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Single-patrticle-like states in few-electron quantum dots
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We investigate theoretically Raman spectra of few-electron quantum dots. Spectra obtained by an exact
many-body treatment and by a time-dependent local-density approximation are compared. We show that
single-particle-like excitations can be expected for systems with only six electrons. The energies of these
excitations are close to the Kohn-Sham level spacings.

Resonant Raman scattering by low-dimensional electroelectron interaction. We will show that single-particle-like
systems is still controversially discussed. Since the pioneeexcitations can be expected in systems with only six elec-
ing work of Pinczuket al,! one usually refers to the elec- trons. Exact numerical diagonalizations are compared to the
tronic excitations as charge-densi(€DE’s), spin-density results of an LDA calculation. The calculated polarized and
(SDE’'s), and the so-called single-particle excitationsdepolarized spectra are quantitatively very similar, which
(SPE’S. These three types of excitations are experimentallyproves that the SPE-like excitation is not an artifact of the
distinguished by polarization selection rules and have beehDA.
measured in two-dimensional2D),! 1D2® and 0D We consider a circular symmetric parabolically confined
systemé~® Quasiparticle excitations have been known for aGaAs quantum dot at a magnetic field®& 0 T. The extent
long time from experiments on bulk semiconductbmnd  of the electronic wave function in growth direction is ne-
consequently the energy of the broad peak, lying energetiglected. Throughout the paper we use the following param-
cally between the SDE and the CDE of a GaAs@4, _,As  eters:iwy=6 meV for the confinement energy of the dot,
quantum well, was identified with the single-particle sub-m*=0.07m, for the effective mass, and=12.53 for the
band spacing. Excitations that showed all the characteristiadielectric constant. Then the many-body Hamiltonian in sec-
of SPE’s were also found in 1D and OD systems, everond quantization reads
though it is known that in the extreme limits of a 1D Lut-
tinger liquid® and a two-electron quantum domo single- H_E + +E E
particle-like features occur in the spectra. It is therefore of = &7 €im&imo&imo
interest to examine the scattering mechanism of the SPE'’s,

a_md the guestion if there are any single—particle—l@ke excita- ><<i1m1i2m2|v|i3m3i4m4>aiTlmaniszZU,ai4m4a,ai3m30,
tions in the many-body spectrum of low-dimensional sys-
tems. 1)

_ According to the theory of Blufft there are two important \yherei andm label the radial and angular momentum quan-
ingredients for the calculation of the resonant Raman Crosg,m numbers respectively, andlabels the spin projection.

section: the two-particle correlatiqn funct_ion and theqpe one-body term is already diagonal with the energies
valence-band structure. The correlation function captures all

the many-body effects of the electron system in the conduc- €m=hwo(2i+|m|+1). 2

tion band whereas the energies of the valence-band states : I

determine the resonant enhancement of the scattering ampﬂimo and_aim(, are Crea"?” and a””_'h"a“?” opgrat_ors of an

tudes. Recent work concentrated on the Raman scattering §fECtron in a single-particle state with spin projectiorand

1D system&!! angd2 on the effect of the resonant enhancement® Orbital wave function

in quantum dots? In calculations within the local-density —rlim) — im

approximation? (LDA) it was shown that in extreme reso- Yim(r) =(r[im)=Ryn(r)e"m?. 3

nance additional modes appear in the spectrum of a 12Fhe radial wave functions are given by

electron quantum dot. These excitations were found to lie i

energetically close to the Kohn-Sham single-particle energy, . (=" [ il o[ T™ (T

differences and were therefore called SPE'’s. Many-body efRim(f)= o, Vai+mpre i, Ln 2/ )

fects were treated within the LDARefs. 13-1% of the 0

density-functional theory’~*° wherel ,= VA/(m* w,) is the characteristic length of the har-
In this paper we concentrate on the other aspect of resgnonic oscillator and.'nm| are the Laguerre polynomials. The

nant Raman scattering, namely, the many-body electron€oulomb matrix elements are given by

i1ii3i gmimomamyoa’

2 U (DB 0 (0 (D) i ()
e fdzrdzr’ 1My 2My 33 . (5)

(i1myioma| Vi smai smy) :477660

r=r’]
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For the calculation of the low-lying eigenstatestbfve em-
ploy standard diagonalization techniques as described i
Refs. 20—29. The LDA calculations are described in Ref. 12
In a second step the nonresonant Raman cross sectibn at
=0 K is calculated frorf

d?c B
dQdw

w
hﬁglmmlzaEp—El—ﬁw), 6)

where |[F) is an exact many-particle state afid is the

BRIEF REPORTS

15601

tional many-body states that have excitation energies very
olose to the Kohn-Sham level spacings. The higher-energy
state hass=0, the lower-energy stat®=1.

