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Electron self-trapping in intermediate-valent SmB6
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SmB6 exhibits intermediate valence in the ground state and unusual behavior at low temperatures. The
resistivity and the Hall effect cannot be explained either by conventionals f hybridization or by hopping
transport in an impurity band. At least three different energy scales determine three temperature regimes of
electron transport in this system. We consider the ground-state properties, the soft valence fluctuations, and the
spectrum of band carriers inn-doped SmB6. The behavior of excess conduction electrons in the presence of
soft valence fluctuations, and the origin of the three energy scales in the spectrum of elementary excitations are
discussed. The carriers which determine the low-temperature transport in this system are self-trapped electron-
polaron complexes rather than simply electrons in an impurity band. The mechanism of electron trapping is the
interaction with soft valence fluctuations.
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I. INTRODUCTION

Samarium hexaboride is the first compound in which
phenomenon of intermediate valence~IV ! has been seen di
rectly by x-ray absorption,1 but the theory which explains a
properties of this compound within a unified physical mod
remains elusive in spite of unceasing efforts of theoretici
and experimentalists during the past 35 years. The con
tional description of the electronic structure of SmB6 in
terms of a two-band promotion model results in a semic
ductorlike spectrum with a gapD. This gap appears as
result of on-site hybridization between the narrow ba
formed by electrons from the samarium 4f shell and the
wide conduction band formed by boronp states and sa
marium 5d states. The theory explains, at least phenome
logically, the main body of available experimental dat2

However, the most intriguing properties of this material~as
well as other IV semiconductors from the same family, i.
SmS, TmSe, and YbB12) cannot be described adequate
within a framework of such a crude phenomenological p
ture. Among these properties are the very nature of the
ground state, the origin of slow-valence fluctuations, and
low-temperature anomalies of various physical propert
Recent experimental studies of transport3–5 and optical6–8

properties revealed the existence of several energy scal
the low-energy excitation spectra and several temperatur
gimes in the low-temperature electron kinetics.

It is found that at least three different activation energ
influence the behavior of electrons. The largest energy
Dopt'14–20 meV is observed in the frequency-depend
conductivity and dielectric permittivity. Apparently, just th
value should be ascribed to the hybridization gapD of the
two-band model mentioned above. A substantially sma
value ofDact'3 –5 meV is seen in the low-temperature r
sistivity and Hall effect measurements which display
activation-type temperature dependence in the interval
.T.6 K. This gap was also measured in tunneli
experiments.9 Below 6 K the resistivity is nearly temperatur
PRB 610163-1829/2000/61~23!/15714~12!/$15.00
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independent, and such behavior seems to be consistent
hopping transport in an impurity band separated by the
Dact from the bottom of the conduction band. Howeve
there is still no experimental consensus about the ene
scales which control hopping. In Ref. 8 part of the lowT
interval is presumed to be described by Mott’sT1/4 law for
variable-range hopping with a scaling energy ofT0553 K.8

In another series of samples an activated term in the con
tivity was observed with an activation temperatureTa
52.68 K for T,3 K,3 although the derivation of an activa
tion energy of the order of several K from measureme
made in the same temperature interval does not look
trustworthy, in addition, the pressure dependence of the
sidual resistivity4 is extremely strong, and it can hardly b
fitted into a picture of noninteracting electrons in an impur
band. In any case, there is no room for additional excitat
branches in the mean-field two-band theory, and adding e
localized states in the gap does not improve the situat
The standard hybridization model seems to be too simplis
and we believe that the generic properties of the intermed
valence state can be described only within a framework
goes beyond the mean-field approximation.

In the present paper we offer a description of the lo
energy spectrum of IV SmB6 by treating the phenomenon o
intermediate valence in rare-earth semiconductors in term
an excitonic dielectric state. This approach was offe
nearly two decades ago,10 and its effectiveness was demo
strated later in explanation of anomalies in the vibrati
spectra of IV semiconductors.11 Features of excitonic insta
bility were seen also in studies of the dielectric-metal tran
tion under pressure in the compounds TmSe12xSx .12 It is
interesting that recently dramatic observations of a ferrom
netic phase in then-doped divalent hexaborides CaB6 and
SrB6 ~Ref. 13! were interpreted in terms of conventional e
citonic instability of Keldysh-Kopayev-Volkov-Rusinov
type.14

The theory of intermediate-valence excitonic dielect
emphasizes the role of soft singlet excitonic states in
15 714 ©2000 The American Physical Society
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PRB 61 15 715ELECTRON SELF-TRAPPING IN INTERMEDIATE- . . .
formation of the ground IV state and valence fluctuations
the excitation spectrum. The IV state is described as a m
ture of singlet7F0 states of divalent Sm(f 6) and the bound
electron-hole pairsf 5b̃, where b̃ is the state of an electro
promoted from thef shell top orbitals spread over neighbo
ing boron sites but having the same symmetry as thef elec-
tron in a central site. In some sense these states are elec
hole analogs of Zhang-Rice two-hole states known in
theory of low-energy states of CuO2 planes in high-Tc
perovskites.15

Here we consider the case of dopedn-SmB6 material. We
study the behavior of excess conduction electrons in
presence of soft valence fluctuations, and discuss the o
of three energy scales seen in different temperature regim
We show that the carriers which determine the lo
temperature transport properties in this system are s
trapped electron-polaron complexes rather than simply e
trons in an impurity band. The mechanism of electr
trapping is the interaction with soft valence fluctuations.

II. GROUND STATE OF INTERMEDIATE-VALENCE
SEMICONDUCTOR

SmB6 together with ‘‘golden’’ SmS is considered to be
classical example of a non-magnetic IV semiconductor~see
Ref. 2 and references therein!. Both of these compounds pos
sess a singlet ground state with intermediate valencev;
12.6. The main difference in the properties of these t
compounds is that SmS transforms into an IV semicondu
only at finite pressure~or under the chemical pressure
rare-earth ions of smaller radius substituting for Sm! whereas
SmB6 possesses intermediate valence and concom
anomalous properties at ambient pressure.

