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Analytical solutions to the third-harmonic generation in trans-polyacetylene:
Application of dipole-dipole correlation to single-electron models
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The analytical solutions of the third-harmonic generatibHG) for infinite chains under both Su-Shrieffer-
Heeger and Takayama-Lin-Liu-Maki model of trans-polyacetylene are obtained through the scheme of dipole-
dipole (DD) correlation. They are not equivalent to the results obtained through static current-cagdyt (
correlation or under polarization operaf@mwith the same initial distribution functions. Physical backgrounds
for those differences are analyzed qualitatively. The van Hove singularity disappears exactly in analytical
forms underDD correlation, showing that the experimentally observed two-photon absorptionpeak in
THG cannot be directly explained by the single-electron models. Our analytical results on TPA are consistent
with numerical computations using dipole formulas.

I. INTRODUCTION tions under the SSH mod#.Unfortunately, the result for
x® thus obtained under SSH model is the same one under
The nonlinear optica(NLO) properties of conjugated TLM model if the linearization applied to thikJ, schemé?®
polymers have received wide attentibrf. Experimentally Because of the ZFD in thé,J, current formula® inten-
observed nonlinear phenomena in conducting polymers, sudive studies based on the dipole-dipol®Y) correlation
as photoinduced absorption, bleaching, photoluminescenchave been carried out in order to obtain the physical descrip-
ultrafast optical processes, and exciton behaviotdhave tion of TPA in x® of trans-polyacetylene. On one hand,
encouraged theoreticians to look for possible explanaweakly correlated and single-electron theories were used in
tions10-12 the numerical dipole computations; the finite size effect
The large third-order susceptibility x(*)) of trans- and the lifetime assumptiéhlead to a peak at the exact
polyacetylendPA) was observed experimentally in the early position of TPA. On the other hand, strongly correlated elec-
1990s*'* and theoretical explanations have beentron theories have also been applied to short chains. Soos and
suggested®° The origin of the experimentally observed Ramesesha obtained the TPA based on the Pariser-Parr-
two-photon absorption pe&k!* (TPA) has been the subject Pople (PPP model, but the peak was shifted to low fre-
of persistent theoretical discussiofis®® The use of static quency and had too low an intensityelative to the experi-
current-current correlatidi'®%¢(J,J,) with Keldysh Green  mental peak® Recent works by Guo, Guo, and Mazuntdar
function method€ has lead to the interpretation of TPA and by Zhang® based on the extended Hubbard Hamil-
through analytical forms corresponding to either the Su+tonian, show that the TPA could be interpreted as a three-
Shrieffer-Heegeéf (SSH or the Takayama-Lin-Liu-Mak?  photon resonance fromn(n)B,, state to 1, state. Whether
(TLM) models for infinite chains. However, various numeri- or not the weakly correlated theory or even the single-
cal approaches based on the dipole formali&am), such as electron models such as SSH and TLM are suitable in de-
the results of Yuet al'®*® (who used the Butcher-Cotter- scribing TPA still remains an open question.
Bloembergen-Shen dipole formdfa®), by Wu and Suff?* Etemad and Soos have suggested that attention should be
(who used the Genkins-Mednis appro&tt) and by Shuai  paid to thex® frequency dependences rather than to the
and Br_eﬂaio (who used the sum-over-sta8OS Orr-Ward  agnitudes’ since the experiments are more sensitive to
formahsrr? ), have shown tha_tzgo TPA was found if damping ¢requency dependences. This leads to the use of typical ap-
in the energy is Cﬂns'de%réa' Therefore, the two-photon 4 imations in the dipole formula. Substitution of the dipole
cusp undetel, schemes' is considered to be a van Hove operatorD by the polarization operatdp [see Eq.(2.23],

singularity’® caused by the singular density of statB¥S) ' PETe
on the Fermi surface in one-dimensioiiaD) systems. This (the zeroth-order dipole approximatfori) has been exten-

nonresonant property in two-photon cusp was also noticedVely applied to the nonlinear optical formula. Some theo-

by Wu in his y® results® retical results, I|I§e the size dependency of static third-
Besides the difficulty of explaining the TPA under the harmonic generatiofTHG),” can be successfully compared

