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Disordered photonic crystals understood by a perturbation formalism
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Photonic band gaps in disordered two-dimensional photonic crystals are investigated for two typical types of
randomness: cylinder site displacemefsite randomnegsand cylinder radius variationsize randomness
The plane-wave expansion method with a supercell technique is applied to calculate the density-of-states
(DOY) for the disordered photonic crystals. In particular, numerical simulations on the DOS for square and
triangular lattices of dielectric cylinders in air with tlepolarization mode show that photonic band gaps are
far more sensitive to disorders with a size randomness than with a site randomness. The first and second band
gaps both reduce very little even for a site randomness of a strength as large as half the cylinder radius, yet they
reduce more than one-half for a size randomness of a strength about one-third the cylinder radius. This
substantial contrast can be understood by the analysis of the electromagnetic fields in disordered crystals.
Based on such a field analysis, a perturbation formalism is proposed for disordered crystals and it accords well
with the DOS calculations for a site randomness of even a moderate strength. At very weak size randomness,
the perturbation method also works well to some extent. Such a simple perturbative analysis should provide a
systematic way to understand various disordered photonic crystals qualitatively and even semiquantitatively.

I. INTRODUCTION was reported, which provided a fascinating prospect of open-
ing photonic band gaps in the optical frequeRty.

In recent years the fabrication of photonic crystals has Nonuniformities inevitably occur in the fabrication of
attracted extensive interést. These artificial periodical photonic crystals, especially when the crystals are of mi-
structures exhibit “forbidden” frequency region where elec- crometer and submicrometer sizes. Among them are devia-
tromagnetiod EM) waves cannot propagate for both polariza-tion of crystal “atoms” ( cylinders or sphergsfrom their
tions along any directions. This may bring about some pecuperiodic lattice sites, fluctuation of “atom” radii, configura-
liar physical phenomeni® such as the suppression of the tion nonuniformity of “atoms,” and so on. These disorders
spontaneous emission of molecules and the localization ahay affect the properties of photonic crystals significantly.
EM waves. Besides the academic interest, these structur@r example, if the disorder in crystals reduces the photonic
imply the possible application in several scientific and techbband gap appreciably enough, then the superior optical
nical areas such as filters, optical switches, cavities, design @haracters will be destroyed completely. For this reason, in
low-threshold lasers, and high-efficient light-emitting recent years, there have appeared extensive discussions on
diodes!? It is also proposed that such photonic crystals maydisordered photonic crystals both theoreticzily’ and
hold the key to the continued progress towards all-opticabxperimentally’® The theoretical efforts include the band-
integrated circuitg. gap calculations via the plane-wave expansion method with a

The fabrication of photonic crystals requires state-of-thesupercell technique and the transmission spectrum calcula-
art lithography techniques, such as electron-beam lithograions. It was found that the ground band gap could survive to
phy and x-ray lithography. Despite the fact that rapida rather large amount of disorder both in 2D and 3D crystals.
progress has been made in such techniques and some derbwever, these simulations require powerful numerical cal-
onstrations on three-dimensior(@D) photonic crystals with  culations. In addition, they are still short of a clear under-
a micrometer size have been reported based on a layer-bgtanding in physics for such disordered photonic crystals.
layer growth scheme, the fabrication of three-dimensional In this paper we will propose a perturbation formalism to
(3D) photonic crystals with a band gap in the visible or in- understand the disordered photonic crystals in a systematic
frared regimes still remains a difficult and challengingway. It is based on the analysis of the electromagnetic fields
task®~* In contrast, the fabrication of 2D photonic crystals in the crystal with use of the plane-wave expansion method
is much easier by such lithography techniques in the micombined with the supercell technique. In particular, we
crometer or submicrometer size regimt&s'> Another tech-  have considered two typical disorders in a 2D photonic crys-
nique that has been extensively studied to grow a 3D photaal consisting of dielectric cylinders in air: One is the random
nic crystal in the optical frequency is through the self—displacement of cylinders from their lattice sitéste ran-
arrangement of colloid. Many self—assembling photonicdomnesy and the other is the random fluctuation of cylinder
crystals exist, including colloidal systeMig’ and artificial  radii (size randomnegs The effect of disorders on the
opals!®~?°This is rather a chemical method. Very recently, it ground and higher photonic band gaps is measured via the
was reported that porous carbons that are threedensity-of-state§DOS) for a disordered crystal. We will
dimensionally periodic on the scale of optical wavelengthsmake comparisons between the perturbative calculations and
could be made by a synthesis route resembling the geologic®OS manipulations, and then show the effectiveness of the
formation of natural opd* In a similar scheme, the success- proposed perturbation formalism for weak disorders.
ful preparation of 3D photonic crystals consisting of air  This paper is arranged as follows. In Sec. Il we first
sphere in titania (Ti¢) with radii between 120 and 1000 nm briefly introduce the model and formalism of the supercell
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technique and the perturbation method for disordered 2B3ingle unit cell. We find the band-gap size obtained from a
photonic crystals. Then in Sec. lll we investigate in detail thesupercell calculation agrees with that obtained from a single
effect of the site and size randomness on photonic band gapsit cell to within 1%.

