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We determine the explicit form of the single-particle wave functipngr)} appearing in the microscopic
parameters of models in the second-quantization representation. Namely, the general fornermdrimalized
wave equations derived from the_agrange-Euler principlédy treating the system ground-state energy of an
exact correlated state as a functionawf(r)} and their derivatives. The method is applied to three model
situations with one orbital per atom. For the first example—the Hubbard chain—the optimized basis is ob-
tained onlyafter the electronic correlation has been included in the rigorous Lieb-Wu solution for the ground-
state energy. The renormalized Wannier wave functions are obtained variationally starting from the atomic
basis for thes-type wave functions. The principal characteristics such as the ground-state energy and the model
parameters are calculated as a function of interatomic distance. Second, the atomic systems such as the H
molecule or He atom can be treated in the same manner and the optimized orbitals are obtained to illustrate the
method further. Finally, we illustrate the method by solving exactly correlated quantum diits ®fatoms
with the subsequent optimization of the orbitals. Our method may be regarded masxthstepin analyzing
exactly soluble many-body models that provides properties as a function of the lattice parameter and defines at
the same time the renormalized wave function for a single particle.

[. INTRODUCTION model parameters. In view of the above one can ask an el-
ementary but yet fundamental question: Should onereot
The physics of correlated electronic systems relies heaviladjustthe single-particle wave function to the situation when
on parametrized models such as the HubBard,” Kondo  the interaction plays such a crucial role in determining the
impurity,® as well as the impurity and the lattice Ander$on character of the nontrivial quantum macro state? This ques-
models. In all these models the microscopic parameters sudion is particularly acute if one wants to interpret the many-
as the hopping integral (or hybridizationV), the intra- body state also in the single-particle terms or to calculate the
atomic CoulombU, and the nearest-neighbor Coulomb andphysical properties of the correlated state as a function of,
exchange integralsk( and J, respectively are taken as pa- e.g., lattice constar(the analysis of experiment in terms of
rameters, which contain single-particl@Vanniey wave the model parameters is usually not feasibfrom the the-
functions. Those single-particle wave functions appear as aretical side, such a readjustment of the wave function leads
complete but otherwise arbitrary basis to define the field opto therenormalized wave equatipan example of which we
erators in the Fock space, and are usually left intact whepropose in this paper in some exactly soluble cases. In brief,
discussing the solution, for e.g., ground-state energy as we combine the rigorous solution of a parametrized model in
function of the parameters. In this manner, the exact soluthe Fock space with the consistent determination of the
tions for the one-dimensional Hubbatdondo and Ander- single-particle wave functions in the Hilbert space intro-
son impuritie or periodic Kondo-latticemodels have been duced concommitantly with the model, as they are necessary
obtained and unveil the essential role of the local part of théo define the field operators. The wave function is deter-
Coulomb and exchange interactions in inducing long-rangenined by an additional Lagrange-Euler procedure completes
correlations and in turn, a highly nontrivial nature of the the solution of the second-quantized models if only their
quantum macroscopic ground state, even in the situationgorous treatment is possible.
when there is no spontaneous symmetry breaking. For ex- In connection with this fundamental question one should
ample, features such as the insulating nature of the groungmark that whereas the local-density approximation with
state of the Hubbard chain for an arbitrarily small amplitudeon-site Coulomb interactidn(LDA +U) or GW (Ref. 9
U of the Coulomb interaction or the completely compensatedand-theoretical schemes provide a qualitatively correct pic-
nature of the impurity magnetic moment in the ground statdure of the Mott localization induced by the electron-electron
cannot be obtained within any straightforward perturbationinteraction in some of the three-dimensional narrow-band
scheme. systems, one has to devise a different approach for low-
The solution is customarily analyzed as a function ofdimensional systems, in which the normal metallic state is
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not stable even for smdll/W ratio, whereW is the width of

the bare band states. A simple discussion of this particular
point is the main aim of this paper. Thus we combine the

HeS jdsrwrmlu)«irg(r)

analysis of the second-quantized model, for which a system- 1 J 3, 43, A5t st

. . P . . += d°rdr, W, (r)Ww, (r

atic analysis of correlation is possible with the method of 2 ;1;2 107 W 5, (1), (12)
wave-function determination. Namely, in our approach the R .

single-particle wave function is determinadposteriori af- XV(ri=r) W, (r) ¥, (r1) 2

ter the correlations have been taken into accoowit before ) ) )
in the Fock space exactly? Such a procedure involving the

An implementation of this principle carries, in our view, a it oxi ; foctl Il defined h
new ingredient: The wave function of the particle in such an'/C Separate steps, it it exists, is periectly well defined as the

effective medium has the properties of the renormalized)pera‘torg_|1(r)EHlandv(rl_rZ)EV12 actonlyin the co-

atomic or Wannier function, which is treated on the sameordmate representatioffor one and two particles, respec-

. . ; . tively) in the Hilbert space, whereas the creation and annihi-
footing as the electronic correlations. Its Fourier transformlation operators act in the occupation-numkigock) space

provides a renormalized Bloch function for infinite systems. the present paper we discuss three model systems when
The method is illustrated also with an exact solution for they,ic method of two-step approach is explicitly implemented
N<8 atom system wittNo=N electrons and a simultaneous  Namely, we start from the model of interacting electrons

determination of their single-particle functions. We think g 3 Jattice for which the Hamiltoniaf®) has the following

properties of small systems suchasrelated quantum dots
for which methods based on the band theory may be inappli- . f ot
cable. On the other hand, the approach may supplement also H:E tjai,aj,t 5N .. > Vi @488 8k
the quantum-chemical calculations as it incorporates an exact 7 ikl oo’
treatment of electronic correlations in selected model situa- =E;+E,, (3)
tions.

