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Dynamic critical exponent of two-, three-, and four-dimensionalXY models
with relaxational and resistively shunted junction dynamics

Lars Melwyn Jensen, Beom Jun Kim, and Petter Minnhagen
Department of Theoretical Physics, Umea˚ University, 901 87 Umea˚, Sweden

~Received 1 December 1999!

The dynamic critical exponentz is determined numerically for thed-dimensionalXY model (d52, 3, and 4!
subject to relaxational dynamics and resistively shunted junction dynamics. We investigate both the equilib-
rium fluctuation and the relaxation behavior from nonequilibrium towards equilibrium, using the finite-size
scaling method. The resulting values ofz are shown to depend on the boundary conditions used, the periodic
boundary condition, and fluctuating twist boundary condition~FTBC!, which implies that the different treat-
ments of the boundary in some cases give rise to different critical dynamics. It is also found that the equilib-
rium scaling and the approach to equilibrium scaling for the same boundary condition do not always give the
same value ofz. The FTBC in conjunction with the finite-size scaling of the linear resistance for both type of
dynamics yields values ofz consistent with expectations for superfluids and superconductors:z52, 3/2, and 2
for d52, 3, and 4, respectively.
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I. INTRODUCTION

Superconducting films, Josephson junction arrays, and
perfluid 4He are systems where topological defects play
important role close to the phase transition. This is parti
larly striking in two dimensions~2D! where a phase trans
tion of the Kosterlitz-Thouless~KT! nature is driven by the
unbinding of thermally created topological defects, vorte
antivortex pairs.1,2 In 3D such topological defects take th
form of vortex loops and it has been argued that the phy
close to the transition can be associated with these loo3

The common feature in these systems is that they can
characterized by a complex order parameter. TheXY model
can be viewed as a discretized version of such systems w
only the phase of the complex order parameter plays a
nificant role. This model is believed to catch the essen
features of the topological defects present in4He as well as
in superconductors in the limit when the magnetic pene
tion length is much larger than the correlation length; hig
Tc superconductors fall into this category.4 All the systems
which can be described by theXY model belong to the sam
universality class for the thermodynamic critical propert
of the phase transition.

In the present paper we have the connection between
XY model and superfluid and superconducting systems
mind. However, theXY model per secan equally well be
viewed as a simple model of a ferromagnet where the ph
angle corresponds to the direction of a 2D spin vector as
ciated with each lattice site.

Our interest in the present paper is the dynamical prop
ties associated with topological defects, which may of cou
depend on the explicit choice of the dynamics imposed
the model. We here investigate two types of dynamics: O
is a simple relaxational dynamics~RD! and the other is the
resistively shunted junction dynamics~RSJD!. We calculate
the dynamic critical exponentz using various scaling rela
tions both associated with equilibrium and with the approa
to equilibrium when starting from a nonequilibrium config
PRB 610163-1829/2000/61~22!/15412~17!/$15.00
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ration. Our main conclusion is that the dynamic critical e
ponents associated with the topological defects are the s
for these two types of dynamics, RD and RSJD. Howev
this conclusion does depend on the precise treatment of
boundary. We demonstrate that various values ofz can be
obtained by changing the treatment of the boundary, as w
as by changing from scaling in equilibrium to scaling for t
approach to equilibrium.

This paper is organized as follows: In Sec. II we brie
introduce theXY model and explain how the dynamic equ
tions are defined in RSJD and RD taking boundary con
tions into account. Section III describes the various scal
relations used to obtainz. The results from our simulation
are given in Sec. IV for spatial dimensionsd52, 3, and 4,
whereas Sec. V contains discussions of the results. Fin
Sec. VI gives a short summary of the main conclusions.

II. XY MODEL AND DYNAMICS

A. XY model

The d-dimensionalXY Hamiltonian on a hypercubic lat
tice of the sizeV[Ld is defined by

H@u r#52J (
^rr 8&

cos~f rr 8[u r2u r8!, ~1!

where the summation is over nearest neighboring pairs,u r is
the phase of the complex order parameter at positionr , andJ
is the coupling strength. TheXY Hamiltonian is appropriate
not only to describe the overdamped Josephson junct
arrays without charging energy, but can also be viewed a
discretized form of the Ginzburg-Landau~GL! free energy

FGL@c~r !#5E dr S auc~r !u21
b

2
uc~r !u21

1

2
u¹c~r !u2D ,

~2!

where the amplitude fluctuations of the complex order
rameterc(r ) are neglected:c(r )5c0eiu(r ) with c0 fixed to
15 412 ©2000 The American Physical Society
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PRB 61 15 413DYNAMIC CRITICAL EXPONENT OF TWO-, THREE-, . . .
a constant. When mapping the GL free energy functio
onto theXY Hamiltonian the coupling strengthJ is found to
be proportional touc0u2.

The thermodynamic properties of theXY model have
been intensely studied for many years and it is well kno
that the important length scale in the critical region, the c
relation lengthj, diverges at the critical temperatureTc . In
3D and 4D the divergence is of the standard form of
continuous second-order transition, i.e.,j(T);uT2Tcu2n,
whereas in 2D lnj(T);(T2Tc)

21/2 asTc is approached from
above andj5` in the whole low-temperature phase whe
quasi-long-range order exits in the absence of true lo
range order.1 From the point of view of the finite-size sca
ing, this feature of the 2D KT transition turns the finite sy
tem size L into the relevant length scale in the low
temperature phase.

B. Boundary condition

Experiments on superconductors and4He are usually
done on samples with open boundaries. From this pers
tive it is preferable to use boundary conditions, which
flects this experimental situation also in the simulatio
However, simulations of theXY model can usually only be
well converged on relatively small lattice sizes, and since
surface to volume ratio is inversely proportional to the line
system sizeL, the open boundary gives rise to large surfa
effects, which decay very slowly as the system size is
creased. The standard way of reducing these unwanted
face effects is to impose the periodic boundary condit
~PBC!: u r1Lm̂5u r , wherem̂ denotes the basis vectors of th
lattice, e.g.,m̂5 x̂,ŷ,ẑ in 3D. One drawback of this boundar
condition is that it restricts the twist fromr to r1Lm̂, de-
fined as the sum of the phase differences along a direct
connecting the two positions, to an integer multiple of 2p.
On the other hand, this twist from one boundary to the
posite for an open system can have any value. It is t
preferable to relax the PBC so as to allow for a continuo
twist by changing the boundary condition to a more gene
ized form: u r1Lm̂5u r1LDm , which has been used in var
ous contexts.5–8 In particular the boundary condition wher
the twist variableDm is not fixed to a constant but allowed t
fluctuate has been termed the fluctuating twist boundary c
dition ~FTBC!, which was originally introduced for stati
Monte Carlo ~MC! simulations7 and then extended to
Langevin-type dynamics at finite temperatures.8 Since the
FTBC allows for any value of the twist, it is closer to th
open boundary condition for a real system. Of course
does not expect the treatment of the boundary to affect
results in the thermodynamic limit. However, as we w
show and discuss here, the dynamics at criticality can dep
on the boundary condition, in as far as the dynamic criti
exponent can be defined in terms of the finite-size scaling
is worth mentioning that a similar observation, i.e., that
important exponent may depend on boundary conditions,
been made recently in the study of the stiffness exponen
vortex-glass models.9

C. Dynamic models

Next we introduce two simple dynamic models wide
used to describe behaviors of superfluids, superconduc
l
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films, regular Josephson junction arrays, and also bulk h
Tc superconductors close to the transition temperature.

1. Resistively shunted junction dynamics

A d-dimensional hypercubic array of sizeV5Ld ~L
5linear size! of superconducting grains weakly coupled b
resistively shunted Josephson junctions is effectively
scribed by theXY Hamiltonian ~1! when it comes to the
static properties. On the other hand, dynamic equations
motion for the corresponding overdamped RSJ model
generated from local conservation of the current on e
grain. The total currentI rr 8 between neighboring grain
(r ,r 8) is the sum of the supercurrent, the normal resist
current, and the thermal noise current:I rr 85I rr 8

s
1I rr 8

n
1I rr 8

t .
The supercurrent is given by the Josephson current-ph
relation I rr 8

s
5I c sin(frr 8), where I c52eJ/\ is the critical

current for a single junction. The normal resistive curre
I rr 8

n
5Vrr 8 /R0, where the voltage differenceVrr 8 is related to

the phase difference byVrr 85(\/2e)ḟ rr 8 andR0 is the shunt
resistance. Finally the thermal noise currentsI rr 8

t in the
shunts satisfŷ I rr 8

t &50 and

^I r1r2

t ~ t !I r3r4

t ~0!&5
2kBT

R0
d~ t !~d r1r3

d r2r4
2d r1r4

d r2r3
!,

~3!

where^•••& is the thermal average, andd(t) andd rr 8 are the
Dirac and Kronecker deltas, respectively. From local curr
conservation we obtain

(
n̂

I rr 1n̂5I r
ext, ~4!

where then̂ summation is over 2d nearest neighbors of sit
r on a hypercubic lattice ind dimensions (n̂56m̂), e.g.,n̂
56 x̂,6 ŷ,6 ẑ in 3D, andI r

ext is an external current source a
r ~in the present work, we only consider the case witho
external driving: I r

ext50). Introducing the lattice Green’s
functionU rr 8 , which is the inverse of the discrete Laplacia
the RSJD equations of motion in the absence of exte
currents can be written in dimensionless form as

du r

dt
52(

r8
Ū rr 8(

n̂

sin~u r82u r81n̂!1z r , ~5!