and make a comparison between them. In Sec. IV we will The size of photonic band gaps in disordered crystals is
apply the perturbation formalism in disordered photonicdetermined by their DOS, which are obtained by solving Eq.
crystals, and discuss its effectiveness compared with thél) at each of over 10000 uniformly spaced values of
DOS calculations by the supercell technique. Then in Sec. VBloch’s wave vector inside the first Brillouin zone of a unit
we will analyze the electromagnetic field in the disorderedcell. We have also changed the configuration of disordered
crystals in detail to understand the different behaviors of therystals, adopting different random number series. It is found
two kinds of randomness on the band gap and confirm théhat the calculated DOS and band-gap size are insensitive to
perturbation method. Finally the summary and conclusionshe sequences of random numbers used in the case of site

are made in Sec. VI. randomness, even at large random strength. However, the
results are quite dependent on the supercell configurations
Il. MODEL AND FORMALISM for the size randomness, especially at strong disorders.
) ) Therefore, the calculation results shown in this paper are all
A. Supercell method for disordered photonic crystals obtained by averaging five supercell configurations.

The disordered photonic crystals are well described by the
random strength. For an original periodic crystal with a lat- B, perturbation method for disordered photonic crystals
tice constant ofa and a cylinder radius of, in the site
randomness, every cylinder keeps its radiusgasvhile thex
andy components of the position of thi¢h cylinder in the

Calculations of DOS with use of the plane-wave expan-
sion method combined with a supercell technique requires

disordered crystal, differ from those of the periodic case bﬁg(\;ve;flélinqu:gerr;]%azlhggnwtggtait;oniaﬁ% t||tvlzl ofcgorrerzé\tcln;rgs;t(_)
7xa and y,a, respectively, wherey, and y, are variables P q y P

uniformly distributed over the interval gf- d, dy,]. Here proximately accurate in quantity. With this in mind, in the

Xy . ) ) .
dyy is the random strength of the disordered system. For thgollowmg we will extend the perturbation theory that is

disordered crystal with a size randomness of stredgtithe Widely applied in guantum mechanics to the electromagne-

cylinders are arrayed in the original lattice sites, while thetlsm' One can find the perturbation formalism in a standard

radius of theith cylinder is given by =ro+ y.a wherey, is textbook of quantum mechanics. Following the basic concept

a random variable uniformly distributed over the interval therein, we will show how an eigenstate of a perfect crystal
[—d, .d] y is affected by the introduction of disorders, which can be
roYrd-

The electromagnetic problem in such 2D disordered cr Sgssumed as a perturbation when the disorder strength is
9 P YSveak. In fact, recently such a perturbation formalism has

tals can be so_lved V\.”th the use of the pl_ane-wave. EXpansiof, g, successfully evaluated to engineer photonic crystals
method combined with a supercell technique. In this way, th?/vith large absolute band gai%

m:xﬁvgtlilcsf?eﬁ?sons can reduce to the wave equation for the Consider a Bloch’s state with an eigenfrequencygfk)
9 and an eigenfield ofiy(r). They satisfy Eq(1) as

2

\Y
. = 20Hgn), @
C

1 _ w2
mVXH(f) —?H(I’), (1)

wheree(r) is the dielectric function of the random systedn, ) o ) ]

is the frequency, andis the speed of light in vacuum. When Whereeo(r) is the periodic dielectric function of the perfect
the random strength is zero, i.e., perfect crystals, the frecrystal. The eigenvalue can be written in an integral form as
guency and electromagnetic field distributions can be solved

with use of the plane-wave expansion metRod: For a w? )
disordered crystal, the plane-wave expansion method is still ?JV|H0(V)| dr= JVVX
applicable, provided that it is combined with the supercell

technique where the disordered system is approximated as a 1
periodic system with a period large enough to guarantee neg- = J mIVx Ho(r)|%dr, (©)]
ligible coupling between neighboring supercells. veo

