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We study the effect of a chemically or deformation-induced charge-density wave on the spin-density-wave
ground state of the Hubbard model at half-filling. We also consider the effect of a lattice deformation associ-
ated with a dimerization of the hopping term, thus introducing a competition with a paramagnetic bond-
alternating phase. The slave-boson approach is used as an interpolation scheme to treat the electronic correla-
tions from weak to strong coupling and determine the phase diagram of the model. We also apply our results
to describe the neutral-ionic transition in organic mixed-stack donor-acceptor crystals.

[. INTRODUCTION order is sufficiently largé.On the other hand, when the
charge modulation is produced by the coupling of electron

In the absence of a direct electron-electron mechanism fadensity to an elastic lattice deformation, the presence of spin
the onset of a charge-density wav€EDW), an induced order excludes charge ordering by suppressing anharmonic
charge transfer between neighboring sites may be produceaifects in the self-consistent elastic potential. In such a case
by a modulation of the chemical environment, which resultshe SDW phase stays undeformed, whereas the deformed
in the so-called chemical dimerization of the system. Such isCDW phase is paramagnetieM).*
for instance, the case of the-bond chains on the recon- It must be pointed out that other lattice deformations, not
structed (111) surfaces of C and Si.Other examples of directly related to a modulation of the electron density, may
chemically induced charge transfer are found in organicompete with antiferromagnetism in nesting-type systems.
mixed-stack donor-acceptor crystals, which are often foundror instance, when the lattice dimerizes, with the formation
either in the quasi neutral or in the fully ionized configura- of long and short bonds, the overlap integral between neigh-
tion, as a consequence of the competition between covalendyoring sites is modulated, and a gap opens at the boundary of
and ionic effect€. When the coupling of the electronic den- the Brillouin zone thus stabilizing the PM phase with respect
sity to the lattice is taken into account, the charge transfeto the SDW phase when the coupling to the lattice deforma-
may be accompanie@r produced by a deformation of the tion is strong enough to compete with ttietra-atomi¢ en-
lattice. ergy scale responsible for spin orderihg.

The issue we want to address in this paper is the effect of When some or all of the above mechanisms are present,
such kinds of chemical and/or lattice dimerization in nesting-different physical behaviors are possible. Without attempting
type models for spin-density-way&DW) antiferromagnets, to provide a full variety of phase diagrams, which would
such as the Hubbard model with nearest-neighbor hopping atecessarily refer to specific physical systems, in this paper
half-filing. The SDW in the Nel-like antiferromagnetic we emphasize generic features of the structures which may
(AFM) phase and the CDW associated with the structure oérise in dimerized systems due to the interplay of competi-
the chemical and/or lattice dimerization that we are going taive mechanisms leading to different ordered phases.
analyze in the following are characterized by the same com- The scheme of the paper is as follows. In Sec. Il we
mensurate wave vector, so that the competition betweeimtroduce an extended Hubbard model and discuss the physi-
charge and spin ordering is essentially due to the way irtal meaning of the different terms appearing in our model
which different mechanisms affect the gap in the excitatiorHamiltonian. In Sec. Ill we discuss the mean-field phases
spectrum, in the charge and spin channel. which may arise due to the interplay between charge and

Two scenarios are possible: either the existence of a spirspin degrees of freedom. In particular, Sec. Il A is devoted
ordered state excludes any charge ordering and vice versa, far the effect of a chemical dimerization on the SDW ground
charge and spin order coexist, possibly with a mutual reducstate of the Hubbard model and Sec. Il B deals with the
tion. effect of a bond dimerization. In Sec. IlIC we discuss the

Indeed when the charge transfer between neighboringffects of the coupling of electron density to an elastic lattice
sites is induced by an external potentialg., a modulation deformation. In Sec. Il D we show that the dimerized Hub-
of the chemical environmenta coexistence is possible if the bard model introduced in Sec. Il may be used, in a suitable
(intra-atomig energy scale responsible for antiferromagneticlimit, to discuss the neutral-ionic transition occurring in
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some organic mixed-stack donor-acceptor crystals. Concludand the resulting physical scenarios in each specific physical
ing remarks are found in Sec. IV. system. Such a detailed analysis is beyond the scope of our
paper.
Finally we note that, as far as the properties of the elec-
IIl. THE MODEL tronic spectrum are concerned, the parametrization of the

For the sake of definiteness, the physical scenario disg'€ctron-lattice coupling through the constagis K, and
cussed in the preceding section is analyzed in this paper Ba: Ka iS redundant. in the following we adopt a standard

means of the one-dimensional extended Hubbard model déiotation and introduce the dimensionless deformation
fined by the Hamiltonian Y1 1+1=0tY)+1/t, the dimensionless coupling constamt