Apparently, differences in the electron band spectra
these two materials are the eventual source of difference
their properties. SmS at ambient pressure is known to b
normal semiconductor with a relatively wide gap in the e
ergy spectrumD50.23 eV. This gap divides the filledf lev-
els of Sm21( f 6) ions from the bottom of conduction ban
formed mainly by Smd states. The 4f levels, in turn, form a
nearly dispersionless valence band within a wide forbidd
gap Eg@D between the conduction band and the conv
tional valence band formed mainly byp electrons of the
chalcogen sublattice. At finite pressure the gapD is sup-
pressed, but instead of collapsing to zero it transforms in
microgapDm at some critical pressurePc , and the material
acquires the properties of an IV semiconductor. On the o
hand, the ‘‘parent’’ divalent hexaborides without a 4f shell
(CaB6 , SrB6), as well as trivalent LaB6 with an empty 4f
shell, have a band structure without a gap in the actual
ergy interval. The density of states near the Fermi leve
hexaborides is predetermined by a single degenerate
with a minimum at theX point of the Brillouin zone. This
band is formed mainly byp electrons of the boron sublattic
with a small admixture ofd states of the cation sublattice.
is nearly empty in divalent semimetallic hexaborides,16,17

and more than half-filled in trivalent LaB6.18 Thus one can
expect that thef level which is responsible for the interme
diate valence of SmB6 should cross this simple band. Indee
conventional band calculations19 give a band structure com
patible with this presumption.
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Despite the differences between the parent~unhybridized!
spectra of SmS and SmB6, the decisive similarity of these
two cases is the closeness or overlapping of the highly c
related 4f levels of Sm21(4 f 6) and the degenerate condu
tion band. In SmB6 these states overlap at ambient pressu
whereas in SmS the closeness is achieved under exte
pressure which induces the excitonic instability10 at Pc . The
closeness results in promotion of electrons to delocali
band states. Crucial is the fact that the numbery of promoted
electrons is the deviation from the divalent state in bo
Sm(21y)1S and Sm(21y)1B6 IV semiconductors. According
to the conventional band scheme, which treats thef f inter-
action in a self-consistent mean-field approximation, thef p
mixing results in the appearance of a hybridization gapD in
the case of SmB6 and a pseudogap in the IV phase of Sm
To take into account strong on-site correlations, this sche
should be modified.

The starting Hamiltonian for treating IV semiconducto
is the Anderson lattice Hamiltonian supplemented by an
terband Coulomb interaction~see, e.g., Ref. 20!:

H5(
ks

ekaks
† aks1(

m
(

L50,$Gm%
ELumL&^mLu

1 (
mks$Gm%

@Vmks,Gmaks
† umGm&^m0u1H.c.#

1 (
jkk 8s

Umkk8nmfaks
† ak8s . ~1!

Here ek is a simple spin-degenerate dispersion law for
band electrons~we assume for the sake of simplicity th
these electrons come from the boron 2p shells!. The states
umL& of the Sm ion at sitem are represented by two con
figurations,umL&5um0&[um7F0& for the divalent state 4f 6

and umL&5umGm& for the trivalent state 4f 5. G stands for
the multiplet 6H5/2 of the 4f 5 configuration which splits into
a G7m doublet and aG8m quartet by the cubic crystal field
DCF ; m enumerates the states of corresponding irreduc
representations, andnmf5(mumGm&^mGmu is thef-electron
occupation number. The hybridization interaction describ
the promotion of electrons from thef shell to the conduction
band accompanied by a change of atomic configuration.
strong interband Coulomb interaction is given byUmkk 8. The
hybridization matrix element is Vmks,Gm
5^ks,mGmuHum0&. At T!DCF only the lowest doublet
stateG7 should be taken into account, so one should d
with hybridization of two doubly degenerate states.

The strong intrashell interaction is inserted in the config

ration change operatorsXm
LL85umL&^mL8u. To make the

hybridization problem solvable the nondiagonal operat
are usually represented in a factorized formXm

G05 f mmbm
†

~see, e.g., Ref. 21!, where f mm and bm
† describe auxiliary

fermion and boson fields which correspond to charge
spin degrees of freedom. This procedure gives reason
results in the case of nearly integer valence, but in the
state the spin charge separation procedure can hardly be
ful even as a starting approximation. We prefer to use
other approach22 which seems to be adequate in the nonm
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15 716 PRB 61S. CURNOE AND K. A. KIKOIN
tallic case when one can hope that hybridization will resul
the separation of strongly correlated and weakly correla
bands in the energy space.

According to the prescription of this approach, we pi
out the one-electron band HamiltonianHb which describes
the hybridization of band electrons with the mean-field le
« f , which is defined as the energy difference

« f5E02EG7
,

whereEG7
is the lowest~doubly degenerate! state in the mul-

tiplet f 5(6H5/2), and then represent the Hamiltonian~1! in the
form H5Hb1DH. The termDH describes the excitation
above the ground state. Then the mean-field spectrum in
actual energy interval can be described approximately b
Hamiltonian

Hb5 (
s51,2

(
ks

«s~k!cs,ks
† cs,ks . ~2!

Here

«1,2~k!5
1

2
~ek1« f !7A1

4
~ek2« f !

21uV~k!u2, ~3!

whereeim•kV(k)5Vmk from Eq. ~1!. Hybridization between
p and f states due to the matrix elementsV(k) results in the
wave functions

c1,ks5uk f s1vkcks ,
~4!

c2,ks52ukscks1vks f s ,

where the coefficients of the canonical transformation ar

uk5
1

2 F11
ek2« f

A~ek2« f !
214uV~k!u2

G ,

~5!

vk
2512uk

2 .

Since the band states and thef states have the same sym
metry at the pointsX7 , R7 , G7, and D7,20 a hybridization
gap opens, and the lower band«1 is filled in the ground state
of ‘‘divalent’’ SmB6 because two electrons transferred fro
the f G7

level to the ~initially empty! band «1 fill it com-

pletely. Let us assume that the level« f crosses the bandek in
its lower part, so that the band«1(k) has mainlyf character.
The square root in Eq.~3! can be expanded inV(k)/@«k
2« f # for most of the Brillouin zone, and the Wannier stat
given by the operatorsc1,ms5N21/2(k exp(ik•m)c1,ks can
therefore be approximated by the following equations:

c1,ms' f ms1N21/2(
k

(
^ j &NN

V~m2 j !exp@ ik•~m2 j !#
ek2« f

aj .

~6!

Here ^ j &NN are the nearest neighbors~boron sites! of a Sm
ion in a given crystal cell, andV(m2 j ) is the Fourier trans-
d

l

he
a

form of V~k!. The widthT of the lower band is determine
by a hopping integral, which can be estimated as

Tmn'N21/2(
kj

V~m2 j !V* ~n2 j !exp@ ik•~m2n!#

ek2« f
~7!

~herej are the nearest neighbors of bothm andn).
To study thereal carriers, one should go beyond th

mean-field Hamiltonian, i.e., take into account the termDH
which includes, in particular, the interaction between ho
in the narrow band«1(k) and the electron-hole interactio
between carriers in different bands. The former contribut
stems from a strong Coulomb interaction between electr
in the Smf-shellU5^ f mf muUu f mf m&. This Hubbard interac-
tion is reduced due to slight delocalization of Wannier fun
tions,

Ũ5^c1,mc1,muUuc1,mc1,m&5r 4U,

where r 5*S(e)u(e)de is the reduction ~nephelauxetic!
factor.22 This factor depends on the density of statesS(e) in
the unhybridized bandek @see Eq.~1!#, and the coefficient
u(e) is that which appears in Eq.~4! but written as a func-
tion of energy. In our case the conditionT!Ũ is assumed to
be valid, and this means that no more than a single hole
site can be created in this narrow ‘‘Hubbard’’ band.