The structure of the paper is as follows. In the next secVnere tij=(wi|Hy|w;) is the hopping(Bloch) integral for
tion we present the method of combining an exact solution iﬁhe S|_ngle ele_ctron with H_amﬂtomgﬁl, involving two S|te__s
the Fock space with the correlation-induced readjustment of andj, w;(r) is the Wannier function centered on the site

) . . . . C=R;, and Vi =(w,w;|Viw,w;) is the matrix element of
he single-particle wave function contained in the micro-__ ik Y 120 T . )
the single-particle wave function contained the micro the interactionV, between two particles. The solution of

scopic pa}rameters of the.model. In Sec. lll we dgtermlne th(ﬁwis model involves calculation of the ground-state energy
renormalized wave equation for the Hubbard chain and solve

it variationally. In Sec. IV we consider the,Hnolecule in

the same manner and compare the results with those for the EG=<H)=Z tij(afgajg)

Hubbard chain. In Sec. V we apply the method to the small e

systems—orrelated quantum dotfvolving N<8 atoms. 1

We diagonalize there the Hamiltonian in the Fock space in- toN > Vijk|(a;roa;rgra|gfakg>, (4)
volving all pair interactions and subsequently optimize the ijkloo’

orbitals providing the system energy versus interatomic disie, an explicit determination of the correlation functions
tance. The Appendices A-D provide some of the techmcatijE(ai’raajU) and C;j, =(a/ al ,a,a,) as a function of

) . 107 o
details of the calculations. parameters;; andV .

In the usual treatment of correlated model systémand
Vi are regarded as constants, i.e., the solution is analyzed
Il. METHOD as a function of those parameters dividing the whole situa-
| . . . jon into two limiting situationsia) the metallic limit when
n approaching the system of interacting electrons we startlE : . L
) . o |E1|>E,, and(b) the strong-correlatiofior insulating limit
from t_he concept_ of the field operatdf (r), Whlch IS CUS-  for N,=N) when |E,|<E,. The regime|E,|=E, is re-
tomarily defined in a complete orthonormal basis of S'”9|e'garded as a situatioft) in which the Mott-Hubbardmetal-
particle wave functiongw;(r)x,} in the following manner: jnsulato) phase transition takes place. The most interesting
are the limits(b) and(c) when the single-particle part is not
dominant. One should ask then: Should one not optimize the
- _ single-particle basigw;(r)} together with determination of
\Ifg(r)—zi 2igWi(1)Xo s @ the correlation fun(iion, a}s the contributioBs<0 andE,
>0 compete with each other in determining the resultant
state (metallic or insulating of this system? This question
wherea,, is the annihilation operator of a particle in a statehas been posed long time ago by Peierls, Mott, Anderson,
lic). One should note that the ba$is;(r) x,,} is completely  Hubbard, and other®.The analysis provided by them under-
arbitrary in this definition. The fundamental question is: Canlines the principal role played by the electron correlations,
one find a method of unique way of determination of thewhich in the present context means that the correlation func-
wave functions{w;(r)x,} and solve the corresponding tionsC;; andCj;, have a nontriviale.g., non-Hartree-Fogk
Hamiltonian character.
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In the present paper we propose to close this analysis byeferring to Eq.(10). The simple variational solution of Eq.
taking C;; = Cj{ti; , Vijui} andCyji = Cyjic{tij . Vijui} and de-  (7) we analyze here relies on the minimization(ef|H,|w;)
termining the renormalized wave equation fw;(r)} by  with respect to the adjustable Bohr radadn the next three
treatingE¢ as a functional ofw;(r)} and their derivatives, sections we consider three concrete situations with adjusted
sinceH; = — (A%/2m)V>+V(r), with V(r) being the single- wave functions: the Hubbard chain,, Hnolecule, and the
particle potential. In such a situatiom;(r) is determined exact solution for small system up k=8 atoms. In Appen-
from a Lagrange-Euler equation for the functional dix D we consider briefly the He and Hatomic systems

within the same scheme.

7{Wi(r)}:EG{Wi(r)}—§i: A Jd3r|Wi(r)|2_1>7 )

I1l. HUBBARD CHAIN
where\; is the Lagrange multiplier introduced for the func-
tion w;(r), which is normalized(i.e., represents a bound

A. General features

2

state. Generally, this equation reads We start with our first example: the insulating solution for
the Hubbard chain. The ground state energy expression ob-
OEg OEg tained by Lieb and WAifor the Hubbard chain containirly
Wi(1) -V. VW) —\iw;(r)=0, (6)  atoms, when written down in physical units, has the fécm
' ' Appendix A
or more explicitly
Ec * Ji(w)Jo(w)
~ é —=E0+4tf do , (11
AW = -Vv. Co N o[ 1l+expwU/2t
(Hy—\)w, ) \% 5Vwi(r)}(jzo t;Cf 0 [ ¢ )]
L whereE, contains both the atomicef) and the lattice con-
oo’ tributions, t is the nearest-neighb@gNN) hopping,U is the
+5 E, Vijki ijlk)_)\iwi(r)zoy () ghbhiM) hopping

intra-atomic part of the Coulomb interaction, adg(x) is
the Bessel function wittn=0 or 1. The detailed discussion
where H; represents a renormalized single-particle Hamil-of this solution as a function dfU is provided in Ref. 11.
tonian (H; is its bare counterpant This system of equations ~ The parameters andU are defined with the help of the
for {w;(r)} may seem hopeless to solve and this is the reasoarthonormal basigw;(r)=w(r —R;)} of Wannier functions,
why the band-theoretical approach is almost always used arfirough which they are defined in the following manner:
usually successful. However, in the remaining part of the

jkloo

paper we show that in some exactly soluble cases this new h? ) -

approach is perfectly feasible and leads to reliable results ih = | Wi| 57 V- V(1) |Wizy Ef d>r wit (N T(r)wi4(r)
the limit of strong correlationsalbeit in simple situations for (12)
the momentthe discussion of this paper is expanded at the

end of the paper and

In the following analysis we will make use of thight-

binding approximation(TBA). In the present context this 3 13, ) e? 2
method may be briefly summarized for a periodic system as U:f d°r dr " |w;(r)]| ] lw;(r")?. (13
follows. The Bloch function®(r) defined as
Similarly,
Dy(r)=Ng2>, e Riw(r), ®
d 9 : 2= (Wi T(r)|w;) (14)

whereW;(r) are atomic functionghere taken in the form of
s function, ¥;(r) = (wa3)~Y%exp(~|r—Rj|/a), with an ad-

justable Bohr radius=a 1], andNy is the normalized fac-
tor

is the atomic part of the electron energy in the crystalline
medium. Finally, the lattice part will be taken in the simplest
classical form as~e’Z;|R;—R;.4| 7%, i.e., to the fourth
neighborf[it is regarded as a constant when optimizing the
12 basis{w;(r)}].