=29t2/77Ktt, and the parametersX;=g.x; and E,
=g§/2Ka, both with the dimensions of an energy. The

F{= _tz (7|+07|+1U+H-C-)+|E (_1)rf|+(}| . electron-lattice Hamiltonian then reads
l,o ’ ' l,o ’ '
o~ o~ n
e . —t> Yiea(F ofii,t H.c)+ X X|<f|+,af|,a_ —)
+UEI f|+,Tf|,1f|J,r¢f|,l_gtlE Yiie1(f ofiir,H.C) Lo Lo 2
’ t 1
2 2
o~ n\ K, K +— 2 Yt = 2 X, 2
+9a|2 X|<f|+,af|,a—§ +72| yﬁ|+1+7a2| Xt ™ 4Ep T

from which it is evident that the two parametevsE, com-
(1) pletely determine the properties of the electronic spectrum in
the deformed state, while the coupling constagtsg, de-
wherel=1, ... N, labels the sites of the chain, the intersite termine only the properties of the deformed lattice, i.e., the

distance is takea=1, the fermion operatork’, ,f, , actin ~ Self-consistent values of the deformationg....x. _
the Wannier representationis the nearest-neighbor hopping WQ empha5|ze that, in the zero—temperature limit consid-
parameter] is the amplitude of a staggered local potential,€"€d in this paper, due to the mean-field character of our
which is produced by some extern@rysta) field associ- results, the choice of a one-dimensional model is essentially
ated, for instance, with the modulation of the chemical envi-2dopted to simplify the forthcoming analytical and numerical
ronment, andJ is the on-site Coulombic repulsion. The elec- calculations, and does not imply by itself any severe limita-
trons are coupled to the lattice and we consider two possiblEOn t0 their validity. One should, for instance, keep in mind
terms. The constany;=dt/ay couples the electrons to a that in real quasi-one-dimensional systems the chains are
bond deformatiory, |, ., with elastic constark, which in- (loosely po_und with one another. and the corresponding
duces a change in the hopping parameter, wherpas characteristic energy scate determines the crossover to a
= 9E,/ax couples electron density fluctuations with respectd€nuine one-dimensional behavior at some finite tempera-
to the average valus/2 (per spin to a lattice deformation ture. On the other hand, mean-field results are not modified
X;, with elastic constanK,, which induces a change in the as long as, for instance, <t.

atomic energye,. We have chosen the reference energy in
Eq. (1) such thate,=0. Ill. MEAN-FIELD RESULTS

This is the simplest model to investigate the conditions This section is devoted to the analysis of the different

for the coexistence of a SDW, which is promoted by the  ,qered structures that may appear due to the interplay of

term, and a CDW, produced by theterm and/or the cou-  charge and spin degrees of freedom and to the relative rel-
pling of electron density fluctuations to the local deformationgyance of the different terms appearing in E1).

X, . The possibility for a dimerization of the hopping term
due to the coupling of electrons to a bond deformatipy. |

is also taken into account as an alternative mechanism which
competes with AFM spin ordering in dimerized systems. It Let us first consider the case in which the coupling of
must be observed that in E¢l) we are considering two electrons to the lattice is neglectéice., g, g,=0). In the
different lattice deformations coupled to the electron densitynoninteracting U =0) half-filled (n=1) system, a charge
fluctuations and to the hopping term, respectively. Howeverfnodulation is induced by the external fi¢ldf we letn, and

we are not going, in the following, to consider the interplay ng be the number of particles on the two inequivalent sites of
of the two electron-lattice terms, i.e., we shall discuss théhe bi-partite chain, with even and odd site indexespec-
effect of a deformation which modifies either the local po-tively (na+ng=2 in the half-filled casg then the CDW
tential or the overlap of the electron wave functions onamplitudem,=3(ng—n,) is given by

neighboring sites. In real systems the two effects might be

A. Chemical dimerization

associated with a single lattice deformati@ng., a bond de- 2 dk
formation which induces a modulation in both the hopping Me="— 2212+ 4t2co2K ©)

term and the atomic terymor with two independent lattice

modes(a change in the atomic term might be produced by avhich saturates towards 1 &ds increased. Here we point
deformation which does not change the bond lendthsuch  out that, due to the logarithmic divergence of the integral in
a case a deeper analysis of the different modes of the lattideq. (3) asl —0, the curvem(l) starts with an infinite slope

is required to describe the interplay of different distortionsclose tol =0. This behavior is a consequence of the perfect
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nesting of the Fermi surface with respect to the characteristidifferent signs, thus stabilizing the spin-ordered phase even
wave vector of the external potential discussed in this papein the presence of a charge modulation.

