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Disordered photonic crystals understood by a perturbation formalism

Zhi-Yuan Li, Xiangdong Zhang, and Zhao-Qing Zhang
Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, Ch

~Received 6 July 1999; revised manuscript received 11 November 1999!

Photonic band gaps in disordered two-dimensional photonic crystals are investigated for two typical types of
randomness: cylinder site displacements~site randomness! and cylinder radius variations~size randomness!.
The plane-wave expansion method with a supercell technique is applied to calculate the density-of-states
~DOS! for the disordered photonic crystals. In particular, numerical simulations on the DOS for square and
triangular lattices of dielectric cylinders in air with theE-polarization mode show that photonic band gaps are
far more sensitive to disorders with a size randomness than with a site randomness. The first and second band
gaps both reduce very little even for a site randomness of a strength as large as half the cylinder radius, yet they
reduce more than one-half for a size randomness of a strength about one-third the cylinder radius. This
substantial contrast can be understood by the analysis of the electromagnetic fields in disordered crystals.
Based on such a field analysis, a perturbation formalism is proposed for disordered crystals and it accords well
with the DOS calculations for a site randomness of even a moderate strength. At very weak size randomness,
the perturbation method also works well to some extent. Such a simple perturbative analysis should provide a
systematic way to understand various disordered photonic crystals qualitatively and even semiquantitatively.
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I. INTRODUCTION

In recent years the fabrication of photonic crystals h
attracted extensive interest.1,2 These artificial periodica
structures exhibit ‘‘forbidden’’ frequency region where ele
tromagnetic~EM! waves cannot propagate for both polariz
tions along any directions. This may bring about some pe
liar physical phenomena,3–6 such as the suppression of th
spontaneous emission of molecules and the localization
EM waves. Besides the academic interest, these struc
imply the possible application in several scientific and te
nical areas such as filters, optical switches, cavities, desig
low-threshold lasers, and high-efficient light-emittin
diodes.1,2 It is also proposed that such photonic crystals m
hold the key to the continued progress towards all-opt
integrated circuits.7

The fabrication of photonic crystals requires state-of-t
art lithography techniques, such as electron-beam litho
phy and x-ray lithography. Despite the fact that rap
progress has been made in such techniques and some
onstrations on three-dimensional~3D! photonic crystals with
a micrometer size have been reported based on a laye
layer growth scheme, the fabrication of three-dimensio
~3D! photonic crystals with a band gap in the visible or i
frared regimes still remains a difficult and challengi
task.8–11 In contrast, the fabrication of 2D photonic crysta
is much easier by such lithography techniques in the
crometer or submicrometer size regimes.12–15 Another tech-
nique that has been extensively studied to grow a 3D ph
nic crystal in the optical frequency is through the sel
arrangement of colloid. Many self–assembling photo
crystals exist, including colloidal systems16,17 and artificial
opals.18–20This is rather a chemical method. Very recently
was reported that porous carbons that are thr
dimensionally periodic on the scale of optical waveleng
could be made by a synthesis route resembling the geolog
formation of natural opal.21 In a similar scheme, the succes
ful preparation of 3D photonic crystals consisting of a
sphere in titania (TiO2) with radii between 120 and 1000 nm
PRB 610163-1829/2000/61~23!/15738~11!/$15.00
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was reported, which provided a fascinating prospect of op
ing photonic band gaps in the optical frequency.22

Nonuniformities inevitably occur in the fabrication o
photonic crystals, especially when the crystals are of
crometer and submicrometer sizes. Among them are de
tion of crystal ‘‘atoms’’ ~ cylinders or spheres! from their
periodic lattice sites, fluctuation of ‘‘atom’’ radii, configura
tion nonuniformity of ‘‘atoms,’’ and so on. These disorde
may affect the properties of photonic crystals significant
For example, if the disorder in crystals reduces the photo
band gap appreciably enough, then the superior opt
characters will be destroyed completely. For this reason
recent years, there have appeared extensive discussion
disordered photonic crystals both theoretically23–27 and
experimentally.28 The theoretical efforts include the band
gap calculations via the plane-wave expansion method wi
supercell technique and the transmission spectrum calc
tions. It was found that the ground band gap could survive
a rather large amount of disorder both in 2D and 3D cryst
However, these simulations require powerful numerical c
culations. In addition, they are still short of a clear und
standing in physics for such disordered photonic crystals

In this paper we will propose a perturbation formalism
understand the disordered photonic crystals in a system
way. It is based on the analysis of the electromagnetic fie
in the crystal with use of the plane-wave expansion meth
combined with the supercell technique. In particular,
have considered two typical disorders in a 2D photonic cr
tal consisting of dielectric cylinders in air: One is the rando
displacement of cylinders from their lattice sites~site ran-
domness!, and the other is the random fluctuation of cylind
radii ~size randomness!. The effect of disorders on the
ground and higher photonic band gaps is measured via
density-of-states~DOS! for a disordered crystal. We wil
make comparisons between the perturbative calculations
DOS manipulations, and then show the effectiveness of
proposed perturbation formalism for weak disorders.

