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Analytical solutions to the third-harmonic generation in trans-polyacetylene:
Application of dipole-dipole correlation to single-electron models
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The analytical solutions of the third-harmonic generation~THG! for infinite chains under both Su-Shrieffer-
Heeger and Takayama-Lin-Liu-Maki model of trans-polyacetylene are obtained through the scheme of dipole-
dipole ~DD! correlation. They are not equivalent to the results obtained through static current-current (J0J0)

correlation or under polarization operatorP̂ with the same initial distribution functions. Physical backgrounds
for those differences are analyzed qualitatively. The van Hove singularity disappears exactly in analytical
forms underDD correlation, showing that the experimentally observed two-photon absorption peak~TPA! in
THG cannot be directly explained by the single-electron models. Our analytical results on TPA are consistent
with numerical computations using dipole formulas.
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I. INTRODUCTION

The nonlinear optical~NLO! properties of conjugated
polymers have received wide attention.1–4 Experimentally
observed nonlinear phenomena in conducting polymers, s
as photoinduced absorption, bleaching, photoluminesce
ultrafast optical processes, and exciton behaviors,5–9 have
encouraged theoreticians to look for possible expla
tions.10–12

The large third-order susceptibility (x (3)) of trans-
polyacetylene~PA! was observed experimentally in the ear
1990s,13,14 and theoretical explanations have be
suggested.15–25 The origin of the experimentally observe
two-photon absorption peak13,14 ~TPA! has been the subjec
of persistent theoretical discussions.15–25 The use of static
current-current correlation15,16,26(J0J0) with Keldysh Green
function methods27 has lead to the interpretation of TP
through analytical forms corresponding to either the S
Shrieffer-Heeger28 ~SSH! or the Takayama-Lin-Liu-Maki29

~TLM ! models for infinite chains. However, various nume
cal approaches based on the dipole formalism~E"r !, such as
the results of Yuet al.18,19 ~who used the Butcher-Cotter
Bloembergen-Shen dipole formula30–32!, by Wu and Sun20,21

~who used the Genkins-Mednis approach33,34! and by Shuai
and Brédas20 ~who used the sum-over-state~SOS! Orr-Ward
formalism35!, have shown that no TPA was found if dampin
in the energy is considered.18–25 Therefore, the two-photon
cusp underJ0J0 schemes15 is considered to be a van Hov
singularity36 caused by the singular density of states~DOS!
on the Fermi surface in one-dimensional~1D! systems. This
nonresonant property in two-photon cusp was also noti
by Wu in hisx (3) results.15

Besides the difficulty of explaining the TPA under th
J0J0 current formula, there exists another obvious difficu
in the theory—the zero frequency divergence~ZFD! in the
definition ofJ0J0 current formalism.30 This problem was dis-
cussed by Dakhnovskii and Pronin on the basis of comp
PRB 610163-1829/2000/61~23!/15766~8!/$15.00
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tions under the SSH model.16 Unfortunately, the result for
x (3) thus obtained under SSH model is the same one un
TLM model if the linearization applied to theJ0J0 scheme.16

Because of the ZFD in theJ0J0 current formula,30 inten-
sive studies based on the dipole-dipole (DD) correlation
have been carried out in order to obtain the physical desc
tion of TPA in x (3) of trans-polyacetylene. On one han
weakly correlated and single-electron theories were use
the numerical dipole computations; the finite size effec21

and the lifetime assumption22 lead to a peak at the exac
position of TPA. On the other hand, strongly correlated el
tron theories have also been applied to short chains. Soos
Ramesesha obtained the TPA based on the Pariser-
Pople ~PPP! model, but the peak was shifted to low fre
quency and had too low an intensity17 relative to the experi-
mental peak.13 Recent works by Guo, Guo, and Mazumda24

and by Zhang,25 based on the extended Hubbard Ham
tonian, show that the TPA could be interpreted as a thr
photon resonance fromm(n)Bu state to 1Ag state. Whether
or not the weakly correlated theory or even the sing
electron models such as SSH and TLM are suitable in
scribing TPA still remains an open question.

