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Photon modes in photonic crystals undergoing rigid vibrations and rotations

Maksim Skorobogatiy and J. D. Joannopoulos
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~Received 15 March 2000!

We explore the nature of photon modes associated with photonic crystals undergoing rigid time-dependent
spatial displacements in a noninertial frame of reference and prove that under certain conditions these modes
retain many of the spatial symmetries allowed in a static photonic crystal. Moreover, it is proved quite
generally that such noninertial modes possess a temporal Bloch-like symmetry. Conserved ‘‘quantum num-
bers’’ are identified and a convenient scheme for labeling noninertial modes is presented.
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The idea of using periodic dielectric materials~photonic
crystals! to alter the dispersion relation of photons1–3 has
received widespread interest and consideration becaus
numerous potential applications.4 It has been shown by sev
eral authors4–7 that passive elements such as wavegu
bends, channel drop filters, mirror surfaces, etc. can be
stantially improved if constructed on the basis of photo
crystals. Recently, a strong interest has developed for
incorporation of nonlinear materials into photonic crysta
Investigations in the framework of field-dependent dielec
media have led to several suggestions8–10 on the possibility
of constructing active elements such as optical switches,
on the realization of dynamical effects such as seco
harmonic generation and induced interband transitions
photonic crystals. In all of these studies, the photonic crys
are constrained to be in a static, or inertial, frame of ref
ence. Nevertheless, it should be possible to develop ac
photonic crystal elements even withlinear materials by
working with nonstationaryphotonic crystals.14 Before one
can begin to explore this possibility it is necessary to hav
fundamental framework of understanding of the nature of
photonic states in such noninertial systems.

In this Brief Report, we explore the properties of phot
modes associated with photonic crystals undergoing r
time-dependent spatial vibrations and rotations in the non
ativistic limit. Several fundamental theorems about the fo
and the symmetries of the resulting electromagnetic mo
in a noninertial frame are presented. Specifically, we pr
that photonic crystals undergoing such rigid displaceme
can exhibit solutions that, under certain circumstances,
hibit Bloch-like spatial and temporal translational symm
tries and/or point-subgroup rotational symmetries. To
knowledge, this is the first time photonic crystals have be
investigated in a noninertial frame of reference.

We begin by considering the case of a photonic crys
rigidly vibrating with an amplitudeD and a driving fre-
quencyV. In this case Maxwell’s equations take the form

¹3H~rW,t !5e„rW2DW ~ t !…
]E~rW,t !

c]t
1

]e„rW2DW ~ t !…

c]t
E~rW,t !,

¹3E~rW,t !52
]H~rW,t !

c]t
, ~1!
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wheree(rW,t) is a spatially periodic time dependent functio
such that there existsRW so that for all rW: e„rW1RW 2DW (t)…
5e„rW2DW (t)… andDW (t)5DW (t12p/V). We now prove that a
Bloch-like theorem still holds in the noninertial case.

To prove the theorem we search for a solution to
noninertial problem in a complete plain wave basis

S H~rW,t !

E~rW,t !
D 5E dkWdvS H~kW ,v!

E~kW ,v!
D ukW ,v&, ~2!

where we define ukW ,v&5@1/(2p)2#exp(ikW•rW2ivt) and

^kW0 ,v0ukW ,v&5d(kW02kW )d(v02v).
Substituting Eq.~2! into Maxwell’s equations Eq.~1! and

multiplying both sides by (1/i )^kW0 ,v0u we obtain

05H~kW0 ,v0!3kW02E dkWdv
v

c
E~kW ,v!

3^kW0 ,v0ue„rW2DW ~ t !…ukW ,v&2 i E dkWdvE~kW ,v!

3K kW0 ,v0U ]e„rW2DW ~ t !…

c]t
UkW ,vL , ~3!

05E~kW0 ,v0!3kW01
v0

c
H~kW0 ,v0!.