This paper is arranged as follows. In Sec. II we fi
briefly introduce the model and formalism of the superc
15 738 ©2000 The American Physical Society
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technique and the perturbation method for disordered
photonic crystals. Then in Sec. III we investigate in detail
effect of the site and size randomness on photonic band
and make a comparison between them. In Sec. IV we
apply the perturbation formalism in disordered photo
crystals, and discuss its effectiveness compared with
DOS calculations by the supercell technique. Then in Sec
we will analyze the electromagnetic field in the disorder
crystals in detail to understand the different behaviors of
two kinds of randomness on the band gap and confirm
perturbation method. Finally the summary and conclusi
are made in Sec. VI.

II. MODEL AND FORMALISM

A. Supercell method for disordered photonic crystals

The disordered photonic crystals are well described by
random strength. For an original periodic crystal with a l
tice constant ofa and a cylinder radius ofr 0, in the site
randomness, every cylinder keeps its radius asr 0, while thex
and y components of the position of thei th cylinder in the
disordered crystal, differ from those of the periodic case
gxa and gya, respectively, wheregx and gy are variables
uniformly distributed over the interval of@2dxy ,dxy#. Here
dxy is the random strength of the disordered system. For
disordered crystal with a size randomness of strengthdr , the
cylinders are arrayed in the original lattice sites, while t
radius of thei th cylinder is given byr i5r 01g ra whereg r is
a random variable uniformly distributed over the interv
@2dr ,dr #.

The electromagnetic problem in such 2D disordered cr
tals can be solved with the use of the plane-wave expan
method combined with a supercell technique. In this way,
Maxwell’s equations can reduce to the wave equation for
magnetic field as

¹3F 1

e~r !
¹3H~r !G5

v2

c2
H~r !, ~1!

wheree(r ) is the dielectric function of the random system,v
is the frequency, andc is the speed of light in vacuum. Whe
the random strength is zero, i.e., perfect crystals, the
quency and electromagnetic field distributions can be sol
with use of the plane-wave expansion method.29–31 For a
disordered crystal, the plane-wave expansion method is
applicable, provided that it is combined with the superc
technique where the disordered system is approximated
periodic system with a period large enough to guarantee n
ligible coupling between neighboring supercells.

In our simulations for both square and triangular lattic
of dielectric cylinders in air, we only consider th
E-polarization mode where the electric field is parallel to t
extension axis of cylinders. For theH-polarization mode, the
band-gap is much narrower.2,30 In our calculations for disor-
dered crystals, we employ a supercell containing 535 unit
cells for systems with site randomness, and 737 unit cells
for systems with size randomness. In the former case, we
729 plane waves in calculations, while for the latter ca
961 plane waves are used. In order to check the accurac
our calculations, we first consider a periodic structure, wh
the band structures can be accurately determined usin
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single unit cell. We find the band-gap size obtained from
supercell calculation agrees with that obtained from a sin
unit cell to within 1%.

The size of photonic band gaps in disordered crystal
determined by their DOS, which are obtained by solving E
~1! at each of over 10 000 uniformly spaced values
Bloch’s wave vector inside the first Brillouin zone of a un
cell. We have also changed the configuration of disorde
crystals, adopting different random number series. It is fou
that the calculated DOS and band-gap size are insensitiv
the sequences of random numbers used in the case of
randomness, even at large random strength. However,
results are quite dependent on the supercell configurat
for the size randomness, especially at strong disord
Therefore, the calculation results shown in this paper are
obtained by averaging five supercell configurations.