Ng= N eiq'(RJ‘Ri>Sij , (9) From above it follows thaEg is regarded as a functional

J of the basis{w;(r)}, i.e., Eg=Eg{w;(r),Vw;(r)}. There-
fore, the correspondingenormalizedwave equation is ob-
tained by setting, as before, the Lagrange-Euler equation un-
der the constraint that each wave functien should be

whereasS;; = (V;|¥;) is the overlap integral. The Wannnier
function is defined aw;(r)==,8,;¥,(r), where in the peri-

odic system normalized. Thus, the functional to be minimized is
1 . f{Wi,VWi}EEG{Wi,VWi}_Ei)\i[fddr|Wi(r)|2_1], where
Bi=—= > eI RRIN . (100  {\;} are the Lagrange multipliers. The renormalized wave
N equation for the functionv; has then the form
In the extreme version of the approach we take into account
only the overlap between the nearest neighlojs. In the %—V- %Eg —Aw;=0 (15)

case of a small systef; are calculated explicitly, without oW; oV w;
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with the eigenvalue\ site independent in this case. The ex- R (A)
plicit solution of this quite complicated equation is not the
purpose of this paper, as it requires a development of quite " 9815-06 2.12 3.17 4.23 5-2_913 4
involved numerical procedures. Ultimately, the solution of ) T RG ’
Eqg. (15 must contain the physical features, which we dis- 16212317T4B 8D
00
Cuss next. -0.990| 2 L -13.5
B. Optimization of the atomic orbitals z 4 g
The Hubbard model is a single narrow-band model E -0.995L " ]135 3
with 1s type of orthogonalized single-particle basis. The < =
optimized basis is obtained as follows. We start =
from the atomic functions{W¥(r)}, where W(r)=(w/ -1.000| -13.6
a®) " Y2exp(=alr—Ry|), with = 1/a. Next, the orthogonal-
ized atomic wave functions are defined through
-1. L 1 1 -13.7
Wi(H=BY (N + WD+ W, (0], (16 LS %16

where the coefficient® and y are obtained from the condi- R/a
tions (w;|w;)= [d3 w;(r)?=1 and(w;|w;-,)=0. Hence
FIG. 1. Ground-state enerds,; of the Hubbard chaifiper site

14+ 1—3s? as a function of relative interatomic distan@éa,. The atomic en-
B= , ergy and the interionic Coulomb repulsi¢io the fourth neighbgr
\/2—582+2(1— 282) [1-13s? is included. The inset provideEg with inclusion of nearest-

neighbor Coulomb interaction in the Hartree-Fock approximation.

-S

v= . a7 sion and the atomic parts included displayed in Fig. 1 as
\/2—582+ 2(1-25%)\1-3%? a function of R, which supplements the corresponding
resultd® for Eg versusU/|t|. The energy approaches the

Note that TBA is defined in the range of interatomic d'Stanceatomic value €1 Ry) forR/a,>6. The optimal distance is

R, where the ovc_arlap integr&=(W;|¥;.,) is substantially R, ~31%8,~16 A and the minimum of Eg/N

smaller than unity, i.e., foR not too small, as checkea e th hesi : /
osteriori after the whole optimization of the orbital size has = 1:03 Ry, ie. the cohesive energy 0.4 eV/atom.

b The inset shows the result f&; obtained when the nearest-

been carried out. iahb lomb | i — y .

With the help of the Wannier functionsw;(r)} we can neighbor Coulomb interactio _<Wiwii1|. 12|Wiwii1> IS
define the parametetsandU of the Hubbard model as fol- also included in the Hartree-Fock approximatifor mean-
lows: ing of these results see dlscus§|on belovhe ion-ion repul—_

sion energy was taken approximately up to the fourth neigh-
ea:(ﬁ2+272)6;+4137t/’ (18 bors, when it takes the forrfin atomic unit$ 4/R (cf. also
the discussion below
t=(Wi| T|wi 1 1) = (B2+ 3t + 2B yel,, (19) The interatomic distance dependence of the size of the
optimized atomic orbita(in units of the Bohr radiusy) is
and shown in Fig. 2(the bare orbitals have the size !/a,
o R 3 - 2 20, =1). In the inset we display th® dependence of the NN
U=(B"+2y)U’'+8B YV +8By°V'+4B%yK overlap integral. Even for the chain spacif@=Rp;,
+88292)', (20) (marked by the vertical dotted lin¢he overlapS< 0.3, mak-
ing our version of TBA applicable foR=R,;,. The elec-
where the parametens, €,, U’, K’, V', andJ’ are the tronic correlations diminish the orbital siand the overlap
Slater integrals calculated in Ref. 12 for thaype atomic  remarkably, whereas the dominant hopping processes should
wave functions. For the sake of notation consistency andhcrease it. This means that the correlations make the tight-
their subsequent interpretation in Sec. 1V, we list them inbinding approach applicable even for relatively small inter-
Appendix B. We see that all the primed parameters, definedtomic distances. Because of the diminutiomof* the role
for the atomic basiW;(r)}, depend on both the siZ@  played by the atomic energy is increased and, effectively,
=a 1} of the atomic orbitals and the interatomic distafce this decreases th@|/U ratio. The atomic limit Eg/N
Therefore, one has to include the atomic pgrt as it varies =—1 Ry, a !=ay) is practically achieved forR>R
with R. Note also that the parametersand U containall =7a,~3.5 A. In effect, thdt|/U ratio falls off rapidly asR
pair-interaction parameters in the nonorthogonal bgsig; exceedsR.. The situation withU=W is achieved already
this point will be discussed in detail in the next section.  for R~3a,=1.5 A. To check the validity of the Hubbard