In our simulations for both square and triangular latticesynereV is the volume of crystal. In deriving the final for-

of dielectric cylinders in air, we only consider the y5iism we have considered the Maxwell's equations.
E-polarization mode where the electric field is parallel to the  then for a disordered crystal with dielectric function

extension _axis of cylinders. For trhd}polariza'gion mode., the €(r) which can be regarded as a perturbatiord¢r), simi-
band-gap is much narrow&r? In our calculations for disor- larly we have

dered crystals, we employ a supercell containingS unit

cells for systems with site randomness, and77 unit cells 2 1

for systems with size randomness. In the former case, we use w_J' [H(r)|?dr = f —— |V X H(r)|%dr. (4)
729 plane waves in calculations, while for the latter case, c?Jv ve(r)

961 plane waves are used. In order to check the accuracy of

our calculations, we first consider a periodic structure, where In the first-order perturbation formalism, the wave func-
the band structures can be accurately determined using teons are kept as the unperturbed ones, so(Egnow reads

VX V X Ho(r)

1
€o(r)

1
WVXHO(I’)

“H§ (r)dr
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FIG. 1. Density of state€DOS) of disordered
crystals with(a) site randomness art) size ran-
domness in various random strengths. The DOS
is calculated for theE-polarization mode of a
square lattice of dielectric cylinders in air. The
cylinders have a filling fraction of =0.3 and a
dielectric constant ofe=12.96. Dotted vertical
lines in (a) and(b) represent the band edges of a
periodic crystal. For a clarity of view, the upper
curves are offset alternately.
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1 those in the perfect crystals. More accurately, one should

|V X Ho(r)|?dr. (5)  concern the perturbation of systems with continuous spectra,
and with many degenerate states, which is common in pho-
tonic crystals. However, such a rigorous treatment will re-
quire extensive numerical computations, which might be
even more time consuming than the supercell method.

2
w
_ 24y =
CZJV|HO(r)| dr— VE(I')

Combining it with Eq.(3), we have

) ~fv[e1(r)—eo1(r)]|V><Ho(r)|2dr

. ) ll. CALCULATION RESULTS OF DOS FOR SITE AND
S0 (NIVXHo(r)|*dr SIZE RANDOMNESS

In our calculations, the dielectric constant of cylinders is
f [e Y(r)— egl(r)]|Do(r)|2dr fixed ase=12.96. We first consider a square lattice of such
_ v 6) cylinders in air with a filling fraction off =0.3. The corre-
1 9 ' sponding radius of cylinders i5=0.30%, wherea is the
jvfo (1)|Do(r)|*dr lattice constant of the crystal. In a perfect crystal, two large
band gaps open at 0.219.284(2wc/a) and 0.385
where Dy is the electric displacement field in the perfeCt_o_4go(27Tc/a), respectively. The normalized band-gap
crystal. _ . . width A w/ w4 for these two gaps are 25.8% and 24.0%. Here
The shift of photonic band by disorders in crystals can bex , andw, denote the width and the center frequency of the
estimated by this perturbation formalism. It is a general formygnq gap, respectively. It may be expected that such large

for_var_ious photonic crystals_. For a 2D photonic CW_StaLband gaps could survive to a rather large amount of disorder
which is excited by arE-polarization mode, we can derive iy crystals.

another perturbation formalism regarding the electric field T5 measure the effect of various disorders on the band

E(r) as® gap, we calculate the DOS of the corresponding disordered
crystal with a supercell technique. The results are displayed
5 f [eo(r)— e(r)]|Eq(r)|2dr in Figs. Xa) and Xb) for various strengths of site random-
() _Js ness and size randomness, respectively. For a clarity of view,
; —1= ' (7 the upper curves in both panels are offset alternately from the
0 Lfo(r)|Eo(f)|2dr bottom curve. It is evident that the band gaps are much more

