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Breakdown of Luttinger liquid state in a one-dimensional frustrated spinless fermion model
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The Haldane hypothesis about the universality of the Luttinger liguid) behavior in conducting one-
dimensional fermion systems is checked numerically for the spinless fermion model with next-nearest-
neighbor interactions. It is shown that for the large enough interactions the ground state can be gapless due to
frustrations but at the same time might not belong to the same universality class as a simple LL. The exponents
of the correlation functions for this unusual conducting state are found numerically by a finite-size method.

One-dimensiona(1D) Fermi systems have a number of  Andersor has supposed that some two-dimensiqaal)
peculiarities that distinguish them drastically from three-systems such as the copper-oxide superconductors belong to
dimensional3D) ones(for review, see Ref.)l In particular, the class of LL also. This fact made the concept of the Lut-
gapless(metallic 1D systems of the interacting fermions tinger liquid one of the most “fashionable” in the contem-
never behave as a normal Fermi liquid. Haldahas pro- porary many-particle physics. Therefore the investigation of
posed another class of universality which is called the Luta status of the Haldane hypothesis seems to be important.
tinger liquid (LL) state. In this state the low-energy excita- Here we present a counterexample to this hypothesis based
tion spectrum consists of three branches, namglythe  on exact numerical results for the spinless fermion model.

density fluctuation boson modéi) current, andiii) charge We proceed with the Hamiltonian
excitations with the velocitiess, v;, andvy, correspond-
ingly. L L L

The first one is connected with the variation of the totalH = _tE (cleiiitcl, e )+VE nin; 1+ V' E NNy,

energyE of the system under the variation of the total mo-

mentum P, vs=JE/SP; the second oneuv(), with the ()

variation of the energy under a shift of all the particles in

momenta space, which can be done physically by the applwhere cIT, c; are Ferm| creation and annihilation operators

cation of magnetic flux to the system closed as a ring; an@n a sitei, n;= c c; . We investigated a phase diagram of

the third one, with the variation of the chemical potengial this model, and the results are presented in Ref. 8. In par-

under the change of the total number of partichés vy ticular, it has been shown that for a half-occupied case,

=(L/a) Sl SN, wherelL is the length of the system. In the =N/L=1/2 and arbitrarily small the ground state turns out

LL state there is an exact relation between the velocities to be gaplesg$metallic) along the linev=2V’. It is the con-

sequence of frustrations which lead to the macroscopically

x=vun/vi=1, (1)  large degeneracyfinite entropy per a sifeof the ground

hich is the criteri fLL Th v di ol state at the Ising limit=0. A similar result has been ob-
which s the criterion of LL. The only dimensionless param-ainaq also in Ref. 9. It is important that, according to our

eter th‘."‘t determines all the i”fra?red proper.ties' of the Sysmr@alculations, the metallic region has nonzero width in the
(e.g., time and space asymptotics of fermionic Green func(v,v,) plane. One can assert that the gap is zerova)

tions and susceptibilitigss the ratio —0.6<V’'=<(V/2), and that the ground state is insulating at
2 [(V/2)—V'|>t. To check the Haldane hypothesis we restrict
ourselves by the consideration of the straight e 2V’
Original arguments by Haldane were based on the exacvhere the system is definitely metallic. According to our
Bethe-Ansatz solutions as well as on the perturbation theorgalculations some deviations from the LL behavior exist in a
for weakly interacting systems. The set of models that faliwhole domain along this line; however, the obtained results
into the LL universality class incorporates all the “‘com- are not sufficient to determine its exact boundaries at the
mon” short-ranged 1D models, such as the spinless fermiophase diagram.
and the Hubbard models with the nearest-neighbor interac- Similarly, we have a metallic state far=2/3 atV'=0
tions, but there is no rigorous proof thalt the possible 1D and arbitrarily largeV or, vice versa, a¥ =0 and arbitrarily
models should belong to this class, too. For the discussion itlarge V'. There are rare examples of a metallic state with
terms of the conformal field theory, see, e.g., Ref. 3 andstrong interactions and it seems to be interesting to check the
references therein. All the known analytical and numericaHaldane assumptions for this unusual case. As was already
results about 1D fermion systems confirm the Haldanementioned the original Haldane hypothesis is based, on the
hypothesid'® at least for fermions without internal degrees one hand, on the consideration of exactly integrable systems
of freedom. Otherwise, the modification of the LL stateand, on the other hand, on the perturbation treatment of sys-
which is known as the multicomponent LL statean take tems with weak correlations. Therefore, its validity in the
place. case under consideration is not obvious. Note that the “un

