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Dynamic critical exponent of two-, three-, and four-dimensionalXY models
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The dynamic critical exponemtis determined numerically for thétdimensionaXY model d=2, 3, and 4
subject to relaxational dynamics and resistively shunted junction dynamics. We investigate both the equilib-
rium fluctuation and the relaxation behavior from nonequilibrium towards equilibrium, using the finite-size
scaling method. The resulting valuesoére shown to depend on the boundary conditions used, the periodic
boundary condition, and fluctuating twist boundary conditiiBC), which implies that the different treat-
ments of the boundary in some cases give rise to different critical dynamics. It is also found that the equilib-
rium scaling and the approach to equilibrium scaling for the same boundary condition do not always give the
same value of. The FTBC in conjunction with the finite-size scaling of the linear resistance for both type of
dynamics yields values afconsistent with expectations for superfluids and supercondueterd; 3/2, and 2
for d=2, 3, and 4, respectively.

[. INTRODUCTION ration. Our main conclusion is that the dynamic critical ex-
ponents associated with the topological defects are the same
Superconducting films, Josephson junction arrays, and sder these two types of dynamics, RD and RSJD. However,
perfluid 4He are systems where topological defects play arthis conclusion does depend on the precise treatment of the
important role close to the phase transition. This is particuboundary. We demonstrate that various valueg oén be
larly striking in two dimensiong2D) where a phase transi- Obtained by changing the treatment of the boundary, as well
tion of the Kosterlitz-ThouleséKT) nature is driven by the @S by changing from scaling in equilibrium to scaling for the

unbinding of thermally created topological defects, vortex-&PProach to equilibrium. _ .
antivortex paird:2 In 3D such topological defects take the . 1S paper is organized as follows: In Sec. Il we briefly

form of vortex loops and it has been argued that the physicg1tr00|uce thexY model and explain how the dynamic equa-

close to the transition can be associated with these I?Jopstlons are defined in RSJD and RD taking boundary condi-

The common feature in these systems is that they can bf ons into account. Section Il describes the various scaling

characterized by a complex order parameter. Xemodel rélations used to obtain The results from our simulations
y P P ' are given in Sec. IV for spatial dimensiods-2, 3, and 4,

can be viewed as a discretized version of such systems Wh.GWhereas Sec. V contains discussions of the results. Finally
only the phase of the complex order parameter plays a SI85ec, VI gives a short summary of the main conclusions.
nificant role. This model is believed to catch the essential

features of the topological defects presentite as well as
in superconductors in the limit when the magnetic penetra-
tion length is much larger than the correlation length; high- A. XY model
T, superconductors fall into this categdhall the systems The d-dimensionalXY Hamiltonian on a hypercubic lat-
which can be described by theé¥ model belong to the same e of the size =LY is defined by
universality class for the thermodynamic critical properties
of the phase transition.
In the present paper we have the connection between the H[6,1=—J32 coS by =06,—0,), (N
XY model and superfluid and superconducting systems in (")
mind. However, theXY model per secan equally well be \yhere the summation is over nearest neighboring pajris
viewed as a simple model of a ferromagnet where the phasge phase of the complex order parameter at positjamdJ
angle corresponds to the direction of a 2D spin vector assqs the coupling strength. THéY Hamiltonian is appropriate
ciated with each lattice site. not only to describe the overdamped Josephson junctions
Our interest in the present paper is the dynamical properarrays without charging energy, but can also be viewed as a

ties associated with topological defects, which may of coursgjiscretized form of the Ginzburg-Land4GL) free energy
depend on the explicit choice of the dynamics imposed on

the model. We here investigate two types of dynamics: One B 1

is a simple relaxational dynami¢®&D) and the other is the FGL[llf(f)]:f dr(a|¢//(r)|2+ §|l!f(f)|2+ §|V'/f(r)|2 ;
resistively shunted junction dynami¢RSJD. We calculate )

the dynamic critical exponert using various scaling rela-

tions both associated with equilibrium and with the approachwhere the amplitude fluctuations of the complex order pa-
to equilibrium when starting from a nonequilibrium configu- rametery(r) are neglectedy(r) = e ™" with i, fixed to

II. XY MODEL AND DYNAMICS
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a constant. When mapping the GL free energy functionafilms, regular Josephson junction arrays, and also bulk high-
onto theXY Hamiltonian the coupling strengthis found to T, superconductors close to the transition temperature.
be proportional td |2
The thermodynamic properties of théY model have 1. Resistively shunted junction dynamics
been intensely studied for many years and it is well known A 4 gimensional hypercubic array of siZ8=L% (L

that Fhe importantllength scale in t_hfe critical region, the cor-_inear sizé of superconducting grains weakly coupled by
relation lengthé, diverges at the critical temperatufg. N registively shunted Josephson junctions is effectively de-
3D and 4D the divergence is of the standard form of thegerined by theXY Hamiltonian (1) when it comes to the
continuous second-order tr§22|tlon, '_'g(’T)~|T_Tc| "' static properties. On the other hand, dynamic equations of
whereas in 2D IF(T)~(T—Tc) ““ asT. is approached from  motion for the corresponding overdamped RSJ model are
above andt=c< in the whole low-temperature phase where generated from local conservation of the current on each
quasi-long-range order exits in the absence of true longgrain. The total current,. between neighboring grains