JoJo current formula, there exists another obvious difficulty to the experiment&’ However, it has been pointed out tHat

in the theory—the zero frequency divergen@-D) in the is sensitive to boundary conditions and singular in the ther-

definition ofJyJ, current formalisn? This problem was dis- modynamic limit inx*) computations® For x(®), our con-

cussed by Dakhnovskii and Pronin on the basis of computacern is the following: under what physical situations and to
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what extent, carP still be considered as good as the dipole hilates an 7 electron at sit¢ with spins. Application of the

operatorD for practical calculations? continuum limitation makes the SSH model equivalent to the
The static dipole formuld~2® and the static current TLM model?® In the SSH model, each site is occupied by

formula®3® are conventionally considered to be equi- One electron.

valent!®3°-32However, as we pointed out in recent woffs, Under theDD correlation, the interaction Hamiltonian is

the static current formula shows a ZFD problem when theexpressed by

gauge phase factor is ignored in the initial wave functions, .

and it should not lead to the same results as the static dipole Hg., = —eE-r=—-D-E;

formula with the same set of unperturbed wave functions and o
the same initial distribution functiod€.In other words, the With ethe electron charge artdl the electric field. Under the

same initial distribution functions for the different formulas JoJo correlation’® the interacr%iggll Hamiltonian is introduced
represent different physical situations. Therefore, the resuldrough a U1) transformation>™* A detailed derivation for
for optical susceptibilities are not necessarily equivalentN® SSH model with the-A interaction can be found in Ref.
when these two formulas are used. k&P under either SSH  36- AS we can clearly see in previous d!scussiﬂﬁ‘épn one

or TLM models, we have shown the nonequivalence of thd'and, theDD correlation would be derived by assuming a
two static formulas. Whether this nonequivalence betweeSc@lar potentiak-r for the perturbation, giving rise to the
JoJ, and DD correlations effects they® of trans- ©€xternal electric field. On the other hand, thecorrelatior?®
polyacetylene theoretical models is another interesting topiccOUld be obtained from the time-dependent uniform vector

Although the qualitative features of® have already been potential A as _pgrturbation. As long as one uses periodic
reported in the numerical solutions based on B® boundary conditions, the scalar potential shows saw-shaped

correlationt’2° the exact analytical solutions have not yet behayior and therefor_e the r_esult_ing el_ectric field is not uni-
been obtained. The analytical results, if obtained, would bdorm in real space, whildy- A is uniform in real space. From
very helpful for a direct check of the above concerns. this point of view, the latter treatment will be (_:Iearly more
Fortunately, both the SSH and TLM models are single-2PPropriate than the former especially for linear optical
electron models and can be exactly solved for the nonlinedSPONSE.” .
susceptibilities under perturbated schemes, although this no If we want to use the position operatofor a discussion,
doubt requires cumbersome calculations. After adoption ofn order to provide the periodic property and to avoid the
the conventional long-wavelength approximattdré>*!it ill-posed definition off in real space we have to express
would be possible to directly compare the analytical resultsinder the Bloch statds,k>:un]k(r)e‘k'r, wheren andk are
between the two gauges under either model and thus undethe band index and crystal momentum, respectively.(r)

stand the different physical descriptions. is the periodic function under the translation of lattice
The paper is organized as follows. In Sec. Il A, we discuss/ector®® We obtain

the SSH Hamiltonian and compare the physical pictures re-

lated to tthD andJoJo correlati0n§. The anqutical form of Fkonkr =10n 0 Vi(K—K")+Qp 1 (K)S(k—K"),

X&) associated with thBD correlation is obtained and com- (2.2
pared with the analytical form associated wiJ, correla- d

tion under the SSH model in Sec. IIB. In Sec. IIC, we &"

present results of®) using the polarization operatét, the i

qualitative and quantjtative gifferences between the results Q (k)= ;f Up k(N ViU (r)dr, (2.3
obtained with use oD and P are outlined, and physical ’

reasons for the difference betweBnandP are analyzed. In  wherev is the unit cell volume.