On the other hand, whdn=0, the possibility for an AFM The self-consistency equations fiog andm, are ther
state arises as soon ds>0, again due to the perfect nesting

of the Fermi surface at half-filling. This state can be charac- m.— 2 (— o)k, A IC(K ),

terized by a SDW amplitudei;=na;—na;=ng, —ng; . At ST 2mt v

=0, mg is an increasing function of the ratid/t, both in (4)
the Hartree-Fock and slave-boson approximatfoAs. U/t )

—o, m, saturates towards 1. Me=5— 2 KoAK(x5),

The simultaneous presence of the staggered external field
| and of the on-site electron-electron interactidimplies an  where k,= 2t/ \/4t>+ AZU and [C(x) is the complete elliptic
interplay of charge and spin degrees of freedom which wentegral of the first kind. Observe that the two equations in
want to clarify in the following. Before turning to the slave- Eq. (4) differ in the relative sign of the two terms appearing
boson(SB) technique, we shall briefly analyze the competi-in the sum overo in the right-hand side. The HF approxi-
tion of spin and charge ordering within the Hartree-Fockmation thus implies that a phase with zero staggered magne-
(HF) approximation, which applies in the weak-coupling tization will have a larger CDW amplitude than a phase with
limit U/t<1, to provide, as a starting point, a clearer insightcoexisting CDW and SDW.
into the physics of the dimerized Hubbard model. Introducing the two auxiliary parametersn,=me

On a general ground, indeed, the fitldpens a gap inthe +oMs, so thatA,=I—Um,/2, one can reduce the above
charge channel, thus unfavoring SDW formation, whereagduations (4) to m;=(Umt)k A K(x) and m
the interactionU opens a gap in the spin channel and can=(1/7t) kA, ’C(KT) from which it is evident tham, is
substantially reduce the CDW amplitude even in the presdetermined vian, and vice versa. From a numerical point of
ence of a sizeable external fidldHowever, self-consistency Vview, the last two equations can thus be reduced to an equa-
imposes a complicate interdependencengfandm,, which  tion for a single variabldfor instancem,), the other being
can give rise to discontinuougrst-orde) phase transitions immediately determined once the first is known.
between magnetic and nonmagnetic phases. The energy per lattice site corresponding to each self-

In the following we make use of the parametrization consistent solution of Ed4) is

Nao=3(1+omg—my,), ng,=3(1— omg+m,), for the aver- )
age number of electrons of a given spiron a site of theA v 2t &(k%)
or B sublattice, respectively. The HF spin-dependent atomic E=- Zmei_ ;2;4 P

levels are then given b¥,,=I+Uny _,=1+U(1—omg

—mg)/2 and Eg,=—-Il+Ung_,=—1+U(1+oms  where&(x) is the complete elliptic integral of the second
+m,)/2 so that the gap in the energy spectrum for electron&ind.

of spin o is given by A,=3(Ea,—Eg,)=!—U(m, We investigated the numerical solution of the self-
+om)/2. This expression for the energy gap gives an in-consistency equation@) and found that the paramagnetic-
sight into the competition between external potential and onantiferromagnetic transition predicted by the HF approxima-
site Coulombic repulsion, with respect to charge and spirtion is of first order in the weak-coupling regime, but
order. Indeed, the repulsivé term tends to reduce the gap in becomes of second order in the strong-coupling redisee
the charge channel, but affects the two spin channels witkig. 1).
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However, whenU>t the HF predictions are unreliable tively, \,, is the Lagrange multiplier to enforce the com-
and the SB approaélis more appropriate to deal with the pleteness relation on each slteandA, , (o=T1,]) are the
intermediate- to strong-coupling limiy/t>1. Moreover, Lagrange multipliers to enforce correct fermion counting. To
since the SB formalism provides a description which agreegonnect the above parameters to the parameters introduced in
with HF results in the weak-coupling regime, to avoid the HF approximation, observe that it is possible to define
switching between two different notations, in the rest of the AB)e=Pot (—)omdapy, dag=do—(+)Meddy, enm
paper we shall apply the SB approach as an interpolation- q 4 (—ym.4d,, and Apye=U/2—(+)[Ac+ Al
scheme down t&J/t=0. , _ wheremg, m, are the SDW and CDW amplitudes as in the

To describe a bi-partite lattice, we introduce a set Ofpreceding section, andy, do and A, A are new param-
Kotliar-Rucken_stQin SB operato‘?‘sNith_the corresponding eters, the last two playing the role of the charge and spin
Lagrange multipliers, on each sublattice. At the mean-fielcyractive fields, respectively, even though, in the SB approxi-
level, in the case of coexisting CDW and SDW, we '”trOducemation,Aca& Umy/2 andA #Umg/2 . We point out that the
the parametrization above connection reduces the number of free parameters.
Nonetheless, we did not eliminate this redundancy while nu-