where Ū rr 8[U rr 82U rr ,10 and from here on we normaliz
the time, the current, the distance, the energy, and the t
perature in units of\/2eR0I c , I c , the lattice spacinga, J,
and J/kB , respectively. The on-site noise termz r(t)
[2( r8Ū rr 8( n̂I r8r81n̂

t (t) is spatially correlated, which is a
consequence of the local current conservation, and sati

^z r(t)z r8(0)&52TŪrr 8d(t). The RSJD equations~5! can be
rewritten in a Langevin-type form10

du r

dt
52(

r8
Ū rr 8

dH@u r#

du r8~ t !
1z r ~6!

with the XY Hamiltonian H in Eq. ~1! @compare with Eq.
~12! for relaxational dynamics#.
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We now introduce the FTBC for the RSJD. The glob
twist LDm in the m̂ direction across the whole system~see
Sec. II B! is introduced through the local transformationu r
→u r1r•D, still keepingu r5u r1Lm̂ as the periodic part o
the phases. The Hamiltonian in terms of these variables

H@u r ,D#52(
r m̂

cos~u r2u r1m̂2m̂•D!, ~7!

where them̂ summation is overd nearest neighbors ofr in
each positive direction~e.g.,m̂5 x̂,ŷ,ẑ in 3D!. It is straight-
forward to show that equations of motion for phase varia
u r are given by Eq.~6! with the substitutionH given by Eq.
~7!:8

du r

dt
52(

r8
Ū rr 8

dH@u r ,D#

du r8~ t !
1z r . ~8!

In order to get a closed set of equations we further have
specify the dynamics of the twist variablesDm , which is
simply the average phase difference between opposite f
on thed-dimensional hypercube. In the absence of exter
currents, the physical boundary condition, corresponding
an open boundary in real systems, should satisfy the co
tion that there be no current across the boundary, which le
to8

dDm

dt
5GD(

r
sin~u r2u r1m̂2Dm!1zm

D ~9!

or, equivalently,

dDm

dt
52GD

dH@u r ,D#

dDm
1zm

D , ~10!

where GD51/Ld. As shown in Ref. 8 the noise term
satisfies ^zm

D(t)&5^zm
D(t)z r(t8)&50 and ^zm

D(t)zn
D(0)&

52TGDdmnd(t). We term the dynamics defined in this wa
@by Eqs. ~8! and ~10!# RSJD with the FTBC, whereas th
RSJD with the PBC is given by Eq.~6! with H in Eq. ~1!.

2. Relaxational dynamics

Next we introduce the simpler phenomenological rela
ational dynamics called time-dependent Ginzburg-Land
Langevin dynamics, which represents a nonconser
dynamics,11 for the complex order parameterc r on a discrete
lattice:

dc r

dt
52G

dFGL@c r#

dc r~ t !
1z r , ~11!

whereG is the diffusion constant,FGL is the discrete version
of the GL free energy functional~2!, and the white
noise term satisfies ^z r(t)&50 and ^z r(t)z r8(0)&
52kBTGd rr 8d(t). The order parameter relaxes towards
configuration which locally minimizes the free energy, a
the noises force the metastable states to decay. In the Lo
limit the system can be described solely by the phaseu r(t) of
the order parameterc r5c0eiur with c0 fixed to a constant.
Hence, by neglecting the amplitude fluctuations and d
l
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cretizing the time-dependent Ginzburg-Landau equation
motion, we find the phase equations of motion for the R
defined by

du r

dt
52

dH@u r#

du r~ t !
1z r , ~12!

whereH is the XY Hamiltonian ~1! in units of J, the time
unit is \/GJ, and the dimensionless thermal noises sati
^z r(t)&50 and

^z r~ t !z r8~0!&52Td~ t !d rr 8 , ~13!

with T in units ofJ/kB . From Eq.~12!, the RD equations for
the phases in the case of the PBC are given by

du r

dt
52(

r n̂

sin~u r2u r1n̂!1z r , ~14!

with periodicity on the phase variables:u r5u r1Lm̂ .
We now proceed to the case of the FTBC for RD. In th

case, in addition to the equations of motion for phases„Eq.
~12! with substitutionH@u r# by H@u r ,D# in Eq. ~7!… we need
dynamic equations for the twist variablesDm . Relaxational
dynamics means that these equations are of the form

dDm

dt
52GD

dH@u r ,D#

dDm
1zm

D , ~15!

which is identical to the form derived for RSJD@see Eq.
~10!, whereGD51/Ld was determined from the requireme
that no current flows through the boundary#. We here define
the dynamic equations forDm in the RD case with the sam
value of GD , which makes the equations identical to th
corresponding equations in RSJD. Within the same interp
tation that I rr 1m̂

n
5ḟ rr 1m̂ and I rr 1m̂

s
5sin(frr 1m̂) with

f rr 1m̂5u r2u r82Dm as for RSJD~see Sec. II C 1!, we are
again imposing a condition consistent with that there be
current across the boundary.

In the simulations, the coupled equations of motion a
discretized in time~we use the discrete time stepDt50.05
and 0.01 for RSJD and RD, respectively! and numerically
integrated using the second order Runge-Kutta-Helfa
Greenside~RKHG! algorithm,12 which is much more effi-
cient than the first-order Euler algorithm since it can redu
the effective temperature shift8 due to the discrete time ste
significantly. In the case of RSJD we apply the efficient fa
Fourier transformation method~see, for example, Ref. 5!,
which makes the overall computing timeO(Ld log2 L) in d
dimensions.@For comparison, the RD simulation require
O(Ld).# The thermal noises are generated from a unifo
distribution, whose width is determined to satisfy the no
correlation~see above! at a given temperature.

III. SCALING RELATIONS

A. Scaling in equilibrium

In order to obtain the dynamic critical exponentz from
equilibrium fluctuations of the system we use two differe
scaling relations: One is the finite-size scaling of the tim
correlations of the supercurrent and the other is the finite-
scaling of the linear resistance. Fisheret al.,13 proposed a
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general scaling theory of the conductivity for a homogene
superconductor, which has been studied further explicitly
Dorsey and co-workers.14,15 The predictions from this scal
ing theory are very general and depend only on the dyna
scaling assumption and the existence of a diverging corr
tion lengthj;uT2Tcu2n: From a simple dimensional analy
sis, it is easy to show that the order parameter scales ac
;j12d/2, and thus the superfluid density scales asrs;ucu2

;j22d. Below Tc one hass(v); irs /v, and accordingly
one deduces that the frequency-dependent linear condu
ity scales as13

s~v!5j22d1zFs~vjz!, ~16!

whereFs is a universal scaling function, the dynamic critic
exponentz is introduced fromt;jz, andt is the character-
istic time scale. Precisely atTc , Eq.~16! turns into the finite-
size scaling form of the conductivity:

s~v!5L22d1zFs~vLz!. ~17!

This scaling relation can be put to practical use in the cas
the PBC because for this boundary conditionrs has the re-
quired size scaling. On the other hand, it cannot be used
an open boundary condition or for the FTBC because
these casesrs50 at anyL and T.7 For the FTBC we will
then instead use the finite-size scaling of the linear resista
described below.

1. Scaling of supercurrent correlations

The conductivitys(v) may be related to the supercurre
correlation functionG(t), which for theXY model ind di-
mensions is given by

G~ t !5
1

Ld
^F~ t !F~0!&, ~18!

where the global supercurrentF(t) flowing in a given direc-
tion, say,x̂, is written as

F~ t !5(
r

sin~u r2u r1 x̂!. ~19!

The correlation functionG(t) is a key quantity in describing
the dynamic response of vortex fluctuations and is fort50
directly related to the static helicity modulus.7 The connec-
tion betweens(v) andG(t) in the RSJD case is expresse
as8

s~v!511
irs

v
2

1

TE0

`

dteivtG~ t !, ~20!

where the conductivity is measured in units such that
shunt resistanceR051, and the superfluid densityrs is given
by

rs5r0S 12
1

r0T
G~ t50! D , ~21!

with the bare superfluid densityr0[^cos(ur2u r1 x̂)&. The
dynamic dielectric function 1/e(v) in 2D is also expressed
as16
s
y

ic
a-

iv-

of

or
n

ce

e

ReF 1

e~v!G5
1

e~0!
1

v

r0TE0

`

dt sinvtG~ t !, ~22!

ImF 1

e~v!G52
v

r0TE0

`

dt cosvtG~ t !, ~23!

where

1

e~0!
512

1

r0T
G~0!. ~24!

The helicity modulusg corresponds to the superfluid densi
rs and is given byg5rs5r0 /e(0). Theconductivitys(v)
in RSJD can be further simplified into the form8

s~v!512
1

iv

r0

e~v!
. ~25!

Expressing the scaling in terms ofG(t) leads to the scaling
form

G~ t !5j22dFG~ tj2z!, ~26!

which atTc for 3D turns into the finite-size scaling form~see
Appendix A!

LG~ t !5FG~ tL2z!, ~27!

while in 2D a logarithmic correction~see Appendix A! needs
to be included:

lnS L

c DG~ t !5FG~ tL2z!, ~28!

whereFG(x) is the scaling function forG(t). In the follow-
ing we will use the scaling relations Eqs.~26! and~27! in 3D
with the PBC and Eq.~28! in 2D with the PBC.

