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Impurity effect on the metal-insulator transition in Kondo insulators
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In this paper we study the effect of transition impurities on the metal-insulator transition in Kondo insula-
tors. We use a two-subband model Hamiltonian in which a strongly correlated electron narrow subband is
coupled to a wide conduction-electron subband. In the model, the disorder is treated by using the off-diagonal
coherent potential approximation with a simple parametrization of the electron energy hopping. We obtain a
criterion for the opening of the hybridization energy gap as a function of impurity concentration. In the
particular case of CeRh,Pd,Sb, the insulator-metal transition occurs at critical Pd concentration of 10%, in
agreement with experimental data.

[. INTRODUCTION the wide subband. The off-diagonal contribution modifies the
energy hopping and plays a key role in the metal-insulator
Kondo insulators, extensively studied in the literature,phase transition described by our model. Through a simple
present a wide range of interesting physical propeftiésin ~ parametrization of the electron energy hopping we obtain a
these materials, the variation of external pressure, externgfiterion for the opening of the energy gap as a function of
magne[ic field, temperature, and dopmg can destroy the eﬁhe |mpur|ty concentration. The numerical results obtained
ergy gap and produce an insulator-metal transittoA* The  for the particular case of CeRh,Pd,Sh show that a metal-
origin of the energy gap, which is usually associated with thénsulator transition occurs at a critical Pd concentration of
mixing of conduction electrons with local spins, and many10%, in good agreement with experimental d&tahe criti-
aspects of the metal-insulator transition in Kondo insulatorgal exponent of this disorder-driven metal-insulator phase
were covered in several theoretical works based on th&ansition indicates that it belongs to the same class of uni-
Anderson lattice Hamiltonian, the Kondo lattice Hamil- versality as the density-driven transition predicted by scaling
tonian, and the picture of the two-subband mddéi??De-  theory?*?°
spite the great achievements of those models, many other
interesting characteristics of Kondo insulators still remain Il. FORMULATION
open for discussion. For instance, the existence of a gapless

phase in anisotropic Kondo insulators and the effects of im- W€ begin with the following two-subband model Hamil-
purities on its physical properties are not yet fully under-tonian, in which a wide conduction-electron subband con-

stood. Recent theoretical woRé€® based on the periodic taining disorder is coupled to a strongly correlated narrow
Anderson model discussed the effects of impurities such agUbPband via an |sotrop|aczar%37/br|d|zat|on term. In the slave-
La, entering substitutionally in the Ce site of Ce-based?©SOn mean-field approactt” for strong Coulomb correla-
Kondo insulators. In those works it was argued that there is 40N, 0ur model Hamiltonian reads

formation of an impurity band in the hybridization gap when

the metal-insulator transition develops. In the case of Kondo ="' £%7ic)(i°|+ >, Tfj°|i°><j°|+2 eflinG'|
insulators doped with a transition element, such as [ ij [

CeRh_,PdSb, CeNj_,PdSn, and CeNi_,CusSn, the

comp!exity of the electronic structure makes a the(_)retical +Z Tifjf|if><jf|+vcf2 (iGN, @
description of the problem a difficult task, and sometimes it i ij

iS necessary to develop alternative models to gain some in: . . o . .
Isight into th)(/a physi\éal Srocess inl\\;olved gal ! A similar model Hamiltonian was already used in the litera-

. . . f
Motivated by these discussions, in this paper we examinf'e t© study the clean limit of Kondo msulatc?r%.Heree_o
the effect of transition impurities on the formation of the IS the renormalized energy of the narréwsubband, which

energy gap, and its influence on the metal-insulator phasenould be self-consistently determined to assure the con-
transition in Kondo insulators. To this end we use a two-Straint ny=1. &{” is the energy of the wide conduction-
subband model, in which a strongly correlated electrons nar€lectron subband, wherg=H or | depending on the occu-
row subband is coupled to a wide conduction-electron subPancy of the site b;f/fa hogH) atom or an impurity() atom.
band via a constant hybridization term. In our model, The termsTii® andTj; represent the energy hopping between
impurities entering into the system directly affect the widesites in the same subband, avfl is the renormalized hy-
subband and indirectly affect the narrow one through théridization between subbands.