B. Perturbation method for disordered photonic crystals

Calculations of DOS with use of the plane-wave expa
sion method combined with a supercell technique requ
powerful numerical computations. So it is of great interest
find a simple method that is qualitatively correct and a
proximately accurate in quantity. With this in mind, in th
following we will extend the perturbation theory that
widely applied in quantum mechanics to the electromag
tism. One can find the perturbation formalism in a stand
textbook of quantum mechanics. Following the basic conc
therein, we will show how an eigenstate of a perfect crys
is affected by the introduction of disorders, which can
assumed as a perturbation when the disorder strengt
weak. In fact, recently such a perturbation formalism h
been successfully evaluated to engineer photonic crys
with large absolute band gaps.32

Consider a Bloch’s state with an eigenfrequency ofv0(k)
and an eigenfield ofH0(r ). They satisfy Eq.~1! as

¹3F 1

e0~r !
¹3H0~r !G5

v0
2

c2
H0~r !, ~2!

wheree0(r ) is the periodic dielectric function of the perfec
crystal. The eigenvalue can be written in an integral form

v0
2

c2 EV
uH0~r !u2dr5E

V
¹3F 1

e0~r !
¹3H0~r !G•H0* ~r !dr

5E
V

1

e0~r !
u¹3H0~r !u2dr , ~3!

whereV is the volume of crystal. In deriving the final for
malism, we have considered the Maxwell’s equations.

Then, for a disordered crystal with dielectric functio
e(r ) which can be regarded as a perturbation toe0(r ), simi-
larly we have

v2

c2 EV
uH~r !u2dr5E

V

1

e~r !
u¹3H~r !u2dr . ~4!

In the first-order perturbation formalism, the wave fun
tions are kept as the unperturbed ones, so Eq.~4! now reads
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FIG. 1. Density of states~DOS! of disordered
crystals with~a! site randomness and~b! size ran-
domness in various random strengths. The DO
is calculated for theE-polarization mode of a
square lattice of dielectric cylinders in air. Th
cylinders have a filling fraction off 50.3 and a
dielectric constant ofe512.96. Dotted vertical
lines in ~a! and~b! represent the band edges of
periodic crystal. For a clarity of view, the uppe
curves are offset alternately.
ct

b
rm
al
e
el

r-
e
ys

-

Eq

ro
de
e
t
it

uld
tra,
ho-
re-
be

is
ch

ge

p
re

he
rge

rder

and
red
yed
-

iew,
the
ore
e-
20

or-
. So

is
th
ces
gth
to

he
rder
v2

c2 EV
uH0~r !u2dr>E

V

1

e~r !
u¹3H0~r !u2dr . ~5!

Combining it with Eq.~3!, we have

v2

v0
2

21>
E

V
@e21~r !2e0

21~r !#u¹3H0~r !u2dr

E
V
e0

21~r !u¹3H0~r !u2dr

5

E
V
@e21~r !2e0

21~r !#uD0~r !u2dr

E
V
e0

21~r !uD0~r !u2dr
, ~6!

where D0 is the electric displacement field in the perfe
crystal.

The shift of photonic band by disorders in crystals can
estimated by this perturbation formalism. It is a general fo
for various photonic crystals. For a 2D photonic cryst
which is excited by anE-polarization mode, we can deriv
another perturbation formalism regarding the electric fi
E(r ) as32

v2

v0
2

21>
E

S
@e0~r !2e~r !#uE0~r !u2dr

E
S
e0~r !uE0~r !u2dr

, ~7!

whereS is the area of the 2D crystal. Basically Eq.~7! is
equivalent to Eq.~6! in the manner of the first-order pertu
bation. For instance, whene0(r ) increases by a small valu
to e(r ), the eigenfrequency should decrease from the ph
cal viewpoint. Indeed, Eqs.~6! and ~7! both verify such an
expectation. However, asE(r ) is continuous everywhere in
side the 2D crystal at theE-polarization mode, it is more
accurate in numerical calculations for band shift to use
~7! with E(r ) than to use Eq.~6! with H(r ).

It should be noted that the perturbation formalism int
duced here is obtained by rather a simple physical consi
ation. Nevertheless, it may provide a reasonable estimat
band gaps in weak disordered photonic crystals, where
electromagnetic fields do not vary much compared w
e

,

d

i-

.

-
r-
of

he
h

those in the perfect crystals. More accurately, one sho
concern the perturbation of systems with continuous spec
and with many degenerate states, which is common in p
tonic crystals. However, such a rigorous treatment will
quire extensive numerical computations, which might
even more time consuming than the supercell method.

III. CALCULATION RESULTS OF DOS FOR SITE AND
SIZE RANDOMNESS

In our calculations, the dielectric constant of cylinders
fixed ase512.96. We first consider a square lattice of su
cylinders in air with a filling fraction off 50.3. The corre-
sponding radius of cylinders isr 050.309a, wherea is the
lattice constant of the crystal. In a perfect crystal, two lar
band gaps open at 0.21920.284(2pc/a) and 0.385
20.490(2pc/a), respectively. The normalized band-ga
width Dv/vg for these two gaps are 25.8% and 24.0%. He
Dv andvg denote the width and the center frequency of t
band gap, respectively. It may be expected that such la
band gaps could survive to a rather large amount of diso
in crystals.