2. Resistance scaling

In order to obtain a finite-size scaling at criticality for th
FTBC for which, like for any open boundary condition,rs
50 at any temperature and any lattice size, we relate
resistanceR to the fluctuations of the twist over the sampl
The voltage across the sample in them̂ direction Vm

52LḊm ~see Ref. 8! and the linear resistanceRm in the
same direction are related to the voltage fluctuation by
fluctuation-dissipation theorem17

Rm5
1

2TE2`

`

dt^Vm~ t !Vm~0!& ~29!

'
L2

2T

1

Q
^@Dm~Q!2Dm~0!#2&, ~30!

where the approximation becomes exact for a sufficien
large timeQ, as shown in Appendix B~a similar approxi-
mation has been used for RSJD with open boundary co
tion in Ref. 18!. In the present simulation we useQ52000
and perform average over alld directions, i.e., R
5((mRm)/d.

SinceRm scales as the inverse of the characteristic ti
scale in the critical region, the finite-size scaling takes
form19
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R5
1

Lz
FR„~T2Tc!L

1/n
…, ~31!

where n is the critical exponent for correlation length (j
;uT2Tcu2n) and FR(x) is the scaling function forR. Pre-
cisely at Tc , FR(x)5FR(0) becomes a constant indepe
dent ofL and we get

R;L2z, ~32!

which can be used to determinez, onceTc is known. The
resistance scaling can also be turned into anintersection
method39 for determiningz andTc using that

ln~RL /RL8!

ln~L/L8!

52z1
ln@FR„~T2Tc!L

1/n
…/FR„~T2Tc!L81/n

…#

ln~L/L8!
,

~33!

for two different lattice sizesL,L8. Thus, if we plot
ln(RL /RL8)/ln(L/L8) as a function of temperature for sever
pairs of sizes (L,L8), all curves intersect at a single uniqu
point (Tc ,2z).39 OnceTc andz are determined through th
above intersection method, all data can be made to colla
onto a single scaling curve by plottingRLz as a function of
the scaling variable (T2Tc)L

1/n with the correct value of the
exponentn @see Eq.~31!#.

B. Scaling of relaxation towards equilibrium:
Short-time relaxation

Recently, it has been found that a universal scaling
time can also be constructed for the relaxation towards e
librium when starting from a nonequilibrium configuratio
Since such a relaxation is usually rather fast, it is often
ferred as the short-time relaxation method.20 By this method
several critical exponents have been successfully determ
for the unfrustrated and the fully frustrated Josephson ju
tion array21 as well as for the Ising model.20,22 In these stud-
ies Glauber dynamics in MC simulations has been used
obtain time series of measured quantities, such as the m
netization and the Binder’s cumulant. Here we apply t
method to theXY models with more realistic dynamics
RSJD and RD, both introduced in Sec. II C, in order to d
termine the value of the dynamic critical exponentz. For
convenience we measure22

c̃5K signF(
r

cosu r~ t !G L , ~34!

starting from the initial conditionu r(0)50. Sincec̃(t50)
51 at any system sizeL, the finite-size scaling form be
comes

c̃~ t,T,L !5Fc„t/L
z,~T2Tc!L

1/n
…, ~35!

with the scaling functionFc(x,y) depending on two scaling
variables, satisfyingFc(0,y)51 at anyy. At Tc , z is easily
determined from Eq.~35! because in this case the seco
se

n
i-

-

ed
c-

to
g-

s

-

argument of the scaling function vanishes andc̃(t) curves
obtained for different sizes can be collapsed onto a sin
curve when plotted against the variablet/Lz. We can also
determineTc by an intersection method similar to Eq.~33! as
follows: If the first argument of the scaling function is fixe
to a constant (t/Lz5a) for a given system sizeL andz, then
c̃ has only one scaling variable (T2Tc)L

1/n, and can thus be
written as

c̃5Fc„a,~T2Tc!L
1/n
…. ~36!

Accordingly, if we plotc̃ with fixed a as a function ofT for
various L, all curves should intersect atTc . However, be-
causea depends on the value ofz which cannot be indepen
dently determined by this method we start the intersect
method from thez value determined from the scaling co
lapse atTc . The values ofTc andz obtained from this inter-
section method can be refined by the iterating intersec
construction. Finally, to examine the consistency we colla
the data for all temperatures and lattice sizes onto a sin
scaling curve in the variable (T2Tc)L

1/n at fixed a5t/Lz,
which in addition is a check of the consistency against
known value of the static exponentn.

IV. SIMULATION RESULTS

A. 2D XY model

In two dimensions, there has been some controversy o
the value of the dynamic critical exponent: There has bee
theoretical approach by Ambegaokar, Halperin, Nelson,
Siggia23 ~AHNS! predicting zAHNS51/2ẽTCG, where the
Coulomb gas ~CG! temperatureTCG[T/2pr0 and 1/ẽ
[1/e(0) ~see Sec. III A 1!. On the other hand, a simple sca
ing argument has yieldedzscale51/ẽTCG22.24 Also, in nu-
merical simulations, there have been some differences:
the one hand,zAHNS has been observed in Ref. 25 from RS
simulations, whilezscale has been concluded for RSJD an
RD ~Refs. 8 and 24!, for Langevin dynamics of CG ga
particles~Ref. 26!, and for the MC simulation of lattice CG
~Ref. 19!. Although the question is not completely resolve
yet, we strongly believe that when the fluctuating tw
boundary condition8 ~see Ref. 27 for a comparison between
conventional boundary condition and the FTBC! is used,
zscaleis the correct result. Although the above mentioned t
z values are different below the KT transition, they give t
same value of 2 at the KT transition. In Ref. 28, howev
z'1 was concluded from a simulation of RSJ dynamics w
the PBC, while in Refs. 29 and 30 a very large valuez'5
has been suggested from a scaling analysis of existing
perimental data and from an analytic calculation us
Mori’s technique, respectively.

In the low-temperature phase of the 2DXY model, we can
alternatively derivezscalein the following way: The potential
barrier, which a bound vortex-antivortex pair should ove
come in order to escape, is given by

DV5
T

ẽTCG
ln L,
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and the escape ratioG;exp(2DV/T) for one pair is simply
related to the total probability of escape,P, by

P5L2nG,

wheren is the vortex pair density. The time scalet of the
system is inversely proportional toP and thus is given by

t;
exp~DV/T!

L2n
;L1/ẽTCG22;Lz,

and we obtain the dynamic critical exponent

z5
1

ẽTCG
22

in accordance with Ref. 24, wherez has been obtained from
a simple scaling argument and the observed 1/t behavior of
the correlation functionG(t).

In this section, we investigate the dynamic critical exp
nent of the 2DXY model with RSJD and RD at, below, an
above the KT transition. We use the FTBC as well as
conventional PBC and use various methods such as the
sistance scaling, the scaling of the supercurrent correla
function, and the short-time relaxation method. The res
are summarized in Table I. As seen from Table I only t
FTBC gives results in accordance with the expected va
zscale5zAHNS'2 atT50.90('Tc),

31 whereaszscale'3.4 and
zAHNS'2.8 at T50.80.8 Furthermore, this is the case bo
for RD and RSJD. In contrast, the results for the PBC
inconsistent both withzscale and zAHNS. From this we con-
clude that the FTBC is an adequate boundary condition
the context of open systems like superfluid and superc
ducting films. It is also interesting to note that also the sho
time relaxation method for RSJD with the FTBC gives r
sults consistent withzscale. The results in Table I will be
further discussed in Sec. V. In the following we present
simulation results on which Table I is based.

1. Critical temperature

First we fix the temperature toT50.90'Tc and focus on
the dynamic critical behaviors at the KT transition. The
sults from the resistance scalingR}L2z for the FTBC~see
Sec. III A 2! are displayed in Fig. 1~the data points are take

TABLE I. Dynamic critical exponentz for 2D RSJD and RD
with the PBC and FTBC.

RSJD RD
PBC FTBC PBC FTBC

At T50.90
Resistance scaling 2 2.0~1! 2 2.0~1!

Supercurrent scaling 1.5~1! 2 2.0~1! 2

Short-time relaxation 1.2~1! 2.0~1! 2.0~1! 2.0~1!

At T50.80
Resistance scaling 2 3.3~1! 2 3.3~1!

Short-time relaxation 1.4~1! 3.2~1! 2.0~1! 2.0~1!

Above Tc

From v0;j2z ;2 2 2.0a 2

aReference 32.
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from Ref. 8!, where the slopes of the lines in the log-log pl
correspond toz'2 for both RSJD and RD. Consequentl
our resultz'2.0 is in accordance with other existing the
retical predictions23,24while it contradicts recently suggeste
very large values in Refs. 29 and 30.

In order to determinez at the KT transition for the PBC
we use the following finite-size scaling form Eq.~28! ~see
Sec. III A 1! of the supercurrent correlation functionG(t):

lnS L

c DG~ t !5FG~ tL2z!.