hybridization between them. The impurities introduce both The disorder in this Hamiltonian affects the enerfy,
diagonal and off-diagonal disorder in the Hamiltonian. Thethe hopping term fjc and the hybridization between sub-
diagonal disorder modifies the local energy of the conductiorbands. In order to treat this disorder, we extend the off-
electrons, which is reflected in the position of the center ofdiagonal coherent potential approximafidrfor this two-
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subband model. In this picture, it is considered that the . 1
impurities renormalize the electron energy hopping in the g (Z):m{[z(z)—EJZ)]F[EJZ)]
wide subband and the hybridization ternféas A

_ —[2(2)-E+(29)]JF[E,(2)]}, (7)
Ver=gvel, TiC=£T0F, 2)
1
— N
whereT is the reference energy hopping and the fagfais 9*(2)= o[E.(2)—-E_(2)] {(z=&'—aE )F[E_(2)]
a parameter of the model that should be chosen consistently ;
with the extent of the conduction-electron wave functions of —[z—¢e'—aE, (2)]F[E,(2)]}. (8)

impurities and host atoms. The renormalized hopplii§
takes into account the difference in the energy hopping whe
the electrons jump from one site to another, occupied b
atoms with different conduction-electron wave functions. pol)

With this assumption and introducing the quantity¢] FIEL(2)]= f —de, 9
=3c|i®&(i|, we can eliminate the off-diagonal disorder in E+(2)—e

the wide subband and write the Green’s function associategjhere p,(¢) is a standard model density of states for the
with the mean-field Hamiltonian in the forth wide subband. The quasiparticle enerdieq z) are given by

In these expressiond;[E.(z)] is the Hilbert transform
iven by

— .
g—1=z—H=[§][E Bl - 3 To|i°><j°@[§] FBzax@r e

+\[a3(2)— (z— N PP+4a(VeH2. (10

+ (z—sf)|if><if

-> T if> (Gl In order to calculate the Green’s functiogié andg®®, it still

! remains to determine the self-enerfy To this end we fol-
_ low the usual procedure of the coherent potential approxima-
=V (oG + NG, (3)  tion (CPA), replacing, in a particular site of the Green's
' function, the self-energ¥ by the effective energ§;”. In
doing so, we create a Slater-Koster problem in the effective
medium of the conduction electrons, so that the average
conduction-electron Green’s function can be written in a

Dyson-like form as

sor 28 @ (T (T )R - @G @),

wherez=¢+1i0. This Green'’s function contains only diago-
nal disorder described by the effective enekgy, defined

by

In order to deal with this diagonal disorder, we replace thevhereGi® is a perturbed Green’s function for the disordered
energy°” in Eq. (3) by an effective medium with self- problem in the effective medium, algﬁfjc is the unperturbed
energy3. to restore the translational invariance of the con-Green’s function. After some simple algebra we obtain the
duction electrons. In this manner and considering the twooff-diagonal CPA equation

subband character of the model, the Green’s function for the et

narrow and wide subbands kspace, written in terms of the (1-x) [2(2)—%°"(2)]

effective medium, are given bly: 1-[3(2)—-2(2)19°%(2)

_c [2(2-E"2)]
al(2=2 [z~ —, (5 TR0
K (z—e'—eD[2(2)—ef]— (V)2

0, (12)

wherex is the impurity concentration, arg&ft andz®' rep-
o resent the two different energies in the wide subband. This
(z—e'—¢y) equation together with E@8) self-consistently determine the

g(@2)=2> 6) : i
k © (2-e—e[3(2) —SC]—(va)Z. self-energy2.. The density of states of the narrow subband is
k k given by