To measure the effect of various disorders on the b
gap, we calculate the DOS of the corresponding disorde
crystal with a supercell technique. The results are displa
in Figs. 1~a! and 1~b! for various strengths of site random
ness and size randomness, respectively. For a clarity of v
the upper curves in both panels are offset alternately from
bottom curve. It is evident that the band gaps are much m
sensitive to the fluctuation of cylinder radii than the displac
ment of cylinder sites. The ground band gap lies at 0.2
20.284(2pc/a), 0.22120.284(2pc/a), and 0.224
20.283(2pc/a) for site randomness with a strength ofdxy
50.05, 0.10, and 0.15, respectively. The corresponding n
malized band-gap widths are 25.4%, 25.0%, and 23.2%
at weak disorder, the reduction of the ground band gap
negligibly small. Even for a strong disorder with a streng
as large as half the cylinder radius, the band gap only redu
about 10%. In contrast, for size randomness with a stren
of dr50.05 and 0.10, the ground band gap reduces
0.22220.272(2pc/a) and 0.23220.252(2pc/a) with a
normalized width of 20.2% and 8.3%, respectively. T
band gap reduces almost to one-third for a moderate diso
strength of about one-third of the cylinder radius.
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FIG. 2. Density of states~DOS! of disordered
crystals with~a! site randomness and~b! size ran-
domness in various random strengths. The DO
is calculated for theE-polarization mode of a tri-
angular lattice of dielectric cylinders in air with
f 50.3 ande512.96. The upper curves are als
offset alternately.
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The contrast is even more appreciable for the higher b
gap. For a disordered crystal with site randomness
strength ofdxy50.05, 0.10, and 0.15, the second band g
reduces to 0.38620.490(2pc/a), 0.38920.488(2pc/a),
and 0.39520.484(2pc/a) with a normalized width of
23.7%, 22.6%, and 22.2%, respectively. The reduction
the band gap is less than 20% for a site disorder wit
strength of half the cylinder radius. Therefore, this high
band gap can also endure a rather large displacement of
inders from their lattice sites. As a contrast, for a size r
domness ofdr50.05, the second band gap reduces
0.42220.454(2pc/a), and the normalized width (7.3%) i
reduced more than one-half that of the perfect crystal. A
stronger disorder ofdr50.10, this higher band gap is close
More detailed calculations show that it vanishes at aboudr
50.065.

Numerical simulations for triangular lattices of dielectr
cylinders in air show similar characters. Figures 2~a! and
2~b! demonstrate the DOS of disordered crystals off 50.3
andr 050.288a with site and size randomness, respective
in various random strengths. Here the upper curves of D
are also offset alternately. For a perfect crystal, two ba
gaps open at 0.22020.316(2pc/a) and 0.409
20.530(2pc/a). The normalized gap widths are 35.8% a
25.7%, respectively. The first band gap is reduced to 0.
20.316(2pc/a), 0.22220.316(2pc/a), and 0.224
20.315(2pc/a) for a disordered crystal with a site random
ness of dxy50.05, 0.10, and 0.15, and to 0.22
20.293(2pc/a) and 0.25020.266(2pc/a) for a size ran-
domness ofdr50.05 and 0.10, respectively. The correspon
ing gap widths are 35.8%, 34.9%, 33.7%, and 25.4
6.2%, respectively. It is evident that the band gap is far m
sensitive to the fluctuation of cylinder radii. The second ba
gap has a reduction at the site randomness as small a
first band gap. It lies at 0.41020.529(2pc/a), 0.412
20.526(2pc/a), and 0.41620.521(2pc/a) for dxy
50.05, 0.10, and 0.15, respectively, with a width of 25.3%
24.3%, and 22.4% correspondingly. However, the reduc
of this higher band gap by a size randomness is far la
than that of the first band gap. Atdr50.05, the band gap
@0.45820.493(2pc/a)# has a width about one-third that o
the perfect crystal. It is closed atdr'0.065.