Sec. Ill, we obtain the exact analytical forms un@d cor- The above treatment representsy momentumk space,

relation for the TLM model and directly compare them 10 and the calculation obD correlation was restricted to only
those undedyJ, correlation. The discussion of the possible gne single unit celb. This allows us to avoid the nonuni-

implications of this work is made in Sec. IV and a brief form property of the scalar potential. Provided that the num-

conclusion is presented in Sec. V. ber (N) of periodic unit cells goes to infinityy(® obtained
from a single unit in momentum space shows the saturation
Il. THIRD-ORDER SUSCEPTIBILITIES FOR THE SSH behavior and the second hyperpolarizability is linearly pro-
MODEL UNDER DIPOLE CORRELATION portional to N?223

Based on the calculations fa*) under SSH and TLM
models, we have noticed the following faéfs(i) the real
Based on periodic tight-binding approximations, the SSHpart of the JyJ, correlation shows the ZFD problem, al-
Hamiltoniarf® is given by though the imaginary part of thiJ, correlation is exactly
the same as that of theD correlation;(ii) after the gauge
At oA At A phase factor is properly considered for the initial distribution
(Ci115C1stCisCiis), functions, the results under both correlations are equivalent;
(2.1) (iii ) the single unit cell computation using tB¥® correlation
was successfully performed, showing that nonuniform scalar
wherety is the transfer integral between the nearest-neighbopotential under periodic boundary conditions may not cause
sites, A is the gap parameter, armfr‘s (C, ) createsanni- a problem in momentum space. Thus, fef®, we may

A. SSH Hamiltonian in real and momentum spaces

to+ 1'A
ot ( )E

HSSH:_E
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assume that the results under a nonuniform saw-shaped sca- _
lar potential should not be different from those under a uni-

form vector potential for infinite chains if the calculations
use a single unit cell in momentum space.
We transform the Hamiltonian, E¢R.1), into momentum
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space by applying the following consecutive transforma-

tions:

N 1

== 2 (G HCEyerR,
o’ \/N — ml2a<k<m/2a ks ks

~U ikR,
(Ck,S_ ley

—ml2ask=w/2a

Ch e (2.4

and

alli,s: =i ')’kCllé,s_’_ gkcﬁ,s )

éﬁ,s: i gkéllé,s'l' ’YKéE,S’ (2.9

with

1

B 2ty cogka)

'YK_E V1t ek
2ty cogka)
Vim0

;s
NG

(2.6

where

e(k)= [ 2to cogka)]?>+[ A sin(ka)]?, 2.7
anda (1) anda (t) are the excitations of electrons in the
conductlon band and the valence band with momerkamd
spins. R, and R, are odd and even positions defined by

R=la+(-1)u. (2.9

We choose the spinor descriptiogy] ((t)=(aj%(t),

ak °(t)) and apply the long-wavelength approximatirihe
SSH Hamiltonian includindgz-r in momentum space is de-
scribed by

HssHk,t)=Ho+He,, (2.9
where
Ho= e(K YL (Dasths()  (2.10
—ml2as<k=m/2a,s
and
He,=—DEge'“l. (2.12)

From Eq.(2.2), the dipole operatob could be obtained
as follows#%4!