The existence of two dispersion relations makes the calcula- 1

tion of these Green'’s functions much more difficult. In order pf(2)=—=Img(2), (13

to simplify thig calculation, we use the homothetic band ™

approxmatl_oﬁ to treat th_e two_subban_ds of the m(_)del. In and the total density of state for the wide subband is given by
this approximation, the dispersion relation of the wide sub-
band is adopted as a modet;Ee,), and the other one, 1 1
corresponding to the narrow subband, is takemf@Sask, pS(2)=(1—x)| — =ImGH(z) |+ x| — —Im G®(2)
wherea is a parameter smaller than 1. After transforming the 7 T (14)
k summation into an integral over energy, the Green’s func-

tionsg''(z) andg®“(z) in real space are given by whereG®” is the perturbed Green'’s function given?By
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FIG. 2. Total density of states for the case of CeRfPd Sb
FIG. 1. Criterion for the opening of the energy gap as a functionenergy is in units of the half bandwidthThe solid line represents
of the concentration. the insulating phase for=0, while the dashed line represents the
metallic phase fox=1. The dotted line represents the critical con-
Gor 1 g°%(2) (15 centration where the insulator-metal transition takes place. The
(2) 55 1-[2(2)-32)]9%(2) | Fermi level lies at zero energy.

Using the densities of states given by Es3) and(14), we for the wide subband at half-filling, and take the homothetic
are able to calculate the magnitude of the hybridization enband parameter as=0.2. In the clean limit of the insulating
ergy gap, if any, as a function of the impurity concentration.phase, i.e.x=0, we take the parametgg as unity and the
Alternatively, we can determine a criterion for the openingrenormalized hybridization parameter ¥§'=0.45 in units

of the hybridization energy gap. In order to do so, we shouldf half bandwidth. When Pd is introduced into the com-
remember that the energy gap between the quasiparticle epeund, the energy hopping of electrons between sites involv-
ergy subbands is calculated by taking the difference betweeing Pd atoms becomes larger than the corresponding energy
the bottom of the higher-energy subband and the top of thlopping between sites occupied only by Rh atoms. That is
lower-energy subband. Assuming that the center of the wideecause the conduction-electron wave function of Pd is
energy subband is not much affected by the presence of inwider than the corresponding one of Rh. In our model we
purities the edges of the quasiparticle energy subbands in thgarametrize this effect by a proper adjustment of the param-
case of half-filling of the wide subband are given by theeter £.. Here we take the parametég to produce an in-
condition E.==*W(x)/2. Here W(x) is the impurity- crease of 5% in the energy hopping. In this way, as the
concentration-dependent width of the wide subband, whicltoncentration of Pd increases the density of states becomes
is self-consistently determined by the equations describedider, and the criterion for the opening of the energy gap
before. With these assumptions and using &4), an en- becomes larger. So the region of metallic phase is enlarged
ergy gap develops when the renormalized hybridization satasx goes to 1. In Fig. 1 we show a phase diagram for the set
isfies the conditiolV®'=V,=[W(x)/2]\/«. This renormal- ©of model parameters described above.

ized criterion for the opening of the energy gap, very similar Keeping the hitherto discussed model parameters fixed,
to that obtained in Ref. 7, tell us that the modification of thewe perform a self-consistent calculation of the densities of
bandwidth caused by impurities changes the critical value o$tate as a function of the impurity concentration. &er0

the hybridization for the appearance of the insulating phaseVve obtain the total density of state with an energy gap shown
In this way it is possible to obtain a metal-insulator transitionPy the solid line of Fig. 2. The Fermi level lies in the middle

by properly diluting impurities into the system. of the energy gap characterizing an insulating phase. At a
critical Pd concentration of 10%, the renormalized hybridiza-
. ""’Cf . .
IIl. RESULTS AND DISCUSSION tion (V ) becomes smaller than the criterioW ) for the
opening of the energy gap, and the system undergoes an
In this section we apply our model to the particular caseinsulator-metal phase transition, as observed

