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Optimization of single-particle basis for exactly soluble models of correlated electrons
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We determine the explicit form of the single-particle wave functions$wi(r )% appearing in the microscopic
parameters of models in the second-quantization representation. Namely, the general form of therenormalized
wave equationis derived from theLagrange-Euler principleby treating the system ground-state energy of an
exact correlated state as a functional of$wi(r )% and their derivatives. The method is applied to three model
situations with one orbital per atom. For the first example—the Hubbard chain—the optimized basis is ob-
tained onlyafter the electronic correlation has been included in the rigorous Lieb-Wu solution for the ground-
state energy. The renormalized Wannier wave functions are obtained variationally starting from the atomic
basis for thes-type wave functions. The principal characteristics such as the ground-state energy and the model
parameters are calculated as a function of interatomic distance. Second, the atomic systems such as the H2

molecule or He atom can be treated in the same manner and the optimized orbitals are obtained to illustrate the
method further. Finally, we illustrate the method by solving exactly correlated quantum dots ofN<8 atoms
with the subsequent optimization of the orbitals. Our method may be regarded as thenext stepin analyzing
exactly soluble many-body models that provides properties as a function of the lattice parameter and defines at
the same time the renormalized wave function for a single particle.
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I. INTRODUCTION

The physics of correlated electronic systems relies hea
on parametrized models such as the Hubbard,1 t-J,2 Kondo
impurity,3 as well as the impurity and the lattice Anderso4

models. In all these models the microscopic parameters s
as the hopping integralt ~or hybridization V), the intra-
atomic CoulombU, and the nearest-neighbor Coulomb a
exchange integrals (K and J, respectively! are taken as pa
rameters, which contain single-particle~Wannier! wave
functions. Those single-particle wave functions appear a
complete but otherwise arbitrary basis to define the field
erators in the Fock space, and are usually left intact w
discussing the solution, for e.g., ground-state energy a
function of the parameters. In this manner, the exact s
tions for the one-dimensional Hubbard,5 Kondo and Ander-
son impurities,6 or periodic Kondo-lattice7 models have been
obtained and unveil the essential role of the local part of
Coulomb and exchange interactions in inducing long-ra
correlations and in turn, a highly nontrivial nature of th
quantum macroscopic ground state, even in the situa
when there is no spontaneous symmetry breaking. For
ample, features such as the insulating nature of the gro
state of the Hubbard chain for an arbitrarily small amplitu
U of the Coulomb interaction or the completely compensa
nature of the impurity magnetic moment in the ground st
cannot be obtained within any straightforward perturbat
scheme.

The solution is customarily analyzed as a function
PRB 610163-1829/2000/61~23!/15676~12!/$15.00
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model parameters. In view of the above one can ask an
ementary but yet fundamental question: Should one notre-
adjustthe single-particle wave function to the situation wh
the interaction plays such a crucial role in determining
character of the nontrivial quantum macro state? This qu
tion is particularly acute if one wants to interpret the man
body state also in the single-particle terms or to calculate
physical properties of the correlated state as a function
e.g., lattice constant~the analysis of experiment in terms o
the model parameters is usually not feasible!. From the the-
oretical side, such a readjustment of the wave function le
to therenormalized wave equation, an example of which we
propose in this paper in some exactly soluble cases. In b
we combine the rigorous solution of a parametrized mode
the Fock space with the consistent determination of
single-particle wave functions in the Hilbert space intr
duced concommitantly with the model, as they are neces
to define the field operators. The wave function is det
mined by an additional Lagrange-Euler procedure comple
the solution of the second-quantized models if only th
rigorous treatment is possible.

In connection with this fundamental question one sho
remark that whereas the local-density approximation w
on-site Coulomb interaction8 (LDA1U) or GW ~Ref. 9!
band-theoretical schemes provide a qualitatively correct
ture of the Mott localization induced by the electron-electr
interaction in some of the three-dimensional narrow-ba
systems, one has to devise a different approach for l
dimensional systems, in which the normal metallic state
15 676 ©2000 The American Physical Society
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not stable even for smallU/W ratio, whereW is the width of
the bare band states. A simple discussion of this partic
point is the main aim of this paper. Thus we combine
analysis of the second-quantized model, for which a syst
atic analysis of correlation is possible with the method
wave-function determination. Namely, in our approach
single-particle wave function is determineda posteriori, af-
ter the correlations have been taken into account,not before.
An implementation of this principle carries, in our view,
new ingredient: The wave function of the particle in such
effective medium has the properties of the renormaliz
atomic or Wannier function, which is treated on the sa
footing as the electronic correlations. Its Fourier transfo
provides a renormalized Bloch function for infinite system
The method is illustrated also with an exact solution for
N<8 atom system withNe5N electrons and a simultaneou
determination of their single-particle functions. We thin
that the method may be particularly useful in determining
properties of small systems such ascorrelated quantum dots,
for which methods based on the band theory may be inap
cable. On the other hand, the approach may supplement
the quantum-chemical calculations as it incorporates an e
treatment of electronic correlations in selected model sit
tions.

The structure of the paper is as follows. In the next s
tion we present the method of combining an exact solution
the Fock space with the correlation-induced readjustmen
the single-particle wave function contained in the mic
scopic parameters of the model. In Sec. III we determine
renormalized wave equation for the Hubbard chain and so
it variationally. In Sec. IV we consider the H2 molecule in
the same manner and compare the results with those fo
Hubbard chain. In Sec. V we apply the method to the sm
systems—correlated quantum dotsinvolving N<8 atoms.
We diagonalize there the Hamiltonian in the Fock space
volving all pair interactions and subsequently optimize t
orbitals providing the system energy versus interatomic
tance. The Appendices A–D provide some of the techn
details of the calculations.