The simplified atomic basis optimization is carried model calculations we have also repeated the whole calcula-
through the minimization of the function&s with respect tions by including the NN Coulomb interaction term
to a (for givenR) after substitution of the expressiofi)— KZinin;, 1, which has been treated in the Hartree-Fock ap-
(14) to the ground-state energ¥1). The ground-state energy proximation, when it reduces t§Nn?. The dashed line in
(per atom obtained in this mannegwith the ion-ion repul-  Fig. 2 provides the correction to the optimized orbital size
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R (A) R (A)
1.1 21 3.2 42 53 1.1 22 32 43 54
1.00} 06l 82
0.96]
/ -0.8} 4-10.9
0.92f ;
= 088 -1.0 -13.6
= / ‘; = o~
s 084p [ ooy g -2} 1635
0.80] [ o
=2 14f J19.0°
0.76} W%
Ria, -1.6[ {-21.8
.72 . . 2
07 2 4 6 8 10
R/a -1.8} 4-24.5
2 4 6 8 10
FIG. 2. Optimal size of atomicsglorbit (including correlations R/a
in units of the atomic Bohr radius as a function of interatomic (a) 0
distance(the dashed line, with NN Coulomb interaction, as in Fig.
1). In the inset the overlap integral is displayed. The vertical dotted R (A)

line marks the position at whicBg has a minimum.

1.1 22 32 43 54
1.05 —r—rep—r—r——

due to the presence of ti&n? term inEg ; the change is not
negligible and the results fd& in that case displayed in the
inset of Fig. 1 reflect this.

From Fig. 1 we can draw the conclusion that the linear
chain (not the Hubbard chainis unstable if the intersite in- 0.95]
teractions are included in the Hartree-Fock approximation. In
connection with this problem one should note that the quan-

1.00 |

tum correction tcEg due to the ion zero-point motion desta- fc 0-90F
bilizes the linear chain furtheisee below. The same effect n
would have inclusion of the interionic repulsion between S oss)
more distant neighbors. This instability is in accordance with
the well-known fact that a nondimerized polimer composed 0.80L
of atomic hydrogen atoms does not exist. This instability is
also discussed in Sec. V, where we present the exact results
for a finite chain. The remedy for this is also pointed out 0.75 > 4 6 8§ 10
there. R/a
One can also see another important feature of the Hub- (b) 0

bard chain stability. For that purpose we show in Fi¢p) 3

the ground-state energy as a functionRfWe observe a o - PPV !
steady decrease & with diminishingR if only the nearest- atomic distance when only the nearest-neighbor interionic repulsion
G is included(the lower curvg and also the nearest-neighbor Cou-

neighbor ion-ion repulsion is includdthe lower curvg The C .
9 P « & lomb repulsion is taken into accoufthe upper curve The zero-

upper curve is obtained when additionally the nearest-_ . X . ! . : g
neighbor electron-electron interaction is included in thepomt motion of ionsestimated in Appendix s also included(b)

- . . . . The optimized size of the orbitals for the calculations depicted in
Hartree-Fock approximatiofsee also the inset in Fig.).1 )aszfunction of interatomic distance P
Thus, the total-energy value is very sensitive to the range o(fa '

the interactions included. In plotting of Fig(838 we have g analysis performed for the fmolecule, which we dis-

also included zero-point motion estimated in Appendix C. cyss next. Such a comparison is necessary to grasp qualita-
To show the atomic wave-function compression we plot-jyely the role of chain dimerization.

ted in Fig. 3b) the atomic orbit compression induced by the
electronic correlations. The result is not much different from IV. H, SYSTEM AND COMPARISON WITH THE

FIG. 3. (a) Ground-state energy as a function of both the inter-

that plotted in Fig. 2the case without intersite interactjon HUBBARD CHAIN
In Fig. 4 we have plotted the renormalized Wannier func-
tions wy(r) at Ry, and for both the optimal¢=1.08a, *, A. Hp molecular states
solid ling) and the bare ¢=a, *, dotted ling values ofa. We analyze the Hmolecule in the same manner as the
The main difference is around=0. Hubbard chain. To achieve that we start with the most gen-

The above results containing first-principles calculationseral Hamiltonian for a two-site systelfieach site contribut-
for the Hubbard chain will be compared with the correspond-ing a singles-type orbital:
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r(4) |l>=aLa£T|0>, |2>=aLagl|O>,
08-32-21-1100 L1 2132 1
- _ oot Tt
a=1083 o 4 |3>_E(a1Ta21+alia2T)|o>' (24
e = 1.0 min
06 . and have eigenvalued;=\,=\3=¢;+¢€,+K—J. The
= three singlet states are mixtures of the three trial states:
Z 0.4} 1 1
= - T ot gt ot
‘g |4>—E(ana2¢_auazy)|0>,
s 02}
5 .
= _ Tt Tt
S 00 |5)=—=(a;;a;, +ayay)|0),
]
= ' 2
2R
-0. L L i 2 Lt é 1 - vt
6 4 20 2 4 |6>:E(anau_aﬂazl)|0>' (25
r/a

and lead to the (8 3) Hamiltonian matrixi|H|j) for these
FIG. 4. The renormalizedsolid line) and bare(dotted ling states of the form
Wannier function profilenvg(r) for R=Ryip, -

2e+K+d  2(t+V) 0
— T T 1
H=ein+ e+t (a],a,,+a),a1,) +Uin;ny (H) 2(t+V)  2e+J+U E(Ul_uz)
g IJ: ,
1 1
+U2n2Tn21_2J8182+ K+ EJ n1n2 0 E(Ul_UZ) 2e+U—-J

(26)

+J(al,a] ay 8, +H.c)+VX [(ng,+ nZIr)(a]Jr_;a2; where e,= (€14 €,)/2 and U=(U;+U,)/2. We consider
4 here explicitly a simple situation witkd,=U,=U. Then,

+a Jollg)] 21) the eigenvalues are

Here, for the sake of generality, we have assumed that both Nys=2€,+ = (K+U)+J+E[(U K)2+ 16(t+V)2]1/2
the atomic level positions and the intra-atomic Coulomb in-

teractions are differente(+# e,,U;#U,). The remaining (27)
terms represent respectively the hopping between the atoms, Ne=2et+U—J (28)
the interatomig¢Heisenbergexchange, the pair hopping, and 6 '
the so-called correlated hopping. All the terms come fromin the limit U—K>4|t+V| we have approximately that
the Coulomb interaction between the electrons. Note that i, 5=2€,+U+K+J=4(t+V)%/(U—-K). For J>0 we
the case of the Hubbard chain all the terthskK, andV  have in\5 a competition between the direct and kinetic ex-
appeared explicitly after expressing the Wannier functionghange interactions. The elgenstatﬁ§5>—|)\ ) take the
through the nonorthogonal atomic functions. Here thosgorm for €,=€,=€=0, andU,;=U,=U:

terms appear already in the Wannier representation.