The upper band«2(k) is formed mainly ofp electrons,
with an admixture of anf component in the states close to th
bottom of this band. If the bottom of the conduction band
close to the center of the Brillouin zone,20 Bogolyubov’s
coefficients for the electron wave function described by
operatorc2,k @Eq. ~4!# are given by

vk
2'12

uV0u2

~« f2ek!2
, uk'

V0

« f2ek
. ~8!

The Wannier operatorsc2,m have the same form as Eq.~6!,
except that the sign of the denominator in the second term
negative. The dispersion in this band can be approximate
the effective-mass law

«2~k!'D01
\2~k2kb!2

2mc*
, ~9!

whereD0 is the gap in the two-band spectrum@Eq. ~3!#. Here
kb is the wave vector corresponding to the bottom of t
empty band, and the effective mass can be estimated as

mc* /m0'@~« f2ekb
!/V~kb!#251/jc . ~10!

The effective mass is noticeably heavier than the bare m
m0 of the conduction electron@experimentally,mc* ;100m0

~Ref. 8!#. We suppose that the hybridization gap is seen
the largest gapDopt in the experiments mentioned in Sec.

Now, taking the energy of the state with filled lower ban
as a reference point in our calculations of the excitation
ergy spectrum, we have the effective Hamiltonian
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PRB 61 15 717ELECTRON SELF-TRAPPING IN INTERMEDIATE- . . .
H̃5 (
mn,s

tmnc̃1,ms
† c̃1,ns1

Ũ

2 (
ms

n1,msn1,m2s

1(
ks

«2~k!c2,ks
† c2,ks1H12, ~11!

where tmn5(ke
ik•(m2n)«1(k) and «1,2(k) are given by Eq.

~3!. The electron states in the hopping term for hole exc
tions are dressed in projection operators,c̃1,ms

5c1,msn1,m2s . This projection inserts the kinematic restri
tion for the hole motion: the hole can be created at a gi
site only provided the electron with the opposite spin is s
at the same site. Therefore, the holes are practically im
bile. The last termH12 is responsible for the electron-ho
interaction,

H125 (
k1k2k3k4

(
ss8

W~k1 ,k2 ,k3 ,k4!c1,k1s
† c1,k2sc2,k3s8

† c2,k4s8 ,

~12!

whereW is derived from the Coulomb interaction@the last
term in the Hamiltonian~1!#.

The two-band HamiltonianH̃ contains hybridization built
into the electron and hole states, and the average occup
numbersn̄1i f[n̄f are formally less than one in the lowe
‘‘Hubbard’’ band«1. However, it should be emphasized th
this deviation from integer value (n̄f51 corresponds to the
Sm21 state! is not the true IV state. The one-electron pictu
given by the mean-field HamiltonianHb @Eq. ~2!# implies
that interband transitions given by the operator

Sq5(
k

c2,k1qs
† c1,ks5N21(

mj
e2 iq•mc2,m1 js

† c1,ms

~13!

form the fundamental branch of elementary excitations
this semiconductor. However, free electron-hole excitati
alone cannot explain the unusual properties of IV SmB6. We
believe that in the IV state an extra branch of charge tran
excitations exists. These are valence fluctuations, and ar
sponsible for the unusual low-energy electron spectra and
numerous anomalies of the physical properties of SmB6. Ac-
cording to the scenario suggested in Refs. 10 and 23
verified in Ref. 11, the true IV ground state arises as a re
of admixture of singlet excitonic states to the ground state
the same symmetry, and this admixture is non-negligi
when the binding energy of the exciton is comparable w
the band gap, i.e. when the system is close to the excit
instability. To realize this scenario, one should construct
singlet exciton for the specific case of SmB6.

According to the theory of IV rare-eart
semiconductors,10,23 the singlet exciton is a bound state of
hole in the samariumf shell and an electron spread over t
p states of the surrounding nearest-neighbor~NN! boron at-
oms with the same crystal point symmetry as anf electron in
the central cell . This state is constructed from electron-h
pairs @Eq. ~13!# by means of an envelope functionFq(m
2 j ). Whenq50, the exciton operator can be written as
-

n
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uCex&5N21/2(
m

(
^ j &NN

F0~m2 j !pm1 js
† f msu0&. ~14!

Here a basis off and p orbitals is chosen. As mentione
above, thef electron hasG7 symmetry, and its angular de
pendence is determined by thexyz cubic harmonics. The
envelope amplitudeF0 is a function of exciton energyEex
~see, e.g., Ref. 10, where this function is calculated in
NN approximation!. It also contains the phase factor whic
orders the phases of thepx , py and pz boron orbitals in
accordance with the required symmetry~cf. Ref. 15!,

F0~m2 j !5F~Eex!~21!Mm,j, ~15!

where the phase (21)Mm,j follows the arrangement shown i
Fig. 1.

In fact, it will be shown below that the IV ground stat
resembles in some sense the Zhang-Rice~ZR! singlets,15

which are believed to be formed in Cu-O planes of high-Tc
materials. The Emery Hamiltonian,24 which is the starting
point for the description of hybridization between weak
interacting oxygenp electrons and strongly correlated copp
d holes, is similar to the Anderson Hamiltonian describi
the hybridization of nearly freeb electrons in the conduction
band with strongly localized electrons in samarium 4f shells.
The difference is that the ZR bound states of a local Cu s
and a hole distributed overp orbitals of the surrounding O
ions are formed as excitations in doped oxicuprates, w
the IV singlets are formed in the ground state as bound st
consisting of a hole in thef-shell of the Sm ion and an
electron distributed over thep orbitals of the surrounding B
ions of the cation sublattice. The binding mechanisms are
antiferromagneticdp exchange in the ZR case and the Co
lomb f p attraction in our case.

Now, inserting Eq.~15! into Eq. ~14!, we have

uCex&5F~Eex!N
21/2(

ms
Pms

† f msu0& ~16!