Figure 2 shows the corresponding scaling plot atT50.90
'Tc both for RSJD and RD@Figs. 2~a! and 2~b!, respec-
tively#. Very good scaling collapses are obtained in bo
cases withz51.5 for RSJD andz52.0 for RD. This clearly
demonstrates that the value ofz for RSJD with the PBC is
different from the expected value of 2 which was obtain
with the FTBC. In these scaling collapses one should n
that the relaxation is much faster for RD than for RSJD, a
apparent by comparing the scales on the horizontal a
@note that vertical axis is in a logarithmic scale in Fig. 2~a!
and in a linear scale in Fig. 2~b!#. It is also interesting to note
that the value of the constantc in the logarithmic correction
of Eq. ~28! comes from the static properties, as described
Appendix A, and consequently should be independent of
dynamics. In accordance with this expectation the good s
ings in Fig. 2 are achieved with the same value ofc: Both
for RSJD in Fig. 2~a! and for RD in Fig. 2~b!, we found that
c50.60 gives a good collapse.

In Fig. 3, we next show the decay ofc̃ ~see Sec. III B for
details! at T50.90'Tc for RSJD with the~a! FTBC and~b!
PBC, which demonstrates thatz'2.0 ~for the FTBC! andz
'1.2 ~for the PBC! result in good data collapses to scalin
curves. However, only the FTBC leads to the expected va
z'2.0. One should also note that the PBC results in an

FIG. 1. Resistance scaling for 2D RSJD~open squares! and RD
~solid squares! with the FTBC atT50.9. The solid lines represen
R;L22.0. For both dynamics,z'2.0 is obtained.~The data points
were taken from Ref. 8.!
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tremely slow decay ofc̃. Similarly Fig. 4 shows the decay o
c̃ for RD atT50.90 with the~a! FTBC and~b! PBC. In both
cases good data collapses are obtained forz'2.0. In this
case of RD, both boundary conditions have the same ma
tude of the decay time scale. A possible interpretation
discussed in Sec. V.

2. Low-temperature phase

The 2D XY model is special in that the whole low
temperature phase is ‘‘quasi’’ critical. This means that ea

FIG. 2. Scaling of the supercurrent correlation functionG(t) in
2D at the KT transition (T50.9) in case of the PBC for~a! RSJD
and ~b! RD. The scaling collapse of the data shown is forz51.5
and 2.0 in case of~a! RSJD and~b! RD, respectively.@The apparent
spread of the data in~a! is only due to the logarithmic scale an
insufficient convergence for the largest lattice sizes at larget.#

FIG. 3. Short-time relaxation for 2D RSJD atT50.9.~a! For the
FTBC z'2.0 and~b! for the PBCz'1.2 are obtained. Note th
enormous time scale for the PBC.
ni-
is

h

temperature in the low-temperature phase is characterize
a temperature-dependent dynamic critical exponentz. Just as
in the previous section, this temperature-dependentz can be
determined from the size scaling of the linear resistance,
R}L2z. Figure 5 shows the finite-size scaling of resistan
at T50.8(,Tc) for 2D RSJD and RD with the FTBC~all
data are from Ref. 8! and we findz'3.3 for both types of
dynamics. In Ref. 8, this value has been compared withzscale
andzAHNS at this temperature and it has been concluded
the observed value 3.3 is very close tozscale'3.4.

FIG. 4. Short-time relaxation for 2D RD atT50.9 with the~a!
FTBC and~b! PBC. For both boundary conditionsz'2.0 is ob-
tained from the data collapse. Note that the decays for both bou
ary conditions have the same time scale.

FIG. 5. Resistance scaling for 2D RSJD~open squares! and RD
~solid squares! with the FTBC atT50.8. For both dynamics,z
'3.3 is obtained from the slopes of the lines in the figure.~The data
points were taken from Ref. 8.!
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In the same way as in the previous section
temperature-dependentz in the low-temperature phase ca
also be probed by the short-time relaxation method descr
in Sec. III B. The divergence of the correlation length in t
whole low-temperature phase in 2D turns the finite-size s
ing form ~35! into the simpler form

c̃5Fc~ t/Lz!, ~37!

with the temperature-dependentz. Figures 6 and 7 show th
finite-size scaling of the short-time relaxation atT50.80
with the ~a! FTBC and~b! PBC. The valuez'3.2 found in
Fig. 6~a! for RSJD with the FTBC is in agreement withz
'3.3 obtained from the resistance scaling in Fig. 5 with

FIG. 6. Short-time relaxation for 2D RSJD atT50.80. ~a! For
the FTBCz'3.2, and~b! for the PBCz'1.4 are obtained from the
best data collapse.

FIG. 7. Short-time relaxation for 2D RD atT50.80 for the~a!
FTBC and~b! PBC. For both boundary conditions,z'2.0 is found
from the best data collapse.
e

ed

l-
numerical accuracy. We interpret this as an evidence thz
for the RSJD with the FTBC is indeed given byzscale. This is
in contrast to the RSJD with the PBC for which at the sa
temperature (T50.80) z'1.4 is determined from short-time
relaxation as shown in Fig. 6~b!. As will be discussed in Sec
V, we interpret this as further evidence that, in case of the
RSJD,z does depend on the boundary condition. The sh
time relaxation for RD gives a quite different result:z'2 is
obtained forT50.80 for both the FTBC and PBC, as show
in Fig. 7. If one compares this with the results atTc in Fig. 4,
wherez'2 is also obtained, the implication is that the res
z'2 for the short-time relaxation is expected at any te
perature in the low-temperature phase both for the FTBC
PBC. As will be discussed further in Sec. V, this sugge
that the short-time relaxation for RD does not probe the t
equilibrium critical dynamics.

3. High-temperature phase

In the high-temperature phase there is a finite screen
length j which diverges asTc is approached from above
Close to Tc one then expects that the characteristic tim
scales as

t;jz.

In case of the PBC, we can estimatej and t following the
method in Ref. 32:j is obtained from the wave-vector de
pendence of the static dielectric function 1/e(0) introduced
in Eq. ~24!. The characteristic frequencyv0;1/t is deter-
mined from the frequency dependence of 1/e(v); v0 is the
position of the dissipation peak inuIm1/e(v)u. The result for
RSJD with the PBC is shown in Fig. 8, wherez'2 is found
from v0;j2z. It should be noted that since this result
obtained for a temperature range wherej/L!1 it is expected

FIG. 8. Characteristic frequencyv0 determined from the peak
position of uIm 1/e(v)u vs the correlation lengthj for 2D RSJD
with the PBC at temperaturesT51.0, 1.1, 1.2, and 1.3~from right
to left!. The dynamic critical exponentz defined byv0;j2z is
shown to have a value close to 2.0~solid line!. For comparison, we
also plot the dotted line which corresponds toz51.0.



n
a

8
s

nt

m
es
e

c
i

en

e
by
-

in
a
o

cu

ls
e

q.

a
ec

n

f

.,
of

is
is

g
e
of
ra-

3

o
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to be independent of the treatment of the boundary and he
applies to both the PBC and FTBC. The same method
plied to RD also givesz'2.0 as shown in Ref. 32. In Fig.
the dotted line with slope21 is also shown and correspond
to the result in Ref. 28, wherez'1 was obtained for RSJD
with the PBC in the same temperature range. Conseque
Fig. 8 implies, in contrast to Ref. 28, thatz52 is the correct
value for the PBC as well as for the FTBC, whenz is deter-
mined fromt;jz.

B. 3D XY model

Next we turn to the 3DXY model with current conserving
RSJD and nonconserving RD, respectively. Both dyna
models have been used to describe the dynamic properti
high-Tc superconductors. Whereas it is generally agre
upon that the static critical properties are those of the 3DXY
model in a region close toTc with the corresponding stati
critical exponents,33 there is less consensus on the dynam
critical properties. Several seemingly mutually inconsist
experimental34–37 and simulational19,38,39 results have been
reported. Similarly to the 2D case described above in S
IV A, we will here arrive at a somewhat entangled picture
comparing values ofz obtained from the scalings in equilib
rium for the two types of dynamics~RSJD and RD! with the
two types of boundary conditions~the PBC and FTBC!, as
well as from the short-time relaxation method by observ
the time evolution towards equilibrium when starting from
nonequilibrium configuration. For convenience, the results
the simulations for the 3DXY model are summarized in
Table II.

1. Resistance scaling

We start with the determination ofz for the FTBC using
the finite-size scaling of the linear resistance, which is cal
lated from the equilibrium fluctuation of twist variableD
@see Eq.~30!# A shorter presentation of these results has a
been given in Ref. 40. In 3D the correlation length diverg
as j;uT2Tcu2n, making the extended scaling form of E
~31!, as well as the intersection method in Eq.~33! appli-
cable in addition to the relationR;L2z at Tc .

We first present the result for the scaling of the line
resistance for RSJD with the FTBC. By using the inters
tion method explained in Sec. III A 2@see Eq.~33!# we de-
termineTc andz simultaneously from the unique intersectio
point, as shown in the inset of Fig. 9, which yieldsTc
'2.200 andz'1.46. We then display in the main part o
Fig. 9 the scaling plot of the linear resistance@see Eq.~31!#,
RLz as a function of the scaling variable (T2Tc)L

1/n, at T

TABLE II. Dynamic critical exponentz for 3D RSJD and RD
with the PBC and FTBC.

RSJD RD
PBC FTBC PBC FTBC

Resistance scaling 2 1.46~6! 2 1.5~1!

