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Photon modes in photonic crystals undergoing rigid vibrations and rotations
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We explore the nature of photon modes associated with photonic crystals undergoing rigid time-dependent
spatial displacements in a noninertial frame of reference and prove that under certain conditions these modes
retain many of the spatial symmetries allowed in a static photonic crystal. Moreover, it is proved quite
generally that such noninertial modes possess a temporal Bloch-like symmetry. Conserved “quantum num-
bers” are identified and a convenient scheme for labeling noninertial modes is presented.

The idea of using periodic dielectric materidfshotonic  \heree(r t) is a spatially periodic time dependent function
crystal$ to alter the dispersion relation of photdn$ has such that there exist® so that for allf: e(r+ ﬁ—&(t))

received widespread interest and consideration because of - - -

numerous potential applicatioist has been shown by sev- :Ie(rh_l'ﬁ(t%% andA(tﬁﬁ(tlJ 2.77/t§hl)' We.novg{ p:rove that a

eral author&™” that passive elements such as waveguidd> 0ch-like theorem still holds in the noninertial case.
bends, channel drop filters, mirror surfaces, etc. can be sub- T_o prove the the_orem we search_ for a solut!on to the

stantially improved if constructed on the basis of photonichninertial problem in a complete plain wave basis

crystals. Recently, a strong interest has developed for the - .

incorporation of nonlinear materials into photonic crystals. H(r.0) :f did H(k o) IIZ ) @)
Investigations in the framework of field-dependent dielectric E(r,t) @ E(K,w) Oh

media have led to several suggestfbi8on the possibility

of constructing active elements such as optical switches, anghere we define |I2,w):[1/(277)2]expGIZ~ F—iwt) and

on the realization of dynamical effects such as second<|zo,wo||2,w>:5(|20_|2) 8(wo— o).

harmonic generation and induced interband transitions in ‘sypstituting Eq(2) into Maxwell's equations Eq1) and
hotonic crystals. In all of these studies, the photonic crystal A : W .

gre constrained to be in a static, or inertial,pframe of refer—ﬁmltlplylng both sides by (1j(ko, ol we obtain

ence. Nevertheless, it should be possible to develop active R R e

photonic crystal elements even wilinear materials by O=H(ko,w0)><k0—f dkdw —E(k, )

working with nonstationaryphotonic crystal$? Before one ¢

can begin to explore this possibility it is necessary to have a R . R R R
fundamental framework of understanding of the nature of the X (Ko, wole(r—A(t))|k, ) —i f dkdwE(K, o)
photonic states in such noninertial systems.

In this Brief Report, we explore the properties of photon . de(r—A(1)| -
modes associated with photonic crystals undergoing rigid X\ Ko, wo| —-—— |k, €

time-dependent spatial vibrations and rotations in the nonrel-
ativistic limit. Several fundamental theorems about the form ®
and the symmetries of the resulting electrqmagnetlc modes 0=E(Kg,wo) X ko+ —OH(kO,wO).

in a noninertial frame are presented. Specifically, we prove c

that photonic crystals undergoing such rigid displacements )

can exhibit solutions that, under certain circumstances, ex- & now proceed to evaluate the integrals over the wave
hibit Bloch-like spatial and temporal translational symme-Vvector space in Eq3). Sincee(r +R) = €(r) we can repre-
tries and/or point-subgroup rotational symmetries. To ousent a dielectric function in the reciprocal vector space as
knowledge, this is the first time photonic crystals have beer(r) =3 zegexp(G-r). Substituting this representation of

investigated in a noninertial frame of reference. €(r) into Eq. (3) the first integral can be written
We begin by considering the case of a photonic crystal

rigidly vibrating with an amplitudeA and a driving fre- . w R S .

quencyQ. In this case Maxwell's equations take the form f dkdwEE(k,w)(ko,wdf(f—A(t))|k,w>

JE(F)  ae(F—A(1) ded “ERw)D
N S r, e(r— N = w— , W €G
= — ) c =
VXH(r,t)=e(r—A(t)) oot + oot E(r,t), g
X (Ko, wo|€xpliG - —iG - A(1))|K, w). (4)
VXE(F t)=— IH(r,1) , 1) Now the spatial part of the matrix element can be trivially
cot calculated to give
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<E01w0|exrxléF_Iég(t))“zaa)) (H(E05w0))
I | _ o E(Ko, @)/
= 6(k+G—ko)2—f dtexpli(wg— w)t—1G-A(t)).
™ the harmonics with the satellite frequencieg+ 2 and am-
(5) plitudes

Since&(t) is a periodic function of time with period2/(},

the integral over time can be rewritten in the following way: H(ko, 0o 1102)

E(Ko,wo+19Q)