Etemad and Soos have suggested that attention shou
paid to thex (3) frequency dependences rather than to
magnitudes,37 since the experiments are more sensitive
frequency dependences. This leads to the use of typical
proximations in the dipole formula. Substitution of the dipo

operatorD̂ by the polarization operatorP̂ @see Eq.~2.23!#,
~the zeroth-order dipole approximation23,38! has been exten
sively applied to the nonlinear optical formula. Some the
retical results, like the size dependency of static thi
harmonic generation~THG!,23 can be successfully compare

to the experiments.39 However, it has been pointed out thatP̂
is sensitive to boundary conditions and singular in the th
modynamic limit inx (1) computations.36 For x (3), our con-
cern is the following: under what physical situations and
15 766 ©2000 The American Physical Society



le

t
i-

,
th
ns
po
an

s
u
en

th
ee

pi

et
b

le
e

s
o

ult
d

s
r

f
-

e

u
l

to
le
ef

SH

b

the
by

s

d

.

a

tor
dic
ped
ni-

re
al

he

ce

y
-
m-

tion
ro-

l-

on
ent;

lar
use

PRB 61 15 767ANALYTICAL SOLUTIONS TO THE THIRD-HARMONIC . . .
what extent, canP̂ still be considered as good as the dipo
operatorD̂ for practical calculations?

The static dipole formula17–25 and the static curren
formula15,30 are conventionally considered to be equ
valent.18,30–32However, as we pointed out in recent works40

the static current formula shows a ZFD problem when
gauge phase factor is ignored in the initial wave functio
and it should not lead to the same results as the static di
formula with the same set of unperturbed wave functions
the same initial distribution functions.40 In other words, the
same initial distribution functions for the different formula
represent different physical situations. Therefore, the res
for optical susceptibilities are not necessarily equival
when these two formulas are used. Forx (1) under either SSH
or TLM models, we have shown the nonequivalence of
two static formulas. Whether this nonequivalence betw
J0J0 and DD correlations effects thex (3) of trans-
polyacetylene theoretical models is another interesting to
Although the qualitative features ofx (3) have already been
reported in the numerical solutions based on theDD
correlation,17–25 the exact analytical solutions have not y
been obtained. The analytical results, if obtained, would
very helpful for a direct check of the above concerns.

Fortunately, both the SSH and TLM models are sing
electron models and can be exactly solved for the nonlin
susceptibilities under perturbated schemes, although thi
doubt requires cumbersome calculations. After adoption
the conventional long-wavelength approximation,15–25,41 it
would be possible to directly compare the analytical res
between the two gauges under either model and thus un
stand the different physical descriptions.

The paper is organized as follows. In Sec. II A, we discu
the SSH Hamiltonian and compare the physical pictures
lated to theDD andJ0J0 correlations. The analytical form o
x (3) associated with theDD correlation is obtained and com
pared with the analytical form associated withJ0J0 correla-
tion under the SSH model in Sec. II B. In Sec. II C, w
present results ofx (3) using the polarization operatorP̂, the
qualitative and quantitative differences between the res
obtained with use ofD̂ and P̂ are outlined, and physica
reasons for the difference betweenD̂ and P̂ are analyzed. In
Sec. III, we obtain the exact analytical forms underDD cor-
relation for the TLM model and directly compare them
those underJ0J0 correlation. The discussion of the possib
implications of this work is made in Sec. IV and a bri
conclusion is presented in Sec. V.

II. THIRD-ORDER SUSCEPTIBILITIES FOR THE SSH
MODEL UNDER DIPOLE CORRELATION

A. SSH Hamiltonian in real and momentum spaces

Based on periodic tight-binding approximations, the S
Hamiltonian28 is given by

HSSH52(
l ,s

F t01~21! l
D

2 G~Ĉl 11,s
† Ĉl ,s1Ĉl ,s

† Ĉl 11,s!,

~2.1!

wheret0 is the transfer integral between the nearest-neigh
sites,D is the gap parameter, andĈl ,s

† (Ĉl ,s) creates~anni-
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hilates! anp electron at sitel with spins. Application of the
continuum limitation makes the SSH model equivalent to
TLM model.29 In the SSH model, each site is occupied
one electron.