(PLo)=Pao (Po)=Pes merically solving the self-consistency equatigase below,
(e)=¢a (&) =es so that all the parameters introduced in Es).were allowed
(d)y=du for leA: (d)=dg for leB, to vary independently. Once self-consistency was achieved,
_ _ we checked that all self-consistent solutions could be reex-
(M) =X\a (M)=X\g pressed in terms of the fewer parameters introduced above.
(A o)=Aps (A} 5)=Ags, The average particle density per spin on each sublattice is

(5)  given by na,=(f,' f| ,)=di+pa,= for icA and ng,

. . . . . —/ft _ A2 2 H
where, as in the previous sectiomsand B indicate the two  =(fi.of1,-)=ds+ P, for i € B, wheref, ;, are the pseudof-

singly occupied, empty, and doubly occupied sites, respeducing the effective hopping parametegr=tz>, where

(PAs€AT dAPA, - ) (Peseet+dePs, - )
V(1-e3—pa ,)(1-di—pa,)(1-eg—pg ) (1—d5—pg,)

2 __ —
Zo'= ZpolBo™

is the hopping renormalization factor, we performed a Foutice sites. The eigenvalues of the matrix Hamiltonian in Eq.
rier transform in the reduced-Brillouin-zone scheme to ob{6) give the quasiparticle  bands E,,=U/2

tain the mean-field Hamiltonian in the form +AZ+4t2cok. At half-filing and zero temperature
- only the two lower(valence bands are occupied and the
. E,—2t, cosk Ay mean-field energy per lattice site is
Hunt= 2 (fiofksr0.0) ~
Ko A, E,+2t,cosk 1
for | NU E=Bot . & B @
X ¢ + 5 (da+dg) ’
k+Q.o whereE, is the energy per lattice site associated with the last
Ng ) 5 5 5 two lines in Eq.(6). The self-consistency equations are ob-
-5 2{; [Aas(Pagtda) +Agy(Pg, T dp)] tained by requiring the mean-field energy, £, to be sta-
tionary with re?%)ect to the parameters in E§), and have
N the general for
e M(; pi0+ei+di—1>
9Ey 1 OE,,
P N P, ®
b p§0+e§+d§—1”. ©® . Nsf7 7P,

whereP , represents generically one of the parameters in Eq.
In the above formulaikfg,fk,(, are the pseudofermion op- (5).
erators in the Block representation, the sum dvains over We found that, contrary to the HF approximation, the SB
the reduced Brillouin zonéi.e., ke[ —7/2,7/2]), Q is the  approximation gives a first-order antiferromagnetic-
wave vector of both the commensurate SDW structure angaramagnetic phase transition even in the strong-coupling
the external potential, equal to one-half of the reciprocal+egime U>t). The region of hysteresis is generally narrow
lattice vector of the undimerized latticeE,=3(A,, WhenU>t, and the jump of the SDW amplitude at the tran-
+Ag,)=U/2 is actually independent ofr, A,=3(2l sition is sizeabldsee Fig. 2. This means that, at lardé/t,
+Ap,—Agy)=1—(Ac+0Ag), andNg is the number of lat- the AFM phase is the only stable phase in a wide range of
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FIG. 2. Spin-density-wave amplitude within the SB approxima-
tion as a function of P/t, for U/t=8,10,12. The vertical lines in the The eigenvalues of the matrix Hamiltonian in E§) give
coexistence regions locate the first-order AFM-PM phase-transitiofhe quasiparticle bands, which after some simple manipula-
points and represent the corresponding jump in the SDW amplltudetions may be cast in the forrEIf(r: U/2+ K(2r+4T(2r co2k,

, , , whereA ,=+/A%+412Y? s the effective gap for electrons of
values of the external fieltl but is rapidly suppressed once spin o, increased by the effect of the bond dimerization, and

the competition with a metastable PM phase sets in. The PM- ~———-. . .
state is always characterized by a larger CDW amplitude atr= to(1—Y?) is the effective bandwidth for electrons of

the transition pointisee Fig. 3 The corresponding phase spino, reduced by the bond dimerization. We point out that,

diagram is found in the IZt vs U/t plane in Fig. 5. a_lthough the resulting spectrum IS r_eal for [afl, as an ob- .
vious consequence of the hermiticity of the matrix Hamil-

tonian in Eq.(9), it preserves the same structure as the spec-

B. Bond dimerization trum atY=0 only as long as,, is real, i.e.|Y|<1. Thus, in
the following, we limit our analysis to values of the electron-