sensitive to the fluctuation of cylinder radii than the displace-

where S is the area of the 2D crystal. Basically EF) is = ment of cylinder sites. The ground band gap lies at 0.220
equivalent to Eq(6) in the manner of the first-order pertur- —0.284(2rc/a), 0.221-0.284(2wc/a), and 0.224
bation. For instance, wheey(r) increases by a small value —0.283(2rc/a) for site randomness with a strength ayf,
to €(r), the eigenfrequency should decrease from the physi=0.05, 0.10, and 0.15, respectively. The corresponding nor-
cal viewpoint. Indeed, Eqg6) and (7) both verify such an malized band-gap widths are 25.4%, 25.0%, and 23.2%. So
expectation. However, &&(r) is continuous everywhere in- at weak disorder, the reduction of the ground band gap is
side the 2D crystal at th&-polarization mode, it is more negligibly small. Even for a strong disorder with a strength
accurate in numerical calculations for band shift to use Eqas large as half the cylinder radius, the band gap only reduces
(7) with E(r) than to use Eq(6) with H(r). about 10%. In contrast, for size randomness with a strength

It should be noted that the perturbation formalism intro-of d,=0.05 and 0.10, the ground band gap reduces to
duced here is obtained by rather a simple physical considef.222-0.272(2rc/a) and 0.232-0.252(2wc/a) with a
ation. Nevertheless, it may provide a reasonable estimate oformalized width of 20.2% and 8.3%, respectively. The
band gaps in weak disordered photonic crystals, where thikand gap reduces almost to one-third for a moderate disorder
electromagnetic fields do not vary much compared withstrength of about one-third of the cylinder radius.
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The contrast is even more appreciable for the higher bantbr square and triangular lattices of dielectric cylinders in air,
gap. For a disordered crystal with site randomness ofespectively. In the plots, the edge frequency of the ground
strength ofd,,=0.05, 0.10, and 0.15, the second band gapand the second band gaps for a disordered crystal with site
reduces to 0.3860.490(2rc/a), 0.389-0.488(2vc/a), and size randomness of the same strength fixed,@s d,
and 0.395-0.484(2wc/a) with a normalized width of =0.05 are compared with those of the perfect crystal. It is
23.7%, 22.6%), and 22.2%, respectively. The reduction ofvident that at various filling fractions, the reduction of both
the band gap is less than 20% for a site disorder with dand gaps by a size fluctuation is more remarkable than that
strength of half the cylinder radius. Therefore, this highercaused by a site displacement, especially for the second band
band gap can also endure a rather large displacement of cydap. Furthermore, the reduction of band gaps by a size fluc-
inders from their lattice sites. As a contrast, for a size rantuation grows rapidly when the filling fraction decreases, yet
domness ofd,=0.05, the second band gap reduces toat a site randomness it is not sensitive to the filling fraction.
0.422-0.454(2mc/a), and the normalized width (7.3%) is Qualitatively, lowering the filling fraction means growing
reduced more than one-half that of the perfect crystal. At dhe relative random strength. As we have shown in Figs. 1
stronger disorder o, = 0.10, this higher band gap is closed. and 2, the band gap is far more sensitive to the strength
More detailed calculations show that it vanishes at aliput Vvariation of size randomness than of site randomness.
=0.065.

Numerical simulations for triangular lattices of dielectric IV. PERTURBATIVE CALCULATIONS
cylinders in air show similar characters. Figure@®)2and FOR DISORDERED PHOTONIC CRYSTALS
2(b) demonstrate the DOS of disordered crystalsf 0.3 . . -

In the above, we have investigated band gaps in disor-

andr,=0.28& with site and size randomness, respectively, ) i . .
0 P y ered photonic crystals via calculations of DOS with use of

in various random strengths. Here the upper curves of Doéh I _ thod bined with I
are also offset alternately. For a perfect crystal, two band''€ Plane-wave expansion method combined with a superce

gaps open at 0.2200.316(27c/a) and  0.409 technique. This requires extensive computational efforts. In

—0.530(2rc/a). The normalized gap widths are 35.8% andthe following we will qpply the perturba_tion formalisfEq. .
25.7%, (respec)tively. The first ba%dpgap is reduced to 0.2267)] to understand disordered photonic crystals. We wil
—0.316(2rc/a), 0.222-0.316(2mc/a), and 0.224
—0.315(2rc/a) for a disordered crystal with a site random-
ness of d,,=0.05 010, and 0.15, and to 0.227 055 | v
—0.293(2rc/a) and 0.256-0.266(2rc/a) for a size ran- ¥—vdr=0.05
domness ofl,=0.05 and 0.10, respectively. The correspond- E3-40ap
ing gap widths are 35.8%, 34.9%, 33.7%, and 25.4%,

045
6.2%, respectively. It is evident that the band gap is far more \\,\
0.35

sensitive to the fluctuation of cylinder radii. The second band 35 |

gap has a reduction at the site randomness as small as the

first band gap. It lies at 0.4300.529(2wc/a), 0.412 oas | Ei-2gep

—0.526(2rc/a), and 0.416-0.521(2mc/a) for d,, ' \_\.