Under theDD correlation, the interaction Hamiltonian i
expressed by

ĤE"r52eE"r52D"E;

with e the electron charge andE the electric field. Under the
J0J0 correlation,26 the interaction Hamiltonian is introduce
through a U~1! transformation.36,41 A detailed derivation for
the SSH model with thep"A interaction can be found in Ref
36. As we can clearly see in previous discussions,41,42on one
hand, theDD correlation would be derived by assuming
scalar potentialE"r for the perturbation, giving rise to the
external electric field. On the other hand, theJJ correlation26

could be obtained from the time-dependent uniform vec
potential A as perturbation. As long as one uses perio
boundary conditions, the scalar potential shows saw-sha
behavior and therefore the resulting electric field is not u
form in real space, whileJ0•A is uniform in real space. From
this point of view, the latter treatment will be clearly mo
appropriate than the former especially for linear optic
response.41,42

If we want to use the position operatorr̂ for a discussion,
in order to provide the periodic property and to avoid t
ill-posed definition ofr̂ in real space we have to expressr̂
under the Bloch statesun,k&5un,k(r )eik"r, wheren andk are
the band index and crystal momentum, respectively.un,k(r )
is the periodic function under the translation of latti
vector.43 We obtain

rnk,n8k85 idn,n8“kd~k2k8!1Vn,n8~k!d~k2k8!,
~2.2!

and

Vn,n8~k!5
i

vEv
un,k* ~r !“kun8,k~r !dr , ~2.3!

wherev is the unit cell volume.
The above treatment representsr̂ in momentumk space,

and the calculation ofDD correlation was restricted to onl
one single unit cellv. This allows us to avoid the nonuni
form property of the scalar potential. Provided that the nu
ber ~N! of periodic unit cells goes to infinity,x (3) obtained
from a single unit in momentum space shows the satura
behavior and the second hyperpolarizability is linearly p
portional to N.22,23

Based on the calculations forx (1) under SSH and TLM
models, we have noticed the following facts:40 ~i! the real
part of the J0J0 correlation shows the ZFD problem, a
though the imaginary part of theJ0J0 correlation is exactly
the same as that of theDD correlation;~ii ! after the gauge
phase factor is properly considered for the initial distributi
functions, the results under both correlations are equival
~iii ! the single unit cell computation using theDD correlation
was successfully performed, showing that nonuniform sca
potential under periodic boundary conditions may not ca
a problem in momentum space. Thus, forx (3), we may
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15 768 PRB 61MINZHONG XU AND XIN SUN
assume that the results under a nonuniform saw-shaped
lar potential should not be different from those under a u
form vector potential for infinite chains if the calculation
use a single unit cell in momentum space.

We transform the Hamiltonian, Eq.~2.1!, into momentum
space by applying the following consecutive transform
tions:

Ĉl o ,s5
1

AN
(

2p/2a<k<p/2a
~Ĉk,s

v 1Ĉk,s
c !eikRl o,

Ĉl e ,s5
1

AN
(

2p/2a<k<p/2a
~Ĉk,s

v 2Ĉk,s
c !eikRl e, ~2.4!

and

âk,s
v 52 igkĈk,s

v 1jkĈk,s
c ,

âk,s
c 5 i jkĈk,s

v 1gkĈk,s
c , ~2.5!

with

gk5
1

A2
A11

2t0 cos~ka!

«~k!
,

jk5
sgn~k!

A2
A12

2t0 cos~ka!

«~k!
, ~2.6!

where

«~k!5A@2t0 cos~ka!#21@D sin~ka!#2, ~2.7!

and âk,s
†c (t) and âk,s

†v (t) are the excitations of electrons in th
conduction band and the valence band with momentumk and
spin s. Rl o

andRl e
are odd and even positions defined by

Rl5 la1~21! lu. ~2.8!

We choose the spinor descriptionĉk,s
† (t)5„âk,s

†c (t),

âk,s
†v (t)… and apply the long-wavelength approximation,30 the

SSH Hamiltonian includingE"r in momentum space is de
scribed by

ĤSSH~k,t !5Ĥ01ĤE"r , ~2.9!

where

Ĥ05 (
2p/2a<k<p/2a,s

«~k!ĉk,s
† ~ t !s3ĉk,s~ t ! ~2.10!

and

ĤE"r52D̂E0eivt. ~2.11!