We have also investigated the disordered crystals in
ferent filling fractions. The results are shown in Figs. 3 an
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for square and triangular lattices of dielectric cylinders in a
respectively. In the plots, the edge frequency of the grou
and the second band gaps for a disordered crystal with
and size randomness of the same strength fixed asdxy5dr
50.05 are compared with those of the perfect crystal. I
evident that at various filling fractions, the reduction of bo
band gaps by a size fluctuation is more remarkable than
caused by a site displacement, especially for the second b
gap. Furthermore, the reduction of band gaps by a size fl
tuation grows rapidly when the filling fraction decreases,
at a site randomness it is not sensitive to the filling fractio
Qualitatively, lowering the filling fraction means growin
the relative random strength. As we have shown in Figs
and 2, the band gap is far more sensitive to the stren
variation of size randomness than of site randomness.

IV. PERTURBATIVE CALCULATIONS
FOR DISORDERED PHOTONIC CRYSTALS

In the above, we have investigated band gaps in dis
dered photonic crystals via calculations of DOS with use
the plane-wave expansion method combined with a supe
technique. This requires extensive computational efforts
the following we will apply the perturbation formalism@Eq.
~7!# to understand disordered photonic crystals. We w

FIG. 3. Plots of edge frequencies of theE-polarization 1-2 and
3-4 band gaps for disordered square lattices in various filling fr
tions. The random systems with the site and size randomness a
the same strength asdxy5dr50.05.
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compare it with the supercell technique and demonstrate
effectiveness.

To investigate the effect of disorders on band gaps, i
sufficient to consider only the edge states of the band g
according to numerical simulations. We first solve photo
band structures of perfect crystals from Eq.~1! regarding the
magnetic fieldH(r ). The frequencyv0 and field distribution
H0(r ) of the edge states can be obtained. Then we calcu
the distribution of the electric fieldE0(r ) from Maxwell’s
equations. Applying Eq.~7! for the most probable configu
rations, the frequency shift of the edge states by disord
and then the perturbative frequency, can be calculated.

Corresponding to Sec. III, we have considered
E-polarized 1-2 and 3-4 band gaps for a disordered squar
dielectric cylinders in air. The result of edge frequencies c
culated by the perturbation formalism is displayed in Fig
for various random strengths of~a! site randomness, and~b!
size randomness and for a filling fraction off 50.3. As a
comparison, we also plot the results calculated by the su
cell method. According to the calculation of photonic ba
structures, the edge states of the first band gap for su
square lattice lie at high symmetry points of the Brillou
zone asM1 andX2, and for the second band gap they are
X3 andM4 points.

It is clear from Fig. 5~a! that the perturbation metho
works quite satisfactorily in the case of site randomne
compared with the supercell technique. Even at a large
dom strength likedxy50.10, which is one-third of the cylin

FIG. 4. Plots of edge frequences of theE-polarization 1-2 and
3-4 band gaps for disordered triangular lattices in various fill
fractions for the site and size randomness of the same streng
dxy5dr50.05.
its

is
p,
c

te

s,

e
of
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r-

a

t

s,
n-

der radius, the error of perturbative calculationdv/v is be-
low 5.0%. Herev is the edge frequency, anddv is the
deviation of the calculated frequency by the perturbat
method from that by the supercell method. The super
method shows that the frequency shift of upper edge sta
far smaller than the lower edge state for both the first a
second band gaps. Indeed, this is also verified by the pe
bation method. For instance, the frequency shift of the up
edge state atdxy50.05 obtained by the perturbation metho
is 2431024(2pc/a) and 2631024(2pc/a) for the first
and second gaps, respectively, while for the lower edge s
it is 1.631023(2pc/a) and 3.231023(2pc/a), respec-
tively. According to the supercell method, such a frequen
shift is 031023(2pc/a) for the upper edge states accura
to a value of 0.531023(2pc/a), while it is 1
31023(2pc/a) and 131023(2pc/a), respectively for the
lower edge states.

The accordance between the two methods is far less
isfactory in the case of size randomness, especially for
second band gap, as shown in Fig. 5~b!. The width of the first
band gap obtained by the perturbation approach is less
that by the supercell technique. For instance, the normal
width Dv/vg of the first band gap obtained by the perturb
tion method is 19.4% and 10.8% atdr50.05 and 0.10, re-
spectively. The error is 4% and 30%, respectively, compa
with those by the supercell technique of 20.2% and 8.3
The error of perturbative calculations are much larger for
higher band gap. At a random strength ofdr50.05, the per-
turbativeDv/vg is 16.4% with an error of about 125% ove
the accurate one (7.3%). The perturbative calculation sh
the existence of a band gap even atdr50.10, while this band
gap is closed at aboutdr50.065. However, at weak disorde
strength, for example,dr50.025, the error is below 5%
Therefore, the perturbation method can give rise to som
what precise prediction of the ground band gap in disorde
crystals with even a moderate size randomness.