In this section we discuss the effect of a dimerization oflattice coupling constant such thaty?<1.
the hopping term in Eq(1) due to the coupling of electrons ~ Whenl=0, U>0, a PM phase is stabilized with respect
to a bond deformatioly, |, ;, by assuming a finitey, . Ac- to the SDW phase in the region of smbll!_t by the opening
cording to our initial assumptions, we consider here only the?’ @ gap at the boundary of the Brillouin zone. The SDW

caseg,=0. We shall describe the electronic properties of thegh;'ise Is. alwc;ays undeforme(dde., spirf1f. qrdelrinlg and/ bond
model in terms of the dimensionless deformatios Y ,g= eformation do not coexisind at sufficiently largdJ/t it

—Yg and of the dimensionless coupling constarappear- has a lower energy than the PM dimerized phase. A first-
.k X o order phase transition between a PM phase and a SDW an-
ing in EqQ.(2). The mean-field Hamiltonian now reads

tiferromagnetic phase is then produced, for instance, by in-
creasingU/t at a fixed\. The value ofU/t at the phase

20 transition increases with increasing To be consistent with
the requirement thar?<1, we followed the transition line
up toA=0.5(see theU/t vs \ plane in Fig. 5.

On the other hand, i=0 andl >0, there are two pos-
sibilities: if | is small, the resulting CDW phase has dimer-
ized bonds, i.e.Y#0. As | is increased, the CDW phase
with dimerized bonds undergoes a second-order phase tran-
U/t=10.0 sition towards a CDW phase with undimerized bonds, where
Y=0 (see Fig. 4 and thel2t vs \ plane in Fig. 5.

WhenU, |, A>0, the phase diagram is divided into three
regions. For larg&J/t, a SDW is present and coexists with a
CDW as soon a$>0. The bonds in the spin-ordered phase
are never dimerizedY(=0). For largel/t, the pure CDW
. phase exists, and the bonds are not dimerized. Finally, for
smalll/t andU/t a PM phase exists, which is characterized
by dimerized bonds whex>0, and a finite CDW amplitude

FIG. 3. Charge-density-wave amplitude within the SB approxi-8S soon as>0. The transition between the CDW phases
mation as a function of [2t, for the representative valudg/t  With dimerized and undimerized bonds is of second order.
=0.0, 4.0, 10.0. The vertical lines in the coexistence regions locatd he SDW phase may either undergo a direct phase transition
the first-order AFM-PM phase-transition points and represent théo the CDW phase with undimerized bonds, or to the CDW
corresponding jumps in the CDW amplitude. phase with dimerized bonds, which in turn evolves continu-

U/t=0.00
2m,

15 [

1o b U/t=4.00

0.5

0.0

21/t
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C. Lattice dimerization

In this section we briefly describe the properties of the
Hubbard model in the presence of a coupling of the electron
density fluctuations to the lattice, through a coupling con-
stantg,. According to the general scheme of our paper, we
consider here only the cagg=0. The electronic properties
of the model will be discussed in terms of the change in the
atomic energyX=X,= — Xg associated with a lattice dimer-
ization, and of the effective coupling constdf) (both with
the dimensions of an energgppearing in Eq(2). We shall
also introduce the dimensionless parametge E,, /t, which
provides a measure of the deformation energy in the atomic
B limit (~Ep) with respect to the kinetic energy of the free
21/t electrons (-t). The mean-field Hamiltonian is then

FIG. 4. Mean-field value of the bond dimerizatigwithin the
SB approximation as a function ol 2 for the representative value  H = > (f;UfLQ o)
U/t=6 and different values of the dimensionless electron-lattice ko ’ '
coupling constank. It must be observed that the curves are purely
indicative of a generic behavior. Al/t=6, indeed, the PM phase
is a local minimum of the energy, but the SDW AFM phase has a
lower energy(see Fig. 5.

E,— 2t, cosk A, +X
A, +X E,+2t, cosk

N.U

fro
« +T(df\+dé)

X

fk+Q,o’

NS 2 2 2 2
. . . ) - ? E [AArr( pAzr+dA)+AB(r(pB(r+dB)]
ously towards the CDW with undimerized bonds, l&k is v
increased. It is interesting to observe that, at sufficiently

largeU/t, the bond dimerizatiolY in the CDW phase is first + % )\A( > pa,+es+di- 1)

increasing with increasing't, reaches a maximum, and then o

decreases until it vanishes at the phase transition to the CDW N

phase with undimerized bonésee Fig. 4 [Observe that this +\g| X Pa,+ea+da—1] [+ aE X2, (10
figure refers to a region of the parameter space where the PM 7 P

phase is a localmetastableminimum, and the AFM phase |t js evident that the change in the electronic spectrum due

has a_Iower energy. |_t iS_, however, indicative of_a gene_inLo the presence of the lattice deformatiddmay be discussed
b_ehav!or’g_A Sschemanc idea of the full phase diagram is i, tgrms of an effective external field=1 + X, so that letting
given in Fig. 5. X _T_ inarti =