From Eq.~2.2!, the dipole operatorD̂ could be obtained
as follows:40,41
ca-
i-

-

D̂5e (
2p/2a<k<p/2a,s

S b~k! ĉk,s
† s2ĉk,s1 i

]

]k
ĉk,s

† ĉk,sD ,

~2.12!

where

b~k!52
Dt0a

«2~k!
~2.13!

is the coefficient related to the interband transition betwe
the conduction and valence bands in a unit cell of lengtha
and the second term in Eq.~2.12! is related to the intraband
transition,40,41andsW are the Pauli matrixes. We have omitte
the relative distortionh ([2u/a) in this computation be-
cause the contribution ofh is quite small in the linear case.40

B. Analytical expression for x „3…
„DD correlation…

Within the semiclassical theory of radiation,30–32the elec-
trical field is treated classically and the third-order susce
bility x (3) is described by30–32

x (3)~V;v1 ,v2 ,v3!

5
1

3!V F i

\G3E dr1dr2dr3E dt1dt2dt3

3E dr dt e2 ik"r1 iVt

3^T̂D̂~r ,t !D̂~r1 ,t1!D̂~r2 ,t2!D̂~r3 ,t3!&, ~2.14!

whereV is the total volume,V[2( i 51
3 v i , T is the time-

ordering operator,D̂ is a dipole operator, and̂•••& represents
an average over the unperturbed ground state.

If the J0J0 correlation is applied, we usually do the fo
lowing substitutions forD̂ in Eq. ~2.14!:30,40

D̂~r i!→ Ĵ~r i!/~ iv i !

D̂~r !→ Ĵ~r !/~ iV!.

The averagê •••& is still based on the same unperturb
ground state as in the case ofDD correlation. The physica
background in applying eitherDD or J0J0 correlations has
been discussed in detail in Ref. 40.

The THG is defined by settingv15v25v3. Following
similar procedures to those used in the linear calculation40

from Eqs.~2.12! and ~2.14!, we obtained the following ex-
pression forxSSH

THG(v1)[xSSH
(3) (23v1 ,v1 ,v1 ,v1):

xSSH
THG~v1!5

2e4n0

\3

1

L (
k
E dv

2p H S b~k!s21 i
]

]kDG~k,v!

3S b~k!s21 i
]

]kDG~k,v2v1!

3S b~k!s21 i
]

]kDG~k,v22v1!

3S b~k!s21 i
]

]kDG~k,v23v1!J , ~2.15!
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whereL is the chain length,b(k) is defined by Eq.~2.13!
and n0 is the number of chains per unit cross area. T
polymer chains are assumed to be oriented, and the G
function G(k,v) defined as follows:40,41

G~k,v!5
v1vks3

v22vk
21 i e

, ~2.16!

with vk[«(k)/\ande[01.
After tedious derivations, we obtained the following an

lytical expressions for the third-harmonic generation un
the SSH model:

xSSH
THG~v!5

2e4n0

\3

1

L (
k

H1 b4~k!

2v~2vk1v!~2vk13v!

2
b4~k!

2v~2vk2v!~2vk23v!
2

b~k!

~2vk13v!

3
]

]kF 1

~2vk12v!

]

]k S b~k!

~2vk1v!DG
2

b~k!

~2vk23v!

]

]k

3F 1

~2vk22v!

]

]k S b~k!

~2vk2v!DGJ. ~2.17!

The above expression is almost identical to Eq.~A13! in Ref.
34 except the disappearance of one term@the last term in Eq.
~A13!#. In order to compare the two equations, the followi
substitution should be applied to Eq.~A13!:
,

q

e
en

-
r

Vvv5Vcc50,

Vvc52Vcv5b~k!. ~2.18!

Equation~2.17! is also quite similar to Eq.~11! in Ref. 20
which was based on the Genkins-Mednis approach.33 In or-
der to compare the equations, one has to use Eq.~2.18! and
apply the symmetric condition on the negative frequency
the Wu and Sun Eq.~11!.

For infinite chains, we could separate two full derivati
terms ofk from Eq. ~2.17! as follows:

I T5
2e4n0

\3

1

L (
k

3H 2
]

]k F b~k!

~2vk13v!~2vk12v!

]

]k S b~k!

~2vk1v! D G
2

]

]k F b~k!

~2vk23v!~2vk22v!

]

]k S b~k!

~2vk2v! D G J .

~2.19!