The triangular lattice of dielectric cylinders in air demo
strates similar behavior to the square lattice. Figs. 6~a! and
6~b! display band frequencies calculated by the supercell
perturbation methods, respectively, for a disordered cry
of f 50.3 with various random strengths of~a! site random-
ness and~b! size randomness. In such a crystal, the ed
states of the first and second band gap are at high-symm
points of J1, X2, andG3, G4, alternately. For the ground
band gap, at even moderate disorders~from 0.05 to 0.10) for
both the site and size randomness, the perturbation me

as
by
ec-
i-
FIG. 5. Band-edge frequencies calculated
the supercell and perturbation methods, resp
tively, for a disordered square crystal with var
ous random strengths for~a! site randomness and
~b! size randomness. Other parameters aref
50.3 ande512.96.
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FIG. 6. Band-edge frequencies calculated
the supercell and perturbation methods, resp
tively, for a disordered triangular crystal with
various random strengths for~a! site randomness
and ~b! size randomness. Other parameters arf
50.3 ande512.96.
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works quite well. The error of band gap width is genera
below 10%. Also similar to the square lattice, the error of
perturbative calculations for the higher band gap is v
large for the size fluctuation of cylinders, while it is mode
ate for the site displacements.

V. ANALYSES AND DISCUSSION
ON ELECTROMAGNETIC FIELDS

The above calculations by both the accurate super
technique and an approximate perturbation formalism
demonstrate that photonic band gaps are far more sensiti
a fluctuation of cylinder radii than a displacement of cylind
sites from the perfect crystal. The calculations also show
a perturbation method based on the assumption that the
tromagnetic fields in disordered crystals do not vary mu
compared with those in the perfect crystals can give rise
somewhat precise prediction of the ground band gap. Th
fore, it is necessary to investigate the electromagnetic fie
in disordered crystals in order to find out the physical sou
of the different behaviors and then to confirm the effectiv
ness of the proposed perturbation method.
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As mentioned above, the edge states of a perfect
square crystal withf 50.3 at theE-polarization mode lie at
high-symmetry points ofM1 andX2 for the first band gap,
andX3 andM4 for the second band gap. We have calcula
the electric fieldE(r ) at these edge states with the use of t
plane-wave expansion method. The amplitude distribution
E(r ) is plotted in Fig. 7 at these edge states with Blo
waves of~a! M1: (p/a)(1,1), ~b! X2: (p/a)(0,1), ~c! X3:
(p/a)(0,1), and~d! M4: (p/a)(1,1), respectively. Data are
shown in 333 unit cells. For theM1 state, the maximum o
field lies at the center of the unit cell, while the field vanish
at the border of unit cell. The field at theX2 state has two
symmetric peaks at about the border of cylinder at the~1, 0!
direction. Due to the symmetry of the crystal, the field
symmetric with respect to the~0,1! line, where the field van-
ishes. TheX3 state is orthogonal to theX2 state. The field
shows two peaks inside the cylinder at the~0,1! direction and
vanishes along the~1,0! direction, perpendicular to that at th
X2 state. The field at theM4 state shows four symmetri
peaks at the~1,1! and other three equivalent directions a
the peaks are near the border of the cylinders. The field v
ishes at both the~0,1! and the~1,0! directions. It is clear that
tal
r-
FIG. 7. Contour plot of the distribution of the
electric-field amplitude in a perfect square crys
with f 50.3 ande512.96 for the edge states co
responding to Bloch wave vectors of~a! M1:
(p/a)(1,1), ~b! X2: (p/a)(0,1), ~c! X3:
(p/a)(0,1), and~d! M4: (p/a)(1,1). For a clar-
ity of view, only data in 333 unit cells are
shown.
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FIG. 8. Contour plot of the distribution of the
electric-field amplitude in a disordered squa
crystal with a site randomness of strengthdxy

50.05 for the edge states corresponding to Fi
7~a!–7~d!.
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the field in these edge states demonstrates an exact sym
try.