II. METHOD

In approaching the system of interacting electrons we s

from the concept of the field operatorĈs(r ), which is cus-
tomarily defined in a complete orthonormal basis of sing
particle wave functions$wi(r )xs% in the following manner:

Ĉs~r !5(
i

aiswi~r !xs , ~1!

whereais is the annihilation operator of a particle in a sta
u is&. One should note that the basis$wi(r )xs% is completely
arbitrary in this definition. The fundamental question is: C
one find a method of unique way of determination of t
wave functions $wi(r )xs% and solve the correspondin
Hamiltonian
ar
e

-
f
e

n
d
e

.
e

e

li-
lso
ct
-

-
n
of
-
e
e

he
ll

-

-
al

rt

-

n

H5(
s

E d3rĈs
†~r !H1~r !Ĉs~r !

1
1

2 (
s1s2

E E d3r1d3r2Ĉs1

† ~r1!Ĉs2

† ~r2!

3V~r12r2!Ĉs2
~r2!Ĉs1

~r1! ~2!

in the Fock space exactly? Such a procedure involving
two separate steps, if it exists, is perfectly well defined as
operatorsH1(r )[H1 andV(r12r2)[V12 actonly in the co-
ordinate representation~for one and two particles, respec
tively! in the Hilbert space, whereas the creation and ann
lation operators act in the occupation-number~Fock! space.
In the present paper we discuss three model systems w
this method of two-step approach is explicitly implemente

Namely, we start from the model of interacting electro
on a lattice for which the Hamiltonian~2! has the following
form in the real-space representation

H5(
i j s

t i j ais
† aj s1

1

2N (
i jkl ss8

Vi jkl ais
† aj s8

† als8aks

5E11E2 , ~3!

where t i j 5^wi uH1uwj& is the hopping~Bloch! integral for
the single electron with HamiltonianH1, involving two sites
i and j, wi(r ) is the Wannier function centered on the sitei
[Ri , andVi jkl 5^wiwj uV12uwkwl& is the matrix element of
the interactionV12 between two particles. The solution o
this model involves calculation of the ground-state energ

EG5^H&5(
i j s

t i j ^ais
† aj s&

1
1

2N (
i jkl ss8

Vi jkl ^ais
† aj s8

† als8aks&, ~4!

i.e., an explicit determination of the correlation functio
Ci j [^ais

† aj s& and Ci jlk [^ais
† aj s8

† als8aks& as a function of
parameterst i j andVi jkl .

In the usual treatment of correlated model systemst i j and
Vi jkl are regarded as constants, i.e., the solution is analy
as a function of those parameters dividing the whole sit
tion into two limiting situations:~a! the metallic limit when
uE1u@E2, and ~b! the strong-correlation~or insulating limit
for Ne5N) when uE1u!E2. The regimeuE1u.E2 is re-
garded as a situation~c! in which the Mott-Hubbard~metal-
insulator! phase transition takes place. The most interest
are the limits~b! and~c! when the single-particle part is no
dominant. One should ask then: Should one not optimize
single-particle basis$wi(r )% together with determination o
the correlation function, as the contributionsE1<0 andE2
.0 compete with each other in determining the result
state~metallic or insulating! of this system? This questio
has been posed long time ago by Peierls, Mott, Anders
Hubbard, and others.10 The analysis provided by them unde
lines the principal role played by the electron correlatio
which in the present context means that the correlation fu
tionsCi j andCi jkl have a nontrivial~e.g., non-Hartree-Fock!
character.
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In the present paper we propose to close this analysi
taking Ci j 5Ci j $t i j ,Vi jkl % andCi jlk 5Ci jlk $t i j ,Vi jkl % and de-
termining the renormalized wave equation for$wi(r )% by
treatingEG as a functional of$wi(r )% and their derivatives,
sinceH152(\2/2m)¹21V(r ), with V(r ) being the single-
particle potential. In such a situationwi(r ) is determined
from a Lagrange-Euler equation for the functional

F$wi~r !%5EG$wi~r !%2(
i

l i S E d3r uwi~r !u221D , ~5!

wherel i is the Lagrange multiplier introduced for the fun
tion wi(r ), which is normalized~i.e., represents a boun
state!. Generally, this equation reads

dEG

dwi~r !
2“•

dEG

d“wi~r !
2l iwi~r !50, ~6!

or more explicitly

~H̃12l i !wi[F d

dwi~r !
2“•

d

d“wi~r !G S (j s t i j Ci j
s

1
1

2 (
jklss8

Vi jkl Ci j lk
ss8D 2l iwi~r !50, ~7!

where H̃1 represents a renormalized single-particle Ham
tonian (H1 is its barecounterpart!. This system of equation
for $wi(r )% may seem hopeless to solve and this is the rea
why the band-theoretical approach is almost always used
usually successful. However, in the remaining part of
paper we show that in some exactly soluble cases this
approach is perfectly feasible and leads to reliable result
the limit of strong correlations, albeit in simple situations for
the moment~the discussion of this paper is expanded at
end of the paper!.

In the following analysis we will make use of thetight-
binding approximation~TBA!. In the present context thi
method may be briefly summarized for a periodic system
follows. The Bloch functionFq(r ) defined as

Fq~r !5Nq(
j

eiq•RjC j~r !, ~8!

whereC j (r ) are atomic functions@here taken in the form o
s function, C j (r )5(pa3)21/2exp(2ur2Rj u/a), with an ad-
justable Bohr radiusa[a21#, andNq is the normalized fac-
tor

Nq5S N(
j

eiq•(Rj 2Ri )Si j D 21/2

, ~9!

whereasSi j 5^C i uC j& is the overlap integral. The Wannnie
function is defined aswi(r )[( lb l i C l(r ), where in the peri-
odic system

b l i 5
1

AN
(

q
eiq•(Rl2Ri )Nq . ~10!