This term (I T) vanishes for infinite chains if we conside
following two facts in the optical process:~i! the velocity on
the Fermi surface¹k«(k)uk56p/2a is zero, and~ii ! the life-
time of the states is not zero.~We should include the damp
ing in the process, that is,vk→vk1 i ek and ekÞ0.! Equa-
tion ~2.17! can be simplified as follows:
xSSH
THG~v!5x0

(3) 45

128E1

1/d dx

@~12d2x2!~x221!#1/2H 37224~11d2!x2112d2x4

8x8~x22z2!
1

9@2432216~11d2!x21188d2x4#

8x8@x22~3z!2#
J

5x0
(3) 5

1024z8 H 2336ES p

2
,A12d2D1120z2d2FS p

2
,A12d2D1

8z4

5 F ~21217d2212d4!ES p

2
,A12d2D

16~11d2!d2FS p

2
,A12d2D G19@37224~11d2!z2112d2z4#g~z!1@3224~11d2!z21188d2z4#g~3z!J

~2.20!
and

g~mz!5
nmd

d221
PS p

2
,nm ,A12d2D , nm[

12d2

~dmz!221
,

~2.21!

where x0
(3)[ 8

45 (e4n0 /p)@(2t0a)3/D6#, x[\vk /D, z
[\v/(2D), andd[D/(2t0). F,E, andP are first, second
and third types of complete elliptical integrals.44

An alternative analytical form of Eq.~2.20! has been de-
scribed in Ref. 41. There is no two-photon cusp in E
~2.20!. This result is consistent with those of Yu and Su18

and of Shuai and Bre`das.22 It is quite different from the
.

expression obtained fromJ0J0 correlation, which shows the
following form for xSSH j j

THG under the SSH model:16

xSSH j j
THG 5Bz28H @528z2~11d2!120z4d2#g~z!28

3@124z2~11d2!116z4d2#g~2z!

1@3224z2~11d2!1188z4d2#g~3z!

28d2z4ES p

2
,A12d2D J , ~2.22!

whereB[5x0
(3)/1024, withx0

(3) as defined after Eq.~2.20!
andg(z) is given by Eq.~2.21!. We should point out that the
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15 770 PRB 61MINZHONG XU AND XIN SUN
elliptical form16 of Eq. ~2.22! is exactly the same as th
integral form of Eq.~11! in the Wu-Sun result,20 which was
derived from the incomplete Genkins-Mednis approach.33,41

The disappearance of ZFD under static current scheme
somewhat puzzling or simply should be understood as fo
itous coincidence for the SSH model. As we pointed out i
recent paper,40 the neglect of the gauge phase factor in t
static current formula will cause ZFD in the susceptibiliti
and different results from the dipole formula. The derivati
under theJ0J0 correlation16 does not consider the gaug
phase factor’s effect, which causes ZFD even for the lin
case if following straightforward calculations.40

We observe the qualitative difference for results un
DD @Eq. ~2.20!# andJ0J0 @Eq. ~2.22!# correlation, especially
for z51/2 andz51. The nonequivalence can be understo
by the influence of gauge phase factor in optical respo
theory.40 We will discuss the difference in Sec. IV.

Setting x→x1 i e in the integral of Eq. ~2.20!, the
absolute values obtained numerically with Eq.~2.20! or
Eq. ~2.22! for the SSH model are those plotted
Fig. 1. The following parameters were chosen for tra
polyacetylene:18–21 t052.5 eV, D50.9 eV, n053.231014

cm22, a51.22 Å, ande;0.03. We obtaind50.18 andx0
(3)

'1.0310210 esu.
Figure 1 shows another peak atz51 at a ratio of 1/10 of

the peak atz51/3, which differs from the previous theore
ical computations.15–25 This peak has not been reported
the experiments because it is out of the scanning rang
photon energy.13,14

C. Results with polarization operator P̂

The polarization operatorP̂ is extensively applied in NLO
theory.23,38 Under the tight-binding approximation~TBA!, P̂
is defined in real space as

P̂5(
l

RlĈl
†Ĉl . ~2.23!

Based on the SSH model, we can do a comparison
xSSH

THG betweenD̂ andP̂. If the chain regionl is going from 1

to N, we obtain the unit polarizationP̂unit(k) from the total
polarizationP̂total(k) in the momentum space:

FIG. 1. ComputedDD values~solid line! vs J0J0 values~dashed
line! of uxSSH

THG(v)u with z[\v/(2D) ande50.03.
is
-

a

r

r

d
e

-

of

of

P̂unit~k!5 lim
N→`

P̂total~k!

N
5

ea

2 (
k,s

ck,s
† s2ck,s . ~2.24!