We now proceed to evaluate the integrals over the w
vector space in Eq.~3!. Sincee(rW1RW )5e(rW) we can repre-
sent a dielectric function in the reciprocal vector space
e(rW)5(GW eGW exp(iGW •rW). Substituting this representation o
e(rW) into Eq. ~3! the first integral can be written

E dkWdv
v

c
E~kW ,v!^kW0 ,v0ue„rW2DW ~ t !…ukW ,v&

5E dkWdv
v

c
E~kW ,v!(

GW
eGW

3^k0 ,v0uexp„iGW •rW2 iGW •DW ~ t !…ukW ,v&. ~4!

Now the spatial part of the matrix element can be trivia
calculated to give
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^kW0 ,v0uexp„iGW •rW2 iGW •DW ~ t !…ukW ,v&

5d~kW1GW 2kW0!
1

2pE dt exp„i ~v02v!t2 iGW •DW ~ t !….

~5!

SinceDW (t) is a periodic function of time with period 2p/V,
the integral over time can be rewritten in the following wa

1

2pE dt exp„i ~v02v!t2 iGW •DW ~ t !…

5F (
l 52`

1`

expS i ~v02v!
2p

V
l D G 1

2pE0

2p/V

dt

3exp„i ~v02v!t2 iGW •DW ~ t !…. ~6!

Using the identity ( l 52`
1` exp„i (v02v)(2p/V) l …

5V( l 52`
1` d„v2(v01 lV)… one finally arrives at

E dkWdv
v

c
E~kW ,v!^k0 ,v0ue„rW2DW ~ t !…ukW ,v&

5
1

c (
GW

eGW (
l 52`

1`

E~kW02GW ,v01 lV!~v01 lV!

3
V

2pE0

2p/V

dt exp„2 iGW •DW ~ t !2 i l Vt…. ~7!

Proceeding in exactly the same fashion, the second inte
in Eq. ~3! can be manipulated to give

i E dkWdvE~kW ,v!K kW0 ,v0U ]e„rW2DW ~ t !…

c]t
UkW ,vL

52
1

c (
GW

eGW (
n52`

1`

E~kW02GW ,v01 lV!

3 lV
V

2pE0

2p/V

dt exp„2 iGW •DW ~ t !2 i l Vt…. ~8!

Combining the results above, we arrive at the following fo
of Maxwell’s equations in the wave vector representation

05H~kW0 ,v0!3k0
W2

v0

c (
GW

eGW (
l 52`

1`

E~kW02GW ,v0

1 lV!
V

2pE0

2p/V

dt exp„2 iGW •DW ~ t !2 i l Vt…,

05E~kW0 ,v0!3k0
W1

v0

c
H~kW0 ,v0!. ~9!

There are three immediate conclusions that can be dr
from the form of Eq.~9!. First, modes with differentkW0
within the conventional Brillouin zone do not mix so that
is still possible to define a ‘‘good’’ quantum numberkW0 for a
vibrating photonic crystal, regardless of the direction
vibration.11 Secondly, for a given mode with a native ban
frequencyv0 and amplitude
ral

n

f

S H~kW0 ,v0!

E~kW0 ,v0!
D ,

the harmonics with the satellite frequenciesv01 lV and am-
plitudes

S H~kW0 ,v01 lV!

E~kW0 ,v01 lV!
D

are also present. And finally, for a givenkW0 there will be a
discrete set ofv0,n’s which satisfy Eq.~9!. Thesev0,n’s are
analogous to the photon bands of the static photonic crys

In general therefore, any time dependent solution

S HV~rW,t !

EV~rW,t !
D

of Eq. ~1! can be expressed in a basis set of noniner
modes each satisfying Eq.~1! and characterized by a set o
‘‘good’’ quantum numberskW andvn so that

S HkW ,V ,vn
~rW,t !

EkW ,V ,vn
~rW,t !

D 5(
GW

(
l 52`

1` S H~kW2GW ,vn1 lV!

E~kW2GW ,vn1 lV!
D

3exp„i ~kW2GW !•rW2 i ~vn1 lV!t….

~10!