FIG. 1. A 4f -orbital located at the center surrounded by eighp

orbitals on the (12 , 1
2 , 1

2 ) corners. The signs of thep orbitals are
chosen to have the same symmetry as thef orbital.
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wherePms
† is a localized state which is defined as follow

SmB6 has a simple cubic lattice structure, with an Sm at
in the center of each cell, and a B6 group on each corner. To
simplify the treatment, we approximate the electronic wa
functions for the boron clusters by thep orbital directed
along the diagonal of the cube~see Fig. 1!. These orbitals are
responsible for the covalent bonding between the boron c
ters and Sm sublattice.16 We introduce the linear combina
tions

pj
xyz[

1

A3
@px~ j !1py~ j !1pz~ j !#,

pj
xȳz[

1

A3
@px~ j !2py~ j !1pz~ j !#,

etc., which representp-type electronic wave functions cen
tred at j and oriented in the directionx̂1 ŷ1 ẑ. In analogy
with the Zhang-Rice construction, we write down a localiz
state for the Sm sitem consisting of eight nearest-neighborp
orbitals oriented to have the same symmetry as a centf
orbital, as shown in Fig. 1,

Pms5
1

A8
@pm1(1/2,1/2,1/2)

xyz 1pm2(1/2,1/2,1/2)
xyz 1pm1(21/2,1/2,1/2)

xȳz̄

1pm2(21/2,1/2,1/2)
xȳz̄ 1pm1(1/2,21/2,1/2)

x̄y z̄ 1pm2(1/2,21/2,1/2)
x̄y z̄

1pm1(1/2,1/2,21/2)
x̄ȳz 1pm2(1/2,1/2,21/2)

x̄ȳz #. ~17!

States on neighboring sites are nonorthogonal becaus
sharedp electrons. Therefore, it is useful to make a canoni
transformation to the orthonormalized Wannier or Bloch o
eratorsd†,

Pn
†5(

m
l~m2n!dm

† 5N21/2(
k

bk
1/2dk

†e2 ik•n, ~18!

where

l~m2n!5N21(
k

bk
1/2eik•(m2n), ~19!

bk5
8

3 Fcos2
kx

2
sin2

ky

2
sin2

kz

2
1 sin2

kx

2
cos2

ky

2
sin2

kz

2

1 sin2
kx

2
sin2

ky

2
cos2

kz

2 G . ~20!

Then the exciton operator acquires the form

uCex&5F~Eex!
1

N (
ms

Fl0dms
† 1(

i
l i(̂

n& i

dns
† G f msu0&

[
1

N (
m

ucm&. ~21!
.

e

s-

l

of
l
-

Here the index i 51,2 . . . enumerates the coordinatio
spheres, and the coefficientsl i fall rapidly with increasing
distance~see Table I!.

By construction, the statesu0& anduCex& belong to the set
of eigenstates of the HamiltonianH̃ @Eq. ~11!#, with nonlocal
termsH̃1h5(mÞn,stmnc̃1,ms

† c̃1,ns and dH12 ~defined below!
excluded. However, these nonlocal interactions are resp
sible for forming the IV state. In a simplest approximatio
we restrict ourselves by considering only the first term;l0
in the expansion~21! and take the nonlocal interaction in th
form

dH125 (
mns

W~m2n! f ms
† f ns f ns

† dms1H.c. ~22!

This component of electrostatic interaction violates the po
crystalline symmetry and inducesf p hybridization at the site
m in the presence of a hole in the neighboring celln. The
operatordH12 has a property

dH12ucm0n&5W~m2n!u0m0n& ,

where 0n stands for the celln in the ground-state configura
tion. Thus this interaction intermixes the statesu0&[)nu0n&
and uCex&. The mixing constant isw5^0udH12uCex&
5zF(Eex)l0W, wherez is the coordination number for th
Sm sublattice andW is the NN interaction matrix element
After diagonalization the local neutral states in each cellm
are represented by the linear combinations

u0̄m&5 cosuu0m&1 sinuucm&,
~23!

uc̄m&52 cosuucm&1 sinuu0m&,

where tan 2u'2w/Eex , and the valence is determined b
the value of sin2 u. As mentioned, the local states~23! are in
some sense the electron-hole analogs of two-hole Zha
Rice singlets and triplets.15,25Finally, the ground state of the
IV semiconductor is

uC0
( iv)&5)

m
u0̄m&, ~24!

and the low-lying local excitations are described by the v
tor

uCex
( iv)&5N21(

m
uc̄m&^0̄muC0

( iv)&. ~25!

TABLE I. The coefficientsl(m2n), where m2n5 i x̂1 j ŷ

1kẑ.

( i , j ,k) l

l0 ~0,0,0! 0.935
l1 ~1,0,0! 20.104
l2 ~1,1,1! 0.056
l3 ~1,1,0! 20.052
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The valence and the energy scale of these local exc
tions~valence fluctuations! are characterized by the degree
admixture of the excitonic state, in which an electron is p
moted to a loosely bound ‘‘molecular orbit’’Pm . If the ex-
citon energyEex is small enough~the exciton binding energy
is comparable with the gap width!, the value of sin2 u is close
to 1/2. Also keeping in mind the mean-field part of hybri
ization given by Eq.~4!, we conclude that in this case th
valence

nv532n̄f1 sin2 u ~26!

can exceed 2.5 both in SmS and SmB6. Thus the large de-
viation of the valence value from the integer value and
softness of local valence fluctuations are, apparently, the
related phenomena. Further discussion of internal con
tency of the model can be found in the last section.

III. TRAPPING OF CONDUCTION ELECTRONS AND
HOPPING CONDUCTIVITY

The samples of good quality which were studied in t
experiments of the past decade mentioned in Sec. I
n-type semiconductors at low temperature, unlike thep-type
samples of the first generation.26 The electron concentratio
in these samples is estimated atne;1017 cm23 at ambient
pressure and liquid helium temperature.3,4 In order to inter-
pret the transport properties of these samples one should
termine the spectrum of electrons at the bottom of the c
duction band in the presence of soft valence fluctuations
our model the local valence fluctuations arise as transiti
between the statesu0̄m& and uc̄m& given by Eq.~23!. It is
known that these valence fluctuations are the source
strong anomalies in the vibration spectra because the cha
teristic time tv f of valence fluctuations is close to phono
times tph;vph

21;10213 s. Therefore, one can expect th
these ‘‘slow’’ excitations could dress the carriers and fo
an electron-polaron cloud similar to the phonon cloud wh
results in polaron self-trapping in dielectric crystals~see,
e.g., Ref. 27!.

To describe electron self-trapping we start with a Ham
tonian including the interaction between the conduction e
tron and thelocal valence fluctuations in a single lattice si
n50;

He5(
k

«~k!ck
†ck1V0A†A

1 (
k1 ,k2

@Wv f~k1 ,k2!ck1

† ck2
A†1H.c.#. ~27!

This Hamiltonian stems from our basic Hamiltonian~11!. It
includes the electrons in the upper conduction band~the spin
summation and band indexs52 are omitted!. Only the term
which corresponds to momentary, local redistributions
charge and valence at the site of the excitation due to
interaction with the charge carrier is retained inH12. The
valence fluctuations with the energyV0 are described by the
local operatorA†5uc̄&^0̄u. This excitation is in fact a charg
transfer between the periphery and the center of the cell.
a-
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‘‘breathing’’ modeV0 describes the polarization of Sm ion
in the cation sublattice that accompanies the propagatio
an excess conduction electron~predominantly, over the sa
marium sublattice; see below!.