We point out again that our analysis was limited to theA‘r ~|2 (Z}f; oAs), the quas_lpartlcle bands afg, U/2
values of\ such thaty?<1 and to values obJ/t not too = VA, +4t; cosk. Self-consistency may then be trivially
close to the Brinkman-Rice transition point in the PM Obtained from the results &, =0, given in Sec. lllA. In-
phasé®!° at which the effectivei.e., renormalized by slave deed, the a}ddltlongl self;consstenpy condition to fix the pa-
bosong hopping amplitude vanishes, so that the coupling of @MeterX simply givesX=_2E,me, i.e.,
electrons to the deformatioy |, loses its meaning within m,= (27— 21)/4te, . (11)
our approach. P
Thusm, is a linear function of the rati/t, for givenl/t,e,,.
On the other hand, the solution of the self-consistency equa-

tions (8) yields a functionmg(21/t) of the external field

st assumed as give(see Fig. 3 Full self-consistency is ob-
tained as the intersection of this curve and the straight line,
Eq. (11), for given values of P/t ande,,, yielding the self-

consistent values af, andT, from whichX=T—1 is finally
determined.

At 1=0,U=0, the slope of the curvmy(21/t) is infinite
and a CDW state develops as soonegs>0, due to the
perfect nesting of the Fermi surface. This is the so-called
Peierls instability. Atl =0,U>0, however, the slope of the

curve me(ZT/t) is finite and a finites, is needed to produce

a charge modulation with a CDW amplitude that increases

with increasinge, (see Fig. 6, whereas a phase with coex-
FIG. 5. Schematic phase diagram of the Hubbard model in thésting SDW amplitude and lattice deformation does not exist

presence of chemical and bond dimerization, within the SB approxiat smalle, and is a maximum of the free energy, with,

mation. The prefix d¢u-) stand for dimerizedundimerizedbonds.  decreasing with increasing,, for largee,.

SDW+CDW
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2me 2 consistent solution is very close to the solutiorz gt 0, the
1.8 - straight line, Eq(11), being almost vertical. However, ag
Tt is increased, the CDW amplitude increases much more effi-
161 .y Saa, ciently in the CDW phase, which is thus more and more
1.4} XXXX s competitive with the deformed SDW phase. At a certain
1.2] % . = 2;)2 ] critical value fore,, a first-order phase transition 'Fakes place
. % e =162 and at largere, the ground state of the system is PM. Im-
? # mediately above the phase-transition point, the deformed
0.8 \ £p=1.35 / SDW is still a local minimum of the free energy, but at large
0.6} / enoughe, a self-consistent solution with coexisting lattice
0.4 A 4 deformation(and related charge modulatioand SDW is no
¢ longer possible.
0.2 o . Finally, at U/t=0 a CDW phase exists at allt>0
05— e which is accompanied by a lattice deformation whgp-0.

FIG. 6. Charge-density-wave amplitude within the SB approxi-
mation as a function obl/t for different values of,,. The expo-

nential tails close to the critical pointRef. 11 are not shown.

Even neglecting the possibility for spin ordering, the

D. The neutral-ionic transition in mixed-stack systems

In this section we want to discuss in more detail the rel-
evance of the results discussed in Secs. Il A and Il B for a
class of organic mixed-stack donor-acceptor crystals, which

CDW phase eventually undergoes a phase transition toward8&Y be schematically described as a lattice of alternating

donor and acceptor atoms, each having two possible configu-

a state without deformation ds/t is increased! If &, is

large enough, this transition becomes of first order. To obtaif2tions: The acceptor may be found either in the neutral con-

the phase diagram, it is important to observe that in the unfiguration (of total chargeQ=0) or in the singly ionized

deformed phaseX=0) at1/t=0 the model reduces to the configuration(of totgl chargeQz —1) with one electron.in

pure Hubbard model at half-filling. For this latter it is well the lowest unoccupied atomic level of the neutral configura-
known that, within the SB approach, the antiferromagneticion- The energy difference between the two atomic configu-
phase always has a lower energy than the PM ph&sece rations, taken with a conventional minus sign, is the electron
a phase with both lattice deformation and antiferromagneti@finity — Ea of the acceptor. The donor is found either in the

structure is not possible at=0, the two competing phases Neutral configuratior{of total chargeQ=0), which we de-
are the CDW and the undeformed SCMThe transition is  SCTibe as the presence of two electrons of opposite spin in the

always of first order, the two phases having a different symhighest occupied atomic level of the valence multigtée

metry, and is located at,=U/t. The resulting phase dia- COT€ having a charg@cye= +2), or in the singly ionized
gram is given in Fig. 7. P configuration(of total chargeQ = +1) when one single elec-