Supercurrent scaling~L! 1.5~1! 2 2.0~1! 2

Supercurrent scaling (j) 1.4~1! 2 1.9~2! 2

Short-time relaxation 1.2~1! 1.50~5! 2.1~1! 2.0~1!
ce
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52.17, 2.19, 2.20, 2.21, and 2.23 forL54, 8, and 16. Here
we usedz and Tc found from the intersection method, i.e
z51.46 andTc52.200, respectively, and the known value
the static exponentn'0.67.31 We also tried to vary the val-
ues ofTc , z, andn in the scaling plot and concluded thatz
51.4660.06 for the case of 3D RSJD with the FTBC. It
noteworthy thatTc'2.200 from the intersection method
very close to the known value ofTc@'2.2018 ~Ref. 31!#
from the MC simulation.

For RD with the FTBC we only focus on the scalin
relation R;L2z at Tc , since it is found that the resistanc
for the RD case is harder to converge due to a sensitivity
the result on the discrete time step in the numerical integ

FIG. 9. ~a! Scaling curve of the resistanceR for 3D RSJD with
the FTBC forL54, 8, and 16 atT52.17, 2.19, 2.20, 2.21, and 2.2
with parameter valuesz51.46 andTc52.200~both from the inter-
section method described in the text and shown in the inset!, and
the known valuen50.67 ~Ref. 31!. ~b! Determination ofz for 3D
RD with the FTBC from the resistance scaling formR}L2z at Tc

52.20. The data points are forL54, 8, 10, 12, and 16, and two
integration time stepsDt50.05 and 0.01. Linear extrapolation t
Dt50 givesz51.47 from the least-squares fit.
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tion of dynamic equations even when using the second-o
RKHG algorithm.12 In contrast, we did not observe any si
nificant sensitivity to the time step in RSJD and we fixDt
50.05 throughout the present work for RSJD. In order
overcome the problem in RD due to the finite-time step
obtain data for two different time steps (Dt50.05,0.01) and
linearly extrapolate toDt50, as shown in Fig. 9~b! for L
54, 6, 8, 10, 12, and 16. The slope of the line in the log-
plot of R versusL in Fig. 9~b! givesz'1.5 also for 3D RD
with the FTBC.

2. Supercurrent scaling

For the PBC we use the scaling of the supercurrent c
relation functionG(t) introduced in Sec. III A 1 in order to
obtainz. In Fig. 10~a! we use the finite-size scaling form i
Eq. ~27! and plotLG as a function of the scaling variabl

FIG. 10. Finite-size scaling atTc of the correlation function
LG(t) vs t/Lz for 3D ~a! RSJD with the PBC and~b! RD with the
PBC. In the main parts of~a! and~b!, z51.5 andz52.05 are shown
to give good scaling collapses for~a! RSJD and~b! RD, respec-
tively, while in the insets the interchanged values@z52.0 andz
51.5 for ~a! and~b!, respectively# are shown to be inconsistent wit
the scaling collapse.
er

e

r-

t/Lz for ~a! L58, 16, and 24 for RSJD and~b! L56, 8, 12,
16, and 24 for RD, respectively: Optimal data collapse
achieved forz51.5 ~RSJD! andz52.05 ~RD!, respectively.
In the insets of Fig. 10 we use~a! z52.0 for RSJD and~b!
z51.5 for RD, respectively, and show that the data collap
becomes significantly worse and consequently conclude
the z values obtained by this data collapse method are w
determined@see the main parts of Figs. 10~a! and 10~b!#. One
notes that for RSJDz'1.5 is obtained for both the FTBC
and PBC, whereas for RDz'1.5 andz'2 are obtained for
the FTBC and PBC, respectively.

In the critical region aboveTc where j!L we instead
havejG(t) as a scaling function with the scaling variab
t/jz @see Eq.~26!#. Figure 11 shows this scaling results
temperatures aboveTc (T52.25, 2.30, and 2.40! for L
524. By comparing with the results forL532, it is explic-
itly checked that there remain no significant finite-size
fects in the current temperature range. In Fig. 11 the co
sponding values ofj are taken from high precision MC

FIG. 11. Scaling of the correlation functionjG(t) aboveTc is
shown against the scaling variabletjz for 3D ~a! RSJD with the
PBC and~b! RD with the PBC forL524 andT52.25, 2.30, and
2.40. From the scaling collapse, withj from the MC simulation
~Ref. 41!, we obtain~a! z'1.4 for RSJD and~b! z'1.9 for RD.
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simulations.41 As shown in Fig. 11, the optimal valuez
51.4(2) is found for RSJD andz51.9(2) for RD, respec-
tively, which is consistent with the finite-size scaling ofG(t)
at Tc . However, we note that the determination ofz in the
case of the finite-j scaling aboveTc yields a somewha
larger uncertainty. Furthermore,z'2 found for RD with the
PBC is particularly intriguing to understand since we exp
that this result should be independent of boundary condi
in this high-temperature regime wherej!L: Thus one ex-
pects the same valuez'2 for the FTBC in this high-
temperature regime. This in turn suggests a discontinu
jump in thez value fromz'2 to z'1.5 asTc is approached
from above, sincez'1.5 atTc was observed in the scaling o
the linear resistance in Sec. IV B 1. This possibility is a
discussed in Sec. V.

3. Short-time relaxation scaling

The short-time relaxation method described in Sec. II
probes the relaxation towards equilibrium from a nonequi
rium configuration. We start with the presentation of the
sults obtained for RSJD and RD with the FTBC. Using t
scaling form ofc̃ in Eq. ~35! at Tc , where the scaling func
tion has only one scaling variablet/Lz, we first show in Fig.
12 the scaling plot ofc̃ at T52.20 for ~a! RSJD with L
54, 8, and 16 and~b! RD with L56, 8, and 10, respectively
All the data can be made to collapse onto a single curve
broad range of the scaling variable forz'1.5 andz'2.0 for
RSJD and RD, respectively. However, the above met
presumesa priori knowledge ofTc . To circumvent this, one
can alternatively use an intersection method with a fix
value ofa5tL2z in the first argument of the scaling form i
Eq. ~36! ~see Sec. III B!. In insets of Fig. 13 we display dat
points atT52.17, 2.19, 2.20, 2.21, and 2.23 for~a! RSJD

FIG. 12. Short-time relaxations ofc̃ in 3D with the FTBC at
T5Tc52.20 are shown as functions of the scaling variabletL2z for
~a! RSJD withL54, 6, and 16, and for~b! RD with L56, 8, and
10. From the scaling collapsez51.50 andz51.95 are found to
yield smoothly collapsed single curves for~a! RSJD and~b! RD,
respectively.
t
n

us
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-

a

d

d

with L54, 6, 8, and 16 and~b! RD with L54, 6, 8, and 10,
and show the results of the iterative intersection method.
obtain againz'1.5 andz'2.0, as well as the estimations o
the critical temperaturesTc'2.200 andTc'2.194 for ~a!
RSJD and~b! RD, respectively. We believe that the exi
tence of an unique intersection point in each dynamics w
the valueTc'2.200 obtained for RSJD, which is in ver
good agreement withTc'2.200 obtained previously from
the resistance scaling, and withTc'2.2018 from MC
simulations,31 make this short-time relaxation method ve
reliable. One notes that the slight temperature shift for RD
again the effect of the finite time step, as already observe
the calculation of the linear resistance. We have also chec
the dependence ona values and observed no significa
changes in resulting values ofTc and z in a broad range
where 0.4,c̃,0.9. Usingz andTc found from the intersec-
tion method, we in Fig. 13 confirm that the full scaling for
is borne out to high precision withn50.67 determined from
MC simulations.31

We next consider the short-time relaxation for PBC, a
show in Fig. 14 the scaling plot atT52.20,c̃5Fc(t/Lz), for
~a! RSJD and~b! RD. Treatingz as a free parameter, w
obtainz'1.2 andz'2 for RSJD and RD, respectively. Thi
suggests that the value for RSJD with the PBC is lower th

FIG. 13. Finite-size scaling of the short-time relaxation ofc̃ for
3D ~a! RSJD forL54, 6, 8, and 16 and~b! RD for L54, 6, 8, and
10 both with the FTBC and atT52.17, 2.19, 2.20, 2.21, and 2.23

As shown in insets, the scaling functionc̃5Fc„t/L
z,(T2Tc)L

1/n
…

with a fixed a5t/Lz suggests the existence of a single cross
point ~a! at Tc52.200 with (z,a)5(1.5,4.0) for RSJD and~b! at
Tc52.194 with (z,a)5(2.0,0.5) for RD. All data points in the in-
sets collapse onto a single smooth curve with the scaling vari
(T2Tc)L

1/n for both models with the known valuen50.67 ~Ref.
31!, as shown in main parts.
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z'1.5 obtained from the same short-time relaxation meth
for RSJD with the FTBC, whereas for RD a valuez'2 is
obtained both for the FTBC and PBC. As already obser
in 2D, RSJD with the PBC has a very large decay time sc
in contrast to RSJD with the FTBC as well as to RD w
both the PBC and FTBC.