The matrix elementWv f(k1 ,k2) is given by the integral

Wv f~k1 ,k2!

5E dr1dr2c̄ex* ~r1!c̄0~r1!W~r1 ,r2!ck1
* ~r2!ck2

~r2!

whereck(r ) are the Bloch functions for the conduction ele
trons, andc̄ex* (r ) and c̄0(r ) are the wavefunctions of the
states created by the operators~23!. Their product is

c̄ex* ~r !c̄0~r ![D~r !5
1

2
$sin 2u@rp~r !2r f~r !#

2 cos 2u f xyz~r !dxyz~r !%, ~28!

wherer f(r )5u f xyz(r )u2 is thef-electron density in the cente
of the cell ~see Fig. 1!, and rp(r )5F2(Eex)l0

2udxyz(r )u2 is
thep-electron density in a central cell given by the first ter
on the right-hand side of Eq.~21!. The conduction-electron
density operatorrk1 ,k2

(r1)5ck1
* (r2)ck2

(r2) is determined

by the Bloch functions~4!. Near the bottom of conduction
band this operator can be approximately presented as

rk1 ,k2
~r1!'r f~r !1zcrk1 ,k2

p ~r1! ~29!

by means of Eq.~8!. Here

zc5V0
2/« f b

2 , ~30!

rk1 ,k2

p 5 (
^ j &NN

e2 i (k12k2)• juc j~r1!u2, ~31!

and« f b5« f2«kb
. Then the coupling constant in the Hami

tonian ~27! acquires the form

Wv f~k1 ,k2!'w01w1b̃k12k2
, ~32!

where

w05E dr1dr2D~r1!W~r1 ,r2!r f~r2!,

w1b̃k12k2
5E dr1dr2D~r1!W~r1 ,r2!rk1 ,k2

p ~r21 j !.

The structure factorb̃k is given by

b̃k58 cos
kx

2
cos

ky

2
cos

kz

2
. ~33!

It is seen that the first termw0 dominates in the electron
exciton interaction; therefore, we begin with a calculation
the electron self-energy induced by this term within the lo
est order of perturbation theory. The theory which allo
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15 720 PRB 61S. CURNOE AND K. A. KIKOIN
inclusion of nonlocal corrections due to small term;w1 in
Eq. ~32! is described in the Appendix. We calculate the ele
tron Green’s function in the Matsubara representation,

Gkk8~vn!5E
0

b

^Ttck~t!ck8
† &eivntdt ~34!

@vn5(2n11)pT#, interacting with a localized valence fluc
tuation modeV0 described by the propagator

D~vm!52
2V0

vm
2 1V0

2
~35!

@vm52pmT#. The Dyson equation for the electron Green
function is

Gk,k8~vn!5Gk
0~v!Fdk,k81(

k2

Sk,k2
~vn!Gk2 ,k8~vn!G .

~36!

In the lowest order of perturbation theory the self-ene
Sk1 ,k8(vn), after carrying out an analytic continuation in
the region of real frequencies, acquires the form~see Fig. 2!

Sk,k2

R ~v!5(
k1

Wv f~k,k1!Wv f~k1 ,k2!Pk1
~v,V0!,

~37!

where

Pk1
~v,V0!5E

2`

` de

2p

Im DR~e!

e1«~k1!2v2 id

3S tanh
«~k1!

2T
1coth

e

2TD . ~38!

Approximating the nonlocal potentialWv f(k,k1) by its local
part w0, we come immediately to the following equation

12w0
2m~v!m~v2V0!50, ~39!

wherem(v)5(kGk
0(v).

In close analogy with the polaron self-trapping effect27

one can expect that the attractive polarization potential w
an effective coupling constant

g0~v!5w0
2(

k2

Gk2

0 ~v2V0!

FIG. 2. The self-energy diagram corresponding to Eq.~37!. The
straight line represents a conduction electron, and the wavy
represents a soft valence fluctuation.
-

y

h

results in the appearance of bound electron-polaron sta
As usual in three-dimensional problems, the threshold va
of the attractive potential determines the onset of the bo
state. To find the constraints on the solutions with nega
energy ~corresponding to bound states!, we examine the
function m(v) defined in Eq.~39!:

m~v!5E
2p

p dkxdkydkz

~2p!3

1

v2e~k!
. ~40!

At v50 the integral may be evaluated numerically~see the
Appendix!. Figure 3 demonstrates the graphical solution
Eq. ~39! for a reasonable set of model parameters. The va
of V055.5 meV correlates the experimentally observed pe
in optical reflectivity spectra,6,7 and the binding energy o
localizedv1'3.5 meV is in good agreement with the ac
vation energy registered in multiple optical and transp
measurements in the temperature interval 6–14 K~see Ref. 5
and references therein!.

We have demonstrated the existence of a self-trap
state in the simplest approximation, whereby the local po
ization mode is taken into account in second-order pertur
tion theory. However, the values of the parameters neces
to achieve reasonable agreement with experiment give
the dimensionless coupling constanta5w0 /V0 the value of
a'4.5. This means that in fact we are in a strong-coupl
limit, and a more refined treatment is necessary. The ge
alization of the theory to the strong-coupling limit can b
done in close analogy with the theory of small polaron. O
can make the canonical transformationc̃k5e2Scke

S, where

S5(
kq

Wv f~k,q!

V0
~ck

†ck1qAq
†2ck1q

† ckA2q! ~41!

~see, e.g., Ref. 28!. We have seen above that the local te
w0 is dominant in electron-exciton coupling constant@Eq.
~32!#. Then neglecting the contribution of the ‘‘tail’’w1 we
come to purely local interaction at a given sitem50,
namely, dH125w0c0

†c0(A0
†1A0). Eliminating this interac-

tion by means of a canonical transformation@Eq. ~41!#, one
comes to the effective Hamiltonian

e

FIG. 3. Graphical solutions to Eqs.~39! ~solid line! and ~43!
~dotted line! using e055 meV, m* 5100m0 , V055.5 meV, w0

525 meV, and«pol521 meV.
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H̃e5e2SHee
S5(

m
« fcm

† cm1 (
m,nÅ0

Tmncm
† cn1V0A0

†A0

2«polc0
†c02 (

mÅ0
~Tm0c0

†cme2a(A0
†
2A0)1H.c.!. ~42!

Now the main part of electron-exciton interaction is tak
into account exactly, and it is contained in the polaron sh
This shift induces the local scattering at the site0 which is
given by the operator«pol(k1 ,k2

ck1

† ck2
, where «pol5aw0.

