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Breakdown of Luttinger liquid state in a one-dimensional frustrated spinless fermion model

A. K. Zhuravlev and M. I. Katsnelson
Institute of Metal Physics, Ekaterinburg 620219, Russia

~Received 25 October 1999!

The Haldane hypothesis about the universality of the Luttinger liquid~LL ! behavior in conducting one-
dimensional fermion systems is checked numerically for the spinless fermion model with next-nearest-
neighbor interactions. It is shown that for the large enough interactions the ground state can be gapless due to
frustrations but at the same time might not belong to the same universality class as a simple LL. The exponents
of the correlation functions for this unusual conducting state are found numerically by a finite-size method.
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One-dimensional~1D! Fermi systems have a number
peculiarities that distinguish them drastically from thre
dimensional~3D! ones~for review, see Ref. 1!. In particular,
gapless~metallic! 1D systems of the interacting fermion
never behave as a normal Fermi liquid. Haldane2 has pro-
posed another class of universality which is called the L
tinger liquid ~LL ! state. In this state the low-energy excit
tion spectrum consists of three branches, namely,~i! the
density fluctuation boson mode,~ii ! current, and~iii ! charge
excitations with the velocitiesvS , vJ , andvN , correspond-
ingly.

The first one is connected with the variation of the to
energyE of the system under the variation of the total m
mentum P, vS5dE/dP; the second one (vJ), with the
variation of the energy under a shift of all the particles
momenta space, which can be done physically by the ap
cation of magnetic flux to the system closed as a ring;
the third one, with the variation of the chemical potentialm
under the change of the total number of particlesN, vN
5(L/p)dm/dN, whereL is the length of the system. In th
LL state there is an exact relation between the velocities

x[vJvN /vS
251, ~1!

which is the criterion of LL. The only dimensionless param
eter that determines all the infrared properties of the sys
~e.g., time and space asymptotics of fermionic Green fu
tions and susceptibilities! is the ratio

e22w5vN /vS5vS /vJ . ~2!

Original arguments by Haldane were based on the e
Bethe-Ansatz solutions as well as on the perturbation the
for weakly interacting systems. The set of models that
into the LL universality class incorporates all the ‘‘com
mon’’ short-ranged 1D models, such as the spinless ferm
and the Hubbard models with the nearest-neighbor inte
tions, but there is no rigorous proof thatall the possible 1D
models should belong to this class, too. For the discussio
terms of the conformal field theory, see, e.g., Ref. 3 a
references therein. All the known analytical and numeri
results about 1D fermion systems confirm the Halda
hypothesis,4,5 at least for fermions without internal degre
of freedom. Otherwise, the modification of the LL sta
which is known as the multicomponent LL state6 can take
place.
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Anderson7 has supposed that some two-dimensional~2D!
systems such as the copper-oxide superconductors belo
the class of LL also. This fact made the concept of the L
tinger liquid one of the most ‘‘fashionable’’ in the contem
porary many-particle physics. Therefore the investigation
a status of the Haldane hypothesis seems to be impor
Here we present a counterexample to this hypothesis b
on exact numerical results for the spinless fermion mode

We proceed with the Hamiltonian

H52t(
i 51

L

~ci
†ci 111ci 11

† ci !1V(
i 51

L

nini 111V8(
i 51

L

nini 12 ,

~3!

whereci
† , ci are Fermi creation and annihilation operato

on a sitei , ni5ci
†ci . We investigated a phase diagram

this model, and the results are presented in Ref. 8. In p
ticular, it has been shown that for a half-occupied caser
5N/L51/2 and arbitrarily smallt the ground state turns ou
to be gapless~metallic! along the lineV52V8. It is the con-
sequence of frustrations which lead to the macroscopic
large degeneracy~finite entropy per a site! of the ground
state at the Ising limitt50. A similar result has been ob
tained also in Ref. 9. It is important that, according to o
calculations, the metallic region has nonzero width in t
(V,V8) plane. One can assert that the gap is zero at (V/2)
20.6t<V8<(V/2), and that the ground state is insulating
u(V/2)2V8u.t. To check the Haldane hypothesis we restr
ourselves by the consideration of the straight lineV52V8
where the system is definitely metallic. According to o
calculations some deviations from the LL behavior exist in
whole domain along this line; however, the obtained resu
are not sufficient to determine its exact boundaries at
phase diagram.