This Hamiltonian can be easily diagonalized fdg=1 IX.)=[2D(D+=UFK)] Y4(t+V)|4)
electron (H state, since then the two eigenvaluks , each
degenerate with respect to spir= =1, are +(D=UFK)|5)}, (29)
s 1 with D=[(U—K)2+ 16(t+V)?]*2 We see that these eigen-
“(eten* (61 €2) L2 (22  states have an admixture of symmetric ionic si&ie Fi-
2 2 nally, the eigenstate [\¢) has the form |\g)

=(12)(a},a],—al,a]))|0). To illustrate our method of
approach we set first the variational minimization of the
wave functionsw,; andws.

The corresponding eigenstates ata.,)=a;.aj,|0)
+a2ia;,|0>, with a;. /a,. =[(e;—\.)/(€;—\.)]"? and

61_)\45 )1/2

=+ =
|a2| - El+ 62_2)\i

(23 B. Renormalized wave equation for B

Within the second-quantization scheme the relevant Wan-
These states reduce in the lingit= €, to the ordinary bond- nier functionsw,(r) and w,(r) are obviously not deter-
ing and antibonding statels\m):(l/\/i)(a{(,t a;,)|o>. mined. In other words, the eigenvalugs are expressed in
For No=2 electrons we have six states: three triplSt ( terms of the parameters,, t, U, K, J, andV, as one sees
=1) and three singlet (S0) states. The triplet states are from Eq.s (27), (28). We fix them again by employing
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the same type of variational principle as before, under thén essence, apart from the usual Hartree-Fock corrections
condition that they are normalized. Such procedure meansecond terry the contribution from the kinetic exchange
physically that the original atomic orbitals readjust them-interaction is also present. One should note that this renor-
selves in each eigenstate. This will certainly happen whemnalized wave equation isxactwithin the given subspace of
the interaction energy is comparable or even larger than itsingle-particle states selected to define the field operator.
single-particle counterpart. Furthermore, within this combined scheme containing first

For one electron No=1) we obtain the Schainger —and second quantizations, one can calculate to the same de-
equation for bonding and antibonding states in the form  gree of accuracy the ground and excited states, as we set the

wave equation separate for each eigenstate.
* h? The system of renormalized wave equatid¢88) for w
EFwi(n)=| = 5= V2+V(r=R)+V(r-R)) >ystem of qual Wi
m and w, is quite difficult to solve. The solution requires in-

volved numerical procedures, which will not be dealt with
X[wi(r)=w;(r)]. (30 here. Instead, in order to illustrate the results we have per-

This is not a strange result, since in that case there is ntrmed again the analytic calculations for the hiolecule.
electron-electron interaction. Also, in this example we see that by devising the renormal-

The simplest nontrivial situation occurs for triplet statesized wave equation we include easily the dynamic processes
for which the wave equation takes the form considered in the Fock space as a part ofrtbalocal con-
tribution to the effective potential. We demonstrate the im-
portance of these contributions by considering thenkbl-
ecule in the simplest approximation fov;(r). A similar

2

Ewi(r)=|— ;L—mV2+V(r—R1)+V(r—R2) w;(r)

3, , 2 renormalized wave equation for'Hon ground state is dis-
FWi(r) | IV ir=r") wi(r")] cussed in Appendix D.
+Wi(r)f d3r ' Va(r—r")|wj(r")|? C. Orbital size readjustment for H, and comparison

with the Hubbard chain
RS 37 ! (r! (r’
WJ(r)f d*rVar = r)wi(rwi(r’). Taking two 1s atomic functionsW;(r)=¥(r—R;) we
(31 can form in the case of the ,Hnolecule the corresponding

Here V(r—R;)=—¢€%|r—R}| is the atomic potential and ©rthogonalized functiong;(r):

Vi (r—r")=e?/|[r—r’| is the Coulomb repulsion between W (r)=B[W(r)— yW (1] (34)
electrons. The interaction part contains bathj and the o ' ' e

intersite {#j) Coulomb contributions, as well as the attrac-With j #i, S=(¥4|¥5), and

tive exchange contribution. One can say that the readjusted 112

orbitals obey the wave equation of the Hartree-Fock type. — i 1 + 1 . y= L
This case illustrates a general rule that if the eigenvalues V2[1-8 (1-H2 1+1-¢2
contain only linear combination of the parameters, then the (35

renormalized wave equation is equivalent to that introducee{-he parameters; , t, U;, etc., are defined in Appendix B
1 L] 1 LR .

by Slater by taking the two-particle wave function in the g nqiituting the explicit forni34) of the wave function, we
form of the Slater determinant. One should note that here th'ébtain the parameters in the following form:

equation is derived in a systematic manner.