In the extreme version of the approach we take into acco
only the overlap between the nearest neighbors^ i j &. In the
case of a small systemb l i are calculated explicitly, withou
by

-

n
nd
e
w
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e

s
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referring to Eq.~10!. The simple variational solution of Eq
~7! we analyze here relies on the minimization of^wi uH̃1uwi&
with respect to the adjustable Bohr radiusa. In the next three
sections we consider three concrete situations with adju
wave functions: the Hubbard chain, H2 molecule, and the
exact solution for small system up toN58 atoms. In Appen-
dix D we consider briefly the He and H2 atomic systems
within the same scheme.

III. HUBBARD CHAIN

A. General features

We start with our first example: the insulating solution f
the Hubbard chain. The ground state energy expression
tained by Lieb and Wu5 for the Hubbard chain containingN
atoms, when written down in physical units, has the form~cf.
Appendix A!

EG

N
5E014tE

0

`

dv
J1~v!J0~v!

v@11exp~vU/2t !#
, ~11!

whereE0 contains both the atomic (ea) and the lattice con-
tributions, t is the nearest-neighbor~NN! hopping,U is the
intra-atomic part of the Coulomb interaction, andJn(x) is
the Bessel function withn50 or 1. The detailed discussio
of this solution as a function oft/U is provided in Ref. 11.

The parameterst and U are defined with the help of the
orthonormal basis$wi(r )[w(r2Ri)% of Wannier functions,
through which they are defined in the following manner:

t5 K wiU2 \2

2m
¹21V~r !Uwi 61L [E d3r wi* ~r !T~r !wi 61~r !

~12!

and

U5E d3r d3r 8uwi~r !u2
e2

ur2r 8u
uwi~r 8!u2. ~13!

Similarly,

ea5^wi uT~r !uwi& ~14!

is the atomic part of the electron energy in the crystall
medium. Finally, the lattice part will be taken in the simple
classical form as'e2( i uRi2Ri 11u21, i.e., to the fourth
neighbor@it is regarded as a constant when optimizing t
basis$wi(r )%#.

From above it follows thatEG is regarded as a functiona
of the basis$wi(r )%, i.e., EG[EG$wi(r ),“wi(r )%. There-
fore, the correspondingrenormalizedwave equation is ob-
tained by setting, as before, the Lagrange-Euler equation
der the constraint that each wave functionwi should be
normalized. Thus, the functional to be minimized
F$wi ,“wi%[EG$wi ,“wi%2( il i@*ddr uwi(r )u221#, where
$l i% are the Lagrange multipliers. The renormalized wa
equation for the functionwi has then the form

dEG

dwi
2“•

dEG

d“wi
2lwi50 ~15!
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with the eigenvaluel site independent in this case. The e
plicit solution of this quite complicated equation is not t
purpose of this paper, as it requires a development of q
involved numerical procedures. Ultimately, the solution
Eq. ~15! must contain the physical features, which we d
cuss next.

B. Optimization of the atomic orbitals

The Hubbard model is a single narrow-band mo
with 1s type of orthogonalized single-particle basis. T
optimized basis is obtained as follows. We st
from the atomic functions$C i(r )%, where C i(r )5(p/
a3)21/2exp(2aur2Ri u), with a51/a. Next, the orthogonal-
ized atomic wave functions are defined through

wi~r ![bC i~r !1g@C i 11~r !1C i 21~r !#, ~16!

where the coefficientsb andg are obtained from the condi
tions ^wi uwi&[*d3r wi(r )251 and^wi uwi 61&50. Hence

b5
11A123S2

A225S212~122S2!A123S2
,

g5
2S

A225S212~122S2!A123S2
. ~17!

Note that TBA is defined in the range of interatomic distan
R, where the overlap integralS5^C i uC i 61& is substantially
smaller than unity, i.e., forR not too small, as checkeda
posteriori, after the whole optimization of the orbital size h
been carried out.

With the help of the Wannier functions$wi(r )% we can
define the parameterst andU of the Hubbard model as fol
lows:

ea5~b212g2!ea814bgt8, ~18!

t[^wi uTuwi 11&5~b213g2!t812bgea8 , ~19!

and

U5~b412g4!U818b3gV818bg3V814b2g2K8

18b2g2J8, ~20!

where the parameterst8, ea8 , U8, K8, V8, and J8 are the
Slater integrals calculated in Ref. 12 for thes-type atomic
wave functions. For the sake of notation consistency
their subsequent interpretation in Sec. IV, we list them
Appendix B. We see that all the primed parameters, defi
for the atomic basis$C i(r )%, depend on both the size$a
[a21% of the atomic orbitals and the interatomic distanceR.
Therefore, one has to include the atomic partea , as it varies
with R. Note also that the parameterst and U contain all
pair-interaction parameters in the nonorthogonal basis$C i%;
this point will be discussed in detail in the next section.

The simplified atomic basis optimization is carrie
through the minimization of the functionalEG with respect
to a ~for givenR) after substitution of the expressions~12!–
~14! to the ground-state energy~11!. The ground-state energ
~per atom! obtained in this manner~with the ion-ion repul-
te
f
-

l

t

e

d

d

sion and the atomic parts included! is displayed in Fig. 1 as
a function of R, which supplements the correspondin
results13 for EG versusU/utu. The energy approaches th
atomic value (21 Ry) for R/a0.6. The optimal distance is
Rmin.3.15a0'1.6 Å and the minimum of EG /N
'21.03 Ry, i.e. the cohesive energy is'0.4 eV/atom.
The inset shows the result forEG obtained when the neares
neighbor Coulomb interactionK5^wiwi 61uV12uwiwi 61& is
also included in the Hartree-Fock approximation~for mean-
ing of these results see discussion below!. The ion-ion repul-
sion energy was taken approximately up to the fourth nei
bors, when it takes the form~in atomic units! 4/R ~cf. also
the discussion below!.