J
= At R
b efﬂ-IZasks‘rrIZa,s B(K) Y so29i s T K U sthis|
(2.12
where
(k)= Atpa (.13
e?(k) ’

is the coefficient related to the interband transition between
the conduction and valence bands in a unit cell of length 2
and the second term in E(R.12) is related to the intraband

transition?>**and¢ are the Pauli matrixes. We have omitted
the relative distortion (=2u/a) in this computation be-
cause the contribution af is quite small in the linear casé.

B. Analytical expression for x® (DD correlation)

Within the semiclassical theory of radiatiét;*?the elec-
trical field is treated classically and the third-order suscepti-
bility ¥ is described bif~3?

X(s)(Qi 01,0;7,03)

1[i]?
:?’l—v[%} Jdrldrzdrgj dtldtzdtg
Xf dr dte—ik~r+iQt

(2.14

whereV is the total volumeQ)=—-33 ,w;, T is the time-

ordering operatoi is a dipole operator, and- -) represents
an average over the unperturbed ground state.
If the JgJ, correlation is applied, we usually do the fol-

lowing substitutions foD in Eq. (2.14:304°

X{(TD(r,t)D(rq,t1)D(r2,t)D(r3,t3)),

D(r)—J(r)/(iw))

D(r)—JI(N/(iQ).

The averagg(---) is still based on the same unperturbed
ground state as in the case DD correlation. The physical
background in applying eithédD or JyJ, correlations has
been discussed in detail in Ref. 40.

The THG is defined by setting;= w,= w3. Following
similar procedures to those used in the linear calculafi®ns,

from Egs.(2.12 and(2.14), we obtained the following ex-

pression fory g4 (w1) =x$ — 3wy, 01,01, 01):

2
XS0 = e”° Do = [(ﬁ(k)02+l G(k)
J
X ,B(k)(rz-i-iﬁ Gk,wo—wq)
Jd
X B(k)0'2+l G(kw 2wq)
8
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wherelL is the chain lengthg(k) is defined by Eq(2.13 Q,,=0.=0,

and ng is the number of chains per unit cross area. The

polymer chains are assumed to be oriented, and the Green

function G(k, ») defined as follow4®4* Qye=—Q¢,=B(k). (2.18

0+ w03 2.16 Equation(2.17) is also quite similar to Eq11) in Ref. 20
wi—wl+ie ' which was based on the Genkins-Mednis apprgddh.or-
der to compare the equations, one has to use(Ef8 and
with w,=e(k)/iande=0"" apply the symmetric condition on the negative frequency in
After tedious derivations, we obtained the following ana-the Wu and Sun Eq11).
lytical expressions for the third-harmonic generation under For infinite chains, we could separate two full derivative

G(K,w)=

the SSH model: terms ofk from Eq.(2.17) as follows:
4
) 2¢ng 1 sy B(k)
SSH B3 LK 202w+ 0) (2w +3w) 2e*ng 1
lr= 3 EE
B Bk Bk h k
202w— 0)(2w—3w) (2w t3w) 9 B(K) 9 B(K)
a1 a( 5K X1 7 9| 2ort 30) 20t 20) K| (2ot @)
X_ J—
K| 2w+ 2w) K\ (2w, + ) 9 B(k) d [ Bk
Bk k| (2wg—30)(2ok—20) W((zwk—w) ]
(20 —3w) ok (2.19
1 a Bk . : o o .
X S —2w) k|2 . (2.1  This term (1) vanishes for infinite chains if we consider
(20— 20) K\ (201~ ) following two facts in the optical procesé) the velocity on

The above expression is almost identical to &4L3) in Ref.  the Fermi surfacé e (K)|y= -4 is zero, and(i) the life-
34 except the disappearance of one titme last term in Eq. time of the states is not zer@/\Ve should include the damp-
(A13)]. In order to compare the two equations, the followinging in the process, that isy,— wy+i€, and ¢,#0.) Equa-