=0.05, 0.10, and 0.15, respectively, with a width of 25.3%,

24.3%, and 22.4% correspondingly. However, the reduction 0.18 52 oo 33 YT o

of this higher band gap by a size randomness is far larger Filling Fraction

than that of the first band gap. At,=0.05, the band gap

[0.458-0.493(2rc/a)] has a width about one-third that of  FIG. 3. Plots of edge frequencies of tEepolarization 1-2 and

the perfect crystal. It is closed df~0.065. 3-4 band gaps for disordered square lattices in various filling frac-
We have also investigated the disordered crystals in diftions. The random systems with the site and size randomness are of

ferent filling fractions. The results are shown in Figs. 3 and 4the same strength ak,=d,=0.05.

Frequency (wa/2rc)
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065 | ‘ ‘ ' ‘ ] der radius, the error of perturbative calculatidéa/w is be-
‘Z::’zgffgtocsfyaal Iow_5._0%. Herew is the edge frequency, andw is the _
055 - ¥—9 dr-0.05 deviation of the calculated frequency by the perturbation
E3-4gap method from that by the supercell method. The supercell

oas | \\ | method shows that the frequency shift of upper edge state is
far smaller than the lower edge state for both the first and
05 | ] second band gaps. Indeed, this is also verified by the pertur-
£ 1-2gap bation method. For instance, the frequency shift of the upper

edge state ad,,=0.05 obtained by the perturbation method

il m 1 is —4x10 %(2mcl/a) and —6x 10 4(27c/a) for the first

‘ ‘ . ‘ ‘ and second gaps, respectively, while for the lower edge state
0.15 02 05 03 035 0.4 it is 1.6x10 3(2wc/a) and 3.210 3(2wc/a), respec-
Filling Fraction tively. According to the supercell method, such a frequency

. - 73
FIG. 4. Plots of edge frequences of tBepolarization 1-2 and shift is 0x 107*(2mc/a) for the upper edge states accurate

_3 . . .
3-4 band gaps for disordered triangular lattices in various fiIIingt0 ?s value of 0.X 1Q3 (2mcla), Whlle_ it is 1
fractions for the site and size randomness of the same strength as10 °(2mc/a) and 1X10 °(2wc/a), respectively for the
dy,=d,;=0.05. lower edge states.

The accordance between the two methods is far less sat-
compare it with the supercell technique and demonstrate it$factory in the case of size randomness, especially for the
effectiveness. second band gap, as shown in Figh)5The width of the first

To investigate the effect of disorders on band gaps, it idand gap obtained by the perturbation approach is less than
sufficient to consider only the edge states of the band gaghat by the supercell technique. For instance, the normalized
according to numerical simulations. We first solve photonicwidth A w/ w4 of the first band gap obtained by the perturba-
band structures of perfect crystals from Etj. regarding the  tion method is 19.4% and 10.8% dt=0.05 and 0.10, re-
magnetic fieldH(r). The frequencyw, and field distribution  spectively. The error is 4% and 30%, respectively, compared
Ho(r) of the edge states can be obtained. Then we calculawith those by the supercell technique of 20.2% and 8.3%.
the distribution of the electric fiel&y(r) from Maxwell’'s  The error of perturbative calculations are much larger for the
equations. Applying Eq(7) for the most probable configu- higher band gap. At a random strengthdpf= 0.05, the per-
rations, the frequency shift of the edge states by disordergyrbativeA w/ wy is 16.4% with an error of about 125% over
and then the perturbative frequency, can be calculated.  the accurate one (7.3%). The perturbative calculation shows

Corresponding to Sec. Ill, we have considered thethe existence of a band gap everdat0.10, while this band
E-polarized 1-2 and 3-4 band gaps for a disordered square @fap is closed at about, =0.065. However, at weak disorder
dielectric cylinders in air. The result of edge frequencies calstrength, for exampled, =0.025, the error is below 5%.
culated by the perturbation formalism is displayed in Fig. 5Therefore, the perturbation method can give rise to some-
for various random strengths @) site randomness, arfl)  what precise prediction of the ground band gap in disordered
size randomness and for a filling fraction 6£0.3. As a  crystals with even a moderate size randomness.
comparison, we also plot the results calculated by the super- The triangular lattice of dielectric cylinders in air demon-
cell method. According to the calculation of photonic bandstrates similar behavior to the square lattice. Figs) &nd
structures, the edge states of the first band gap for such &ib) display band frequencies calculated by the supercell and
square lattice lie at high symmetry points of the Brillouin perturbation methods, respectively, for a disordered crystal
zone aM1 andX2, and for the second band gap they are aof f=0.3 with various random strengths @ site random-