It is straightforward to see that such modes possess a sp
and temporal Bloch symmetry

S HkW ,V,vnS rW1RW ,t1
2p

V D
EkW ,V,vnS rW1RW ,t1

2p

V D D 5expS ikW•RW 2 ivn

2p

V D

3S HkW ,V,vn
~rW,t !

EkW ,V,vn
~rW,t !

D . ~11!

Further symmetries are possible by considering a po
group operatorÔ such that the vector of vibrationsDW is left
invariant underÔDW 5DW . In this case substitutingkW by ÔkW in
Eq. ~9! and acting withÔ21 from the left and remembering
that eÔGW 5eGW for any reciprocal vectorGW , one can derive

05Ô21H~ÔkW0 ,v0!3k0
W2

v0

c (
GW

eGW

3 (
l 52`

1`

Ô21E„Ô~kW02GW !,v01 lV…

V

2pE0

2p/V

dt

3exp„2 iGW •DW ~ t !2 i l Vt…,

05Ô21E~ÔkW0 ,v0!3k0
W1

v0

c
Ô21H~ÔkW0 ,v0!. ~12!
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This equation has exactly the same form as Eq.~9! thus
implying that for any vectorkW , Ô21H(ÔkW ,v)5H(kW ,v) and
vn(ÔkW )5vn(kW ).

From this, it immediately follows that under the cond
tions ÔDW 5DW the noninertial electromagnetic modes of
photonic crystal will possess the additional symmetry

Ô21S HÔkW ,V,vn
~rW,t !

EÔkW ,V,vn
~rW,t !

D 5S HkW ,V,vn
~Ô21rW,t !

EkW ,V,vn
~Ô21rW,t !

D . ~13!

If in addition to ÔDW 5DW , the wave vectorkW satisfiesÔkW

5kW1GW then the discrete setvn(kW ) can be designated in
terms of irreducible representations of a subgroup$Ô% of the
original small point group ofkW in the standard way.

Let us now turn to the case of a photonic crystal rigid
rotating with an angular frequencyVW 5eWVV. In this case
Maxwell’s equations take the form

¹3H~rW,t !5e„rW~VW ,t !…
]E~rW,t !

c]t
1

]e„rW~VW ,t !…

c]t
E~rW,t !,

¹3E~rW,t !52
]H~rW,t !

c]t
, ~14!

where

rW~VW ,t !5eWV•~eWV•rW !1~eWV3rW !sin~Vt !1~eWV3rW !

3eWV cos~Vt !.
Rewriting the modes in the plain wave basis set and e
ploying the same techniques as in the previous section
arrive at

05H~kW0 ,v0!3k0
W2

v0

c (
GW

eGW (
l 52`

1`
V

2pE0

2p/V

dt

E„kW02~eWV•GW !•eWV1VW rot~ t !,v01 lV…exp~2 i l Vt !,

05E~kW0 ,v0!3k0
W1

v0

c
H~kW0 ,v0!, ~15!

where we define VW rot(t)5(eWV3GW )sin(Vt)2(eWV3GW )

3eWV cos(Vt).
The general solution to Eq.~15! does not possess Bloch

like character. To obtain a Bloch form we must restricteWV to
lie along one of the real space lattice vectors. Under t

constraint, the set (eWV•GW )•eWV represents a setgW V of recip-
rocal lattice vectors associated with an effective on
dimensional periodic structure. Thus from Eq.~15! one can

easily deduce thatkW0 will only couple to wave vectors of the

form kW5(kW0•eWV)•eWV1gW V1SW orth whereSW orth is any vector

in the space orthogonal toeWV .
The electromagnetic fields in real space can then

expanded12 as
cture
de
S Hv0 ,V~rW,t !

Ev0 ,V~rW,t !
D 5(

GW V

(
l 52`

1` E dSW orthS H„~kW0•eWV!•eWV2gW V1SW orth ,v01 lV…

E„~kW0•eWV!•eWV2gW V1SpW orth ,v01 lV…

D
3exp„i @~kW0•eWV!•eWV2gW V1SW orth#•rW2 i ~v01 lV!t…. ~16!

