

2

* e
(1=20 f(e)((Gil(rxp)i)). (18) fo o(0)do= - S Im([PLRT). (23

Ignoring the tiny difference betweem and I, this can be In this form thef sum rule is valid for bothu=» and u
rewritten as # v, and also in the relativistic limit. In the nonrelativistic

limit the commutator in Eq.(23) reduces to—iANG,,,
B X oy which yields the standard expression for fleaim rule. With
<|Z>_2i2>' Re(RjjPfi)[T(e)+T(e€))]. (19) regard to the MO sum rulél3), we note, first, that the pref-
: actor occurring in the MO sum rule is just the same as that of
We therefore find the following relationship betwe@,)  thef sum rule. Second, both tHesum rule and the MO sum
and(l,): rule are expressions that contain a bilinear produd® aind
P, in one case the commutator and in the other the cross
product of R and P. Thus there apparently exists a unified
formulation of both thef sum rule and the MO sum rule.
In the derivation of the MO sum rule we considered the
Relationship(20) shows that(K,) and(l,) are closely xy element of the conductivity tensor and theomponent of
related, but the additional term does not vanish in generathe CM angular momento,, is the only nonzero off-
For T=0 it yields a sum over statesj that are both occu- diagonal element in the so-called polar geometry, where the
pied. The immediate consequence of E20) is that even at magnetization is parallel to the axis and normal to the
T=0 one cannot straightforwardly obtain the orbital mo- medium’s surface. However, in a more general geometry
ment from an integral over the absorptive part of the off-other off-diagonal elements can be nonzero. For such cases,
diagonal conductivityOnly for systems with one electron is it is straightforward to generalize E(L3) to all components
the angular moment without additional term obtained. of the CM angular moment,

<Kz>=<lz>—4§j Re(RSPYf(eNf(e). (20
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= e? principle they provide element-specific information. The
sijkf ol (w)do=— m(KO- (24 many-body sum rule, on the other hand, has as advantage
0 that it is exact and valid for atoms as well as solids. The
whereg;j, is the antisymmetric tensor. exact sum rule could therefore be used as a starting point to

Previously an atomic sum rule applicable to atoms withstudy or derive approximate sum rule expressions that con-
one electron was proposé&#'® This sum rule relates the or- tain controllable correction terms, e.g., for those contribu-
bital moment of the one electron to the difference of thetions that originate from final states which are hybridized
oscillator strengths for left- and right-circularly polarized valence states instead of pure atomic states. Other ap-
light. If one rewrites the oscillator strengths in terms of theproaches to overcoming some of the restrictions of the
optical conductivity, it can be shown that this atomic sumatomic orbital-moment sum rule have been considered
rule corresponds to the one-electron limit of the MO sumrecently?%%*
rule (13), as one would expedexcept for the volume not To conclude, we have shown that the spectral integral
accounted for in Refs. 18 and 19 over the absorptive part of the off-diagonal conductivity

Comparing the atomic XMCD sum ruféSto the one de-  gives the many-body CM angular moment of the electrons in
rived here, we note first that the present sum rule is related unit cell of a solid. This MO sum rule is exactly valid for
only to the orbital-moment sum rflebecauseu™— -~  T=0. The temperature-induced correction term can be ne-
~—8ma)lc for x-ray frequencies, with.* the x-ray ab-  glected to a very good approximation. The many-body CM
sorption coefficients. One could think of the MO sum rule angular moment is equal to the orbital moment plus an ad-
(13) as being the sum of all atomic orbital-moment sum rulesditional term, where the latter in general disappears only for
over all edges, but the MO sum rule is not normalized by thedne-electron systems.
total absorption spectrum. Moreover, the MO sum rule is
exact and not subject to any of_the restrictions_ of the atomic ACKNOWLEDGMENTS
sum rules that were mentioned in the Introduction. Neverthe-
less, in spite of the serious approximations that are made This work was supported financially by the Sonderfor-
when the atomic sum rules are applied to atoms in a solidschungsbereich 463, Dresden, Germany. We thank P.WNova
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