Similarly, we have a metallic state forr52/3 at V850
and arbitrarily largeV or, vice versa, atV50 and arbitrarily
large V8. There are rare examples of a metallic state w
strong interactions and it seems to be interesting to check
Haldane assumptions for this unusual case. As was alre
mentioned the original Haldane hypothesis is based, on
one hand, on the consideration of exactly integrable syst
and, on the other hand, on the perturbation treatment of
tems with weak correlations. Therefore, its validity in th
case under consideration is not obvious. Note that the ‘‘
15 534 ©2000 The American Physical Society
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usual’’ character of a metallic state atr51/2, V'2V8 has
been mentioned in Ref. 9 but the detail description of t
state has not been presented.

We have carried out the calculations of a ground state
the model~3! by the Lanczos method for finite clusters wi
the consequent extrapolation toL→` ~for details, see Ref
8!. Velocities of low-lying excitations have been calculat
as5,10

vS5
L

2p
@E1p~L,N!2E0~L,N!#,

vJ5
L

2p
@Ea~L,N!2E0~L,N!#, ~4!

vN5
L

p
@E0~L,N11!22E0~L,N!1E0~L,N21!#.

HereE0(L,N) is the ground-state energy of the cluster w
L sites for periodic boundary conditions andN particles,
Ea(L,N) is the ground-state energy for antiperiodic boun
ary conditions~transition to the antiperiodic conditions co
responds to magnetic fluxF51/2 of the flux quantum!, and
E1p(L,N) is the ground-state energy for the minimal no
zero total momentumP52p/L. The corresponding result
for different cluster lengths are shown in Fig. 1. One can
that the cluster sizes in our calculations are sufficient to c
sider in a rather reliable way the limit of the infinite chai
Then we have verified the criterion of the LLx51 using Eq.
~1!.

The results of the test calculations for the caser
51/2, V850, 0<V,2t where the system is in the LL stat
definitely2 are shown in Fig. 2~open circles and triangles!.
We also present in the same figure the calculated valuesx
along the lineV52V8. One can see that atV<10t we have,
within the accuracy of the computations,x'1, in an agree-
ment with the Haldane hypothesis. However, forV>30t the

FIG. 1. The dependence of the velocities@Eq. ~4!, in t units# on
the inverse size of the cluster; empty symbols correspond tV
50.5t, V850, black symbols correspond toV5200t, V85100t
~circles:vJ ; squares:vS ; triangles:vN).
s
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values ofx is definitely less than unity, which is obviou
even without extrapolation toL→`, sincex(L),1 for finite
L and diminishes withL increase. Therefore we have dem
onstrated that there are one-dimensional conducting sys
of interacting fermions whichare notLL. The breakdown of
the LL picture is caused by the competition of neare
neighbor and next-nearest-neighbor interactions~i.e., frustra-
tion! which allows the system to be metallic in the limit o
strong interactions. A schematic phase diagram is show
Fig. 3. The question is still open whether the transition fro
insulating state to the non-LL conducting state is the dir
one or an intermediate conducting LL phase exists. At
same time, our calculations demonstrate that forr52/3 the
relation~1! takes place with the accuracy of calculations f
any values of parameters under consideration even along

FIG. 2. The dependence of the ratiox @Eq. ~1!# on the inverse
size of the cluster; empty symbols correspond toV850 ~circles:
V50.5t; triangles: V51.5t); black symbols correspond toV
52V8 ~circles: V510t; squares:V530t; triangles:V550t; dia-
monds:V5100t; hexagons:V5200t).

FIG. 3. The phase diagram of the model. The boundary betw
conducting LL and non-LL phases is shown schematically by z
zags.



-
a

s

u

o
u

W
b

l-
e

to

s

-
cy.
rate

ts

-
n-
or-

15 536 PRB 61BRIEF REPORTS
lines V50 or V850. It would be very interesting to under
stand the reason for the difference between these two c
with strong frustrations.

We also have calculated the static correlation function

G~R!5^cR
†c0&, ~5!