range 'ordei‘.From the point of view of the finite-size scal- (; (y is the sum of the supercurrent, the normal resistive
ing, this feature of the 2D KT transition turns the finite SYS- current. and the thermal noise current; =1° ,+1" 4t

tem sizel into the relevant length scale in the low- The supercurrent is given by the Jose ﬁéon rrc’urrer;llt-. hase
temperature phase. P g y p p

relation Ifr,=lcsin(q§",), where |.=2eJ/% is the critical
B. Boundary condition current for a single junction. The normal resistive current

n _ . .
Experiments on superconductors afitle are usually I =V IRo, where the voltage differencé, . is related to

done on samples with open boundaries. From this perspethe phase difference By, = (%/2e) ¢, andR, is the shunt
tive it is preferable to use boundary conditions, which re-resistance. Finally the thermal noise curreh&,s in the
flects this experimental situation also in the simulationsshunts SatiSfW:r/>:0 and

However, simulations of th&Y model can usually only be

well converged on relatively small lattice sizes, and since the . . 2kgT

surface to volume ratio is inversely proportional to the linear (I ,r,(t)!;,,(0))= Ry () (Sr,r,0r,r,~ Oryr,Orr )

system sizd., the open boundary gives rise to large surface 3)
effects, which decay very slowly as the system size is in- )

creased. The standard way of reducing these unwanted suthere( - -) is the thermal average, at) andd,, are the
face effects is to impose the periodic boundary Conditiorp|rac and Kronecker deltas, reSpeCthEly. From local current

(PBO): Or =0, whereg denotes the basis vectors of the conservation we obtain

lattice, e.g..u=X,Y,z in 3D. One drawback of this boundary

condition is that it restricts the twist fromto r+Lu, de- z Lo =177, (4)
fined as the sum of the phase differences along a direct path "

connecting the two positions, to an integer multiple of.2  where then summation is over @ nearest neighbors of site
On the other hand, this twist from one boundary to the op; 5, 4 hypercubic lattice inl dimensions =+ 1), e.g.,n

osite for an open system can have any value. It is thus XA .
P P y y =+X,*y,*zin 3D, andl &'is an external current source at

preferable to relax the PBC so as to allow for a continuous

twist by changing the boundary condition to a more general! (N the present work, we only consider the case without

ized form: 6,,, 5= 6,4+ LA, which has been used in vari- external driving: 1®'=0). Introducing the lattice Green’s
i r 1 . . . . . .
oUS contexté.‘gﬂln particulgr the boundary condition where functionU,, ., which is the inverse of the discrete Laplacian,

the twist variabled , is not fixed to a constant but allowed to the RSJD equations Of. motion In the absence of external
fluctuate has been termed the fluctuating twist boundar Conqurrents can be written in dimensionless form as
g y
dition (FTBC), which was originally introduced for static de o
Monte Carlo (MC) simulationd and then extended to d_tr:_z Uy 2 sin(8—6;07)+ ¢ (5
Langevin-type dynamics at finite temperatuteSince the r' n
FTBC allows for any value of the twist, it is closer to the
open boundary condition for a real system. Of course on
does not expect the treatment of the boundary to affect th : . . )
results in thF:a thermodynamic limit. However?/as we will perature: in units OV.L/ZEROIC' e, the_ Iatt|ce. spacing, J,
show and discuss here, the dynamics at criticality can depe d Jke, restpectlvely.. The' on-site noise ter'rgir(t')
on the boundary condition, in as far as the dynamic critica™ —Zr'Ur Z5l ., (1) is spatially correlated, which is a
exponent can be defined in terms of the finite-size scaling. leonsequence of the local current conservation, and satisfies
is worth mentioning that a similar observation, i.e., that an(z,(t)z,,(0))=2TU, (t). The RSJD equation&) can be
important exponent may depend on boundary conditions, hagwritten in a Langevin-type for
been made recently in the study of the stiffness exponent of
vortex-glass models. de, _
7 _2 Uy ———
C. Dynamic models dt r' 00,:(1)
Next we introduce two simple dynamic models widely with the XY HamiltonianH in Eq. (1) [compare with Eq.
used to describe behaviors of superfluids, superconducting2) for relaxational dynamids

hereU,, . =U,,—U, ,*° and from here on we normalize
e time, the current, the distance, the energy, and the tem-

SH[ 6,
[ ]+§r (6)
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We now introduce the FTBC for the RSJD. The globalcretizing the time-dependent Ginzburg-Landau equation of
twist LA, in the 4 direction across the whole systefsee ~ Motion, we find the phase equations of motion for the RD
Sec. 1B is introduced through the local transformatiép defined by
—6,+r1-A, still keeping6,= 6, , as the periodic part of

the phases. The Hamiltonian in terms of these variables is %: - OHL6r] +¢ (12)
dt 80,(t) "
H[ 6, ,A]=— >, coq 6, — 9r+,1—,lAL'A), (7)  whereH is the XY Hamiltonian(1) in units of J, the time
ru unit is #/I"J, and the dimensionless thermal noises satisfy

- t))=0 and
where thex summation is oved nearest neighbors aof in ()
each positive directiore.g., u=x,y,z in 3D). It is straight- (L(D)&(0))=2T8(t) 8,1, (13
forward to show that equations of motion for phase variable