The local scattering can be inserted in the self-energy of
conduction electron in the same manner as it was don
second order of perturbation theory in Eq.~36!. However,
now the calculation is exact, and instead of Eq.~39! one has

0511«pol(
k

@v2«~k!#21511«polm~v!, ~43!

which can be solved by using the same approximation a
Eq. ~39!. In any case the electron can be trapped by lo
valence fluctuations provided the polaron shift«pol5aw0
given by the bound solution of Eq.~39! exceeds the charac
teristic kinetic energy of the electrons near the bottom of
conduction band. Therefore the effective mass enhancem
due to p f hybridization favours the formation of a sel
trapped state.

In Fig. 3 we show a bound state solution with energy
meV in agreement with the activation energy observed
transport measurements and absorption edges in optica
periments. In both cases the coupling constantw0 is treated
as a free parameter. In the second-order perturbation ca
lation w0 is determined to be 25 meV, which, as we ha
discussed above, indicates that our solution lies in the li
of strong coupling. In the non-perturbative calculation w
find that «pol5w0

2/V0521 meV, which implies thatw0

511 meV. Because we are in the strong-coupling limit
do expect a deviation between the exact calculation and
second-order perturbation result. However, our results
close enough to suggest that the physical content of the
turbative calculation is correct, that is, that an electron m
bind to a single local valence fluctuation and the result i
localized electron-valence fluctuation complex. Moreov
we also observe that our results are not particularly sens
to the input parameters, and are therefore not the resu
any special ‘‘fine tuning.’’ All of this is a consequence of th
fact that the relevant energies are all roughly the same:V0
55.5 meV,\2/a2m* 55 meV andDact53.5 meV.

The last term in the effective Hamiltonian~42! is respon-
sible for the exciton-assisted hopping in an electron-pola
band. The electron self-trapping can occur around any a
trary lattice site, so the trapped particle can move from
given cell to the neighboring cells by a mechanism wh
resembles polaron propagation.27,28 Therefore, the electron
polaron drift in an electric field is responsible for the co
ductivity at T→0 in n-type SmB6. We leave a systemati
treatment of electron transport in IV semiconductors for
ture publications, and conclude this article by qualitative d
cussion of anomalous low-T behavior of SmB6 mentioned in
Sec. I.
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IV. CONCLUDING REMARKS

As a result of the above analysis, one can understand
mechanism of reduction from the eV energy scale charac
istic of initial Hamiltonian ~1! down to meV scale of low-
lying charge excitations in then-type material. First, at the
mean-field level of approximation@Eqs. ~2!–~10!# the gap
D0;10–20 meV opens, and states near the bottom of c
duction band become heavy. This initial reduction of t
energy scale is characterized by the parameterzc @Eq. ~30!#,
and the position of thef level relative to the bottom and to
of the bare conduction bandek can be extracted from the
ratio of effective masses

r[
« f b

« f t
5S zv

zc
D 1/2

'S mc*

mv*
D 1/2

, ~44!

where« f t5«kt
2« f , ekt

is the top of the bandek , and the

parameterzv5(V0 /« f t)
2 is determined similarly tozc . We

neglect in these crude estimates the anisotropy of hybrid
tion integralV(k). The hole effective massmv* is evaluated
as ;(500–1000)m0,2,5 so we taker;1/3, which is consis-
tent with our assumption that the mean-field hybridizati
gives only part of the actual value of the valencenv . Ac-
cording to our previous calculations,22 the value ofr 51/3
corresponds ton̄f'0.75, and the experimentally observe
value ofnv'2.55 can be reachedonly by means of excitonic
mechanism, with the exciton mixing parameter sinu;0.55
@see Eq.~26!#. This value, in turn, agrees with our assum
tion of a soft excitonic mode. Then, from Eq.~10!, zc
50.01, and taking for the bandwidth« f b1« f t the value of 4
eV in accordance with the band calculations for the rela
system,18 we estimate the hybridization coupling constant
V0'0.1 eV which is a reasonable value for the rare-ea
materials. To make these estimates self-consistent, a hy
ization gap should be found. The gap is defined via the ab
parameters asD0'zc« f b1zv« f t . Inserting the values of cor
responding parameters, we findD0'13 meV which is in a
reasonable agreement with the experimental data.

Now, turning ton-doped materials, we deal with heav
electrons, which interact with the valence fluctuations. T
kinetic energy of these electrons is estimated as;V0

2/« f b

;1022 eV, and the energy scale of valence fluctuations
by their origin, limited from above by an energy gap of th
same 1022 eV width. The polarization coupling constan
Wv f @Eq. ~32!#, as well as the ‘‘superhybridization’’ matrix
elementsW in the Hamiltonian~22!, should be at least an
order of magnitude less than the mean-field hybridizationV,
so the value ofw0525 meV, which is used in our numerica
solution of Fig. 3, looks realistic. Eventually, solving E
~43! for the polaron shift, we descend one more step alo
the energy scale and find ourselves in a meV region. T
propagation of a self-trapped electron-polaron can in p
ciple be characterized by even lesser energies of the ord
1021 meV.

Thus we have found that heavy electrons near the bot
of the conduction band can propagate in a lattice only i
polarization cloud of valence fluctuations. It is worth me
tioning that this conclusion correlates partly with a rece
proposition of Kasuya,29 in spite of the fact that his model o
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the ground state of a mixed-valence semiconductor disag
with our picture in several respects. He chose the trial w
function for a local singlet~which he calls Kondo singlet! of
the form

u0̃m&5a f mu0m&1admAdm
† ucm& ~45!

whereAdm
† 5dm

† cdm is a charge-transfer operator, which cr
ates an electron in a 5d shell of Sm ion and a hole ofd
symmetry spread over surrounding boron sites similarly
our f-like orbital Pm entering the stateucm& @Eq. ~21!#. The
physical reason for such a choice is the conviction that
5d electrons also constitute a strongly correlated subsys
and have a tendency to form a bonding Kondo-like stateà la
f states in conventional Kondo lattices. However, looking
the real band structure of the rare-earth hexaborides, we
that the admixture ofd states to the bandek is very small: the
center of gravity ofd states in divalent hexaborides is at
energy of;7 –8 eV above the bottomekb

of the conduction

band~see, e.g., Fig. 5 in Ref. 17!. Therefore, 5d levels are
practically unoccupied, and one cannot expect any kind
effective screening in ad channel. Nevertheless, our mod
includes an effective screening ofexcesselectrons in the
conduction band which resembles Kasuya’s mechanism:
canonically transformed operatorsc̃0 in the weak-coupling
limit can be presented asc̃0;c0(11aA0

†), and the operator
A0

† returns part of the charge density back to the Sm site fr
the periphery of the unit cell, i.e., plays the same role as
operatorAd0

† in trial function ~45!. The screening~or polaron
dressing! in our model is due to the same valence fluctu
tions as all other physical effects, so the totality of the e
perimental data is explained in a self-consistent sche
without appealing to any additional hypotheses. As a res
our model is free from undesirable features of the ‘‘Kon
insulator’’ approach which are not confirmed by the expe
ment.