1 _ -
ﬁf dtexpli(wo— )t=iG-A(L) are also present. And finally, for a givég there will be a

discrete set ofvg,'s which satisfy Eq(9). Thesew,,'s are

_ § exd i (wg— )2_7T| if”’“dt analogous to the photon bands of the static photonic crystal.
15 @@ 27 )0 In general therefore, any time dependent solution
X exp(i (wg— w)t—iG-A(t)). (6) Ho(F)t)
Using the identity =, _expli(wo—w)(27/Q)]) Eq(r,t)

=03""  8(w—(wo+1Q)) one finally arrives at
of Eg. (1) can be expressed in a basis set of noninertial
modes each satisfying E¢l) and characterized by a set of

> w i O i
f dkdwEE(k'w)<k0'w0|6(r —AM)lkw) “good” quantum numberk and e, SO that

1 oL ) - . L.
=23 e 2 E(Ko—G g tQ)(wot1Q) Hio 0,11 < [H(k=G,0,+1Q)
~ |=—o > = S >
’ Eigo(r,t)) G 1=-= | E(k=G,0,+1Q)
QO (270 o . "
X5x ) dtexp(—iG-A(t)—il Qt). 7) xexpli(K—G)-r—i(w,+1Q)t).
Proceeding in exactly the same fashion, the second integral (10

in Eq. (3) can be manipulated to give It is straightforward to see that such modes possess a spatial

- and temporal Bloch symmetry
[ akdor k)| Rovoo ok
| [0 ( ,a)) 0,Wo T s o o
Hy r+Rt+—
. oo ) ) k,Q,wn QO L 2ar
=—=2 € 2 E(ko—G,0p+1Q) o om | TRk R-lwn G
¢ n=x Efio.w r+R,t+—)
: Q
QO (2w . )
xlﬂzfo dtexp(—iG-A(t)—ilQt). (8 Hi 0,0, (T1)
X R . (11
Combining the results above, we arrive at the following form ElZ,Q,wn(f )

of Maxwell's equations in the wave vector representation:
e Further symmetries are possible by considering a point
0=H(Ky, w0) X k—a_@ S e S ERy— Gy group operatof? such that the vector of vibratlor& s left
¢ G I=-= invariant undelOA =A. In this case substitutinig by Ok in
Eq. (9) and acting withO~* from the left and remembering

2m/Q
+|Q)ZQ_TJ0 dtexp(—iG-A(t)—il Qt), that e5;= ¢ for any reciprocal vecto6, one can derive
e =, Y0, 0=0"H(OKy, wo) Xkg— 2 D e
0=E(Ko, o) Xko+-=H(ko,wo). 9 0TI & 6
. . . 1o 210
There are three immediate conclusions that can be»drawn % Z @_1E(©(EO_G)MO+,Q)EJ T dt
from the form of Eq.(9). First, modes with differenkg I=—c 2mJo

within the conventional Brillouin zone do not mix so that it

is still possible to define a “good” quantum numuéyfor a
vibrating photonic crystal, regardless of the direction of
vibration!! Secondly, for a given mode with a native band
frequencywq and amplitude

xexp(—iG-A(t)—il Qt),

—A-1E(AK = P0a 1 AR
0=0 E(Oko,(l)o)xko"_ c O H(Oko,wo). (12)
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This equation has exactly the same form as @ .thus Rewriting the modes in the plain wave basis set and em-
implying that for any vectok, CA)*lH(C)IZ,w)zH(IZ,w) and ploying the same techniques as in the previous section we
wn(ék’) _ wn(E)_ arrive at

From this, it immediately follows that under the condi-
tions OA=A the noninertial electromagnetic modes of a =0 2
photonic crystal will possess the additional symmetry 0= H(ko 0o ><k0—— E s ZJ dt

|=—o 0
.~ Hok 0,0 (1:1) Hi0,0, (071,10
o~ - = f e | (13 E(kog—(€q-G)-eq+V,oi(t), wo+1Q)exp —il Qt),
Eoko.w (M) | Eigw (071 °

If in addition to OA=A, the wave vectok satisfiesOk i w
=k+G then the discrete sab,(k) can be designated in 0=E(ko,wp) Xko+ ~~H(ko,wo), (15
terms of irreducible representations of a subgrpdp of the

original small point group ok in the standard way. R o L
Let us now turn to the case of a photonic crystal rigidlywhere we define V. (t)=(eq X G)sin(Qt)—(enXG)

rotating with an angular frequencﬂ=éﬂﬂ. In this case xéﬂ cos().