: E ith th itutiord qi Eq.  With Tin uni'.[s of J/kg . From Eq.(12), the RD equations for
f;):asre given by Eq(6) with the substitutiort given by Eq the phases in the case of the PBC are given by

de .
= SO 6+ (14

do, — OH[6,,A
WZ_E Urr’g"'gr- (8)

4 56 (t

r (0 _ with periodicity on the phase variableg:= 6, .
In order to get a closed set of equations we further have to We now proceed to the case of the FTBC for RD. In this
specify the dynamics of the twist variablés,, which is  case, in addition to the equations of motion for phages
simply the average phase difference between opposite faces?) with substitutionH[ 6,] by H[ 6, ,A] in Eq. (7)) we need
on thed-dimensional hypercube. In the absence of externaglynamic equations for the twist variablds, . Relaxational

currents, the physical boundary condition, corresponding t@lynamics means that these equations are of the form
an open boundary in real systems, should satisfy the condi-

tion that there be no current across the boundary, which leads da, oH[6,,A]
8 =-T + (15
to A )
dt oA, ®
daA, ) A which is identical to the form derived for RSJBee Eg.
dt :rAzr SIN(0: = Oy = A+ E, 9 (10), wherel'y=1/L9 was determined from the requirement
that no current flows through the boundhrwe here define
or, equivalently, the dynamic equations fak , in the RD case with the same

value of I'y, which makes the equations identical to the

corresponding equations in RSJD. Within the same interpre-

tation that |2+,1=¢rr+;1 and IfH;L:sin(qbr,ﬂ;) with

g ) _ ¢ ,=0,—06,—A, as for RSID(see Sec. IIC), we are
where FA:%/L : AsAshown in Ref. 8 theA noise term  again imposing a condition consistent with that there be no
satisfies (£,,(1))=(Z,(0)4(t'))=0 and (£,(1)£,(0))  current across the boundary.
=2TI'y6,,6(t). We term the dynamics defined in thisway  |n the simulations, the coupled equations of motion are
[by Egs.(8) and (10]] RSJD with the FTBC, whereas the discretized in timewe use the discrete time steyt=0.05
RSJD with the PBC is given by E@6) with H in Eq. (). and 0.01 for RSJD and RD, respectivend numerically

) . integrated using the second order Runge-Kutta-Helfand-
2. Relaxational dynamics Greenside(RKHG) algorithm?? which is much more effi-
Next we introduce the Simp|er phenomen0|ogica| re|aX_Cient than the first-order Euler algorithm since it can reduce
ational dynamics called time-dependent Ginzburg-Landauthe effective temperature sHftiue to the discrete time step
Langevin dynamics, which represents a nonconserveglignificantly. In the case of RSJD we apply the efficient fast
dynamicst! for the complex order parametg on a discrete  Fourier transformation methotsee, for example, Ref.)5

dA, . oH[6,A]
dt __FA 5A,u +§M’ (10)

lattice: which makes the overall computing tin@(L%log, L) in d
dimensions.[For comparison, the RD simulation requires
dy, SFel ¥ ] O(L%.] The thermal noises are generated from a uniform
rr Tout) e (11)  distribution, whose width is determined to satisfy the noise

correlation(see aboveat a given temperature.
wherel is the diffusion constank ¢, is the discrete version
of the GL free energy functional2), and the white [ll. SCALING RELATIONS
noise term satisfies (£ (t))=0 and (. (t),/(0))
=2kgTI' 6, 6(t). The order parameter relaxes towards a
configuration which locally minimizes the free energy, and In order to obtain the dynamic critical exponenfrom
the noises force the metastable states to decay. In the Lond@gjuilibrium fluctuations of the system we use two different
limit the system can be described solely by the phtaég of  scaling relations: One is the finite-size scaling of the time
the order parametep, = iye'’ with i, fixed to a constant. correlations of the supercurrent and the other is the finite-size
Hence, by neglecting the amplitude fluctuations and disscaling of the linear resistance. Fishetral,'® proposed a

A. Scaling in equilibrium
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_ 1 N w
€(0)  poT

superconductor, which has been studied further explicitly by

Dorsey and co-worker¥:'® The predictions from this scal-

ing theory are very general and depend only on the dynamic

scaling assumption and the existence of a diverging correla- I
tion lengthé~|T—T,|~*: From a simple dimensional analy-
sis, it is easy to show that the order parameter scaleg as
~&792 “and thus the superfluid density scalespas | |2
~&279 Below T, one haso(w)~ips/w, and accordingly 1

one deduces that the frequency-dependent linear conductiv- <(0) =1- pO—TG(O)- (24)
ity scales as’

general scaling theory of the conductivity for a homogeneous e{ 1

fwdtsinth(t), (22
0

e(w)

1

e(w)

(O]

=—— mdtcos tG(t), 23
Pono wtG(t) @3

where

The helicity modulusy corresponds to the superfluid density
o(w)=&"9F (wé), (16)  pgand is given byy=ps=py/€(0). Theconductivity o(w)

. . . . ... in RSJD can be further simplified into the fdtm
whereF  is a universal scaling function, the dynamic critical

exponentz is introduced fromr~ &%, and 7 is the character- 1 po
istic time scale. Precisely @t,, Eq.(16) turns into the finite- olw)=1-— @) (25
size scaling form of the conductivity:
Expressing the scaling in terms Gf(t) leads to the scaling
o(w)=L2""F (wl?). (17 form