~i! We do not appeal to the Kondo mechanism of formi
the ground-state singlet, and the independence of the ac
tion gap on external magnetic field,30 which rules out the
Kondo insulator mechanism, agrees well with the expec
tions of our model.

~ii ! The ground state of our Hamiltonian is absolutely h
mogeneous, and this statement agrees fairly well with av
able experimental observations, whereas the trial func
~45! implies charge modulation in a form of Wigner cryst
or Wigner liquid.29

~iii ! The model of Ref. 29 gives a single gap which pr
determines electronic, optical, and magnetic properties of
material, and it is unclear whether it is compatible with a r
experimental situation which definitely evidences several
ergy scales for electronic and optical characteristics
SmB6.5,8

~iv! Unlike the bare ground stateu0&, the wave function
~45! is not fully symmetrical, so one can expect a sort
ferroelectric ordering asT→0.31,32

Turning to the problem of low-temperature transport,
conclude that asT→0 the electron propagation is valenc
fluctuation-assisted motion of an extremely narrow ‘‘polar
band’’ separated by a gapDact from the conduction-band
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continuum. The residual resistivityr0 is inversely propor-
tional to the hopping rate between two neighboring crys
cells,

r0
21;Smn;TmnFmn , ~46!

whereFmn5^c̄muc̄n& is a function describing the overlap o
the valence fluctuation ‘‘clouds’’ centered around the sitesm
andn. As T→0 the process is elastic, so the conductivity
temperature independent. In SmB6 this type of conductivity
is observed forT,3 K.3,5,8 At higher T the hopping is, ap-
parently, assisted by phonon and exciton emission or abs
tion. Of course, the temperature dependence of this hop
can differ from that for usual variable range hopping in im
purity bands. This transient regime can be seen in the ra
3 K ,T,6 K, although the experimental data on the te
perature dependence are still ambiguous.3,5,8 In the tempera-
ture interval 6 K,T,14 K, thermally activated resistivity in
SmB6 with an activation energy ofDact'3.5 meV is
observed.2–5,8At higher temperatures the electrons dissoci
from their local valence fluctuation clouds, and, as a resul
this detrapping, find themselves at the bottom of the cond
tion band. At these temperatures the activation of vale
electrons also gives a significant contribution to the elect
conductivity.

The same three regimes~III, II and I, respectively, in
terms of Ref. 5! with an additional pronounced maximum
around 5 K, are observed in the temperature behavior of
Hall constantRH(T).4 This maximum can be explained, a
least qualitatively, within a simple phenomenological pictu
of two groups of carriers with high and low electron mobi
ties, mb5cRbsb andmh5cRhsh , whereRb,h andsb,h are
the Hall constants and conductivities of light~b! and heavy
~h! carriers, respectively. In the case of hopping in impur
bands of doped semiconductors,33 two contributions sh
~hopping! andsb ~band! in the electron conductivity result in
the following equation for the Hall constant:

RH5
Rbsb

21Rhsh
2

~sb1sh!2
. ~47!

Then the maximum inRH(T) corresponds to a crossove
from hopping motion at lowT to band motion at highT,
providedmb@mh . In our case the phenomenological bac
ground of this equation still exists, but the microscopic o
gin of all temperature dependences should be revised
cause of the essentially many-particle nature of he
carriers.

First of all, it is clear that the standard estimates of t
number of ‘‘scattering centers’’ obtained from the value
the residual resistivityr0 are simply inapplicable in our case
since we deal with hopping of many-particle electron-excit
complexes rather than with the motion of extended ba
electrons. Thus, there is no room for unitarity limit arg
ments in these estimates, and the ‘‘superunitarity scatteri
reflects the many-particle nature of current carriers in se
conductors with fluctuating valence.34 Thus the paradox of
the number of scatterers per site4 is removed, and we return
to the usual situation with one scatterer per unit cell.
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The next question is the enormously strong pressure
pendence of the residual resistivity and the Hall coefficie4

Again, according to our model, one cannot directly apply
notions of charge transport in a band of extended states
an estimation of the carrier concentration. We think that
key to the extraordinary sensitivity of the residual resistiv
r0 andRH(T→0) to external pressure isthe increase of Sm
valence with growing pressure P. The eventual source of thi
increase is growingf p hybridization. Because of increasin
valencenv as a function of pressure the matrix elementWv f
@Eq. ~32!# decreases. As a result the polaron shift«pol as well
as the binding energy of the self-trapped electron also
crease. The excitonic overlap functionFmn also grows due
to lattice contraction. Since both the hopping integralTmn
and the functionFmn depend exponentially on the intersi
distance, one can expect a very sharp dependence o
hopping rate on external pressure. The radius of the local
state with binding energy 3.5 meV and effective ma
;100m0 is estimated to be 2–4 Å,5 and an increase of thi
radius by an order of magnitude would be enough to obta
104 growth of the hopping rate. Such an increase is ach
able under a pressure of 50 kbar. At higher pressures the
becomes too shallow~the valence too close to 3! to catch the
electron; the system transforms into a conventionaln-doped
degenerate semiconductor, and eventually it becomes a m
with trivalent Sm ions in the cation sublattice.

Finally, the question of the variation of electron conce
trationne with increasingP andT also demands special con
sideration. Usually information aboutne is extracted from
the value ofRH under the assumption of single-band condu
tivity when RH'Rb5(neec)21. According to the experi-
mental data cited above,RH is nearly constant in the tem
perature interval I~below 3 K!, but falls drastically with
applied pressure:RH(45 kbar)/RH(1 bar);1024. However,
in our case of two-component systems withsh@sb the Hall
constant takes the form

RH'
mbsb1mhsh

csh
2

.

It is seen immediately that the pressure dependence of
function is determined mainly by the denominator, and
decrease ofRH with pressure is due to the exponentia
growing factorSmn in Eq. ~46! for sh rather than to increas
ing ne .