Maxwell's equations take the form The general solution to Eq15) does not possess Bloch-
i o aE(F,t) ae(F(ﬁ,t)) i I?ke character. To obtain a Bloch form we must restéigtto .
VXH(r,t)=e(r(Q,t)) R ——— E(r,1), lie alon_g one of tfje r?al space lattice vectors. Und_er this
constraint, the sete(, - G) - e, represents a sef, of recip-
i (1) r(_)cal Igttice ve_cto_rs associated with an effective one-
VXE(F,t)=— e (14) dimensional periodic structure. Thus from E@5) one can

easily deduce thaﬁo will only couple to wave vectors of the
where form k= (Ko- €0) - €0+ g+ Sorn Where S, is any vector
in the space orthogonal &, .

r(Q.)=eq-(€q:r)+(enXxr)sin(t)+(eqXT) The electromagnetic fields in real space can then be

X 60, COL Q). expandef as
H‘”O'Q(F’t) D = f o ( H((Eo'éﬂ)'éﬂ_éﬂ+§orthva'HQ)
- = h L s > - —
Eup0(l) ) 6o 1= E((ko-€0)-€0—go+ Shyrth,wo 1)
X expli[ (Ko~ €q) - €q—dq + Sorn] - T —i(wo+1Q)1). (16)

Since,§Q was chosen in such a way th{ajﬂ} is a reciprocal space for some effective one-dimensional periodic structure
with a periodR,=Rg€ , it follows immediately that Eq(16) can be written in Bloch form. In particular, for such a mode
there will exist a “good” quantum numberk( e,) - eq=Kko€q and a set of continuous intervals efs*® so that

Hi, 00| T+ Ra,t+

W)
0 2
:ex%ikQRQ_iwﬁ) (17)

. 2
EkQ,Q,w r+RQ g+ E

HkQ,Q,w(Fat))

Ex, .0.0(1\1)

Further symmetries can be deduced if we also restricsuch thatDe,=¢,, . In this case, substituting, by Ok, in Eq.
(15), acting withO~* from the left, and remembering thagc= eg for any reciprocal vectoB, gives

w o
0:6-1H(6|20,w0)><|§—?° > e
G

1Q a R N N
dtO EO[Ky— (8- G) - 6+ V,or(1) ], wo+ 1 Q)exp —il Q1),

(o)

|=—o 2 0

& E(ORy,mg) X Ko+ 22 H(OR
0=0 E(Oko,wo)Xk0+ c O H(Oko,wo). (18)
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By comparing Eq(18) with Eq. (15) it follows that for any

vectork, O~ 'H(OK,w) =H(K, ). Substitution of this result

into Eq. (16) leads to the following additional symmetry

properties for the solution:
Hy, .0,.(0r,t) Hi, .0.0(1 1)

.o = - . (19

Ex,.0.0(0r,1) Exy.0.0(0)

For both the rotation and vibration scenarios thg ()
spectrum will generally be rather complex. To illustrate what
this spectrum will typically consist of consider the following
argument. Since changing,({)) to w,(Q)+1Q for any
integer!| leads to the same stdteee Egs(10) and(16)], all
the labelsw,(}) can be mapped trivially to the interval
[—Q/20Q/2]. For any proper choice of wave vector, each
correspondingy,({2) will be a band of modes as sketched in
Fig. 1. Since plotting a complete band structure is very in-
volved, it is instructive to illustrate a simple case where we
only have two bands and where coupling between the modes
is very weak(that corresponds ta)/c—0 for vibrations FIG. 1. Noninertial band structure as a function of driving fre-
andLQ/c—0 for rotations. Under these conditions the fre- quency() is presented for a case of two nonstationary modes. For

guencies of the bands folded into the interjal()/2,0/2],
wy(Q), will correspond approximately t@,(Q)=w,(0)
+1Q over the whole range of a driving frequenfy. For a

each value ofQ) the frequencies of the bands, ()~ w; 0)
+1, 00 are mapped into the interval—(/2/2]. For a set of
driving frequencie$) = (w,— w4)/l bands will exhibit a near cross-

special set of driving frequenci€® = (w,— w,)/l, bands of N9 as shown in the inset.

the same symmetry will exhibit a near crossiimgset on Fig.
1). The amplitude of this splitting will be proportional to the and rotations to induce interband transitions between the
coupling parameter and will become vanishingly small as thgyhoton crystal modes in a novel and controlled fashion with-

value ofl increases. In practice, therefore the major splittingout the necessity of employing nonlinear materials.
will occur at the primary interband resonant frequeriey , )
~w,— ;. The approach described above can, of course, be We would like to thank Professor Conyers Herring for a

clude with the observation that in the weak coupling limit it Part by the MRSEC Program of the NSF under Grant No.

can be showH that a possibility exists of using vibrations DMR-9400334.
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