SubstitutingD̂ by P̂ in Eq. ~2.14!, we obtain thexSSHP

THG for

SSH model for infinite chains:

xSSHP

THG5x0
(3) 45d4

128E1

1/d dx

@~12d2x2!~x221!#1/2H 1

x22z2

2
9

x22~3z!2J . ~2.25!

The above expression lacks TPA. However, the magnit
is too small compared with results underD̂. (uxSSHP

THG u from
P̂ is about 1024 of uxSSH

THGu from D̂ if d50.18 for trans-
polyacetylene.! Another peak atz51/(3d)'1.85 shows up
through P"E. This peak corresponds to the transition fro
the bottom of valence band to the top of conduction ba
This peak in infinite chains seems not to agree with ‘‘u
klapp enhancement’’ in solid states.36 In DD calculations,
this peak atz51/(3d) is not obvious. The comparison of th
absolute values betweenxSSHP

THG andxSSH
THG is shown in Fig. 2.

The different shapes of curves are obvious.
As we can see from Eq.~2.23!, P̂ only contains on-site

information. There are no off-site terms likeĈl
†Ĉl 8 , where

lÞ l 8. However, the off-site terms will appear in the Fouri
transformation ofD̂ @Eq. ~2.12!# in real space. Convention
ally, P̂ is understood as the zeroth-order approximation
D̂,23,38and some results like size dependency23 are consistent
with experimental observations.39 However, since delocal-
ized electronic states should be obtained in perio
systems,43 it suggests that the contributions to the optic
susceptibilities from off-site terms cannot be negligible. U
der certain cases, if the contributions to optical susceptib
ties from off-site terms are relatively small compared
those from on-site terms, for example, if all electronic sta
are localized or electronic hopping to nearest-neighbor s
is relatively small, it is expected thatP̂ can serve as a goo
approximation ofD̂. Under that situation, computations ca
be drastically simplified throughP̂. For the SSH model, the

FIG. 2. ComputeduxSSHP

THG(v)u under polarization operatorP̂

~solid line! vs computeduxSSH
THG(v)u ~dashed line! under dipole op-

eratorD̂ with z[\v/(2D), e50.03, and a magnification of 104 in
uxSSHP

THG(v)u.
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electron hops from one site to the other nearest-neigh
sites, indicating that electronic states of the system are d
calized. Thus,P̂ may not be sufficient to determine the no
linear susceptibility.

Another possible reason to cause those differences is
ill-posed definition ofP̂ for 1D chains,36 because periodic
boundary conditions imply that the electron on siteN11 is
the same as that on site 1. To avoid this difficulty, the
ring structure could be considered as physically meanin
boundary condition.23 Under a 2D structure, this unphysic
feature can be eliminated fromP̂.

III. THIRD-ORDER SUSCEPTIBILITY FOR THE TLM
MODEL UNDER THE DIPOLE FORMULA

The result under TLM model with theDD correlation can
be obtained by settingd→0 and (2t0a)→\vF in Eq.
~2.20!.20,21,40,41 We have the following properties for th
complete elliptical integrals:44

lim
d→0

ES p

2
,A12d2D51,

lim
d→0

d2FS p

2
,A12d2D50, ~3.1!

lim
d→0

PS p

2
,nm ,A12d2D5 f ~mz!,

where

f ~z![5
arcsin~z!

zA12z2
~z2,1!,

2
cosh21~z!

zAz221
1

ip

2zAz221
~z2.1!.

~3.2!

We obtain the following expression for THG under TLM
model forDD correlation:

xTLM
THG~v!5x0

(3) 5

1024z8 H 23362
96z4

5
19~37224z2! f ~z!

13~128z2! f ~3z!J , ~3.3!

wherex0
(3) defined as in Eq.~2.20!. A plot of xTLM

THG is shown
in Fig. 3. No singular behavior atz51/2 ~such as van Hove
singularity! shows inxTLM

THG underDD correlation.
In J0J0 correlation, the result ofxTLM j j

THG obtained by Wu
is as follows:15

xTLM j j
THG ~v!5x0

(3) 5

1024z8
$~528z2! f ~z!28~124z2! f ~2z!

13~128z2! f ~3z!%. ~3.4!