102478

substitution should be applied to Eg13): tion (2.17) can be simplified as follows:
|
THG 1) = (O 45 (s dx 37— 24(1+ 8%)x*+126°%* | 9[243- 2161+ 5%)x?+1885°x"]
w)= & —
NeSHI®ITX0 128)1  [(1- A 0e—1)]2 8x°(x2— 2) 8x¥[x2— (32)7]
3 T T 8z* T
=xP —336E E,\/l—(s? +120 6°F 1=+ — (—12+78°— 126" E 5:V1=4

+6(1+ 52)62F(g,\/1— P

+9[37— 241+ 6%)22+ 126°2*]9(2) +[3— 24(1+ 6%) 2%+ 1885224]9(32)}

(2.20
|
and expression obtained frodyJ, correlation, which shows the
following form for xg4;; under the SSH modéf:
Nmé [ 1=
g(m2)= EH(E’”W Vi=o ) M omaP—1 xé’éﬁ,—,—=BzS[[5—8z2(1+ %) +2046%)9(2)— 8
(2.2

X[1—-42%(1+ 6°)+ 162°5%]9(22)
where x8&=£(e*ny/m)[(2tea)%/A®], x=fw /A, z a2 > 42
=hwl/(2A), and 5=A/(2ty). F,E, andIl are first, second, F[3-24z°(1+57) + 18&757]9(32)
and third types of complete elliptical integréfs. 77'
An alternative analytical form of Eq2.20 has been de- —852245(5,\/1— 52) ] (2.22
scribed in Ref. 41. There is no two-photon cusp in Eq.
(2.20. This result is consistent with those of Yu and'®u whereB=5x{¥/1024, with x§) as defined after Eq2.20

and of Shuai and Boms?? It is quite different from the andg(z) is given by Eq(2.21). We should point out that the
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FIG. 1.T|S:GomputecDD values(solid line) vs JoJ, values(dashed FIG. 2. Computed|ngrG;,(w)| under polarization operatoP
line) of [xssp(®)| with z=fiw/(2A) and €=0.03. (solid line) vs computed x24S(w)| (dashed ling under dipole op-

eratorD with z=Aw/(2A), €=0.03, and a magnification of 4an
elliptical form'® of Eq. (2.22 is exactly the same as the |xZ&5(w)|-
integral form of Eq.(11) in the Wu-Sun resuft® which was
derived from the incomplete Genkins-Mednis approgc. potk) ea
The disappearance of ZFD under static current schemes is PUM(k) = lim =— > Yl ohs. (2.24
somewhat puzzling or simply should be understood as fortu- Now N 2 ks " '
itous coincidence for the SSH model. As we pointed out in a R .
recent papef® the neglect of the gauge phase factor in theSubstitutingD by P in Eq. (2.14), we obtain thexggﬁ, for
static current formula will cause ZFD in the susceptibilities SSH model for infinite chains:
and different results from the dipole formula. The derivation

under theJyJ, correlatiot® does not consider the gauge 458% (/s dx 1
phase factor’s effect, which causes ZFD even for the linear ngf—izxg') f N TR
case if following straightforward calculatiofi3. 128J1 [(1-853)(x*~1)]"? | x*~z
We observe the qualitative difference for results under
DD [Eq. (2.20] andJyJg [Eq. (2.22] correlation, especially _ 9 (2.25
for z=1/2 andz= 1. The nonequivalence can be understood x?—(32)?] '
by the influence of gauge phase factor in optical response
theory?® We will discuss the difference in Sec. IV. The above expression lacks TPA. However, the magnitude

Setting x—x+ie in the integral of Eq.(2.20, the is too small compared with results under (|x&e;| from

absolute values obtained numerically with E@.20 or  p js apout 104 of | XeHS from D if §=0.18 for trans-
Eq. (222 for the SSH model are those plotted in holyacetylend. Another peak ar=1/(35)~1.85 shows up
Fig. 1. The following parameters were chosen for ransthrough P-E. This peak corresponds to the transition from
polyacetylené® ! t,=2.5 €V, A=0.9 eV, ng=3.2x 10; the bottom of valence band to the top of conduction band.
cm 2, a=1.22 A, ande~0.03. We obtains=0.18 andx$”  This peak in infinite chains seems not to agree with “um-
~1.0x10 "° esu. klapp enhancement” in solid statdsIn DD calculations,