A true nontrivial situation appears when we discuss a €a=PBA(1+y?)e,—28%yt’, (36)
renormalized equation for the singlet states, among them for ) ) ,
the lowest eigenstate_ , when the eigenvalue is not a linear t=B1+yIt' —2B%ve,, (37)
function of the microscopic parameters. In that situation, the U=B[(1+ y")U’ + 272K’ —dy(1+ V' +4923']
general equation for, e.g\,_ has the form (39)
Eu N5 g s 32) K=BY2y20"+(1+y)K' = 4y(1+y)V'+4420'],
e 5\Ni 5VW| (39)
or, more explicitly, J=PBY27y°U"+ 29K’ —4y(1+ Y )V' + (14 v?)2)'],
(40)
ﬁZ
Eiwi(r)=| — %V2+V(r—R1)+V(r—Rz)}Wi(r) V=B —y(1+y)U'— y(1+ YK’ +(1+ 692+ y"V’
R Ut K2 —2y(1+5%0')], (41)
2 ow ( where the primed integrals are also provided in Appendix B.
1 1 S(U—K) We see that the nonorthogonality of the atomic wave func-
_Z (U—K)——= tions leads to various combinations of the microscopic pa-
2 [(U—K)2+16(t+ V)22 SwF rameters. All of them are the functions of the orbital size
S(t+V) (a™1) and the interionic distanck.
+16(t+V) " (33 Substituting the expressioli86)—(41) to the expressions
i for eigenvalues, adding the internuclear repulsied/R),
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R(A) R (&)
002.0 1:1 2:1 3:2 4:2 5'36.8 2.2.0 1:1 2:1 3:2 4:2 5.3
L -> L1=L2=L3 (triplet °Z )
0.0 Jo.0
0.5 {-68 _
2 3 -
£ 1o} L4 (singlet 'S ) J-13.6 & g
‘ g 5
;’5 -1.5} L L6 (singlet lzu).-20.4 = 1.0 %___
Hubbard chain —
201V = -27.2 Hubbard chain
L5 (singlet =) o
S S S B Ui Ria
(a) o
R/ a r &)

FIG. 5. The lowest six energy levels for,Hnolecule (solid 42 21 00 21 42
lines) calculated to the same degree of accuracy as for the Hubbard 1.0 r r T T
chain, ground-state energy of whigber two sitekis shown as the - o=L1939/a,
dashed line. For detailed discussion see main text. 0.8} ‘ R =143a 1

o . z 06 |
and optimizing each ok; with respect toa, we reach the K
expression foi;=X\;(R) drawn in Fig. 5, whereas the opti- S 04t
mized orbital radiie ! (in units of the Bohr radius,) are & 0.2
shown in Fig. §a). The ground-state energy of the hydrogen E -1
molecule iIsEg=—2.296 Ry and the bond length i 2 00
=0.757 A, and misses the values obtained by Kotos and <
WolniewicZ"® by about 2.5%, which ar&g=—2.349 Ry, 0.2p
and3=0.74 A. The experimental value'fsl;=0.746 A. $ 4 0 4 8
For the sake of completeness we have displayed the ground- r/a
state energy for the Hubbard chdjer two siteg, as well as (b) 0

the orbital size in that cagéoth dependences are marked by
the dashed lines in Figs. 5 andaf respectively. Also, the

value of Rpin=1.57 Ais vastly different from the corre- compared to that calculated to the same degree of accuracy for the

sponding valudg=0.74 A here. . ; . . )
The important feature of our approach is that the inter-.HUbbard chaindashed ling (b) Renormalized atomic g orbitals

. . o th lecule for th ilibri fi tionR(,;
electronic correlations are treated exadilyithin the model I:l 4; ;_b molecule for the equilibrium - configuration R
with one orbital per atom Therefore, we do not need to B
construct approximate molecular orbitals, as one proceedgyded. The intersite Coulomb interactigndoes not change
when starting from either Heitler-London or Mulliken-Slater tpe situation. The magnitude of this interaction is demon-
approaches’ Instead, we obtaimenormalizedatomic orbit-  strated explicitly in Fig. 7, where the values of all parameters
als (corresponding to the Wannier functions depicted in Fig.gre collected and displayed as a function of internuclear dis-
4 in the spatially extended systeufrawn in Fig. €b). Their  tance for H molecule[Fig. 7(a)] and of the spacing for the
sum would provide aenormalizedmolecular orbital. The  Hyphard chairFig. 7(b) for the situation depicted in Fig]1
meaning of this renormalized picture becomes evident if ongrne solid curves displayed in Fig.(lj contain the wave
refer_s to the ph_ysu:al interpretation of the chemical bondyctions obtained for the Hubbard model, whereas the
provided some time ago by Ruedenbégfg\lamely, the sec-  gashed lines include additionally in the solution tKe?
ondary minimum at the position of the neighboring protonierm (see discussion in Sec. 1I)BThe values of the param-
prO\,/’ldes a potential energy decreagelectron promo- eters displayed in Fig.(@) are unrealistic foR<ay, as then
tion”). The corresponding kinetic energy increase can bghe excited statess2 2p, etc. also become important and
seen only numerically by noting that the orbit shrinks haye not been included here. The corresponding parameters
(a “ag<1); in effect, the results are in accordance with they 5 es are different in the two situatiofs and (b). There-

virial theorem. However, we must stress that our methodore their estimates based on bare atomic functions will dif-
includes exacthall interactions between theslelectrons in  fer importantly from those displayed here.

this two-atom system.

The stability of the molecular states speaks for dimeriza-
tion in the case of the linear chain, i.e., the stability of the
broken symmetry ground state against the translationally in- As the third and final example we discuss briefly the sys-
variant Lieb-Wu state, if the interionic interaction is in- tem of N<8 atoms, each contributing with one orbital to the

FIG. 6. (a) Optimal size of the atomic functiofincluding cor-
relationg for the first six states of the Hmolecule(solid line), as