When 1 >0, the possibility for a deformed SDW state tron is left in the highest occupied atomic level. The energy
arises. Indeeé the straight line, EA), meets the curves difference between the two atomic configurations, is the ion-
m (2T/t) at finite T and m, (see Fig. 3 WhenU/t=2I/t ization energyE;. The process of a second ionization is

e e . = ,

usually unfavorable for both atoms, and is neglected by tak-
the SDW phase has a lower energy than the CDW phase . P
e,=0 (see Sec. lIA and Fig. 2 At small ¢, the self- ﬁfg the respective energy scales to be infinitely large.

The above situation may be described by means of our
model Hamiltonian, Eq(1), in the limit U,l — oo, while the
difference 2—U stays finite. In such a limiting case the
acceptor sites correspond to tAesites(with local potential
+1) and the donor sites correspond to Bisites(with local
potential —1) of the lattice. In the neutral configuration, the
atomic energy per site id—21)/2, since theB site is dou-

. bly occupied and thé site is empty. In the ionized configu-

- ration the atomic energy per site is<1)/2=0 since both
the A and theB sites are singly occupied. All other configu-
ration are projected away in the limit considered here. The
parameteA ,=1—U/2 measures the energy involved in the

& 2.5

2t cDOW s .
(with lattice deformation) Ll

—<——= '

0.5} - SDW

(without lattice deformation)

5

charge transfer of one electron from the donor to the acceptor
and is relevant in the discussion of the resulting phase dia-
gram. We initially neglect the possibility for AFM spin or-
der.

In Fig. 8 we plot the number of electrons on the acceptor

FIG. 7. Phase diagram of the Hubbard model in the presence cHit€Na @S a function o /2t for different values of the ratio
a coupling of the local electronic density fluctuations to a latticeU/t, in the absence of bond dimerization= 0). The ionic
deformation within the SB approximation. The arrow indicates theand neutral phases are characterized igy-1/2 and n,
critical value ofe , beyond which an instability develops within the <1/2, respectively. At finiteJ/t there is a continuous cross-
CDW phase(see text

over from the neutral phase to the ionic phaseAgft is
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 U/t=8

A./2t
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FIG. 8. Density of electrons on the acceptor sitg, as a func-
tion of Ay/2t for U/t=10, 20, 40, 90. The exponential asymptotic
behavior was not plotted fdd/t>10. The transition point in the
limit U/t—o is marked on the horizontal axis. The possibility for
AFM spin ordering is neglected here.

FIG. 9. Bond dimerizationY as a function ofAy/2t for the
typical valueU/t=8 and dimensionless electron-lattice coupling
constani. =0.4, 0.5, 0.6. The neutral phase at lafgg?2t is always
undimerized. The vertical dashed lines locate the first-order transi-
tion points towards an undimerized SDW AFM phase, representing
the corresponding jumps in the bond dimerization. Yhaurves in

. -~ 12 s the metastable PM phase are represented by dashed lines. In this
Na(Ao/2t) becomes nonanalytical alo/2t=—4/m.” This region the AFM phase witlY=0 has a lower energy. In the inset,

point marks the transition to a fully ionized state, With e intersection of the energies in the dimerized PM phase, at the
=1 for Ao/2t<—4/m. This transition to a fully ionized yariousa (solid lines, same symbols as in the main figureith the

phase, which is equivalent to the SB description of thegnergy in the undimerized SDW AFM phatstashed line, indepen-
Brinkman-Rice transition in the Hubbard modef might be  dent of)) locate the first-order phase-transition points.

an artifact of our mean-field approach, and was not found
within a real-space renormalization-group approsddone-  the donor site. This has the effect of shifting the neutral-ionic
theless, the quantitative agreement with these results is vefjansition to larger values ay/2t, with a sizeable jump of
good, the acceptor occupancy being very close to unity in th&a at the transition point. Furthermore, a sizeable nearest-
ionic phase. neighbor Coulombic interaction term should preventshe-