Generally speaking,RH derived from Eq.~47! also cannot
be used to determine electron concentration neither in re
I nor in region II. The low-T limit of ne0;1017 cm23, which
is obtained under the assumption thatRH'Rb , can only be
considered as a lower bound. In the general case of
mechanisms of charge transport the Hall constant isRH
5(neec)21mH /mD , wheremH,D are the Hall and drift mo-
bilities respectively. IfmH /mD@1 at low T the real electron
concentrationne may substantially exceed the value ofne0.
Referring to the exponential dependence ofs(T) andRH(T)
in region II, we should note that there are at least two cau
of such a dependence. First there is the thermal activatio
electrons from the polaronic traps to the band continu
states, and second is the temperature dependence of the
ping rateSmn due to the contribution of thermally activate
e-
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exciton-assisted terms which appear instead of the ove
integralFmn . As a result, bothsh(T) andsb(T) give expo-
nential contributions with an activation energy ofDact;3.5
meV to the electron conductivity and the Hall constant@Eq.
~46!#. Again, it is impossible to calculate the variation of th
electron concentrationne(T) directly from this equation. We
leave the detailed evaluation of various transport coefficie
for a forthcoming paper, but to conclude this qualitative d
cussion we would like to emphasize that according to
theory proposed in this paper the total carrier concentra
in conduction band isne;1017 cm23, at least while the in-
terband electron activation is negligible (T!D0), and there
is no room for dramatic pressure or temperature variation
ne in the mixed-valence phase ofn-SmB6. The real semicon-
ductor to metal transition occurs only atP.Pc when the Sm
valence changes to the integer value of13.

In conclusion, we have demonstrated in this paper that
intermediate-valence state is formed in SmB6 as the result of
both conventional mean-fieldp f hybridization in the electron
bands and the excitonic instability which is manifested
the admixture of low-lying singlet charge-transfer excitons
the mean-field ground state. The latter mechanism gives
main contribution to the value of intermediate valencenv .
This instability is a common feature of SmB6 and SmS, and
this is the reason why the value ofnv is practically the same
in these two compounds in spite of completely different ba
spectra.

It is shown also that the motion of strongly hybridize
electrons near the bottom of the conduction band is stron
influenced by valence fluctuations. The polarization
intermediate-valent Sm ions induced by these heavy carr
results in a self-trapping similar to electron self-trapping
polar dielectrics, and valence fluctuations play the same
~and have nearly the same characteristic times! as optical
phonons in the conventional polaronic effect. Like the sm
polaron case, self-trapping does not mean a spontan
breaking of global translation invariance: the electron can
trapped in any crystalline cell, and the mechanism of
propagation at ultralow temperature is exciton-assisted h
ping similar to phonon-assisted hopping in a narrow pola
band.
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APPENDIX

Below we describe the self-trapped state of the elect
captured by the nonlocal potential~32!. For the sake of sim-
plicity we consider the case of conduction band with a mi
mum at theG point of the Brillouin zone. To solve the
Dyson equation~36!, we offer the procedure of factorizatio
of the vertex matrix elementWv f(k1 ,k2). The latter can be
represented in a formWv f(k1 ,k2)[(a50

8 gk1

a gk2

a , where



-

ven

a-
ron
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kz

2

A8zw1 cos
kx

2
sin

ky

2
sin
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kz

2

A8zw1 sin
kx

2
sin

ky

2
sin

kz

2

©
~A1!

By writing Gk
a[(k8gk8

a Gk,k8 , we obtain a solution forG
of the form

Gk
a~v!5~M 21!abgk

bGk
0~v!, ~A2!

where

Mab5dab2 (
k1k2

(
c50

8

Gk1

0 ~v!Pk2
~v,V0!gk1

a gk1

c gk2

c gk2

b .

~A3!

Here the indexa50 corresponds to the fully symmetric so
lution described approximately by Eq.~39!, anda51 stands
ll
th

e
n

s

for the nonlocal contribution of the ‘‘tail’’w1 with the same
A1 symmetry. For the indicesa,b52, . . . ,8 thematrix M is
actually diagonal since terms in the integrand must be e
in k1x ,k1y ,k1z , andk2x ,k2y ,k2z and thereforea5c5b. For
these componentsM is given by

Mab5dab@12ma~v!ma~v2V0!#, a,b52, . . . ,8.
~A4!

For the componentsa,b50,1 M reduces to a 232 matrix

M5S 12m1~v!m0~v2V0! 2m0~v!m̃~v2V0!

2m̃~v!m̃~v2V0! 2m̃~v!m1~v2V0!

2m̃~v!m0~v2V0! 12m̃~v!m̃~v2V0!

2m1~v!m̃~v2V0! 2m1~v!m1~v2V0!

D .

~A5!

In Eqs.~A4! and ~A5!, m(v) is given by

ma~v!5(
k

Gk
0~v!~gk

a!2, a50, . . . ,8, ~A6!

m̃~v!5(
k

Gk
0~v!gk

0gk
1 . ~A7!

Thus we find thatM is reducible to the different represent
tions of the group of symmetry operations on an octahed
Oh : a50 and 1 anda58 stand for the one-dimensiona
representationsA1 andA2, respectively, whilea52, 3, and
4, anda55, 6, and 7 are the indices of triplet statesT1 and
T2.

Hence, the secular equation which generalizes Eq.~39!
has the form~for z!1):
05 DetM5@12m0~v!m0~v2V0!22m1~v!m1~v2V0!#,)
a52

8

@12ma~v!ma~v2V0!#, ~A8!

mA1 ,T1 ,T2 ,A2~v!5w1E
2p

p dkxdkydkz

~2p!3

z~16 coskx!~16 cosky!~16 coskz!

v2e~k!
. ~A9!
Here the choice of three1 signs corresponds to theA1 state,
two 1 signs corresponds to theT1 triplet, two 2 signs cor-
responds to theT2 triplet, and three2 signs corresponds to
the singletA2. To study the analytical properties for sma
v,0, we use the fact that the dominant contribution to
integral comes from small values ofk. Near the bottom of
conduction band«2(k) the hybridization is strong, and th
band is nearly flat@see Eq.~4!#, so expanding the dispersio
around the minimum at the bottom,«(k)'\2k2/2m* in ac-
cordance with Eq.~9!, we refer to the heavy effective mas
of m* '100m0, observed experimentally.5,8 Then we find
for, smallv,0,
e

m0~v!'
w0

e0
S 20.391

1

2p
A2uvu

e0
D , ~A10!

m1~v!'
zw1

e0
S 21.311

1

2p
A2uvu

e0
D , ~A11!

mT1~v!'
zw1

e0
S 20.3510.28

uvu
e0

D , ~A12!
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mT2~v!'
zw1

e0
S 20.2010.05

uvu
e0

D , ~A13!

mA2~v!'
zw1

e0
S 20.1410.02

uvu
e0

D , ~A14!
wheree05\2/a2m* '5 meV. Solutions of Eq.~A8! for the
values of the parameters given in Fig. 3 yield no bound sta
for T1 , T2, andA2, so we conclude that the approximatio
Wv f'w0 for potential~32! is sufficient for the description o
the bound electron-exciton states.
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