The interatomic distance dependence of the size of
optimized atomic orbital~in units of the Bohr radiusa0) is
shown in Fig. 2~the bare orbitals have the sizea21/a0
51). In the inset we display theR dependence of the NN
overlap integral. Even for the chain spacingR5Rmin
~marked by the vertical dotted line! the overlapS,0.3, mak-
ing our version of TBA applicable forR>Rmin . The elec-
tronic correlations diminish the orbital size~and the overlap!
remarkably, whereas the dominant hopping processes sh
increase it. This means that the correlations make the ti
binding approach applicable even for relatively small int
atomic distances. Because of the diminution ofa21 the role
played by the atomic energy is increased and, effectiv
this decreases theutu/U ratio. The atomic limit (EG /N
.21 Ry, a21.a0) is practically achieved forR.Rc
57a0;3.5 Å. In effect, theutu/U ratio falls off rapidly asR
exceedsRc . The situation withU5W is achieved already
for R'3a0.1.5 Å. To check the validity of the Hubbar
model calculations we have also repeated the whole calc
tions by including the NN Coulomb interaction term
K( inini 11, which has been treated in the Hartree-Fock a
proximation, when it reduces toKNn2. The dashed line in
Fig. 2 provides the correction to the optimized orbital si

FIG. 1. Ground-state energyEG of the Hubbard chain~per site!
as a function of relative interatomic distanceR/a0. The atomic en-
ergy and the interionic Coulomb repulsion~to the fourth neighbor!
is included. The inset providesEG with inclusion of nearest-
neighbor Coulomb interaction in the Hartree-Fock approximatio
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due to the presence of theKn2 term inEG ; the change is no
negligible and the results forEG in that case displayed in th
inset of Fig. 1 reflect this.

From Fig. 1 we can draw the conclusion that the line
chain ~not the Hubbard chain! is unstable if the intersite in
teractions are included in the Hartree-Fock approximation
connection with this problem one should note that the qu
tum correction toEG due to the ion zero-point motion dest
bilizes the linear chain further~see below!. The same effect
would have inclusion of the interionic repulsion betwe
more distant neighbors. This instability is in accordance w
the well-known fact that a nondimerized polimer compos
of atomic hydrogen atoms does not exist. This instability
also discussed in Sec. V, where we present the exact re
for a finite chain. The remedy for this is also pointed o
there.

One can also see another important feature of the H
bard chain stability. For that purpose we show in Fig. 3~a!
the ground-state energy as a function ofR. We observe a
steady decrease ofEG with diminishingR if only the nearest-
neighbor ion-ion repulsion is included~the lower curve!. The
upper curve is obtained when additionally the neare
neighbor electron-electron interaction is included in t
Hartree-Fock approximation~see also the inset in Fig. 1!.
Thus, the total-energy value is very sensitive to the rang
the interactions included. In plotting of Fig. 3~a! we have
also included zero-point motion estimated in Appendix C

To show the atomic wave-function compression we pl
ted in Fig. 3~b! the atomic orbit compression induced by t
electronic correlations. The result is not much different fro
that plotted in Fig. 2~the case without intersite interaction!.

In Fig. 4 we have plotted the renormalized Wannier fun
tions w0(r ) at Rmin and for both the optimal (a.1.08a0

21,
solid line! and the bare (a5a0

21, dotted line! values ofa.
The main difference is aroundr 50.

The above results containing first-principles calculatio
for the Hubbard chain will be compared with the correspo

FIG. 2. Optimal size of atomic 1s orbit ~including correlations!
in units of the atomic Bohr radius as a function of interatom
distance~the dashed line, with NN Coulomb interaction, as in F
1!. In the inset the overlap integral is displayed. The vertical dot
line marks the position at whichEG has a minimum.
r

n
-

h
d
s
lts

t

b-

t-

of

-

-

s
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ing analysis performed for the H2 molecule, which we dis-
cuss next. Such a comparison is necessary to grasp qu
tively the role of chain dimerization.

IV. H 2 SYSTEM AND COMPARISON WITH THE
HUBBARD CHAIN

A. H2 molecular states

We analyze the H2 molecule in the same manner as t
Hubbard chain. To achieve that we start with the most g
eral Hamiltonian for a two-site system,14 each site contribut-
ing a singles-type orbital:

d

FIG. 3. ~a! Ground-state energy as a function of both the int
atomic distance when only the nearest-neighbor interionic repul
is included~the lower curve!, and also the nearest-neighbor Co
lomb repulsion is taken into account~the upper curve!. The zero-
point motion of ions~estimated in Appendix C! is also included.~b!
The optimized size of the orbitals for the calculations depicted
~a! as a function of interatomic distance.
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H5e1n11e2n21t(
s

~a1s
† a2s1a2s

† a1s!1U1n1↑n1↓

1U2n2↑n2↓22JS1•S21S K1
1

2
JDn1n2

1J~a1↑
† a1↓

† a2↓a2↑1H.c.!1V(
s

@~n1s1n2s!~a1s̄
†

a2s̄

1a2s̄
†

a1s̄!#. ~21!

Here, for the sake of generality, we have assumed that
the atomic level positions and the intra-atomic Coulomb
teractions are different (e1Þe2 ,U1ÞU2). The remaining
terms represent respectively the hopping between the at
the interatomic~Heisenberg! exchange, the pair hopping, an
the so-called correlated hopping. All the terms come fr
the Coulomb interaction between the electrons. Note tha
the case of the Hubbard chain all the termsJ, K, and V
appeared explicitly after expressing the Wannier functio
through the nonorthogonal atomic functions. Here tho
terms appear already in the Wannier representation.

This Hamiltonian can be easily diagonalized forNe51
electron (H2

1 state!, since then the two eigenvaluesl6 , each
degenerate with respect to spins561, are

l65
1

2
~e11e2!6F S e12e2

2 D 2

1t2G1/2

. ~22!

The corresponding eigenstates areul6s&[a16a1s
† u0&

1a26a2s
† u0&, with a16 /a265@(e22l6)/(e12l6)#1/2 and

ua2u56S e12l6

e11e222l6
D 1/2

. ~23!