e 2¢*=yylvs=vslv;.
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FIG. 1. The dependence of the velocit[&sy. (4), in t units| on 0.040 0.045 0.050 0.055 0.060 0.065

the inverse size of the cluster; empty symbols correspond to FIG. 2. The dependence of the raio[Eq. (1)] on the inverse
=0.%, V'=0, black symbols correspond t¢=20Q, V'=10Q  sjze of the cluster; empty symbols correspondvio=0 (circles:
(circles:v;; squaresvs; trianglesivy). V=0.5; triangles: V=1.5); black symbols correspond t&
=2V’ (circles: V=10; squaresV=30t; triangles: V=50, dia-
usual” character of a metallic state at=1/2, V~2V' has  monds:V=10Q; hexagonsV=200).
been mentioned in Ref. 9 but the detail description of this
state has not been presented. values ofy is definitely less than unity, which is obvious
We have carried out the calculations of a ground state ogyen without extrapolation tb— <, sincey(L)<1 for finite
the mOde|(3) by the Lanczos method for finite clusters with L and diminishes witH. increase. Therefore we have dem-
the consequent extrapolation o (for details, see Ref. gnstrated that there are one-dimensional conducting systems
8). Velocities of low-lying excitations have been calculated of interacting fermions whiclare notLL. The breakdown of
ast the LL picture is caused by the competition of nearest-
neighbor and next-nearest-neighbor interactigms, frustra-
stZL[Elp(L,N)—Eo(L,N)], tion) Which allqws the system t_o be meta_llic in th_e limit of_
™ strong interactions. A schematic phase diagram is shown in
Fig. 3. The question is still open whether the transition from
insulating state to the non-LL conducting state is the direct
UJZZ[Ea(L'N)_Eo(L’N)]’ (4) one or an intermediate conducting LL phase exists. At the
same time, our calculations demonstrate thatgfer2/3 the
L relation (1) takes place with the accuracy of calculations for
szg[EO(L, N+1)—2Ey(L,N)+Eq(L,N=1)]. any values of parameters under consideration even along the

HereEq(L,N) is the ground-state energy of the cluster with vi
L sites for periodic boundary conditions amd particles,
E.(L,N) is the ground-state energy for antiperiodic bound-
ary conditions(transition to the antiperiodic conditions cor-
responds to magnetic fluk =1/2 of the flux quanturp and 157
E;p(L,N) is the ground-state energy for the minimal non- insulator
zero total momentuniP=2=/L. The corresponding results
for different cluster lengths are shown in Fig. 1. One can seg;, 4
that the cluster sizes in our calculations are sufficient to con-
sider in a rather reliable way the limit of the infinite chain.
Then we have verified the criterion of the lf=1 using Eq.
D).

The results of the test calculations for the case
=1/2, V' =0, 0=sV<2t where the system is in the LL state

insulator

definitely’ are shown in Fig. Zopen circles and trianglgs 0 . T . R
We also present in the same figure the calculated valugs of  ° 10 2 % ©
along the linev=2V'. One can see that &< 10t we have, FIG. 3. The phase diagram of the model. The boundary between

within the accuracy of the computationgs=1, in an agree- conducting LL and non-LL phases is shown schematically by zig-
ment with the Haldane hypothesis. However, ¥oe 30t the  zags.
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) . FIG. 5. The same as in Fig. 4, f&¢(R) [Eq. (5)].
FIG. 4. The dependence of the correlation functi@(R) [Eqg.

(5)] for L=32; open circles correspond ¥=V'=0, black ones

correspond to/— 2V V= =((0)p(R)), for R<L. From the symmetry considerations

we havef(R,L)=f(L—R,L). Let us introduce the function

linesV=0 orV’'=0. It would be very interesting to under- ][érF\;’L) to have, by definitiong[r(R,L)]=f(R.L). There-

stand the reason for the difference between these two cases

with strong frustrations. limr(R,L)=R. (8
We also have calculated the static correlation functions Lo
G(R)=(ckco), (55 Then we introduce the new variable=R/L so that
r(R,L)=L-r"(\,L) wherer’(\,L) is a new unknown func-
K(R)={(éngény), tion. To provide Eq(8) we have lim _r'(\,L)=X\. Also

where angular brackets mean the averaging over the grouritie function r’ satisfies the conditionr’(A,L)=r"(1
state,sn;=n;—p. In LL the following asymptotics have to —A\,L). For small\ one hasr’(\)~\. To satisfy all these

be valid atR>1 (Ref. 2, requirements we try the functiari as Fourier series
il _ - ) _sin(w)\)+a3sin(37r)\)+a5sin(57r)\)+~~
G(R)~mE:0 Cpnsif (2m+1)keR]R ™ 7m, (6) r'(\)= 7(1+3a3+5a5+---) '
9