V. CORRELATED QUANTUM DOT



15684

SPALEK, PODSIADLY, WC]CIK, AND RYCERZ

PRB 61
R (A) R(A)
0.0 0.5 11 1.6 22 2.7
3.9.0 1:1 2:1 3:2 4:2 5:3 50 0.0 —— o ————0.0
2.9 J40
2.2 {30 02} 2.7
o LS} U 20 o
&~ e
N’ A J 1 -’
. 0.7 K 0 > -0.4 | -S54
S0 &0
) 10 3
3 =
= J-10 o S
20 & o6t 822
z, <,
130 w
§ 10 =
08 -10.9
(@) R/ a
R(A)
1.0t -13.6
1.06 2.12 3.17 4.23 5.29
0 ——ee——————— 27.2
-1.2 L L L ' -16.3
1.5¢ U {20.4 0 n > 3 4 s
R/a
1.0} {13.6
E % FIG. 8. Ground-state energy for short chains witk=8 atoms
< 05p K 168 = closed in a ring, as a function of interatomic distance. The results
%” v %” for N=2 (H, molecule—solid ling are drawn for comparison.
g oop el {00 £
Jt deposited on the substrate, which enforces their structural
0.5 {-6.8 stability. The interatomic distance has then the meaning of
] the lattice constant mismatch with the substrate material. The
-1.0 + PR -13.6 one-dimensional dot configuration is achieved by taking the
periodic boundary conditions.
(0) R/a, In Fig. 9 we exhibit the optimal orbital size obtained from

FIG. 7. (a) The parameters of the Hamiltonian foy, Ifholecule,
all as a function of distancdéb) the same for the Hubbard model
(solid ling), and with theKn? term in Eg (dashed lines

system. We diagonalize the Hamiltoni&®) numerically by
taking submatrices of the total numbéeY df available states

in the Fock space and subsequently adjust the orthogonalized
orbital size as a function of interatomic distance.

The N-atom (N.=N)-electron system we consider is
closed on a ringdi.e., the periodic boundary conditions are
imposed. The Hamiltonian has the forrf21) except we in-
clude the pair interactions betwea equally spaced neigh-
bors. Additionally, in the single-particle pakt,(r) we in-
clude the potential of the parent atori=(j) and of all (

#]) neighborg V(r)=2=;V(r—R;)], as well as take thex-

act Wannier functiongi.e., includeall B;; coefficients in Eq.
(10)] and determineall possible hopping integralst;; for
those small systems. The results for the lowest eigenvalue
providing the system ground-state energy as a function of
interatomic distance is shown in Fig. 8. The result for

=2 (the H, molecule obtained with the help of the same
numerical procedure provides the test of the method accu-
racy and is drawn for comparison as the solid liieagrees
exactly with the results of the preceding secjiofss in the
infinite-Hubbard-chain case, the results for-2 do not have

an optimal interatomic distance if interatomic interactions

0.0

R(A)

22 2.7

16

1.0

0.8

FIG. 9. The optimal size of atomic orbitals foi<8 sites, as a

are included. However, in practice such quantum dots aré&nction of interatomic distance.
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the minimization ofEg with respect tax=a 1. We see that gen and Professor S. Ramasesha from the Indian Institute of
the renormalized orbital size approaches gradually the Science, Bombay for inspiring discussions.
Bohr-orbital sizea; whenR>a,. The larger value o# for
N=3 with respect to the bond length for the N=2 (H,) APPENDIX A: HUBBARD MODEL IN PHYSICAL UNITS
gziﬁ !ftocriuﬁssd ;)ﬁet%iggf?g;taegii tshigte.m the former case '!'he Lieb-Wu solution is obtained for the Hubbard Hamil-
One should note that based on the present results one ciMan
extend the method to larger valuesMfwith the help of the
density-matrix renormalization groufDMRG) method!® H=e,>, N, +t> a;raaj,,nt u>, nitNiy (A2)
The implementation of this method is not the purpose of the o (e !
present paper. Instead, we try to emphasize with the help Gfhen one setse,=0 and t=—1. This solution can be
analytic and numerical arguments the feaS|b|I|ty of Combin-adopted to the genera| case if one notices (nathe first
ing first- and second-quantization formalisms, particularly interm provides an additive constaatN,, whereN, is the
the situation when the corresponding problem in the Fockumber of electrons in the system, afidl we can divide Eq.
space is exactly soluble and the corresponding wave-functiopn1) by |t| and in this manner obtain exactly the situation
optimization (in the Hilbert space by variational means considered in Ref. 5 with the mappirg— U/|t|, and Eg
leads to convergent results & and «. —Eg/|t|, to transform Eq(20) in Ref. 5 into Eq(11) in this
paper. One should emphasize again that legtAndt should
be included explicitly when optimizing the model parameters
VI. A BRIEF OVERVIEW in Sec. Il B, as both quantities contain renormalized Wan-
é]ier single-particle functiomv;(r) and thus are dependent on

In this paper we have proposed a renormalized wav . L
pap prop rt.'he interatomic distancB.

equation for a single electron in an interacting medium as a
example of simple systems with a nonperturbative ground

state as well as discussed its simple variational solution. The\PPENDIX B: SLATER INTEGRALS FOR s TYPE WAVE
wave equation is obtained explicitly by regarding the system FUNCTIONS

ground-state energy as a functional, which contains the The microscopic parameters for both the Hubbard model
renormalized wave function in the expressions for the microgpg two-site system such as the iolecule contain at most

scopic parameters. The variational solution of this equatiogyg-sjte integrals of the same type. In the orthogonalized
provides in Secs. lll and IV the parametéasd hence of the p5sis and in the atomic units they are

total energy as a function of the lattice parameter. In es- ) ]
sence, we supplement the rigorous treatment of the electronic . ) _
correlations formulated in the Fock space with a natural ideaea_J drwi(r)| =V +§j: V(r =Ry) (wi(r)=(wi| T|w),
of a posteriorireadjustment of the wave function in the cor- ) ; (B1)
related state.

The simplicity of the present method proves important RN R ]
when applying it to the more complex problems. For ex-tij= | dTwi(r)| =V + 2 V(r=Ry) |wj(N=(wi| T|w)),
ample, one supplements the small-cluster calculations of cor- - . : (B2)
related systems with our single-particle basis optimization,
as was illustrated in Sec. V. Such a procedure may be par- 2
ticularly important forcorrelated quantum dotsAlso, the Ui=f d3r a3 |wi(r)|2——|w;(r")|?
renormalized wave functions can be used to determine the Ir=r’|
matrix elements for optical transitions in the systems, where
the perturbative approach fails. Finally, one can incorporate
the single-particle basis optimization for approximate solu- 5
tions of models for correlated systems such as the Gutzwiller Kij = f d3r 3 [wi(r)[2——|w;(r")|?
solution of the Mott-Hubbard localization. A simple ap- [r—r’|
proach in this direction has been proposed some timé&go.
A treatment of some of the above problems is under way and
will be published separately.