The electric field in disordered crystals is calculated
the plane-wave expansion method with a supercell te
nique. Corresponding to Fig. 7, the amplitude of electric fi
in a disordered square crystal with a site randomness of v
ous strengths such asdxy50.05, 0.10, and 0.15 is displaye
in Figs. 8, 9, and 10, respectively. In Fig. 8, data in 333 unit
cells are plotted, while in Figs. 9 and 10, we display data
535 unit cells. At a weak disorder ofdxy50.05, as shown in
Fig. 8, the field at all the four edge states has a weak re
tribution, however, such a redistribution conforms exactly
the redistribution of cylinders, according to more detail
e-

y
h-
d
ri-

n

s-

check of the configuration of the disordered crystal. Furth
more, the field magnitude changes even less, so the
quency has only a negligible shift, according to field-ener
formalism of Eq.~4!. When the random strength increase
the redistribution of the field will grow, in addition, the fiel
magnitude might experience a remarkable change. Thi
indeed the case for a moderate disorder ofdxy50.10, as
shown in Fig. 9. Especially, the field magnitude in theX3
edge state fluctuates remarkably in various cylinders. F
thermore, there appears an appreciable enhancement~about
three times! of the field in several cylinders at the right sid
of Fig. 9~c!. Therefore, it is expected that the frequency sh
of the state will be far larger than other states. This assu
a
ess
FIG. 9. The same as in Fig. 8, except for
disordered square crystal with a site randomn
of strengthdxy50.10. Data in 535 unit cells are
plotted.
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FIG. 10. The same as in Fig. 9, except for
disordered square crystal with a site randomn
of strengthdxy50.15.
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he
tion has been verified by the DOS calculations. It can also
seen that the field redistribution in theX2 state is smaller
than in theM1 state as is theM4 state compared to theX3
state. So the frequency shift of the upper edge state
smaller than that of the lower edge states. All these cha
ters have indeed been verified by the DOS calculations
well as the perturbative simulations.

As the disorder further grows todxy50.15, the fluctua-
tion and redistribution of the field in all the edge stat
becomes very appreciable. One can see that the
enhancement in theX3 state becomes much stronger than
dxy50.10, and in other regions of the crystal, the field
greatly weakened. This signals the appearance of a loca
state. There is also a localization sign of field in theM4
state. Although the field varies much, the frequency s
caused by such a strong disorder is not very large, as sh
in Fig. 1~a!. It seems that the site randomness only result
a ‘‘shallow defect state’’ in the disordered crystal. This c
be understood as follows. According to Eq.~4!, the eigenfre-
quency of the disordered crystal is not determined by
field distribution of individual cylinders, but rather by a
integration of all the cylinders. As it is an average mag
tude, the frequency of the edge states does not shift muc
random displacement of cylinders, even if the field fluctu
tion is very strong.

The situations are extremely different for disordered cr
tals with a size randomness. As noted in Sec. III in Figs. 1~b!
and 2~b!, the photonic band gap is sensitive to a radius fl
tuation of cylinders. At a moderate disorder strength,
reduction of band gap is appreciable, especially for
higher band gap. In fact, one can find out such a chara
from the electric-field distribution inside a disordered cryst
which can be calculated by a supercell technique. In F
11~a!–11~d!, we display the field magnitude of a disorder
e

is
c-
as

ld

ed

ft
wn
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e

-
by
-

-

-
e
e
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l,
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crystal with a size randomness ofdr50.05 corresponding
to Fig. 7 for the four edge states, respectively. Data
plotted in 535 unit cells. There is a clear fluctuation an
redistribution of fields at theM1 andX2 states, however no
evident localization occurs. Checking out the configurat
of cylinders, we find that the field in theM1 state is en-
hanced at cylinders with smaller radii, and it is weakened
cylinders with larger sizes. For theX2 state, the field distri-
bution shows an inverse character. Comparing them w
Figs. 7~a! and 7~b! for a perfect crystal, the frequency shi
will be small due to the average over a large number
cylinders.

For the edge states of the higher band gap, the localiza
of field is very significant, as displayed in Figs. 11~c! and
11~d!. There appears at theX3 state a very strong field pea
localized around the cylinder at the coordinate (2a,a), and
another slightly weaker peak around the cylinder at (22a,
2a). For theM4 state, two peaks appear around the cyl
ders lying at (2a,a) ~very strong! and at (2a,0) ~much
weaker!. The localization effect of field caused by a wea
size randomness is much more remarkable than that ca
by even a strong site randomness. This can be clearly see
comparing Figs. 11~c! and 11~d! with Figs. 10~c! and 10~d!.
These edge states show the essential feature of ‘‘deep d
states.’’ Therefore, the frequency shift in the former case
much larger, which results in a large~more than one-half!
reduction of the band gap.