This scaling relation can be put to practical use in the case of G(t)= &2 IF4(tE7?), (26)

the PBC because for this boundary conditignhas the re- ] ] o )

quired size scaling. On the other hand, it cannot be used fohich atT for 3D turns into the finite-size scaling fortaee
an open boundary condition or7for the FTBC because irf\Ppendix A
these caseps=0 at anyL and T.” For the FTBC we will _ —
then instead use the finite-size scaling of the linear resistance LG(D)=Fe(tL ), @7

described below. while in 2D a logarithmic correctiofsee Appendix Aneeds

to be included:
1. Scaling of supercurrent correlations

. L
The conductivityo(w) may be related to the supercurrent In(— G(t)=Fg(tL™?), (28)
correlation functionG(t), which for theXY model ind di- ¢
mensions is given by whereFg(x) is the scaling function fo6(t). In the follow-
ing we will use the scaling relations Eq&6) and(27) in 3D
1 with the PBC and Eq(28) in 2D with the PBC.
G(1)= (F(OF(0)) 18) 428

2. Resistance scaling

where the global supercurreR(t) flowing in a given direc- In order to obtain a finite-size scaling at criticality for the

tion, say,x, is written as FTBC for which, like for any open boundary conditiop,
=0 at any temperature and any lattice size, we relate the
F(t)= 2 Sin(6,— 6,.3). (19) resistancer to the fluctuations of thg ths:[ ovFer the sample.
r The voltage across the sample in the direction V,
The correlation functiois(t) is a key quantity in describing = — LA, (see Ref. 8 and the linear resistandg, in the

the dynamic response of vortex fluctuations and istfep same direction are related to the voltage fluctuation by the
directly related to the static helicity modultshe connec- fluctuation-dissipation theorefh
tion betweens(w) andG(t) in the RSJD case is expressed

1 ©

ad R#=ﬁjiwdt(vﬂ(t)vﬂ(0)> (29)
o(w)=1+ iﬁ—%fmdtei‘”tG(t), (20) 121

w 0 %ﬁquM(@)—A#(O)]%, (30)

where the conductivity is measured in units such that the o o
shunt resistancB,= 1, and the superfluid densipy is given ~ Where the approximation becomes exact for a sufficiently
by large time®, as shown in Appendix Ba similar approxi-

mation has been used for RSJD with open boundary condi-

1 tion in Ref. 18. In the present simulation we uge=2000
Ps:PO( 1- pO_TG(t:O))’ (21)  and perform average over all directions, i.e., R
=(Z,R,)/d.
with the bare superfluid densityo=(cos@— 6,.3)). The SinceR,, scales as the inverse of the characteristic time

dynamic dielectric function ¥(w) in 2D is also expressed scale in the critical region, the finite-size scaling takes the
as® form®®
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1 N argument of the scaling function vanishes ap) curves
R= EFR((T_TC)L "), (3)  obtained for different sizes can be collapsed onto a single
curve when plotted against the varialild.>. We can also

where v is the critical exponent for correlation length ( determineT by an intersection method similar to E3) as
~|T—T.| ") andFg(x) is the scaling function foR. Pre-  follows: If the first argument of the scaling function is fixed

cisely atT., Fr(X)=Fgr(0) becomes a constant indepen-to a constantt{L*=a) for a given system size andz, then

dent ofL and we get W has only one scaling variabld ¢ T.)L”, and can thus be
written as
R~L77 (32
which can be used to determize once T, is known. The ~(//=F¢(a,(T—TC)Ll/V). (36)
resistance scaling can also be turned intoimersection
method® for determiningz and T, using that Accordingly, if we ploty with fixed a as a function ofT for
variousL, all curves should intersect d. However, be-
IN(RL/RL/) causea depends on the value afwhich cannot be indepen-
In(L/L") dently determined by this method we start the intersection
method from thez value determined from the scaling col-
. IN[FR((T—To) LYY FR(T—T)L" )] lapse aff.. The values off . andz obtained from this inter-

) section method can be refined by the iterating intersection
construction. Finally, to examine the consistency we collapse

(33) the data for all temperatures and lattice sizes onto a single

scaling curve in the variableT T,)LY" at fixeda=t/L?,

for two differer)t lattice sizesL,L". Thus, if we plot \ nich’in addition is a check of the consistency against the
In(RL/R.)/In(L/L’) as a function of temperature for several |, own value of the static exponent
pairs of sizes|(,L’), all curves intersect at a single unique

point (T, —2).>° OnceT, andz are determined through the

In(L/L")

above intersection method, all data can be made to collapse IV. SIMULATION RESULTS

onto a s_ingle ;caling curvelilay plottin@LZ as a function of A. 2D XY model

the scaling variableT— T;)L™" with the correct value of the ) _

exponentv [see Eq(31)]. In two dimensions, there has been some controversy over

the value of the dynamic critical exponent: There has been a
B. Scaling of relaxation towards equilibrium: theoretical approach by Ambegaokar, Halperin, Nelson, and