X3 andM4 points. ness andb) size randomness. In such a crystal, the edge

It is clear from Fig. %a) that the perturbation method states of the first and second band gap are at high-symmetry
works quite satisfactorily in the case of site randomnesspoints ofJ1, X2, andI'3, I'4, alternately. For the ground
compared with the supercell technique. Even at a large rarband gap, at even moderate disordémsm 0.05 to 0.10) for
dom strength liked,,=0.10, which is one-third of the cylin- both the site and size randomness, the perturbation method

Frequency (wa/’2rc)

(a) ©—=o supercell method (b) —0 supercell method

0.55 5—~a perturbation method 1 0.55 B— perturbation method
— _
& &
g 045 E3 4gap g 045 E3 4gap 1 FIG. 5. Band-edge frequ.encies calculated by
= " = the supercell and perturbation methods, respec-
[8) o 13) i i i i-
£ o35 i 2 o35 i tively, for a disordered square crystal with vari
> 2 ous random strengths féa) site randomness and
o .
o — @ M (b) size randomness. Other parameters ére
L 025 E1-2gap L 0256 E1-2gap 1 =0.3 ande=12.96.
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FIG. 6. Band-edge frequencies calculated by
the supercell and perturbation methods, respec-
tively, for a disordered triangular crystal with
various random strengths f¢a) site randomness
and (b) size randomness. Other parametersfare
=0.3 ande=12.96.

works quite well. The error of band gap width is generally As mentioned above, the edge states of a perfect 2D
below 10%. Also similar to the square lattice, the error of thesquare crystal witH =0.3 at theE-polarization mode lie at
perturbative calculations for the higher band gap is veryhigh-symmetry points oM 1 andX2 for the first band gap,
large for the size fluctuation of cylinders, while it is moder- andX3 andM 4 for the second band gap. We have calculated

ate for the site displacements.

The above calculations by both the accurate superce
technique and an approximate perturbation formalism al
demonstrate that photonic band gaps are far more sensitive
a fluctuation of cylinder radii than a displacement of cylinder

V. ANALYSES AND DISCUSSION
ON ELECTROMAGNETIC FIELDS

the electric fielde(r) at these edge states with the use of the
plane-wave expansion method. The amplitude distribution of
E(r) is plotted in Fig. 7 at these edge states with Bloch

waves of(a) M1: («/a)(1,1), (b) X2: (w/a)(0,1), (c) X3:
(7/a)(0,1), and(d) M4: (=/a)(1,1), respectively. Data are
hown in 3x 3 unit cells. For thev1 state, the maximum of
Eeld lies at the center of the unit cell, while the field vanishes
?8 the border of unit cell. The field at th€2 state has two
symmetric peaks at about the border of cylinder at(the0)

sites from the perfect crystal. The calculations also show thafiréction. Due to the symmetry of the crystal, the field is
a perturbation method based on the assumption that the elegYMmetric with respect to th@,1) line, where the field van-
tromagnetic fields in disordered crystals do not vary mucHShes. Thex3 state is orthogonal to th¥2 state. The field
compared with those in the perfect crystals can give rise to 8&0Ws two peaks inside the cylinder at tel) direction and
somewhat precise prediction of the ground band gap. Ther&@nishes along thel,0) direction, perpendicular to that at the
fore, it is necessary to investigate the electromagnetic field§2 state. The field at thé14 state shows four symmetric

in disordered crystals in order to find out the physical sourcepeaks at thé1,1) and other three equivalent directions and
of the different behaviors and then to confirm the effective-the peaks are near the border of the cylinders. The field van-

ness of the proposed perturbation method.
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ishes at both th€0,1) and the(1,0) directions. It is clear that