These states reduce in the limite15e2 to the ordinary bond-
ing and antibonding states:ul6s&5(1/A2)(a1s

† 6a2s
† )u0&.

For Ne52 electrons we have six states: three tripletS
51) and three singlet (S50) states. The triplet states are

FIG. 4. The renormalized~solid line! and bare~dotted line!
Wannier function profilew0(r ) for R5Rmin .
th
-

s,

in

s
e

u1&5a1↑
† a2↑

† u0&, u2&5a1↓
† a2↓

† u0&,

u3&5
1

A2
~a1↑

† a2↓
† 1a1↓

† a2↑
† !u0&, ~24!

and have eigenvaluesl15l25l35e11e21K2J. The
three singlet states are mixtures of the three trial states:

u4&5
1

A2
~a1↑

† a2↓
† 2a1↓

† a2↑
† !u0&,

u5&5
1

A2
~a1↑

† a1↓
† 1a2↑

† a2↓
† !u0&,

u6&5
1

A2
~a1↑

† a1↓
† 2a2↑

† a2↓
† !u0&, ~25!

and lead to the (333) Hamiltonian matrix̂ i uHu j & for these
states of the form

~H ! i j 5S 2e1K1J 2~ t1V! 0

2~ t1V! 2e1J1U
1

2
~U12U2!

0
1

2
~U12U2! 2e1U2J

D ,

~26!

where ea5(e11e2)/2 and U5(U11U2)/2. We consider
here explicitly a simple situation withU15U25U. Then,
the eigenvalues are

l4,552ea1
1

2
~K1U !1J6

1

2
@~U2K !2116~ t1V!2#1/2,

~27!

l652e1U2J. ~28!

In the limit U2K@4ut1Vu we have approximately tha
l4,552ea1U1K1J64(t1V)2/(U2K). For J.0 we
have inl5 a competition between the direct and kinetic e
change interactions. The eigenstatesul4,5&[ul̃6& take the
form for e15e25e50, andU15U25U:

ul̃6&5@2D~D6U7K !#21/2$4~ t1V!u4&

6~D6U7K !u5&%, ~29!

with D5@(U2K)2116(t1V)2#1/2. We see that these eigen
states have an admixture of symmetric ionic stateu5&. Fi-
nally, the eigenstate ul6& has the form ul6&
5(1/A2)(a1↑

† a1↓
† 2a2↑

† a2↓
† )u0&. To illustrate our method of

approach we set first the variational minimization of t
wave functionsw1 andw2.

B. Renormalized wave equation for H2

Within the second-quantization scheme the relevant W
nier functionsw1(r ) and w2(r ) are obviously not deter-
mined. In other words, the eigenvaluesl i are expressed in
terms of the parametersea , t, U, K, J, and V, as one sees
from Eq.s ~27!, ~28!. We fix them again by employing
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the same type of variational principle as before, under
condition that they are normalized. Such procedure me
physically that the original atomic orbitals readjust the
selves in each eigenstate. This will certainly happen w
the interaction energy is comparable or even larger than
single-particle counterpart.

For one electron (Ne51) we obtain the Schro¨dinger
equation for bonding and antibonding states in the form

Ei
6wi~r !5F2

\2

2m
¹21V~r2Ri !1V~r2Rj !G

3@wi~r !6wj~r !#. ~30!

This is not a strange result, since in that case there is
electron-electron interaction.

The simplest nontrivial situation occurs for triplet stat
for which the wave equation takes the form

Ei
6wi~r !5F2

\2

2m
¹21V~r2R1!1V~r2R2!Gwi~r !

1wi~r !E d3r 8V12~r2r 8!uwi~r 8!u2

1wi~r !E d3r 8V12~r2r 8!uwj~r 8!u2

2wj~r !E d3r 8V12~r2r 8!wj~r 8!wi~r 8!.

~31!

Here V(r2Ri)52e2/ur2Ri u is the atomic potential and
V12(r2r 8)5e2/ur2r 8u is the Coulomb repulsion betwee
electrons. The interaction part contains bothi 5 j and the
intersite (iÞ j ) Coulomb contributions, as well as the attra
tive exchange contribution. One can say that the readju
orbitals obey the wave equation of the Hartree-Fock ty
This case illustrates a general rule that if the eigenval
contain only linear combination of the parameters, then
renormalized wave equation is equivalent to that introdu
by Slater by taking the two-particle wave function in th
form of the Slater determinant. One should note that here
equation is derived in a systematic manner.

A true nontrivial situation appears when we discuss
renormalized equation for the singlet states, among them
the lowest eigenstatel̃2 , when the eigenvalue is not a linea
function of the microscopic parameters. In that situation,
general equation for, e.g.,l̃2 has the form

Eiwi5
dl5

dwi
2“•

dl5

d“wi
~32!

or, more explicitly,

Eiwi~r !5F2
\2

2m
¹21V~r2R1!1V~r2R2!Gwi~r !

1
1

2

d

dwi*
~U1K12J!

2
1

2

1

@~U2K !2116~ t1V!2#1/2F ~U2K !
d~U2K !

dwi*

116~ t1V!
d~ t1V!

dwi*
G . ~33!
e
ns
-
n
ts

o

ed
.
s
e
d

is

a
or

e

In essence, apart from the usual Hartree-Fock correct
~second term!, the contribution from the kinetic exchang
interaction is also present. One should note that this ren
malized wave equation isexactwithin the given subspace o
single-particle states selected to define the field opera
Furthermore, within this combined scheme containing fi
and second quantizations, one can calculate to the same
gree of accuracy the ground and excited states, as we se
wave equation separate for each eigenstate.