Within our model, Eq(1), we may also discuss the effect rious appearance of an AFM ordérwithin the ionized
of a bond dimerization wheh>0. In Fig. 9 we show that Phase. The detailed analysis of these effects is beyond the
the bond dimerizatiory is maximum in the weakly ionized Scope of this paper and will be reported elsewHérd/e
phase, and decreasesm(gz[ is increased, until it vanishes limit ourselves to remark that our results are in gOOd qguan-
in the neutral phase, which is characterized by the absence 8fative agreement with previous real-space renormalization-
bond dimerizatiort* The behavior ofn, as a function of ~group results?
A/2t for different values ol is shown in Fig. 10. However, 10
if the possibility for a SDW solution is considered, a first i
ordered phase transition takes place between a dimerize: C
weakly ionized PM phase and an undimerized AFM phase as 08 I
A /2t is reduced. The transition point, according to the phase i
diagram in Fig. 5, is located a,/2t=—0.5 for largeU/t 06 |
andA =0, and is shifted to loweA /2t at finite \ (see the i
inset in Fig. 9. At the transition point the bond dimerization 2
Y jumps discontinuously to zero. However, the ionic PM
phase is still a local minimum of the energy, in the region -
where the AFM phase has a lower energy, and hysteresit oz [
phenomena are possible. The acceptor occupagptylarger A
in the AFM phase at the transition point. The corresponding
jump is marked in Fig. 10.

We point out that in our model, Eql), we neglected the Ao/t
effect of the Coulombic interaction in the ionized configura-
tion. If a term

decreased. In the limitU/t—«, however, the curve

0.4

0.0 L

FIG. 10. Density of electrons on the acceptor sitg, as a
function of Ay/2t for the typical valueU/t=8 and dimensionless
electron-lattice coupling constant=0.4, 0.5, 0.6. The curves col-

—VE 2 7|+U”f| u~f|++1 rhf‘|+1a' lapse in the undimerized neutral phase at lakgé&t. The topmost
T oo 7 ' solid line (independent of\) represents the acceptor occupancy in
the undimerized SDW AFM phase. The dashed vertical lines locate
is added to Eq(1), the Hartree contribution changésto  the first-order phase-transition poirteee Fig. 9, representing the
les=1+V(ng—n,), whereny is the number of electrons on corresponding jumps in the acceptor occupancy.
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IV. CONCLUSIONS all known numerical techniques, and in studying realistic
d(i.e., anisotropic, but not genuinely one-dimensiorafs-

We investigated the competition of spin ordering an M . . ¢ t papess th
dimerization by means of a generalized Hubbard model, botﬁemsj Or€OVEr, In a Series of recent papesbme autnors
onsidered models for ferroelectric perovskites and related

in the case when dimerization is associated with the appeaF—

ance of a charge modulation and when the dimerization ig"aterials, which are apparently close to our modg but
produced by a deformation of the bonds. We found thathey neglected the effect of a self-consistent response of the
when the dimerization is produced by an elastic deformationlatticé, so that the resulting phase diagrams cannot be di-
it is incompatible with spin ordering, i.e., the system is either"€ctly compared to ours in any relevant limiting case. There-
dimerized or antiferromagnetic. When the dimerization is0r€, only a few, well established, results of ours can be
imposed by some external fielgrovided, for instance, by a tested against numerical results, none of them concerning the
modulation of the chemical environment of the system competlt[on of charge and spin ordering in dimerized models
coexistence of spin order and dimerization becomes possibl&! iSSue in the present paper. "

As the strength of the intra-atomic potential responsible for AS far as the experimental situation is concernede

spin ordering is reduced, the SDW phase undergoes a firsP0int out that our r.esullts excludes the possibility of charge
order phase transition towards a PM dimerized phase, chafid Spin ordering in dimerized systems, unless a chemical

acterized by the presence of a CDW amplitude and/or a bondimerization forces a ch.arge—r.nodulated. state in tht_a system.
dimerization. Thus, most of the low-dimensional nesting-ty(me Peierl$

We also applied our model to describe, in a suitable im-CODW Systems, such as the molybdenum purple bronzes
iting case, the neutral-ionic transition occurring in mixed- KM0gO17 and NaM@Oy7, will not support a SDW. On the
stack donor-acceptor crystals. We found that the ionic phasgther hand, systems such aslZaSe or 2H-TaS, seem
is characterized by a lattice dimerization when the hoppingl€finitely non-Peierls CDW, so that other mechanisms for
term is coupled to an elastic lattice deformation, whereas th&DW formation must be involved. InT-TasS;, a strong in-
neutral phase is not dimerized. A first-order phase transitiof€Play between charge ordering and on-site correlation has
between a PM dimerized ionic phase and an AFM undimerPeen detected. Systems like this might be candidates for the
ized ionic phase is driven by the increasing influence of theoexistence of SDW and CDW, since the correlation-driven

on-site Hubbard term, in the absence of nearest-neighbor arilflott-Hubbard metal-insulator transition takes place within

long-range Coulomb interactions. a fully developed CDW state.
The limitations of our approach have been discussed in
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