©

Using th toti ion similar t for th
K(R)~ 2 D, cog2mk-R)R~m, sing the asymptotic expression similar to E€) for the
m=0

dependencéd(R,L)=¢[Lr'(\)] at finite L and optimizing
i 22 _— the result with respect to both, and the correlation expo-
where 7n=3e “¢+2(m+3)°e” Or=2m7e* (m>0), nentswe can find the latter ones with high enough accuracy.
ke=pl2 is the Fermi momentum. The most important expo-at least the results for the exponents appeared to be accurate
nenta determines the behavior of the one-particle distribu—enough for the clusters with L <26 used in our calcula-
tion functionn(k) near Fermi surface tions. For the testing casé’ =0, 0<V<2t where the sys-
. o tem is definitely LL the results for the correlation exponents
n(k)~n(kg) — C signk—kg)|k— kg%, () coincide with that from the Haldane formul#) with the
wherea=ny—1. accuracy of 0.5% for the functio®(R) and 8% for the
However, we cannot use these expressiangriori be-  functionK(R).
cause the system under consideration is not always LL. We In the most interesting casg#1 we cannot use the ex-
have found the asymptotics of the correlation functions bypression(6) and have to restrict ourselves only by the con-
direct computation. It is knowisee, e.g., Ref. Jlthat it is  sideration of the leading terms in the asymptotics of the cor-
very difficult to find the correlation exponents from the cal- relation functions which are tried in the following form:
culations for a giver., even ifL is as large as 32. Therefore
u . o / R?, (10
Specifically we use the following procedure. Our aim is to
find the functionp(R)=(#(0)#(R)).. for an infinite chain.

we use the finite-size scaling techniqde.
Direct calculations give us the functionsf(R,L) K(R)~[D;+D,(—1)R]/R?

) o
C,+Cy sm(—R)

G(R)~ 5
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(we consider the casg=1/2). To diminish the number of turns out to be nonmonotonous in the non-LL regifsee
states in the Gilbert space under consideration we use oniye black circles foR=3,5,7 in Fig. 5

the states that have the saifminimal) energy forvV=2V’ The results of computer simulation demonstrating pos-
and t=0 which corresponds to the casé/t—x, V'/t sible violation of the Haldane hypothesis seem to be rather
—oo, V/V'=2. It allows us to consider clusters as large asunexpected. In particular, we cannot see any simple cause for
L=32. The results of the calculations for the correlationthe difference between two frustrated cases:1/2, V
functions are shown in Figs. 3 and 4. We have found by the=2V'—~ (non-LL behaviof and p=2/3, V'=0, V—
technique described abovey=2.009-2.013 and § (LL behaviop. It would be very important to understand
=1.80-1.83. Note that the envelope of the functk(R) these numerical results by regular field-theoretical methods.

1J. Solyom, Adv. Phys28, 201 (1979. "P.W. AndersonThe Theory of Superconductivity in the High
2F.D.M. Haldane, Phys. Rev. Le#t5, 1358(1980; J. Phys. Cl4, Cuprates(Princeton University Press, Princeton, 1297
2585(1981). 8A.K. Zhuravlev, M.I. Katsnelson, and A.V. Trefilov, Phys. Rev.
SV.E. Korepin, N.M. Bogoliubov, and A.G. IzergitQuantum In- B 56, 12 939(1997).
verse Scattering Method and Correlation Functig@ambridge 9E.V. Tsiper and A.L. Efros, J. Phys.: Condens. MafelL561
University Press, Cambridge, 1993 (1997).
4F.D.M. Haldane, Phys. LetB1A, 153 (1981); Phys. Rev. Lett. °X. Zotos and P. Prelovsek, Phys. Rev.33, 983 (1996 D.
47, 1840(1981); H.J. Schulzjbid. 64, 2831(1990. Poilblanc, S. Yunoki, S. Maekawa, and E. Dagottud. 56,

SC.A. Hayward, D. Poilblanc, and D.J. Scalapino, Phys. Rev. B 1645(1997).
53, R8863(1996; C.A. Hayward and D. Poilblandpid. 53, 1ER, Gagliano, E. Dagotto, A. Moreo, and F.C. Alcaraz, Phys.
11721(1996. Rev. B34, 1677(1986.

6B. Sutherland and R.A. Ruer, Phys. Rev. B50, 15389(1994.  ?T. Koma and N. Mizukoshi, J. Stat. Phy&3, 661 (1996.