FIG. 7. Contour plot of the distribution of the
electric-field amplitude in a perfect square crystal
with f=0.3 ande=12.96 for the edge states cor-
responding to Bloch wave vectors ¢&) M1:
(wl/a)(1,1), (b) X2: (w«/a)(0,1), (c) X3:
(7/a)(0,1), and(d) M4: (#r/a)(1,1). For a clar-
ity of view, only data in 3<3 unit cells are
shown.
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the field in these edge states demonstrates an exact symnuedeck of the configuration of the disordered crystal. Further-

try. more, the field magnitude changes even less, so the fre-
The electric field in disordered crystals is calculated byguency has only a negligible shift, according to field-energy

the plane-wave expansion method with a supercell techformalism of Eq.(4). When the random strength increases,

nique. Corresponding to Fig. 7, the amplitude of electric fieldthe redistribution of the field will grow, in addition, the field

in a disordered square crystal with a site randomness of varinagnitude might experience a remarkable change. This is

ous strengths such ak,=0.05, 0.10, and 0.15 is displayed indeed the case for a moderate disorderdgf=0.10, as

in Figs. 8, 9, and 10, respectively. In Fig. 8, data i3 unit  shown in Fig. 9. Especially, the field magnitude in tka8

cells are plotted, while in Figs. 9 and 10, we display data inedge state fluctuates remarkably in various cylinders. Fur-

5X5 unit cells. At a weak disorder af,,=0.05, as shown in  thermore, there appears an appreciable enhance(aleout

Fig. 8, the field at all the four edge states has a weak redighree timeg of the field in several cylinders at the right side

tribution, however, such a redistribution conforms exactly toof Fig. 9(c). Therefore, it is expected that the frequency shift

the redistribution of cylinders, according to more detailedof the state will be far larger than other states. This assump-
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tion has been verified by the DOS calculations. It can also berystal with a size randomness df=0.05 corresponding
seen that the field redistribution in tH&2 state is smaller to Fig. 7 for the four edge states, respectively. Data are
than in theM 1 state as is th#14 state compared to th€3 plotted in 55 unit cells. There is a clear fluctuation and
state. So the frequency shift of the upper edge states iedistribution of fields at thé1 andX2 states, however no
smaller than that of the lower edge states. All these charaevident localization occurs. Checking out the configuration
ters have indeed been verified by the DOS calculations asf cylinders, we find that the field in thBl1 state is en-
well as the perturbative simulations. hanced at cylinders with smaller radii, and it is weakened at
As the disorder further grows td,,=0.15, the fluctua- cylinders with larger sizes. For thé2 state, the field distri-
tion and redistribution of the field in all the edge statesbution shows an inverse character. Comparing them with
becomes very appreciable. One can see that the fielBigs. 1a) and 7b) for a perfect crystal, the frequency shift
enhancement in th¥3 state becomes much stronger than inwill be small due to the average over a large number of
dy,=0.10, and in other regions of the crystal, the field iscylinders.
greatly weakened. This signals the appearance of a localized For the edge states of the higher band gap, the localization
state. There is also a localization sign of field in ket  of field is very significant, as displayed in Figs.(&land
state. Although the field varies much, the frequency shiftl1(d). There appears at th€3 state a very strong field peak
caused by such a strong disorder is not very large, as showacalized around the cylinder at the coordinate(&@), and
in Fig. 1(a). It seems that the site randomness only results iranother slightly weaker peak around the cylinder atg,
a “shallow defect state” in the disordered crystal. This can—a). For theM4 state, two peaks appear around the cylin-
be understood as follows. According to E4), the eigenfre- ders lying at (-a,a) (very strong and at (2,0) (much
quency of the disordered crystal is not determined by thaveakej. The localization effect of field caused by a weak
field distribution of individual cylinders, but rather by an size randomness is much more remarkable than that caused
integration of all the cylinders. As it is an average magni-by even a strong site randomness. This can be clearly seen by
tude, the frequency of the edge states does not shift much omparing Figs. 1(t) and 11d) with Figs. 1Gc) and 1@d).
random displacement of cylinders, even if the field fluctua-These edge states show the essential feature of “deep defect
tion is very strong. states.” Therefore, the frequency shift in the former case is
The situations are extremely different for disordered crysimuch larger, which results in a largenore than one-half
tals with a size randomness. As noted in Sec. Il in Figs) 1 reduction of the band gap.
and Zb), the photonic band gap is sensitive to a radius fluc- The localization character in the edge states of the first
tuation of cylinders. At a moderate disorder strength, thédband gap becomes significant as the disorder strength of size
reduction of band gap is appreciable, especially for theandomness grows to a moderate value. In Fig$a)l2nd
higher band gap. In fact, one can find out such a charactet2(b), we display the amplitude distribution of the electric
from the electric-field distribution inside a disordered crystal,field in the M1 and X2 states for a disordered crystal the
which can be calculated by a supercell technique. In Figssame as in Fig. 11, except that now the random strength is
11(a)—11(d), we display the field magnitude of a disorderedd,=0.10. TheX3 andM4 states are not considered, as the
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band gap has been closed. Compared with Figéa)ldnd  troduction of disorders. When a cylinder displaces from its
11(b), the localization of field grows quickly at the same lattice site, the frequency shift is