C. 4D XY model

For completeness we also determinez in 4D.42 As a pre-
requisite we first estimateTc through the use of MC simula
tions in conjunction with the finite-size scaling analysis
the Binder’s fourth-order cumulant43 U, which is indepen-
dent ofL precisely atTc ,

U~L,T!512
^umu4&

3^umu2&2
,

with the order parameterm5( re
iur/L4. The results are

shown in Fig. 15 andTc'3.31 is found from MC simulation
with the PBC, which is consistent with earlier reports44 but
has a higher accuracy. From the MC simulations we a
verified thatn in 4D has the expected mean-field valuen
51/2 ~see, e.g., Ref. 45!. Since, as noted in the previou
section, the size of the discrete time step in the integratio
the dynamic equations of motion can lead to an effect
increase of temperature, we explicitly determine the effec
Tc for RSJD and RD with the time stepDt50.05 from the
crossing point ofU(L,T): Figure 15 shows that there is n
significant difference between the effective and nominal te
perature for RSJD, leading toTc(RSJD)'Tc(MC)'3.31.
On the other hand, for RD we from the crossing point obt
Tc'3.25 at the same time stepDt50.05, in parallel with
what was found for RD in 3D. It is to be noted that althou
the above critical temperatures have been obtained only

FIG. 14. Short-time relaxation ofc̃ in 3D with the PBC atT
5Tc52.20 as functions of the scaling variabletL2z for ~a! RSJD
with L54 and 8, and for~b! RD with L54, 6, and 8. From the
scaling collapsez'1.2 andz'2.1 are found for~a! RSJD and~b!
RD, respectively.
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the PBC, the same critical temperature is expected also
the FTBC since all static quantities such asTc should not
depend on boundary conditions used.

Once Tc is known from the calculation of the Binder’
cumulant, we can use the simple finite-size scaling form
~32! for the linear resistance calculated with the FTBC
Eq. ~30! ~we useQ52000 for both RSJD and RD!. In Fig.
16~a!, we plot the linear resistanceR versusL at T53.31
~RSJD! andT53.25 ~RD!, and from the least-squares fit w
find z'2.1 for RSJD andz'2 for RD, respectively. In ad-
dition, we also measure the short-time relaxation with
FTBC and present the result for RD atL56 and 8 in the
inset of Fig. 16~a! by using the simple scaling form atT
5Tc53.25, i.e.,c̃5Fc(tL2z), which yieldsz'2.0 in ac-
cordance with the result from the resistance scaling.
RSJD with the FTBC, we construct the intersection plot
the short-time relaxation~similar to Fig. 13 for 3D! as dis-
played in the inset of Fig. 16~b!, and getz'2.0 andTc
'3.31 from the unique crossing point. It is interesting
note that the critical temperature obtained here for RS
with the FTBC is in a perfect agreement withTc found from
the Binder’s cumulant method for the other boundary con
tion, the PBC. We then make the full scaling plot forc̃ in the
main part of Fig. 16~b! with the mean-field valuen50.5 and
the estimated valuesTc53.31 andz52.0 above, resulting in
a very smooth collapse.

In short, we getz'2 in 4D with the FTBC regardless o
the dynamics we use~see Table III for a summary of results!;
this is reassuring since the valuez52 is usually expected in
4D where the phase transition acquires a mean-fi
nature.11,45

V. DISCUSSIONS AND COMPARISONS

As is clear from the simulation results presented in S
IV for two-, three-, and four-dimensionalXY models, a very

FIG. 15. Binder’s fourth order cumulant in 4D determined fro
MC simulations, RSJD, and RD forL54, 6, and 8 at several tem
peratures betweenT53.05 andT53.40. Data points for MC and
RSJD coincide within error bars and giveTc'3.31, whereas the
RD results show a relative large dynamic shift toTc'3.25.
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entangled picture emerges as regards to the dynamic cr
exponentz. In this section we discuss the main features.

A. Discussion of the 2DXY model

We start our discussion with 2D~see Table I for summary
of results! and first focus on RSJD at the KT transition. F
a 2D superfluid and superconductor the most widely
pected value isz52 although there have been a few differe
suggestions~Refs. 28–30!. The valuez52 can be inferred
from the observed nonlinear current-voltage (I -V) exponent

FIG. 16. ~a! Determination ofz in 4D XY model with the FTBC
from the resistance scaling formR;L2z for L54, 6, and 8 atTc

53.31 for RSJD and atTc53.25 for RD ~see Fig. 15!. From the
slopes in log-log plot,z'2 is concluded for both dynamics. Inse

short-time relaxation ofc̃ for 4D RD with the FTBC atT5Tc

53.25 is shown against the scaling variabletL2z for L56 and 8

andz52.0 is found.~b! Finite-size scaling ofc̃ for 4D RSJD with
the FTBC forL54, 6, and 8 atT53.25, 3.30, 3.31, 3.32, and 3.35
As shown in inset, the intersection method givesTc'3.31 with z

52.0. The main part displays the full scaling plot of the formc̃
5Fc„t/L

z,(T2Tc)L
1/n
… with a5tLz52.8 and the mean-field valu

n51/2.
al

-
t

a53 ~Refs. 8, 24, 26, and 46! together with the scaling
argument thata5z11.13,14 It may also be directly obtained
from the simple argument of the escape over the bound
presented in Sec. IV A with the resultz51/ẽTCG22, com-
bined with the universal jump condition at the KT transitio
1/ẽTCG54,2,47,48 which leads toz52 at the transition. For
the 2DXY model, the KT transition temperature isTc'0.9
~Ref. 31! and as seen from Table I, RSJD with the FTB
does give the expected value. However, RSJD with the c
ventional PBC does in fact not give the expected value:
supercurrent scaling givesz'1.5 and the short-time relax
ation givesz'1.2.

In order to understand the role played by the bound
conditions we consider a system with an open bounda
which is appropriate to describe a superconducting film an
film of 4He in usual experiments. In such a case, whe
vortex-antivortex pair is introduced into the ground state a
then annihilated across the boundary, the system rela
back to the original ground state. The FTBC has been
signed to keep the advantage of the PBC, which reduces
finite-size effect compared to the free boundary condition
much as possible, while allowing this relaxing back. Th
relaxing back is, however, prohibited by the convention
PBC.7 One may note that the escape-over-barrier argum
in Sec. IV A implicitly presumes this relaxation back as
part of the escape process. One should also note that, w
comparing to experiments with open boundaries, the FT
has to be used in simulations instead of the PBC whene
the relaxation process across the boundary is important.
perspective suggests that the observed difference betw
the FTBC and PBC at the KT transition for RSJD is due
the additional constraint on the physics caused by the P

This can be substantiated somewhat further by study
the low-temperature phase in 2D, where an ubiquito
‘‘quasi’’ criticality with a diverging correlation length make
the critical finite-size scaling method applicable. In Ref.
z'3.3 atT50.80 was found for the FTBC from the resis
tance scaling in agreement with the expected valuez

51/ẽTCG22'3.4 within numerical errors. However, an e
timate of the equilibrium scaling for the PBC atT50.85 in
Ref. 8 gavez'1.6 instead of the expected resultz'2.8 ~see
Fig. 3 in Ref. 8!. Thus in this low-temperature phasez de-
termined with the PBC appears to be smaller (z,2) than the
one with the FTBC (z.2). However, the value for the
FTBC is the relevant one when comparing with experimen

The situation aboveTc is as follows: The finite linear
resistanceR calculated from the fluctuations ofD for the
FTBC @see Eq.~30!# can be related to the conductivity ca
culated for the PBC through the connectionR5Re@1/s(v
50)# with s(v) in Eq. ~20!. We have explicitly checked
this relation in our simulations atT51.4, by comparing the
two values for the FTBC and PBC, respectively, and fou

TABLE III. Dynamic critical exponentz for 4D RSJD and RD
both with the FTBC.

RSJD RD

Resistance scaling ;2 ;2
Short-time relaxation 2.0~1! 2.0~1!
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good agreement.49 From this observation, we expect that
this high-temperature phase where the correlation lengt
smaller than the linear size of the system,R andz are inde-
pendent of boundary conditions. Furthermore, in this te
perature regime, transport properties like the linear resista
are dominated by free vortices~with densitynF) and accord-
ingly we expectR}nF}j22 ~Ref. 2!, leading toz52 for
both boundary conditions. However, from a computatio
point of view, the calculation of the size-convergedR for the
FTBC in the high-temperature phase becomes difficult as
approachTc from above, due to the diverging correlatio
length. On the other hand, if we instead focus on the sca
of the characteristic frequencyv0, which is expected to be
proportional toR and can be calculated for the PBC, then w
do indeed find an indication of the expected behavior,v0
;j22, as seen in Fig. 8 for the PBC. For the FTBC th
result is consistent with our observationz'2.0 at Tc ,
whereas for the PBC the scaling atTc gives z'1.5, which
differs from the expectation. Why is there then a differen
in the PBC betweenz values at and aboveTc? The point is
that the long-time relaxation aboveTc is governed by the
thermally created free vortices, whose density satisfiesnF
}j22, whereas the behavior precisely atTc , wherenF50, is
instead dominated by the bound pairs of vortices and a
vortices. The conclusion is then that the constraint impo
by the PBC on the vortex-antivortex escape gives rise to
peculiar discontinuity ofz precisely atTc . This is in contrast
to the FTBC case wherez appears to be a continuous fun
tion of T.