Figure 1 shows another peakzt 1 at a ratio of 1/10 of  this peak az= 1/(34) is not obvious. The comparison of the
the peak az=1/3, which differs from the previous theoret- gpsolute values betweedéﬁ, and y<HC is shown in Fig. 2.

) e oe ssH |
ical computations>~?° This peak has not been reported by The different shapes of curves are obvious.

the experiments because it is out of the scanning range of - ) )
As we can see from Eg2.23), P only contains on-site

photon energy>4 s
information. There are no off-site terms iK&/C,,, where
I #1’. However, the off-site terms will appear in the Fourier

C. Results with polarization operator P transformation o [Eq. (2.12] in real space. Convention-

The polarization operatd? is extensively applied in NLO ally, P is understood as the zeroth-order approximation of
theory?*38 Under the tight-binding approximatiaimBA), P D,?**%and some resullts like size dependefiaye consistent
is defined in real space as with experimental observatioris.However, since delocal-

ized electronic states should be obtained in periodic

system$? it suggests that the contributions to the optical

5 PPN susceptibilities from off-site terms cannot be negligible. Un-

P_Z RCIC. 223 jer certain cases, if the contributions to optical susceptibili-

ties from off-site terms are relatively small compared to

those from on-site terms, for example, if all electronic states

Based on the SSH model, we can do a comparison cére localized or electronic hopping to nearest-neighbor sites
x5a5 betweerD andP. If the chain regior is going from 1 s relatively small, it is expected th& can serve as a good
to N, we obtain the unit polarizatioR“"(k) from the total approximation ofD. Under that situation, computations can

polarizationP™@\(k) in the momentum space: be drastically simplified througR. For the SSH model, the
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electron hops from one site to the other nearest-neighbor
sites, indicating that electronic states of the system are delo-

calized. ThusP may not be sufficient to determine the non-
linear susceptibility.

Another possible reason to cause those differences is the

ill-posed definition ofP for 1D chains®® because periodic
boundary conditions imply that the electron on gite-1 is

the same as that on site 1. To avoid this difficulty, the 2D
ring structure could be considered as physically meaningful

boundary conditio’® Under a 2D structure, this unphysical
feature can be eliminated frof.

Ill. THIRD-ORDER SUSCEPTIBILITY FOR THE TLM
MODEL UNDER THE DIPOLE FORMULA

The result under TLM model with thBD correlation can
be obtained by settingg—0 and (Zya)—Ave in Eq.
(2.20.20214941\we have the following properties for the
complete elliptical integral$?

IimE(g,\/l—(SZ):l,
6—0
IimﬁzF(g, 1—52)=o, 3.1)
6—0
IimH(z,nm,\/1—52)=f(mz),
6—0 2
where
m 21
- (z ),
f(2)= (3.2
cosh +(z) i (2>1).

— +
21 2z7%-1

We obtain the following expression for THG under TLM
model forDD correlation:

2
10248

96z
—336— —— +9(37—2472%)f(2)

XTOMm(@) =X 5

+3(1—822)f(3z)}, (3.3

wherex (¥ defined as in Eq2.20. A plot of x11G is shown
in Fig. 3. No singular behavior at=1/2 (such as van Hove
singularity shows iny{1G underDD correlation.

In JoJo correlation, the result of;;; obtained by Wu

is as follows®®

THG

XTLij(w):X(S)

0 10248
+3(1—822)f(32)).