It is also straightforward to extend the present approach 3 :f d3r d3 'w* (r)w;(r')
from Sec. Ill to the Anderson Hamiltonian taking the exact ! ! J
solution of Kawakami and Okifi® More importantly, one
can apply the present method to other exactly soluble mod- =(Wiwj| Vg wyw;), (BS)
els, an extensive list of which may be found in Ref. 21.

= (W;W;| Vi wiw;), (B3)

=(W;w;| V1 w;w;j), (B4)

Wi (nw(r')
Ir=r’|

Vij:f d3rd3r’|Wi(r)|2|—,|Wi(r)wj*(r’)
r—r
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t’, U’, etc., have the fornB1)—(B6), but with the functions the energy of such oscillations per ion is

w;(r) replaced by $-type functions¥;(r). The expressions

(B1)—(B6) of the quantities through the primed parameters is (6P)> 1 ¢ e

provided by Eqs(18)—(20) for the Hubbard chain, and by AE= 2M * 2\ R+ 5R+ R—SR/" (€Y

Eqgs.(36)—(41) for the H, case. Therefore, it remains to write

down, following Slateft? the expressioné81)—(B6) for the ~ For SR<R we can write

primed quantities. In our notatiofand in the atomic unijs , 5 5

they have the form Apl P & e_( 5R) 2
2M R R\ R

2
E =a?-2a— =+2

- (B7)

1
a+ )exp( 2aR),

1
t'=a? exp(—aR)( 1+ aR+ §a2R2> —4a exp—aR)

X (1+aR), (B8)
U’—5 B9
_4a! ( )
k=2 2aR +3 Rt = (aR)2H o
—ﬁ—aexp( a ) S (a ) it
(B10)
= R)| 2aR ! > ! 3aR
=ajexp—aR)| 2a +4+8 = Zexr(— aR)
1+—5 B11l
2aR ( )
12 _
J= ﬁ[5.2(:+ S?In(aR)—2SS Ei(—2aR)
+(S')?Ei(—4aR) ]+ a exp(— 2aR)
5 23 6 2
- - _ _.2p2_ __ . 3p3
4 10a e R 5% R (B12)
where
] edt
E|(—X)E—f Texp(—t), (B13
X
C=0.577 22 is the Euler constant, and
1
S=exp—aR)| 1+ aR+ §a2R2),
1
S'=expaR) 1—aR+§a2R2 . (B14)

The quantitySis the overlap integral. EquatioiB7)—(B14)
are used when optimizing the energies with respeet tand
R, if a minimum appeaps

APPENDIX C: ZERO-POINT MOTION OF IONS

The quantum correction to static configuration of ions

Introducing the uncertainty relationsP)?(SR)2=32#42, we
will have in the minimal situation

1 342

e
AE=—+-——
R 2M 4(sR)?

k
+§(5R)2, (C3
with the elastic constarkt=4e?/R3. Minimizing this expres-
sion with respect téR we obtaindR=[3%2/(2Mk)]"4 and

the energy

3k 1/2

2M

eZ
AE=—+#

. (4

The first term provides the classical Coulomb repulsion be-
tween nearest neighbors, while the second represents zero-
point contribution with frequencyw=(6e?/MR®%)Y2. In
atomic units this contribution amounts to the energy

311/2 1.1

PAEL
15|\ R

: (CH

m
AE=2\/§M

a
R
if the mass of the proton is taken fbf andm is the electron
mass. This contribution is small R>ag, but may be sig-
nificant for obtaining the detailed energy balance. A better
estimate for the Hubbard chain would be to take into account

the phonons, as well as the change in the electron-ion attrac-
tion.

APPENDIX D: RENORMALIZED WAVE EQUATION
FOR THE He ATOM AND H ~ ION

The renormalized wave equation for other two-electron
systems, the Hion and He atom, can be obtained relatively
easily for the ground state, since it involves two electrons on
the same lattice. In the He atom case the eigenvalue of the
1s? state is\;=2¢,+ U, and the renormalized wave equa-
tion reduces to the usual Hartree equation

2
——|P(r")|?=EW¥(r),

r|
(D1)

v2- E)\If(r)wr(r)f a3’

whereZ=2. Taking Is-type wave functions for both elec-
trons, we obtain the ground-state energy in the atomic units
in the formE=2a?— % a, the standard value af=27/16,
and the corresponding enerfy= —5.695 Ry*’

The same type of treatment of Hwith Z=1) does not

(protons in the cases of the,Hnolecule or the Hubbard provide a stable H state. The reason is the assumption that
chain of H atomgrelies on estimating their zero-point oscil- both electrons are in as?-like state. However, this circum-
lations. This can be done relatively simply if one introducesstance does not invalidate the whole approach in this test
the momentum §P) and position §R) uncertainties so that case.
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Namely, to overcome the problem for the Hon one  potential so that its renormalized wave equation reads
needs to resort to a more involved approach going beyond
the scope of the present paper. Let us only note that one can
understand the nature of the problem in the following physi- 1
cal way. The first electron occupies the 4tate withW (r) —qu’(f)—za( 1+ | exp(—2ar) ¥ (r)=EV(r).
= (a®/ ) Y%exp(—ar). Substituting this into the integral ap- (D3)
pearing in Eq(D1) one obtains the effective wave equation
for the second electron in the fortm the atomic units

Forr<1 the effective potential has the Yukawa form and for

( _vy2_ E)q,(r)Jr E—Za exp(—2ar)| 1+ 1 W(r) r>1 the exponential form. This central potential has always
r r ar bound states. So, the second electron is indeed bound and the
—EW(r) D2) whole H™ system is stable. Subsequently, one should anti-

symmetrize the product of the two functions. Nonetheless,
Note that thee-e repulsioncancels out completelyne attrac-  the numerical discussion requires a more detailed treatment
tion to the nucleus. However, what is left is an attractiveand will be presented elsewhere.
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