Next we compare the results from the dynamic scaling
equilibrium and the short-time relaxation method whi
probes the relaxation when the system approaches equ
rium. For RSJD with the FTBC there is no difference: t
resistance scaling and the short-time relaxation method y
the samez at and belowTc ~see Table I!. However, for RSJD
with the PBC the equilibrium scaling and the short-time
laxation scaling lead to different results,z'1.5 andz'1.2,
respectively. In fact by comparing Figs. 2~a! and 3~b! one
realizes that the approach to equilibrium from the cho
starting nonequilibrium configuration is much slower th
the equilibrium relaxation. Apparently the constraint im
posed on the relaxation by the PBC in combination with
nonequilibrium starting configuration is causing the diffe
ence.

We now turn to the discussions for RD, where for t
FTBC we find from the resistance scaling the samez at and
below Tc as for RSJD~see Table I!. In this context it is
interesting to note that the 2DXY model with the FTBC is
dual to the lattice CG model with the PBC~see Ref. 7 for the
mapping between two models!, where the same values of th
dynamic critical exponent (z5zscale51/ẽTCG22) have been
found in MC dynamics.46 Also, the continuum CG mode
with Langevin dynamics of the pure relaxational form h
been found to give the same values ofz.26 Accordingly it is
tempting to conclude that the result presented in this w
for the 2DXY model with the FTBC is associated with th
vortices and that it is essential to define the model so a
allow for a proper relaxation of vortex-antivortex annihil
tion across the boundary, which is not the case for the P
Furthermore, the result thatz5zscaleappears to be universa
in the sense that it does not matter whether or not the un
is
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e
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lying dynamics is purely relaxational~such as RD in this
work, MC dynamics in Ref. 46, and Langevin dynamics
Ref. 26!, or it has an additional constraint like local curre
conservation in the RSJD case.

Although the short-time relaxation method applied to R
gives the expected valuez'2 at Tc , it fails to yield the
equilibrium size scaling value belowTc . In addition, if we
compare the decay behaviors at and belowTc , shown in
Figs. 4 and 7, respectively, we notice that the time scale
the relaxation does not depend significantly on the temp
ture or on the boundary condition, in sharp contrast to RS
We suggest the following reason: In RD the relaxations
spin waves and vortices are effectively decoupled and
short-time relaxation in this case only probes the spin-w
degrees of freedom, which follow the purely relaxational d
namics with the trivial exponentz52 at anyT, while the
resistance scaling probes the vortex degrees of freedom.
is then in contrast to RSJD with the FTBC where both d
grees of freedom are strongly coupled, leading to the sa
relaxation time~and accordingly the samez value! for c̃ and
R. It is also interesting to note thatz'2 was also found in
Ref. 21 from the MC simulations of the 2DXY model with
the PBC at and belowTc by using a similar short-time re
laxation method.

B. Discussion of the 3DXY model

We next turn to the 3DXY model ~see Table II for a
summary of results!. The discussion for the 2D case in Se
V A regarding the boundary conditions carries over to 3
and we expect that the FTBC has to be used whenever
relaxation process associated with the expansion and the
sequent annihilation of a vortex loop across the boundar
important because the conventional PBC prevents this re
ation.

For RSJD,z'1.5 is found from the linear resistance an
the short-time relaxation method for the FTBC, as well
from the scaling of the supercurrent correlation at and ab
Tc for the PBC. In addition, the same valuez'1.5 is also
found for RD with the FTBC from the finite-size scaling o
the linear resistance. We note here that the MC simulati
of the lattice vortex loop model in 3D~Ref. 19! also have
found the same value. The agreement between thez values
for the three different dynamic models~RSJD and RD with
the FTBC, and MC dynamics of the vortex loop model wi
the PBC! was also found in 2D. This valuez'1.5 obtained
in 3D is consistent withz5d/2 ~with d53 in 3D! for model
E and model F describing critical dynamics of superflu
systems, in the classification scheme of Hohenberg
Halperin.11,50 Consequently, it is again tempting to conclud
that the result for the 3DXY model can be associated wit
the vortex loops and that the critical dynamics of RSJD a
RD are equivalent as long as the boundary condition allo
for the proper vortex loop escape over the boundary.

As in 2D, we find that the short-time relaxation metho
for RSJD with the PBC~with the resultz'1.2) does not
reflect the true equilibrium relaxation corresponding toz
'1.5, and we again suggest that this is due to the constr
imposed by the PBC. On the other hand, we find that
short-time relaxation method for RD with the FTBC give
z52.0(1) @see Figs. 12~b! and 13~b!#. We propose the sam
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explanation as we did for 2D: The short-time relaxation
RD at criticality does not reflect the true long-time relaxati
because the vortex loop configurations are still out of eq

librium even whenc̃'0 is reached. In this respect it is in
teresting to note that the valuesTc52.20 andn50.67 used

in the scaling collapse forc̃ in Fig. 13~b! with z52.0 agree
with the value expected for the 3DXY model and that the
sameTc52.20 was used in the resistance scaling in Fig. 9~b!
and yieldedz'1.5.

We next discuss the results for RD with the PBC. T
scalings of the supercurrent correlation both at and abovTc

~corresponding to the finite-L scaling and the finite-j scaling,
respectively!, as well as the short-time relaxation atTc , con-
sistently givez'2. This value corresponds to model A o
relaxational dynamics in the Hohenberg-Halperin classifi
tion scheme.11,14,15 The most striking feature in RD is tha
the scalings atTc for the FTBC~resistance scaling! and PBC
~supercurrent scaling! correspond to different values, i.e.,z
'1.5 andz'2.0, respectively.

In the high-temperature phase in 3D wherej!L, one
expects thatz is independent of boundary conditions.51 Con-
sequently,z'2 found for RD with the PBC at temperature
aboveTc implies z'2 also for RD with the FTBC in the
same high-temperature regime, again consistent with m
A.11 In contrast,z determined from the resistance scaling
Tc instead givesz'1.5 for RD with the FTBC. We propos
the same explanation for this discontinuity ofz at Tc in the
RD case with the FTBC as we did in 2D: AboveTc where
j!L, the finite value of the resistivity reflects the physics
dissociated vortex loops whereas precisely atTc , where the
resistivity vanishes asL is increased, the physics is dom
nated by the large nondissociated vortex loops.

We now compare our results in 3D with earlier studie
Values consistent withz'1.5 have also been found in earlie
simulations:z51.5(5) was obtained from theI -V character-
istics of the current-driven RSJ model with an open bou
ary ~Ref. 52!, andz51.5(1) was concluded from the scalin
of the linear resistance for the MC simulations of theXY
model in the vortex representation with the PBC~Refs. 19
and 39! which corresponds to the FTBC in the phase rep
sentation as mentioned above and explained in Ref. 7.
nally, MC spin dynamics applied to the three componentXY
model gavez51.38(5) in Ref. 53. On the other hand, th
experimental situation for high-Tc superconductors is les
clear:54 From several zero field dc conductivity experimen
z'1.5 has been found on single YBCO-123 crystals34 and a
similar result z51.6(1) was also obtained for a Bi-221
crystal.37 However, from the scaling of the magnetocondu
tivity of a thick YBCO-123 film z51.25(5) was found in
Ref. 36, whereas a similar experiment reportedz'2 in Ref.
55. From a theoretical point of view the renormalizati
group methods applied to the relaxational model~model A!
yield the resultz521ch,11,15 with h'0.02 andc'0.7261,
leading toz'2.0. However, as far as we know, no corr
sponding calculation has been made for the 3D RSJ mo
One may argue that since the 3D RSJ model is abona fide
model of a superconductor the critical dynamics should
long the dynamic universality class of model F which d
scribes superfluids.11 This gives z5d/251.5 for a model
with the static properties given by the 3DXY model.11
i-
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el
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C. Discussion of the 4DXY model

In case of the 4DXY model both resistance scaling atTc
and short-time relaxation givez'2 for RSJD as well as for
RD ~see Table III for summary of results!. This is in perfect
accordance with the Hohenberg-Halperin classificat
scheme where the RSJD case should be related to mod
and F withz5d/252 and the RD case with the model
value z52. This in turn just reflects that 4D is the upp
critical dimension.

VI. SUMMARY

We have found that the size scaling of the resistance
the XY model with the FTBC gives the dynamic critica
exponentz related to superfluid and superconducting syste
with an open boundary. This is the case in two, three, a
four dimensions both for relaxational and RSJ dynamics
2D this applies forT<Tc , whereas in 3D and 4D the dy
namics is critical only atT5Tc . However, the 3D case with
relaxational dynamics has a discontinuity in thez value since
the relaxation timet scales ast}L1.5 at Tc , whereas it
scales ast}j2 just aboveTc .

The short-time relaxation method, which probes the rel
ation from a nonequilibrium configuration, does give t
same result, except for the 3D case with relaxational dyna
ics wherez'2 is obtained. This discrepancy shows that
though the short-time relaxation method very often is re
able and efficient, it cannot always be trusted as
determination of the critical equilibrium dynamics.56

The XY model with the PBC has a different dynamic
size scaling behavior than with the FTBC. In 2D theXY
model with the PBC and RSJ dynamics gives smaller val
of z (z,2) both at and belowTc . This demonstrates tha
the boundary condition influences the size scaling proper
of the dynamics. Also in this case there is a discontinuity
z sincet}L1.5 at Tc but t}j2 just above. This is similar to
the discontinuity found in 3D for relaxational dynamics. Th
short-time relaxation fails to give the equilibriumz at Tc for
the 2DXY model with the PBC and RSJ dynamics.