regions as in the weak disorder, i.e., atZa,—a) and

(2a,—a) in the M1 state, and atta,a) and (2a,0) in the

X2 state. For such strongly localized edge states, the fre- f [e—l]|Eo(r)|2dr+J' [— e+ 1]|Eq(r)|2dr
quency shift is quite large, therefore, the band gap is greatly w? s S,
reduced. 2

The above analysis of electromagnetic fields in disordered “° Lfo(fﬂ Eo(r)|%dr

photonic crystals ensures that the perturbation formalism

proposed before can work well for disordered crystals with a

site randomness with even a moderate strength. In contrast, [6—1][ Eo(r)|?dr— [ |Eq(r) zdr}

this approximate method is less satisfactory for disordered — =1 =2 (8
crystal with even a weak size randomness, especially for the 2 ’
higher band gap. Remember that the perturbation method is j €o(1)[Eo(r)|*dr

essentially based on the approximate assumption that the

electromagnetic fields in a disordered crystal do not varywhereS; is the region that is in the cylinder before displace-

much from those in a perfect crystal, when the disorder isnent and now in the air, ang, is just the inverse. Not&;

weak. andS, have an equal size. Due to the continuous character of
In fact, the different behaviors of band-gap reduction byEy(r) at the border of the cylinder, the field & and S,

the site and size randomness can be interpreted by a simpiiwes not differ much at a weak disorder. Then the intergation

consideration qualitatively based on the perturbation formalef field in these two regions will cancel each other. There-

ism of Eq.(7), where the field remains unchanged after in-fore, the frequency shift is small.
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The frequency shift when varying the radius of a cylindersecond band gaps both reduce very little for a site random-

is ness with a strength as large as one-half the cylinder radius,
yet they reduce more than one-half for a size randomness
, +e— 1]J |Eq(r)|2dr with a moderate strength of one—_third the cylinder radius.
_ S3 Calculations on the frequency shift of edge states of band
w_g —1= ' ©) gaps with use of the approximate perturbation method accord

J €o(1)|Eo(r)|?dr well with the DOS results for disordered crystal with a site
S

randomness of even a moderate strength. Yet the perturba-
whereS; is the region where the dielectric function changes.tion formalism is far less satisfactory in the case of a size
and “+” and “ — apply when the radius of the cylinder randomness, especially for the higher band gaps. It only
reduces and grows, respectively. As no cancellation effeaivorks well somewhat at a very weak strength of size ran-
occurs, it is clear that the frequency shift by such a sizedlomness. The significant different behaviors of band-gap re-
fluctuation is far more significant than in the case of a siteduction by the site and size randomness can be understood

randomness. by analyses of the electromagnetic fields in disordered crys-
tals. It is found that the localization state appears far more
VI. SUMMARY AND CONCLUSIONS easily in disordered crystal with even a weak size random-

. . ) _ness than those with a strong site randomness. Such a strong
In summary, we have investigated photonic band gaps ifpcalization effect reduces the band gaps significantly. The
disordered 2D photonic crystals of dielectric cylinders in airdetailed field analysis also confirms the effectiveness of the
with two typical randomness of cylinder site displacementproposed perturbation formalism. It is expected that such a
and cylinder radius variations. The DOS of disordered cryssjmple perturbative analysis should provide a systematic way

tals are calculated by the plane-wave expansion methogh understand various disordered photonic crystals qualita-
combined with a supercell technique to measure the bangyely and even semiquantitatively.

gap. To avoid powerful numerical calculations, a perturba-
tion formalism is proposed to estimate band gaps in disor-
dered crystals in a qualitative and semiquantitative way. The
numerical simulations of DOS show that the band gap of the
E-polarization mode is far more sensitive to disorders with a The authors greatly acknowledge financial support from
size variation than with a site displacement. The first andHong Kong RGC Grant No. HKUST 6112/98P.
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