The comparison between our result (DD) and Wu’s
result15 (J0J0) for the absolute value ofxTLM

THG is shown in
or
lo-

he

ul

Fig. 4. If the zero-frequency limitation is made, lettingz
→0, we obtain different values for the zero-frequency lim
~static limit! for both DD andJ0J0 correlations:

xTLM
THG~0!5

5

28
x0

(3)'1.8310211 esu, DD correlation

xTLM j j
THG ~0!5

1

2
x0

(3)'5.0310211 esu, J0J0 correlation.

~3.5!

Nonequivalent results between theDD andJ0J0 correla-
tion are obvious even for the static limit. The disappeara
of ZFD could be understood as coincidence.40

IV. DISCUSSIONS

The analytical forms, Eqs.~2.20! and ~3.3!, show that
there will be exactly no TPA or even no van Hove singula
ity under DD correlation. They are qualitatively differen
from Eqs. ~2.22! and ~3.4!, which were derived fromJ0J0
correlation. The results with no TPA peak under sing
electron models are certainly reasonable from a physical
spective, which also agrees with previous arguments and
merical computations on this problem.17–25

The nonequivalence between the two gauges for perio
systems in a linear problem has already been noticed
others, and there are several explanations.42,45,46In a recent
work of x (1) computations based on the SSH and TL
models, we gave another possible reason.40 The gauge trans-
formation betweenE"r and p"A contains two parts:~i! the
transformation involving the scalar potentialf and vector

FIG. 3. The real part~solid line! and the imaginary part~dashed
line! of xTLM

THG(v) with z[\v/(2D).

FIG. 4. ComputedDD values~solid line! vs J0J0 values~dashed
line! of uxTLM

THG(v)u with z[\v/(2D).
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potentialA; ~ii ! the transformation involving the phase fact
between the wave functions under the two gauges. Con
tionally the static current formula ignores part~ii ! and it uses
the same ground state average^•••& @see Eq.~2.14!# as that in
the dipole formula, without considering the influence of t
phase factor. Thus, it causes a problem even for the lin
case in periodic models. Equivalent results can be obta
when the phase factor is properly considered in the gro
state for theJJ correlation.15,16,26,30In other words, both di-
pole formula and theJJ current formula represent differen
physical situations for the same unperturbed ground st
and therefore yield different results. Introduction of t
gauge phase factor in theJJ correlation will complicate the
computation, especially for nonlinear optical studies. In t
sense, we draw the conclusion thatDD is more appropriate
than theJJ correlation. Computational details and discu
sions of different physical backgrounds for both formu
have been presented in Ref. 40.

Results in this paper demonstrate that the simplest sin
electron models~like either the SSH or the TLM model! may
not be suitable in describing this nontrivial TPA inx (3) of
trans-polyacetylene. Thus, more sophisticated models~like
the Hubbard model,17,24,25 electron-hole pair model,17,23,38

etc.! should be used. Previous computations have alre
shown that the information inadequately conveyed in
single-electron models, thus the size effect,21 lifetime
considerations,17–25 exciton effects,4,17,24,25quantum fluctua-
tions, or disorders should be included in order to explain t
nontrivial TPA. Both SSH and TLM models still can serve
a basis for the inclusion of all those interactions.

Our computations have shown another new peak atz51
which was missed by both experimental13 and theoretical
ce

s
ied

e

in

G

iq.

. B

d,
n-

ar
ed
d

te,

s

-

e-

dy
e

is

studies.15–22 It would be interesting if the experimentalx (3)

behavior aroundz51 could be measured in the future.

V. CONCLUSIONS

Analytical solutions of the THG for infinite chains unde
the SSH and TLM models are obtained with theDD corre-
lation. They do not show the existence of TPA. We ha
provided a possible qualitative explanation based on the
fluence of the gauge phase factor40 for nonequivalent results
betweenDD and J0J0 correlations.26 The complexity intro-
duced by the gauge phase factor forJJ correlation suggests
thatDD correlation may be much more suitable for obtaini
reasonable NLO results thanJJ correlation. The polarization
operatorP̂ ~the zeroth-order approximation ofD̂) leads to
different results for delocalized systems such as 1D perio
systems, although it may provide some good qualitative f
tures for localized systems or under 2D structure. We s
emphasize that we only provide one possible reason to
derstand the difference between the two gauges for peri
systems, and there are some other possible reasons fo
difference.45,46 The question about the difference still re
mains open, and further investigation is needed.
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