{(5—87%)f(2)—8(1—47%)f(22)

(3.9

The comparison between our resub@) and Wu’'s

result® (JyJ,) for the absolute value of{'c is shown in

Ymra() (10 esu)

FIG. 3. The real partsolid line) and the imaginary paftashed
line) of xT1'S(w) with z=hw/(24).

Fig. 4. If the zero-frequency limitation is made, lettizg
—0, we obtain different values for the zero-frequency limit
(static limit) for both DD andJyJ, correlations:

THG S (3)~

XTim(0)= 5gx0”~1.8X 10 ! esu, DD correlation

THG

--(0)=1 (~5.0x 10 L esu, JoJ, correlation
XTLMjj 2 X0 . » JoYo .

(3.5

Nonequivalent results between tB® and JyJ, correla-
tion are obvious even for the static limit. The disappearance
of ZFD could be understood as coincidefite.

IV. DISCUSSIONS

The analytical forms, Eqs(2.20 and (3.3), show that
there will be exactly no TPA or even no van Hove singular-
ity under DD correlation. They are qualitatively different
from Egs.(2.22 and (3.4), which were derived fromlyJ,
correlation. The results with no TPA peak under single-
electron models are certainly reasonable from a physical per-
spective, which also agrees with previous arguments and nu-
merical computations on this problefr.?

The nonequivalence between the two gauges for periodic
systems in a linear problem has already been noticed by
others, and there are several explanatf5ri$:*®In a recent
work of x) computations based on the SSH and TLM
models, we gave another possible rea®ofhe gauge trans-
formation betweerkE-r and p-A contains two parts(i) the
transformation involving the scalar potentiaél and vector

o
o

(@) (10”esu)

THG

X rum
o o
n S

0.0
0.0

0.2

0.4

FIG. 4. ComputedD values(solid line) vs JyJ, values(dashed
line) of |xTHG(w)| with z=fw/(24).
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potentialA; (i) the transformation involving the phase factor studies:>"??It would be interesting if the experimentgf®
between the wave functions under the two gauges. Convepehavior aroung=1 could be measured in the future.
tionally the static current formula ignores pér) and it uses
the same ground state averdge ) [see Eq(2.14)] as that in V. CONCLUSIONS
the dipole formula, without considering the influence of the
phase factor. Thus, it causes a problem even for the linear Analytical solutions of the THG for infinite chains under
case in periodic models. Equivalent results can be obtainele SSH and TLM models are obtained with ® corre-
when the phase factor is properly considered in the grounttion. They do not show the existence of TPA. We have
state for thelJ correlation'1626:3%n other words, both di- Provided a possible qualitative explanation based on the in-
pole formula and theld current formula represent different fluence of the gauge phase faéfoior nonequivalent results
physical situations for the same unperturbed ground stat&etweenDD and JoJ, correlations® The complexity intro-
and therefore vyield different results. Introduction of theduced by the gauge phase factor fdrcorrelation suggests
gauge phase factor in thE correlation will complicate the thatDD correlation may be much more suitable for obtaining
computation, especially for nonlinear optical studies. In this'easonable NLO results thad correlation. The polarization
sense, we draw the conclusion th2D is more appropriate operatorP (the zeroth-order approximation &) leads to
than theJJ correlation. Computational details and discus-different results for delocalized systems such as 1D periodic
sions of different physical backgrounds for both formulassystems, although it may provide some good qualitative fea-
have been presented in Ref. 40. tures for localized systems or under 2D structure. We shall
Results in this paper demonstrate that the simplest singleemphasize that we only provide one possible reason to un-
electron modelglike either the SSH or the TLM modeinay  derstand the difference between the two gauges for periodic
not be suitable in describing this nontrivial TPA j#® of  systems, and there are some other possible reasons for the
trans-polyacetylene. Thus, more sophisticated mo@ide difference?®*® The question about the difference still re-
the Hubbard modél!**? electron-hole pair modéf;>3®  mains open, and further investigation is needed.
etc) should be used. Previous computations have already
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