Short-time relaxation Siggi&® (AHNS) predicting zayns=1/2¢T°¢, where the

CG__ T
Recently, it has been found that a universal scaling ipcoulomb gas (CG) temperatureT "=T/2mp, and 1k

time can also be constructed for the relaxation towards eqU|-E 1/€(0) (see Sec. lIIA 1 On the other hand, a simple scal-

librium when starting from a nonequilibrium configuration. ing argument has yielder.,e=1/eT“6—2.2* Also, in nu-
Since such a relaxation is usually rather fast, it is often remerical simulations, there have been some differences: On
ferred as the short-time relaxation metHf8®y this method  the one handzns has been observed in Ref. 25 from RSJ
several critical exponents have been successfully determingdmulations, whilezg.,e has been concluded for RSJD and
for the unfrustrated and the fully frustrated Josephson juncRD (Refs. 8 and 24 for Langevin dynamics of CG gas
tion array* as well as for the Ising modét:??In these stud-  particles(Ref. 26, and for the MC simulation of lattice CG
ies Glauber dynamics in MC simulations has been used toRef. 19. Although the question is not completely resolved
obtain time series of measured quantities, such as the mayet, we strongly believe that when the fluctuating twist
netization and the Binder's cumulant. Here we apply thisboundary conditioh(see Ref. 27 for a comparison between a
method to theXY models with more realistic dynamics, conventional boundary condition and the FTBES used,
RSJD and RD, both introduced in Sec. Il C, in order to de-ZscalelS the correct result. Although the above mentioned two

termine the value of the dynamic critical exponm’]ﬂ:or z values are different below the KT transition, they give the
convenience we measdfe same value of 2 at the KT transition. In Ref. 28, however,

z~1 was concluded from a simulation of RSJ dynamics with
~ ) the PBC, while in Refs. 29 and 30 a very large vahieb
¢:<S'9"{2r coser(t)D, (34 has been suggested from a scaling analysis of existing ex-

perimental data and from an analytic calculation using

starting from the initial conditiorg,(0)=0. Sincey(t=0)  Mori's technique, respectively.

=1 at any system sizé, the finite-size scaling form be- ~ Inthe low-temperature phase of the 20y model, we can
comes alternatively derivezg.,cin the following way: The potential
barrier, which a bound vortex-antivortex pair should over-
T L)=F ,(t/L% (T-ToLM) (35)  come in order to escape, is given by

with the scaling functiorF,(x,y) depending on two scaling
variables, satisfying-,(0y)=1 at anyy. At T, z is easily AV=—
determined from Eq(35) because in this case the second €TCC

InL,
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TABLE I. Dynamic critical exponent for 2D RSJD and RD
with the PBC and FTBC.

RSJD RD

PBC FTBC PBC FTBC
At T=0.90
Resistance scaling — 2.01) — 2.01)
Supercurrent scaling 1D — 2.01) —
Short-time relaxation 1) 2.01) 2.01) 2.01)
At T=0.80
Resistance scaling - 3.31) - 3.31)
Short-time relaxation 1) 3.211) 2.0 2.01)
Above T,
From wy~ &2 ~2 - 2.02 -

%Reference 32.

and the escape ratib~exp(—AV/T) for one pair is simply
related to the total probability of escag®, by

P=LnT,
wheren is the vortex pair density. The time scateof the
system is inversely proportional ® and thus is given by
exp(AV/T)

T Ll/;TCG*ZNLZ
L2n '

and we obtain the dynamic critical exponent

1

z=z
€TCC

in accordance with Ref. 24, wherehas been obtained from
a simple scaling argument and the observadoghavior of
the correlation functiorG(t).

In this section, we investigate the dynamic critical expo-
nent of the 2DXY model with RSJD and RD at, below, and
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FIG. 1. Resistance scaling for 2D RSJ@pen squargsand RD
(solid squareswith the FTBC atT=0.9. The solid lines represent
R~L 2% For both dynamicsz~2.0 is obtained(The data points
were taken from Ref. 8.

from Ref. 8, where the slopes of the lines in the log-log plot
correspond taz~2 for both RSJD and RD. Consequently,
our resultz=2.0 is in accordance with other existing theo-
retical prediction®?*while it contradicts recently suggested,
very large values in Refs. 29 and 30.

In order to determine at the KT transition for the PBC
we use the following finite-size scaling form E®8) (see
Sec. lllA ) of the supercurrent correlation functi@(t):

In(%)G(t)zFG(tLZ).

Figure 2 shows the corresponding scaling plotTat0.90

above the KT transition. We use the FTBC as well as the<T_ both for RSJD and ROFigs. 4a) and 2b), respec-

conventional PBC and use various methods such as the r

flvely]. Very good scaling collapses are obtained in both

sistance scaling, the scaling of the supercurrent correlatiopases withe= 1.5 for RSJD and=2.0 for RD. This clearly
function, and the short-time relaxation method. The resultgiemonstrates that the value ofor RSJD with the PBC is