The system of renormalized wave equations~33! for w1
and w2 is quite difficult to solve. The solution requires in
volved numerical procedures, which will not be dealt wi
here. Instead, in order to illustrate the results we have p
formed again the analytic calculations for the H2 molecule.
Also, in this example we see that by devising the renorm
ized wave equation we include easily the dynamic proces
considered in the Fock space as a part of thenonlocal con-
tribution to the effective potential. We demonstrate the im
portance of these contributions by considering the H2 mol-
ecule in the simplest approximation forwi(r ). A similar
renormalized wave equation for H2 ion ground state is dis-
cussed in Appendix D.

C. Orbital size readjustment for H2 and comparison
with the Hubbard chain

Taking two 1s atomic functionsC i(r )[C(r2Ri) we
can form in the case of the H2 molecule the correspondin
orthogonalized functionswi(r ):

wi~r !5b@C i~r !2gC j~r !#, ~34!

with j Þ i , S5^C1uC2&, and

b5
1

A2
F 1

12S2
1

1

~12S2!1/2G 1/2

, g5
S

11A12S2
.

~35!

The parameterse i , t, Ui , etc., are defined in Appendix B
Substituting the explicit form~34! of the wave function, we
obtain the parameters in the following form:

ea5b2~11g2!ea822b2gt8, ~36!

t5b2~11g2!t822b2gea8 , ~37!

U5b4@~11g4!U812g2K824g~11g2!V814g2J8#,
~38!

K5b4@2g2U81~11g2!K824g~11g2!V814g2J8#,
~39!

J5b4@2g2U812g2K824g~11g2!V81~11g2!2J8#,
~40!

V5b4@2g~11g2!U82g~11g2!K81~116g21g4!V8

22g~11g2J8!#, ~41!

where the primed integrals are also provided in Appendix
We see that the nonorthogonality of the atomic wave fu
tions leads to various combinations of the microscopic
rameters. All of them are the functions of the orbital si
(a21) and the interionic distanceR.

Substituting the expressions~36!–~41! to the expressions
for eigenvalues, adding the internuclear repulsion (e2/R),
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and optimizing each ofl i with respect toa, we reach the
expression forl i5l i(R) drawn in Fig. 5, whereas the opt
mized orbital radiia21 ~in units of the Bohr radiusa0) are
shown in Fig. 6~a!. The ground-state energy of the hydrog
molecule is EG522.296 Ry and the bond length isl B
50.757 Å, and misses the values obtained by Kołos
Wolniewicz15 by about 2.5%, which areEG522.349 Ry,
and l B50.74 Å. The experimental value is16 l B50.746 Å.
For the sake of completeness we have displayed the gro
state energy for the Hubbard chain~per two sites!, as well as
the orbital size in that case@both dependences are marked
the dashed lines in Figs. 5 and 6~a!, respectively#. Also, the
value of Rmin51.57 Å is vastly different from the corre
sponding valuel B50.74 Å here.

The important feature of our approach is that the int
electronic correlations are treated exactly~within the model
with one orbital per atom!. Therefore, we do not need t
construct approximate molecular orbitals, as one proce
when starting from either Heitler-London or Mulliken-Slat
approaches.17 Instead, we obtainrenormalizedatomic orbit-
als ~corresponding to the Wannier functions depicted in F
4 in the spatially extended system! drawn in Fig. 6~b!. Their
sum would provide arenormalizedmolecular orbital. The
meaning of this renormalized picture becomes evident if
refers to the physical interpretation of the chemical bo
provided some time ago by Ruedenberg.18 Namely, the sec-
ondary minimum at the position of the neighboring prot
provides a potential energy decrease~‘‘electron promo-
tion’’ !. The corresponding kinetic energy increase can
seen only numerically by noting that the orbit shrin
(a21a0,1); in effect, the results are in accordance with t
virial theorem. However, we must stress that our meth
includes exactlyall interactions between the 1s electrons in
this two-atom system.

The stability of the molecular states speaks for dimeri
tion in the case of the linear chain, i.e., the stability of t
broken symmetry ground state against the translationally
variant Lieb-Wu state, if the interionic interaction is in

FIG. 5. The lowest six energy levels for H2 molecule ~solid
lines! calculated to the same degree of accuracy as for the Hub
chain, ground-state energy of which~per two sites! is shown as the
dashed line. For detailed discussion see main text.
d

d-

-
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e
d

e
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cluded. The intersite Coulomb interactionK does not change
the situation. The magnitude of this interaction is demo
strated explicitly in Fig. 7, where the values of all paramet
are collected and displayed as a function of internuclear
tance for H2 molecule@Fig. 7~a!# and of the spacing for the
Hubbard chain@Fig. 7~b! for the situation depicted in Fig. 1#.
The solid curves displayed in Fig. 7~b! contain the wave
functions obtained for the Hubbard model, whereas
dashed lines include additionally in the solution theKn2

term ~see discussion in Sec. III B!. The values of the param
eters displayed in Fig. 7~a! are unrealistic forR,a0, as then
the excited states 2s, 2p, etc. also become important an
have not been included here. The corresponding parame
values are different in the two situations~a! and ~b!. There-
fore, their estimates based on bare atomic functions will d
fer importantly from those displayed here.

V. CORRELATED QUANTUM DOT

As the third and final example we discuss briefly the s
tem ofN<8 atoms, each contributing with one orbital to th

rd

FIG. 6. ~a! Optimal size of the atomic function~including cor-
relations! for the first six states of the H2 molecule~solid line!, as
compared to that calculated to the same degree of accuracy fo
Hubbard chain~dashed line!. ~b! Renormalized atomic 1s orbitals
in the H2 molecule for the equilibrium configuration (Rmin

51.43a0).
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system. We diagonalize the Hamiltonian~3! numerically by
taking submatrices of the total number 4N of available states
in the Fock space and subsequently adjust the orthogona
orbital size as a function of interatomic distance.