of CeRh_,Pd,Sb. In order to do this we have to fix a set of experimentally’® The dotted line in Fig. 2 shows the total
model parameters. We use a parabolic model density of statéensity of states for the critical Pd concentration where the
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12 ; scription of it. This interesting case will be investigated later.
1.00 } : The effect of impurities introduced in an anisotropic
Kondo insulator is easily treated in this model, by including
a k dependence in the hybridization between subbands. The
< 010} 3 present model can be also extended to deal with Ce-Ni-based
Kondo insulators, in which impurities are introduced in both
Ce and Ni sites. In these cases we expect, depending on the
nature of the impurities, either cooperation or competition
between the disorder effects in the formation of the energy
gap. It is also worth mentioning that this two-subband model
is straightforwardly extended to study effects of temperature
and applied magnetic field on the metal-insulator transition
of some doped Kondo insulators. In this case, starting in the
insulating phase, there are two interesting situations to be
discussed. In the first, impurities are introduced to favor the
metallic phase. In this case, it is expected that the effects of
impurities, temperature, and magnetic field will coopera-
0.000 1o tively work to close the hybridization energy gap. In the
’ /% second situation, impurities are introduced to favor the insu-
‘ lating state. In this case, the effects of impurities tend to
FIG. 3. Pd concentration dependence of the energy(dapin make the energy gap larger while the effects of temperature
arbitrary units, for CeRh.,Pd,Sb. The inset shows a log-log plot and magnetic field tend to annihilate the hybridization en-
for this curve where the circles are the calculated points, and thergy gap:>!’ The combination of these two competing ef-
full line is a linear fit with a angular coefficient equal to 1.0 fects can produce some interesting aspects of the physical
properties of Kondo insulators, such as magnetic susceptibil-

insulator-metal phase transition takes place. The dashed iy, @"d Specific heat. In addition, it is also interesting to study
represents the total density of states for the clean limit of 4Nis model by using dynamical mean-field th?g‘{y which be-
metallic phase X=1). Using the calculated densities of comes exact in the I'r.n't OT infinite d|mer_1$|oﬁ°s. Calcula- .
states we obtain the magnitude of the energy gap. In Fig. ons |n'aII of these directions are now in progress, and will
we plot the energy gaf\) as a function of Pd concentration. € pubhshed_elsewhe_re. .

The insulator-metal phase transition occurs with a critical In conelus!on, n _th|s paper we ha\(e discussed th? eff_ect
exponentu= 1, as can be seen by the slope of the full line inof translmon impurities on the metal-insulator transition in
the inset of this figure. This critical exponent indicates thatKon.do insulators by using a two-subband model. For the
this phase transition belongs to the same universality class ggrtlcular case__of CeRh,PdSb we found that a metal-
the density-driven transition predicted by scaling thédrP msula;or transition occurs at a cr|t|<_:al Pd concentration of
The case of other doped Kondo insulators such a 0%, in good agreement with expe.rllmental data. It has also
CeNj, _,PdSn and CeNi_,Cu,Sn can be cast in the discus- een shqwn that this ph"%se transition b.e_Iongs to Fhe same
sion of our model. However, we should mention that the Casélnlversahty class of density-driven transitions predicted by
of CeRh _,Ni,Sbh is not explained by our model. According Scaling theory.
to our analysis, with the increase of Ni concentration, the

bandwidth and the criterion for the opening of the energy

gap decrease, so that the energy gap should be sustained.l would like to thank the Department of Physics and As-
However, experimental data show that, above a critical Nironomy at Rutgers University for their kind hospitality dur-
concentration of 10%, the gap is suppressed. This means thiag my postdoctoral stay when this work was developed.
more details about the electronic structure of this compoundhis work was partially supported by a grant from the
should be considered in order to obtain a more realistic de€NPg—Brazilian agency.
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