Since,eWV was chosen in such a way that$gW V% is a reciprocal space for some effective one-dimensional periodic stru
with a periodRW V[RVeWV , it follows immediately that Eq.~16! can be written in Bloch form. In particular, for such a mo
there will exist a ‘‘good’’ quantum number (kW•eWV)•eWV[kVeWV and a set of continuous intervals ofv ’s13 so that

S HkV ,V,vS rW1RW V ,t1
2p

V D
EkV ,V,vS rW1RW V ,t1

2p

V D D 5expS ikVRV2 iv
2p

V D S HkV ,V,v~rW,t !

EkV ,V,v~rW,t !
D . ~17!

Further symmetries can be deduced if we also restricteWV such thatÔeWV5eWV . In this case, substitutingkW0 by ÔkW0 in Eq.
~15!, acting withÔ21 from the left, and remembering thateÔGW 5eGW for any reciprocal vectorGW , gives

05Ô21H~ÔkW0 ,v0!3k0
W2

v0

c (
GW

eGW (
l 52`

1`
V

2pE0

2p/V

dtÔ21E„Ô@kW02~eWV•GW !•eWV1VW rot~ t !#,v01 lV…exp~2 i l Vt !,

05Ô21E~ÔkW0 ,v0!3k0
W1

v0

c
Ô21H~ÔkW0 ,v0!. ~18!
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By comparing Eq.~18! with Eq. ~15! it follows that for any
vectorkW , Ô21H(ÔkW ,v)5H(kW ,v). Substitution of this result
into Eq. ~16! leads to the following additional symmetr
properties for the solution:

Ô21S HkV ,V,v~ÔrW,t !

EkV ,V,v~ÔrW,t !
D 5S HkV ,V,v~rW,t !

EkV ,V,v~rW,t !
D . ~19!

For both the rotation and vibration scenarios thevn(V)
spectrum will generally be rather complex. To illustrate wh
this spectrum will typically consist of consider the followin
argument. Since changingvn(V) to vn(V)1 lV for any
integerl leads to the same state@see Eqs.~10! and~16!#, all
the labelsvn(V) can be mapped trivially to the interva
@2V/2,V/2#. For any proper choice of wave vector, ea
correspondingvn(V) will be a band of modes as sketched
Fig. 1. Since plotting a complete band structure is very
volved, it is instructive to illustrate a simple case where
only have two bands and where coupling between the mo
is very weak~that corresponds toDV/c→0 for vibrations
andLV/c→0 for rotations!. Under these conditions the fre
quencies of the bands folded into the interval@2V/2,V/2#,
vn(V), will correspond approximately tovn(V).vn(0)
1 lV over the whole range of a driving frequencyV. For a
special set of driving frequenciesV5(v22v1)/ l , bands of
the same symmetry will exhibit a near crossing~inset on Fig.
1!. The amplitude of this splitting will be proportional to th
coupling parameter and will become vanishingly small as
value of l increases. In practice, therefore the major splitt
will occur at the primary interband resonant frequencyV
;v22v1. The approach described above can, of course
readily generalized to include more bands. Finally, we c
clude with the observation that in the weak coupling limit
can be shown14 that a possibility exists of using vibration
Re

p
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t

-
e
es

e

e
-

and rotations to induce interband transitions between
photon crystal modes in a novel and controlled fashion w
out the necessity of employing nonlinear materials.

We would like to thank Professor Conyers Herring for
useful discussion of this work. This work was supported
part by the MRSEC Program of the NSF under Grant N
DMR-9400334.

FIG. 1. Noninertial band structure as a function of driving fr
quencyV is presented for a case of two nonstationary modes.
each value ofV the frequencies of the bandsv1,2(V)'v1,2(0)
1 l 1,2V are mapped into the interval@2V/2,V/2#. For a set of
driving frequenciesV5(v22v1)/ l bands will exhibit a near cross
ing as shown in the inset.
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