are summarized in Table I. As seen from Table | only thegifferent from the expected value of 2 which was obtained
FTBC gives results in accordance with the expected valueyith the FTBC. In these scaling collapses one should note
Zocale Zanns~2 atT=0.90(=T,),* whereaszy.,¢~3.4 and  that the relaxation is much faster for RD than for RSJD, as is
Zpuns~2.8 atT=0.80° Furthermore, this is the case both apparent by comparing the scales on the horizontal axes
for RD and RSJD. In contrast, the results for the PBC argnote that vertical axis is in a logarithmic scale in Figa)2
inconsistent both withs,e and zayys. From this we con-  and in a linear scale in Fig(8)]. It is also interesting to note
clude that the FTBC is an adequate boundary condition inhat the value of the constaatin the logarithmic correction
the context of open systems like superfluid and supercorof Eq. (28) comes from the static properties, as described in
ducting films. It is also interesting to note that also the short:appendix A, and consequently should be independent of the
time relaxation method for RSJD with the FTBC gives re-dynamics. In accordance with this expectation the good scal-
sults consistent witlzg.qe. The results in Table | will be ings in Fig. 2 are achieved with the same valueof Both
further discussed in Sec. V. In the following we present thefor RSJD in Fig. 2a) and for RD in Fig. 2b), we found that
simulation results on which Table | is based. c=0.60 gives a good collapse.

In Fig. 3, we next show the decay @f(see Sec. Il B for
detail at T=0.90~T, for RSJD with the(a) FTBC and(b)

First we fix the temperature 6=0.90~T, and focus on PBC, which demonstrates thz# 2.0 (for the FTBQ andz
the dynamic critical behaviors at the KT transition. The re-~1.2 (for the PBQ result in good data collapses to scaling
sults from the resistance scalily<L ~* for the FTBC(see curves. However, only the FTBC leads to the expected value
Sec. lll A2) are displayed in Fig. Ithe data points are taken z~2.0. One should also note that the PBC results in an ex-

1. Critical temperature
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FIG. 4. Short-time relaxation for 2D RD &=0.9 with the(a)

2D at the KT transition T=0.9) in case of the PBC fo@) RSJD  FTBC and(b) PBC. For both boundary conditiors=2.0 is ob-

and (b) RD. The scaling collapse of the data shown is Zer1.5 tained from the data collapse. Note that the decays for both bound-
and 2.0 in case af) RSJID andb) RD, respectively[The apparent ary conditions have the same time scale.

spread of the data ifa) is only due to the logarithmic scale and
insufficient convergence for the largest lattice sizes at lafdge

FIG. 2. Scaling of the supercurrent correlation funct®(t) in

temperature in the low-temperature phase is characterized by
~ . ) a temperature-dependent dynamic critical exporedtist as
tremely slow decay of. Similarly Fig. 4 shows the decay of i, the previous section, this temperature-dependaran be
i for RD atT=0.90 with the(a) FTBC and(b) PBC. In both  determined from the size scaling of the linear resistance, i.e.,
cases good data collapses are obtainedzfeR.0. In this  Ro =2 Figure 5 shows the finite-size scaling of resistance
case of RD, both boundary conditions have the same magni T=0.8(<T,) for 2D RSJD and RD with the FTBCall
tu_de of thg decay time scale. A possible interpretation igjata are from Ref. Band we findz~3.3 for both types of
discussed in Sec. V. dynamics. In Ref. 8, this value has been compared wntf
andz,yns at this temperature and it has been concluded that
2. Low-temperature phase the observed value 3.3 is very closeztQ, ¢~ 3.4.
The 2D XY model is special in that the whole low-
temperature phase is “quasi” critical. This means that each

10-1 T 1 L) L) L)
1 T T T T T T RSJD
08 . (a)- RD
06 _8 _________ E
Soar 16 woomeeees -
02 F b
0F " sty b
_0.2 1 1 1 1 1 1 t
0 10 20 30 40 50 60 70
tL?
1 <] T T
0.8 | . (b)
06 _8 _________ E
Soar 16 woomeeees -
02 F 3 b
o C o, Yo b
-0.2 L L
0 1000 2000 3000
tL?

FIG. 3. Short-time relaxation for 2D RSIJDB&0.9.(a) For the
FTBC z=~2.0 and(b) for the PBCz~1.2 are obtained. Note the

enormous time scale for the PBC.

FIG. 5. Resistance scaling for 2D RSJ@pen squaresand RD
(solid squareswith the FTBC atT=0.8. For both dynamicsz
~ 3.3 is obtained from the slopes of the lines in the fig(ifée data
points were taken from Ref. 8.
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FIG. 6. Short-time relaxation for 2D RSJD #&t=0.80. (&) For FIG. 8. Characteristic frequenay, determined from the peak
the FTBCz~3.2, and(b) for the PBCz~1.4 are obtained from the position of |Im 1/e(w)| vs the correlation lengtl§ for 2D RSJID
best data collapse. with the PBC at temperaturés=1.0, 1.1, 1.2, and 1.&rom right

to left). The dynamic critical exponert defined bywy~£& % is

In the same way as in the previous section theshown to have a value close to 2lid line). For comparison, we
temperature-dependeatin the low-temperature phase can also plot the dotted line which correspondszte1.0.

also be probed by the short-time relaxation method described

in Sec. lll B. The divergence of the correlation Iength in thenumerica| accuracy. We interpret this as an evidence zhat
whole low-temperature phase in 2D turns the finite-size scalfor the RSJD with the FTBC is indeed given by This is

ing form (35) into the simpler form in contrast to the RSJD with the PBC for which at the same
temperature T=0.80) z=1.4 is determined from short-time
relaxation as shown in Fig.(B). As will be discussed in Sec.
V, we interpret this as further evidence that, in case of the 2D
RSJD,z does depend on the boundary condition. The short-