The spectra in Fig. 2 are calculated from E). The
upper figure shows spectra obtained from the exact diagonal-
ization, the lower figure spectra which are calculated within
the time-dependent LDATDLDA). In both treatments we
find the collective CDE, the Kohn’s mode, at the energy of
the external potentialti{wy,=6 meV). The energy of the col-
lective SDE is shifted to lower values in the TDLDA com-

ground state. In the nonresonant case the transition matriared to the exact calculation. This is due to the lack of

elementM¢, is given by

>

i lmli oMy

Mg <i1m1(7|eiq'r|i2m20><F|aiT1mlgai2mza||>

(7)
for the CDE'’s and

>

i1myiomyo

Mg, = (i1myof Uzeiq‘r“2m20'><F|aiT1m1(rai2m2(r| )

®

for the SDE’s.q=Kk;—K is the wave vector which is trans-
ferred in the inelastic light scattering process whkeandk

are the wave vectors of incident and scattered light, respec

tively.

Figure 1 compares the energy levels obtained within the

correlations in the LDA ground state. As discussed in Ref.
21 for the quantum-dot helium, angular correlations are more
important for the spin-singlet ground state than for Be
=1 excited state, which is better described by the LDA. As
a result the energy of the ground state is strongly decreased
by the correlations and the SDE is higher in energy in the
exact treatment. The important result is that single-particle-
like excitations are found in both treatments with comparable
energies and excitation strengths. The energies of these
modes are close to the Kohn-Sham single-particle level spac-
ings and carry only small contributions from collective dy-

exakt: AM =1 ]

LDA with the exact many-body energies. The left-hand side
shows the self-consistent potential and the three lowest elec
tronic shells of a six-electron dot. The degeneracy of the
third shell is lifted due to the electron-electron interaction.
The figure on the right-hand side displays the many-body
energies. The ground state is a spin-singlet state with the ¢

™ el el e st g

total angular momenturivi =0. We consider excited states

§u

with M=1 andS,=0. ForS=1 statesS, can be+1, 0, or -] A
—1, whileM is fixed. But for the case of zero magnetic field, .z \
which we consider here, the exact many-particle states Witk‘e -’ ~ A
S,=*1 are energetically degenerate with the st8je0. g \
Therefore, we consider th8,=0 states only. We find two > \ TDLDA: AM = 1
low-lying singlet and two triplet states. The transition to the '%' B \ .
! L - y
S=0 state with an excitation energy afE=6 meV is the c b
Kohn’s mode, which is usually referred to as a collective @ §
CDE. It is shifted to higher energies compared to the single- € :' T
particle energy differences. The lowest-energy state With .:
=1, which is anS=1 state, is identified as the collective I -
SDE. The interesting result is that we find exactly two addi- :I
1
h . A
§=0 6 % ;I‘
o " CDE/ gpge S=0 £ 1
z" Ny = A R X
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FIG. 1. Single-particléleft figure) and many-particléright fig-
ure) states of a six-electron quantum did. is the total angular
momentum,S the total spin, and, the spin projection irz direc-
tion. The single-particle quantum numbers arandn wherem is
the single-particle angular momentum amds the radial quantum
number.

FIG. 2. Calculated nonresonant Raman spectra for a six-electron
guantum dot. The upper figure shows spectra obtained within an
exact calculation the lower figure those of a time-dependent LDA
treatment. The solid and dashed lines represent polarized and depo-
larized spectra, respectively. All spectra are calculated for a lateral
wave-vector transfer offj=1x10° cm! and a change in the an-
gular momentum oAM=1.
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namical shifts. The LDA result for a six-electron dot is very with electron numbers as low as six. The energies of these
similar to that of a 12-electron system. The only difference isexcitations are very close to the self-consistent Kohn-Sham
that in the case of three filled electronic shells, two SPE’devel spacing. We therefore call these excitations SPE-like.
show up in the spectra for each polarization. For a growingNe conclude that these SPE’s are accurately described by a

number of occupied shells these excitations emerge to thepL.DA. However, the energy of the collective SDE is un-
broad peak, which is usually observed in quantum dots withyerestimated within the TDLDA.

many electrons. . )
In summary we have theoretica"y analyzed the many- This work has been partla”y funded by the Deutsche For-

body excitations of a six-electron quantum dot. We haveschungsgemeinschaft under Grants Nos. Hel938/6 and
shown that, besides the well-known SDE's and CDE's,Hel1938/7, the Graduiertenkolleg “Physik Nanostrukturierter

single-particle-like excitations can be expected in system&estkaper,” and the SFB 508.
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