K~R!5^dnRdn0&,

where angular brackets mean the averaging over the gro
state,dni5ni2r. In LL the following asymptotics have to
be valid atR@1 ~Ref. 2!,

G~R!; (
m50

`

Cm sin@~2m11!kFR#R2hm, ~6!

K~R!; (
m50

`

Dm cos~2mkFR!R2um,

where hm5 1
2 e22w12(m1 1

2 )2e2w, um52m2e2w (m.0),
kF5r/2 is the Fermi momentum. The most important exp
nenta determines the behavior of the one-particle distrib
tion functionn(k) near Fermi surface

n~k!'n~kF!2C sign~k2kF!uk2kFua, ~7!

wherea5h021.
However, we cannot use these expressionsa priori be-

cause the system under consideration is not always LL.
have found the asymptotics of the correlation functions
direct computation. It is known~see, e.g., Ref. 11! that it is
very difficult to find the correlation exponents from the ca
culations for a givenL, even ifL is as large as 32. Therefor
we use the finite-size scaling technique.12

Specifically we use the following procedure. Our aim is
find the functionw(R)[^f(0)f(R)&` for an infinite chain.
Direct calculations give us the functionsf (R,L)

FIG. 4. The dependence of the correlation functionsG(R) @Eq.
~5!# for L532; open circles correspond toV5V850, black ones
correspond toV52V8,V→`.
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[^f(0)f(R)&L for R,L. From the symmetry consideration
we havef (R,L)5 f (L2R,L). Let us introduce the function
r (R,L) to have, by definition,w@r (R,L)#5 f (R,L). There-
fore

lim
L→`

r ~R,L !5R. ~8!

Then we introduce the new variablel[R/L so that
r (R,L)5L•r 8(l,L) wherer 8(l,L) is a new unknown func-
tion. To provide Eq.~8! we have lim

L→`
r 8(l,L)5l. Also

the function r 8 satisfies the conditionr 8(l,L)5r 8(1
2l,L). For smalll one hasr 8(l)'l. To satisfy all these
requirements we try the functionr 8 as Fourier series

r 8~l!5
sin~pl!1a3 sin~3pl!1a5 sin~5pl!1•••

p~113a315a51••• !
.

~9!

Using the asymptotic expression similar to Eq.~6! for the
dependencef (R,L)5w@Lr 8(l)# at finite L and optimizing
the result with respect to bothan and the correlation expo
nents we can find the latter ones with high enough accura
At least the results for the exponents appeared to be accu
enough for the clusters with 14<L<26 used in our calcula-
tions. For the testing caseV850, 0,V,2t where the sys-
tem is definitely LL the results for the correlation exponen
coincide with that from the Haldane formula~6! with the
accuracy of 0.5% for the functionG(R) and 8% for the
function K(R).

In the most interesting casexÞ1 we cannot use the ex
pression~6! and have to restrict ourselves only by the co
sideration of the leading terms in the asymptotics of the c
relation functions which are tried in the following form:

G~R!;FC11C2 sinS p

2
RD G Y Rg, ~10!

K~R!;@D11D2~21!R#/Rd

FIG. 5. The same as in Fig. 4, forK(R) @Eq. ~5!#.
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~we consider the caser51/2). To diminish the number o
states in the Gilbert space under consideration we use
the states that have the same~minimal! energy forV52V8
and t50 which corresponds to the caseV/t→`, V8/t
→`, V/V852. It allows us to consider clusters as large
L532. The results of the calculations for the correlati
functions are shown in Figs. 3 and 4. We have found by
technique described aboveg52.009– 2.013 and d
51.80– 1.83. Note that the envelope of the functionK(R)
. B
ly

s

e

turns out to be nonmonotonous in the non-LL regime~see
the black circles forR53,5,7 in Fig. 5.!

The results of computer simulation demonstrating p
sible violation of the Haldane hypothesis seem to be rat
unexpected. In particular, we cannot see any simple caus
the difference between two frustrated cases:r51/2, V
52V8→` ~non-LL behavior! and r52/3, V850, V→`
~LL behavior!. It would be very important to understan
these numerical results by regular field-theoretical metho
v.
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