The localization character in the edge states of the fi
band gap becomes significant as the disorder strength of
randomness grows to a moderate value. In Figs. 12~a! and
12~b!, we display the amplitude distribution of the electr
field in the M1 and X2 states for a disordered crystal th
same as in Fig. 11, except that now the random strengt
dr50.10. TheX3 andM4 states are not considered, as t
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FIG. 11. Contour plot of the distribution o
the electric-field amplitude in a disordered squa
crystal with a size randomness of strengthdr

50.05 for the edge states corresponding to Fi
7~a!–7~d!, respectively. Data are displayed in
35 unit cells.
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band gap has been closed. Compared with Figs. 11~a! and
11~b!, the localization of field grows quickly at the sam
regions as in the weak disorder, i.e., at (22a,2a) and
(2a,2a) in the M1 state, and at (2a,a) and (2a,0) in the
X2 state. For such strongly localized edge states, the
quency shift is quite large, therefore, the band gap is gre
reduced.

The above analysis of electromagnetic fields in disorde
photonic crystals ensures that the perturbation formal
proposed before can work well for disordered crystals wit
site randomness with even a moderate strength. In cont
this approximate method is less satisfactory for disorde
crystal with even a weak size randomness, especially for
higher band gap. Remember that the perturbation metho
essentially based on the approximate assumption that
electromagnetic fields in a disordered crystal do not v
much from those in a perfect crystal, when the disorde
weak.

In fact, the different behaviors of band-gap reduction
the site and size randomness can be interpreted by a si
consideration qualitatively based on the perturbation form
ism of Eq. ~7!, where the field remains unchanged after
e-
ly
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troduction of disorders. When a cylinder displaces from
lattice site, the frequency shift is

v2

v0
2

21>
E

S1

@e21#uE0~r !u2dr1E
S2

@2e11#uE0~r !u2dr

E
S
e0~r !uE0~r !u2dr

5

@e21#F E
S1
UE0~r !U2dr2E

S2
UE0~r !U2dr G

E
S
e0~r !uE0~r !u2dr

, ~8!

whereS1 is the region that is in the cylinder before displac
ment and now in the air, andS2 is just the inverse. NoteS1
andS2 have an equal size. Due to the continuous characte
E0(r ) at the border of the cylinder, the field inS1 and S2
does not differ much at a weak disorder. Then the interga
of field in these two regions will cancel each other. The
fore, the frequency shift is small.
at

nd
FIG. 12. The same as in Fig. 11, except th
the random strength isdr50.10 and only the field
distributions corresponding to the ground ba
gap are shown.
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The frequency shift when varying the radius of a cylind
is

v2

v0
2

21>

6@e21#E
S3

uE0~r !u2dr

E
S
e0~r !uE0~r !u2dr

, ~9!

whereS3 is the region where the dielectric function chang
and ‘‘1 ’’ and ‘‘ 2 ’’ apply when the radius of the cylinde
reduces and grows, respectively. As no cancellation ef
occurs, it is clear that the frequency shift by such a s
fluctuation is far more significant than in the case of a s
randomness.

VI. SUMMARY AND CONCLUSIONS

In summary, we have investigated photonic band gap
disordered 2D photonic crystals of dielectric cylinders in
with two typical randomness of cylinder site displaceme
and cylinder radius variations. The DOS of disordered cr
tals are calculated by the plane-wave expansion met
combined with a supercell technique to measure the b
gap. To avoid powerful numerical calculations, a pertur
tion formalism is proposed to estimate band gaps in dis
dered crystals in a qualitative and semiquantitative way. T
numerical simulations of DOS show that the band gap of
E-polarization mode is far more sensitive to disorders wit
size variation than with a site displacement. The first a
tt
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second band gaps both reduce very little for a site rand
ness with a strength as large as one-half the cylinder rad
yet they reduce more than one-half for a size randomn
with a moderate strength of one-third the cylinder radi
Calculations on the frequency shift of edge states of b
gaps with use of the approximate perturbation method acc
well with the DOS results for disordered crystal with a s
randomness of even a moderate strength. Yet the pertu
tion formalism is far less satisfactory in the case of a s
randomness, especially for the higher band gaps. It o
works well somewhat at a very weak strength of size r
domness. The significant different behaviors of band-gap
duction by the site and size randomness can be unders
by analyses of the electromagnetic fields in disordered c
tals. It is found that the localization state appears far m
easily in disordered crystal with even a weak size rando
ness than those with a strong site randomness. Such a s
localization effect reduces the band gaps significantly. T
detailed field analysis also confirms the effectiveness of
proposed perturbation formalism. It is expected that suc
simple perturbative analysis should provide a systematic w
to understand various disordered photonic crystals qua
tively and even semiquantitatively.
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