The N-atom (Ne5N)-electron system we consider
closed on a ring~i.e., the periodic boundary conditions a
imposed!. The Hamiltonian has the form~21! except we in-
clude the pair interactions betweenall equally spaced neigh
bors. Additionally, in the single-particle partH1(r ) we in-
clude the potential of the parent atom (i 5 j ) and of all (i
Þ j ) neighbors@V(r )5( jV(r2Rj )#, as well as take theex-
act Wannier functions@i.e., includeall b l i coefficients in Eq.
~10!# and determineall possible hopping integralst i j for
those small systems. The results for the lowest eigenv
providing the system ground-state energy as a function
interatomic distance is shown in Fig. 8. The result forN
52 ~the H2 molecule! obtained with the help of the sam
numerical procedure provides the test of the method ac
racy and is drawn for comparison as the solid line~it agrees
exactly with the results of the preceding section!. As in the
infinite-Hubbard-chain case, the results forN.2 do not have
an optimal interatomic distance if interatomic interactio
are included. However, in practice such quantum dots

FIG. 7. ~a! The parameters of the Hamiltonian for H2 molecule,
all as a function of distance;~b! the same for the Hubbard mode
~solid line!, and with theKn2 term in EG ~dashed lines!.
ed

ue
of

u-

re

deposited on the substrate, which enforces their struct
stability. The interatomic distance has then the meaning
the lattice constant mismatch with the substrate material.
one-dimensional dot configuration is achieved by taking
periodic boundary conditions.

In Fig. 9 we exhibit the optimal orbital size obtained fro

FIG. 8. Ground-state energy for short chains withN<8 atoms
closed in a ring, as a function of interatomic distance. The res
for N52 (H2 molecule—solid line! are drawn for comparison.

FIG. 9. The optimal size of atomic orbitals forN<8 sites, as a
function of interatomic distance.
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the minimization ofEG with respect toa5a21. We see that
the renormalized orbital sizea approaches gradually th
Bohr-orbital sizea0 whenR@a0. The larger value ofa for
N>3 with respect to the bond lengthl B for the N52 (H2)
case is caused by the circumstance that in the former
each atom has a neighbor from each side.

One should note that based on the present results one
extend the method to larger values ofN with the help of the
density-matrix renormalization group~DMRG! method.19

The implementation of this method is not the purpose of
present paper. Instead, we try to emphasize with the hel
analytic and numerical arguments the feasibility of comb
ing first- and second-quantization formalisms, particularly
the situation when the corresponding problem in the F
space is exactly soluble and the corresponding wave-func
optimization ~in the Hilbert space! by variational means
leads to convergent results forEG anda.

VI. A BRIEF OVERVIEW

In this paper we have proposed a renormalized w
equation for a single electron in an interacting medium as
example of simple systems with a nonperturbative grou
state as well as discussed its simple variational solution.
wave equation is obtained explicitly by regarding the syst
ground-state energy as a functional, which contains
renormalized wave function in the expressions for the mic
scopic parameters. The variational solution of this equa
provides in Secs. III and IV the parameters~and hence of the
total energy! as a function of the lattice parameter. In e
sence, we supplement the rigorous treatment of the electr
correlations formulated in the Fock space with a natural i
of a posteriorireadjustment of the wave function in the co
related state.

The simplicity of the present method proves importa
when applying it to the more complex problems. For e
ample, one supplements the small-cluster calculations of
related systems with our single-particle basis optimizati
as was illustrated in Sec. V. Such a procedure may be
ticularly important forcorrelated quantum dots. Also, the
renormalized wave functions can be used to determine
matrix elements for optical transitions in the systems, wh
the perturbative approach fails. Finally, one can incorpor
the single-particle basis optimization for approximate so
tions of models for correlated systems such as the Gutzw
solution of the Mott-Hubbard localization. A simple ap
proach in this direction has been proposed some time ag20

A treatment of some of the above problems is under way
will be published separately.

It is also straightforward to extend the present appro
from Sec. III to the Anderson Hamiltonian taking the exa
solution of Kawakami and Okiji.6~d! More importantly, one
can apply the present method to other exactly soluble m
els, an extensive list of which may be found in Ref. 21.
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APPENDIX A: HUBBARD MODEL IN PHYSICAL UNITS

The Lieb-Wu solution is obtained for the Hubbard Ham
tonian

H5ea(
is

nis1t (
^ i j &s

ais
† aj s1U(

i
ni↑ni↓ ~A1!

when one setsea50 and t521. This solution can be
adopted to the general case if one notices that~i! the first
term provides an additive constanteaNe , whereNe is the
number of electrons in the system, and~ii ! we can divide Eq.
~A1! by utu and in this manner obtain exactly the situatio
considered in Ref. 5 with the mappingU→U/utu, and EG
→EG /utu, to transform Eq.~20! in Ref. 5 into Eq.~11! in this
paper. One should emphasize again that bothea andt should
be included explicitly when optimizing the model paramete
in Sec. III B, as both quantities contain renormalized Wa
nier single-particle functionwi(r ) and thus are dependent o
the interatomic distanceR.

APPENDIX B: SLATER INTEGRALS FOR s-TYPE WAVE
FUNCTIONS

The microscopic parameters for both the Hubbard mo
and two-site system such as the H2 molecule contain at mos
two-site integrals of the same type. In the orthogonaliz
basis and in the atomic units they are

ea5E d3r wi* ~r !F2¹21(
j

V~r2Rj !Gwi~r ![^wi uTuwi&,

~B1!

t i j 5E d3r wi* ~r !F2¹21(
j

V~r2Rj !Gwj~r ![^wi uTuwj&,

~B2!

Ui5E d3r d3r 8uwi~r !u2
2

ur2r 8u
uwi~r 8!u2

[^wiwi uV12uwiwi&, ~B3!

Ki j 5E d3r d3r 8uwi~r !u2
2

ur2r 8u
uwj~r 8!u2

[^wiwi uV12uwjwj&, ~B4!

Ji j 5E d3r d3r 8wi* ~r !wj~r 8!
2

ur2r 8u
wj* ~r !wi~r 8!