J=F,(tIL?), (37

with the temperature-dependentFigures 6 and 7 show the
finite-size scaling of the short-time relaxation &&0.80 , : . o .
with the (a) FTBC and(b) PBC. The value~3.2 found in t|me_relaxat|on for RD gives a quite different resuts2 is
Fig. 6@ for RSJD with the FTBC is in agreement with pbte}lned forT=0.80 for both. the' FTBC and PBQ, as shown
~3.3 obtained from the resistance scaling in Fig. 5 within'n F19. 7. If one compares this W'.th th_e re.sult.sT@tm Fig. 4,
wherez~2 is also obtained, the implication is that the result
z~2 for the short-time relaxation is expected at any tem-
perature in the low-temperature phase both for the FTBC and

1

0.8 b . . ) .

0.6 i PBC. As will be discussed further in Sec. V, this suggests
o that the short-time relaxation for RD does not probe the true
504 r equilibrium critical dynamics.

0.2 .

0 7 3. High-temperature phase

-0.2

14 In the high-temperature phase there is a finite screening
length & which diverges asl. is approached from above.
Close to T, one then expects that the characteristic time
scales as

i T~ &,
Soar | - :
n case of the PBC, we can estimatend r following the
method in Ref. 32¢£ is obtained from the wave-vector de-
pendence of the static dielectric functiore@@) introduced
in Eq. (24). The characteristic frequenay,~ 1/7 is deter-
mined from the frequency dependence of(1); wg is the
position of the dissipation peak [im1/e(w)|. The result for

0 2 4 6 8 10 12 14

FIG. 7. Short-time relaxation for 2D RD dt=0.80 for the(a)
FTBC and(b) PBC. For both boundary conditionss=2.0 is found
from the best data collapse.

RSJD with the PBC is shown in Fig. 8, wheze: 2 is found
from wy~£& % It should be noted that since this result is
obtained for a temperature range whéfe<1 it is expected
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TABLE Il. Dynamic critical exponent for 3D RSJD and RD T T T J

with the PBC and FTBC. L .
4 —a— 5. S &
RSJD RD .l 12 ﬁ EEEI&' 1
PBC FTBC PBC FTBC
Resistance scaling — 1.466) — 1.51) Y
Supercurrent scaling-) 1.51) — 2.01) — . . :
Supercurrent scalingj 1.4(2) - 1.92) - 'f, 8 4/8 o
Short-time relaxation 1@ 1505 241 2.01) T a 09 8/16 e 1

to be independent of the treatment of the boundary and hence
applies to both the PBC and FTBC. The same method ap-
plied to RD also giveg~2.0 as shown in Ref. 32. In Fig. 8 (a)
the dotted line with slope- 1 is also shown and corresponds
to the result in Ref. 28, where~1 was obtained for RSJD 0.1 L L L L
with the PBC in the same temperature range. Consequently, -2 0 2 4
Fig. 8 implies, in contrast to Ref. 28, that 2 is the correct (T-THL™

value for the PBC as well as for the FTBC, wheis deter-

mined fromr~ £ ' A=0.05  +

B. 3D XY model z=1.47

Next we turn to the 3IXY model with current conserving
RSJD and nonconserving RD, respectively. Both dynamic
models have been used to describe the dynamic properties of
high-T. superconductors. Whereas it is generally agreed
upon that the static critical properties are those of thexaD
model in a region close td. with the corresponding static
critical exponents? there is less consensus on the dynamic u
critical properties. Several seemingly mutually inconsistent +
experimental* 3" and simulationdP*%3° results have been
reported. Similarly to the 2D case described above in Sec. (b)
IV A, we will here arrive at a somewhat entangled picture by
comparing values of obtained from the scalings in equilib- 0.01 L
rium for the two types of dynamiddgRSJD and RDwith the 1 10 100
two types of boundary conditionghe PBC and FTBE as L
well as from the short-time relaxation method by observing
the time evolution towards equilibrium when starting from a
nonequilibrium configuration. For convenience, the results o
the simulations for the 3DXY model are summarized in
Table II.

@ 01 ¢ ]

FIG. 9. (a) Scaling curve of the resistanéefor 3D RSJD with
%he FTBC forL=4, 8,and 16 aT=2.17, 2.19, 2.20, 2.21, and 2.23
with parameter values=1.46 andT .= 2.200(both from the inter-
section method described in the text and shown in the )inaatl
the known valuev=0.67 (Ref. 31). (b) Determination ofz for 3D
RD with the FTBC from the resistance scaling foRxL "% at T,