In 3D the XY model with RSJ dynamics and the PB
gives the same result as for the FTBC. Thus in this case
boundary condition does not influence the size scaling. T
is in contrast to the 3DXY model with relaxational dynamics
which gives different result for the PBC and FTBC.

In 4D all determinations give the simple relaxation
value z'2 independent of boundary condition and dyna
ics.

The actual values determined are consistent with the
lowing sequences: theXY model with RSJ dynamics and th
PBC atTc is consistent withz51.5, 1.5, and 2 for the 2D
3D, and 4D cases, whereas the FTBC is consistent witz
52, 1.5, and 2. Similarly for relaxational dynamics the PB
gives the sequencez52, 2, and 2 whereas the FTBC give
z52, 1.5, andz52 for the 2D, 3D, and 4D cases, respe
tively.

The z values for a superconductor can be related to
nonlinearI -V exponenta through the scaling relationa51
1z.13,14 The I -V measurements correspond to an op
boundary and simulations with the FTBC are consistent w
the scaling relation, as shown for the 2D case in Ref. 8.
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the other hand, thez values calculated with the PBC in 2D d
not fulfill the relation becausea.11z for T<Tc . In this
sense, the boundary condition has direct physical sign
cance.
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APPENDIX A: SCALING FORM OF THE
SUPERCURRENT CORRELATION FUNCTION

For supercurrent correlation scaling in 2D, the superfl
density rs is proportional to the vortex dielectric functio
1/e(0) which in turn is related to the conductivity bys(v)
}1/@ ive(v)#. Precisely at the KT transition 1/e(0) has a
logarithmic size scaling,57

1

eL~0!
2

1

e`~0!
}

1

ln~L/c!
,

wherec is a constant. This is consistent with the function
form in terms of a scaling function with a logarithmic co
rection for the frequency dependence:

1

e~v!
2

1

e~0!
}

1

ln~L/c!
Fe~vt!.

The supercurrent correlation functionG(t) is related to
s(v) by a Fourier transform so that

ImF 1

e~v!G5E
0

`

dtv cosvtG~ t !5
F̃e~vt!

ln L/c
,

whereF̃(x)5Im@F(x)#. From this it follows that

ln~L/c!G~ t !}E
2`

`

dv
1

v
F̃e~vt!e2 ivtt/t

5E
2`

`

dvt
1

vt
F̃e~vt!e2 ivtt/t5FG~ t/t!,

so that ln(L/c)G(t) has the scaling formFG(t/t).
In 3D we have instead 1/eL(0)}rs}1/L at Tc and

1/e`(0)50 so that this time 1/eL(0)21/e`(0)}1/L. This
means that going through the same steps as above for th
case gives the scaling formLG(t)5FG(t/t).

APPENDIX B: APPROXIMATION MADE IN THE
NYQUIST FORMULA FOR LINEAR RESISTANCE

The step from Eq.~29! to Eq. ~30! is equivalent to show-
ing that
-

or

h
-

d

l

3D

E
0

Q

dt^Ḋ~ t !Ḋ~0!&→
1

2Q
^~D~Q!2D~0!!2&

in the limit of largeQ. The left-hand side can, due to tran
lational invariance, be written as

1

QE
0

Q

dsE
0

Q

dt^Ḋ~ t1s!Ḋ~s!&

5
1

QE
0

Q

dsF E
2s

Q2s

2E
2s

0

1E
Q2s

Q Gdt^Ḋ~ t1s!Ḋ~s!&.

~B1!

The first term on the right-hand side iŝ(D(Q)
2D(0))2&/Q, and the second term reduces to

2
1

QE
0

Q

dsE
2s

0

dt^Ḋ~ t1s!Ḋ~s!&

52
1

QE
0

Q

dŝ @D~s!2D~0!#Ḋ~s!& ~B2!

52
^D2~Q!2D2~0!22D~0!D~Q!12D2~0!&

2Q
~B3!

52
^@D~Q!2D~0!#2&

2Q
, ~B4!

where we have used 2D(s)Ḋ(s)5dD2/ds. Thus the sum of
the first two terms on the right-hand side of Eq.~B1! is equal
to ^@D(Q)2D(0)#2&/2Q and it remains to prove that th
third term vanishes in the limitQ→`. This can be realized
by changing the order of integration:

1

QE
0

Q

dsE
2s

0

dt^Ḋ~Q1t1s!Ḋ~s!&

5
1

QE
2Q

0

dtE
2t

Q

dŝ Ḋ~Q1t !Ḋ~0!& ~B5!

5
1

QE
2Q

0

dt~Q1t !^Ḋ~Q1t !Ḋ~0!& ~B6!

5
1

QE
0

Q

dxx̂ Ḋ~x!Ḋ~0!&. ~B7!

A finite relaxation time t means that ^Ḋ(t)Ḋ(0)&
}exp(2t/t), which means that the last integral is finite fo
any finitet. This is the case atTc whenever the system siz
is finite sincet}Lz. Consequently, the third term vanished
the limit Q→` for any finiteL and the step from Eq.~29! to
Eq. ~30! follows.
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1V. L. Berezinskii, Zh. Éksp. Teor. Fiz.61, 1144 ~1972! @Sov.
Phys. JETP34, 610~1972!#; J. M. Kosterlitz and D. J. Thouless
J. Phys. C6, 1181~1973!; J. M. Kosterlitz,ibid. 7, 1046~1974!.

2P. Minnhagen, Rev. Mod. Phys.59, 1001~1987!.
3L. Onsager, Nuovo Cimento6, 249 ~1949!; R. Feynman, in

Progress in Low Temperature Physics, edited by C. Gorter
~North-Holland, Amsterdam, 1955!, Vol. 1; G. A. Williams,
Phys. Rev. Lett.59, 1926~1987!; 71, 392~1993!; J. Low Temp.
Phys.93, 1079 ~1993!; S. R. Shenoy, Phys. Rev. B40, 5056
~1989!; P. Olsson and P. Minnhagen,ibid. 44, 4503~1991!; B.
Chattopadhyay, M. Mahato, and S. Shenoy,ibid. 47, 15 159
~1993!.

4P. Minnhagen, inModels and Phenomenology for Convention
and High-Temperature Superconductivity, Proceedings of the
International School of Physics ‘‘Enrico Fermi,’’ Cours
CXXXVI, Varenna, 1997, edited by G. Iadonisi, J. R. Schrieffe
and M. L. Chiofalo~IOS Press, Amsterdam, 1998!, p. 451.

5H. Eikman and J. E. van Himbergen, Phys. Rev. B41, 8927
~1990!.

6J. J. Vicente Alvarez, D. Domı´nguez, and C. A. Balseiro, Phys
Rev. Lett.79, 1373~1997!; D. Domı́nguez,ibid. 82, 181~1999!.

7P. Olsson, Phys. Rev. B46, 14 598~1992!; 52, 4511~1995!; 52,
4526 ~1995!; Ph.D. thesis, Umea˚ University, 1992.

8B. J. Kim, P. Minnhagen, and P. Olsson, Phys. Rev. B59, 11 506
~1999!.

9J. M. Kosterlitz and N. Akino, Phys. Rev. Lett.82, 4094~1999!;
81, 4672~1998!.

10S. R. Shenoy, J. Phys. C18, 5163~1985!.
11P. C. Hohenberg and B. I. Halperin, Rev. Mod. Phys.49, 435

~1977!.
12See, e.g., G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G.

Lepage, B. Svetitsky, and K. G. Wilson, Phys. Rev. D32, 2736
~1985! and references therein.

13D. S. Fisher, M. P. A. Fisher, and D. A. Huse, Phys. Rev. B43,
130 ~1991!.

14A. T. Dorsey, Phys. Rev. B43, 7575~1991!.
15R. A. Wickham and A. T. Dorsey, Phys. Rev. B61, 6945~2000!.
16J. Houlrik, A. Jonsson, and P. Minnhagen, Phys. Rev. B50, 3953

~1994!.
17F. Reif, Fundamentals of Statistical and Thermal Phys

~McGraw-Hill, New York, 1965!.
18E. Granato, Phys. Rev. B58, 11 161~1998!.
19H. Weber and H. J. Jensen, Phys. Rev. Lett.78, 2620~1997!.
20Z. B. Li, L. Schülke, and B. Zheng, Phys. Rev. Lett.74, 3396

~1995!.
21H. J. Luo and B. Zheng, Mod. Phys. Lett. B11, 615 ~1997!.
22M. S. Soares, J. K. L. da Silva, and F. C. S. Barreto, Phys. R

B 55, 1021~1997!.
23V. Ambegaokar, B. I. Halperin, D. R. Nelson, and E. D. Sigg

Phys. Rev. Lett.40, 783 ~1978!; Phys. Rev. B21, 1806~1980!;
V. Ambegaokar and S. Teitel,ibid. 19, 1667~1979!.

24P. Minnhagen, O. Westman, A. Jonsson, and P. Olsson, P
Rev. Lett.74, 3672~1995!.

25M. V. Simkin and J. M. Kosterlitz, Phys. Rev. B55, 11 646
~1997!.

26K. Holmlund and P. Minnhagen, Phys. Rev. B54, 523 ~1996!;
Physica C292, 255 ~1997!.

27M. Y. Choi, M. Yoon, and G. S. Jeon~unpublished!.
28P. H. E. Tiesinga, T. J. Hagenaars, J. E. van Himbergen, and
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