[^wiwj uV12uwjwi&, ~B5!

Vi j 5E d3r d3r 8uwi~r !u2
2

ur2r 8u
wi~r !wj* ~r 8!

[^wiwi uV12uwiwj&. ~B6!

In the present paper only the values for the nearest ne
bors i j for t, K, J, andV appear. The primed quantitiese i8 ,
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t8, U8, etc., have the form~B1!–~B6!, but with the functions
wi(r ) replaced by 1s-type functionsC i(r ). The expressions
~B1!–~B6! of the quantities through the primed parameters
provided by Eqs.~18!–~20! for the Hubbard chain, and b
Eqs.~36!–~41! for the H2 case. Therefore, it remains to writ
down, following Slater,12 the expressions~B1!–~B6! for the
primed quantities. In our notation~and in the atomic units!
they have the form

ea85a222a2
2

R
12S a1

1

RDexp~22aR!, ~B7!

t85a2 exp~2aR!S 11aR1
1

3
a2R2D24a exp~2aR!

3~11aR!, ~B8!

U85
5

4
a, ~B9!

K85
2

R
2a exp~22aR!F 2

aR
1

3

2
aR1

1

3
~aR!21

11

4 G ,
~B10!

V85aH exp~2aR!F2aR1
1

4
1

5

8aRG2
1

4
exp~23aR!

3S 11
5

2aRD J , ~B11!

J85
12

5R
@S2C1S2 ln~aR!22SS8 Ei~22aR!

1~S8!2 Ei~24aR!#1a exp~22aR!

3F5

4
2

23

10
aR2

6

5
a2R22

2

15
a3R3G , ~B12!

where

Ei~2x![2E
x

`dt

t
exp~2t !, ~B13!

C50.577 22 is the Euler constant, and

S5exp~2aR!S 11aR1
1

3
a2R2D ,

S85exp~aR!S 12aR1
1

3
a2R2D . ~B14!

The quantityS is the overlap integral. Equations~B7!–~B14!
are used when optimizing the energies with respect toa ~and
R, if a minimum appears!.

APPENDIX C: ZERO-POINT MOTION OF IONS

The quantum correction to static configuration of io
~protons in the cases of the H2 molecule or the Hubbard
chain of H atoms! relies on estimating their zero-point osc
lations. This can be done relatively simply if one introduc
the momentum (dP) and position (dR) uncertainties so tha
s

s

the energy of such oscillations per ion is

DE5
~dP!2

2M
1

1

2 S e2

R1dR
1

e2

R2dRD . ~C1!

For dR!R we can write

DE5
~dP!2

2M
1

e2

R
12

e2

R S dR

R D 2

. ~C2!

Introducing the uncertainty relation (dP)2(dR)2> 3
4 \2, we

will have in the minimal situation

DE5
e2

R
1

1

2M

3\2

4~dR!2
1

k

2
~dR!2, ~C3!

with the elastic constantk54e2/R3. Minimizing this expres-
sion with respect todR we obtaindR5@3\2/(2Mk)#1/4, and
the energy

DE5
e2

R
1\S 3k

2M D 1/2

. ~C4!

The first term provides the classical Coulomb repulsion
tween nearest neighbors, while the second represents z
point contribution with frequencyv5(6e2/MR3)1/2. In
atomic units this contribution amounts to the energy

DE52A6F m

M S a0

R D 3G1/2

'
1.1

15 S a0

R D 3/2

, ~C5!

if the mass of the proton is taken forM andm is the electron
mass. This contribution is small ifR.a0, but may be sig-
nificant for obtaining the detailed energy balance. A bet
estimate for the Hubbard chain would be to take into acco
the phonons, as well as the change in the electron-ion att
tion.

APPENDIX D: RENORMALIZED WAVE EQUATION
FOR THE He ATOM AND H À ION

The renormalized wave equation for other two-electr
systems, the H2 ion and He atom, can be obtained relative
easily for the ground state, since it involves two electrons
the same lattice. In the He atom case the eigenvalue of
1s2 state isl152ea1U, and the renormalized wave equ
tion reduces to the usual Hartree equation

S ¹22
Ze2

r DC~r !1C~r !E d3r 8
e2

ur2r 8u
uC~r 8!u25EC~r !,

~D1!

whereZ52. Taking 1s-type wave functions for both elec
trons, we obtain the ground-state energy in the atomic u
in the formE52a22 27

4 a, the standard value ofa527/16,
and the corresponding energyE525.695 Ry.17

The same type of treatment of H2 ~with Z51) does not
provide a stable H2 state. The reason is the assumption th
both electrons are in a 1s2-like state. However, this circum
stance does not invalidate the whole approach in this
case.
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Namely, to overcome the problem for the H2 ion one
needs to resort to a more involved approach going bey
the scope of the present paper. Let us only note that one
understand the nature of the problem in the following phy
cal way. The first electron occupies the 1s state withC(r )
5(a3/p)1/2exp(2ar). Substituting this into the integral ap
pearing in Eq.~D1! one obtains the effective wave equatio
for the second electron in the form~in the atomic units!:

S 2¹22
2

r DC~r !1F2

r
22a exp~22ar !S 11

1

ar D GC~r !

5EC~r !. ~D2!

Note that thee-e repulsioncancels out completelythe attrac-
tion to the nucleus. However, what is left is an attract
,

ev

ls
d
an
i-

potential so that its renormalized wave equation reads

2¹2C~r !22aS 11
1

ar Dexp~22ar !C~r !5EC~r !.

~D3!

For r !1 the effective potential has the Yukawa form and f
r @1 the exponential form. This central potential has alwa
bound states. So, the second electron is indeed bound an
whole H2 system is stable. Subsequently, one should a
symmetrize the product of the two functions. Nonethele
the numerical discussion requires a more detailed treatm
and will be presented elsewhere.
ett.
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