1. Resistance scaling =2.20. The data points are for=4, 8, 10, 12, and 16, and two

We start with the determination affor the FTBC using integrati_on time stepat=0.05 and 0.01. Lin_ear extrapolation to
the finite-size scaling of the linear resistance, which is calcu®t=0 givesz=1.47 from the least-squares fit.
lated from the equilibrium fluctuation of twist variable
[see Eq(30)] A shorter presentation of these results has alse=2.17, 2.19, 2.20, 2.21, and 2.23 for4, 8, and 16. Here
been given in Ref. 40. In 3D the correlation length divergeswve usedz and T found from the intersection method, i.e.,
as é~|T—T.| ™", making the extended scaling form of Eq. z=1.46 andT.=2.200, respectively, and the known value of
(31), as well as the intersection method in E83) appli- the static exponent~0.67>! We also tried to vary the val-
cable in addition to the relatioR~L " at T. ues of T., z andw in the scaling plot and concluded that
We first present the result for the scaling of the linear=1.46+0.06 for the case of 3D RSJD with the FTBC. It is
resistance for RSJD with the FTBC. By using the intersecnoteworthy thatT.~2.200 from the intersection method is
tion method explained in Sec. Il Asee Eq.33)] we de- very close to the known value of [~2.2018 (Ref. 31)]
termineT, andz simultaneously from the unique intersection from the MC simulation.
point, as shown in the inset of Fig. 9, which yields For RD with the FTBC we only focus on the scaling
~2.200 andz~1.46. We then display in the main part of relationR~L"* at T, since it is found that the resistance
Fig. 9 the scaling plot of the linear resistarisee Eq(31)],  for the RD case is harder to converge due to a sensitivity of
RL? as a function of the scaling variabl@ ¢ T)LY”, atT  the result on the discrete time step in the numerical integra-
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FIG. 10. Finite-size scaling af. of the correlation function FIG. 11. Scaling of the correlation functigfG(t) aboveT, is

LG(t) vst/L? for 3D (a) RSJID with the PBC anb) RD with the ~ shown against the scaling variali¢” for 3D (a) RSJD with the
PBC. In the main parts df) and(b), z=1.5 andz=2.05 are shown PBC and(b) RD with the PBC forL=24 andT=2.25, 2.30, and
to give good scaling collapses féa) RSJD and(b) RD, respec- 2.40. From the scaling collapse, withfrom the MC simulation
tively, while in the insets the interchanged valjyes=2.0 andz (Ref. 41, we obtain(a) z=~1.4 for RSJD andb) z=~1.9 for RD.

=1.5 for(a) and(b), respectivelyare shown to be inconsistent with
the scaling collapse. t/L? for (a) L=8, 16, and 24 for RSJD an@) L=6, 8, 12,
16, and 24 for RD, respectively: Optimal data collapse is

tion of dynamic equations even when using the second-ordéichieved foz=1.5(RSJD andz=2.05(RD), respectively.
RKHG algorithm®2 In contrast, we did not observe any sig- N the insets of Fig. 10 we us@) z=2.0 for RSJD andb)

nificant sensitivity to the time step in RSJD and we fix 2= 1.5 for RD, respectively, and show that the data collapse
=0.05 throughout the present work for RSJD. In order toPecomes significantly worse and consequently conclude that
overcome the problem in RD due to the finite-time step wehe z values obtained by this data collapse method are well

obtain data for two different time stepa(=0.05,0.01) and deéterminedsee the main parts of Figs. #and 1@b)]. One
linearly extrapolate ta\t=0, as shown in Fig. @) for L notes that for RSJx~1.5 is obtained for both the FTBC

=4, 6, 8, 10, 12, and 16. The slope of the line in the Iog—logand PBC, whereas for RD~1.5 andz~2 are obtained for
plot of R versusL in Fig. 9b) givesz~1.5 also for 3D RD the FTBC a_n_d PBC,_respchver. .
with the ETBC. In the critical region above'_l'C Where E<L we mstegd
have ¢G(t) as a scaling function with the scaling variable
2. Supercurrent scaling t/&* [see Eq.(26)]. Figure 11 shows this scaling results at
' temperatures abov@. (T=2.25, 2.30, and 2.40for L
For the PBC we use the scaling of the supercurrent cor=24. By comparing with the results far=32, it is explic-
relation functionG(t) introduced in Sec. IllA1 in order to itly checked that there remain no significant finite-size ef-
obtainz In Fig. 10a) we use the finite-size scaling form in fects in the current temperature range. In Fig. 11 the corre-
Eq. (27) and plotLG as a function of the scaling variable sponding values of are taken from high precision MC
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0.7

tL?

FIG. 12. Short-time relaxations of in 3D with the FTBC at
T=T.=2.20 are shown as functions of the scaling variahle” for
() RSJD withL=4, 6, and 16, and fotb) RD with L=6, 8, and
10. From the scaling collapse=1.50 andz=1.95 are found to
yield smoothly collapsed single curves f@ RSJD and(b) RD,
respectively.

4 05 0 05 1
(T-THL™

FIG. 13. Finite-size scaling of the short-time relaxationjofor
simulations!* As shown in Fig. 11, the optimal value  3p (s RSJD forL=4, 6, 8, and 16 ané) RD for L=4, 6, 8, and
=1.4(2) is found for RSJD and=1.9(2) for RD, respec- 10 both with the FTBC and a&k=2.17, 2.19, 2.20, 2.21, and 2.23.
tively, which is consistent with the f|n|te-5|;e s_callng(b(t) As shown in insets, the scaling functigh=F ,(t/L% (T—T)LY")
at T.. However, we note that the determinationziih the  with a fixed a=t/L? suggests the existence of a single crossing
case of the finitg: scaling aboveT. yields a somewhat point (a) at T,=2.200 with ¢,a)=(1.5,4.0) for RSJD andb) at
larger uncertainty. Furthermores=2 found for RD with the = T,=2.194 with @¢,a)=(2.0,0.5) for RD. All data points in the in-
PBC is particularly intriguing to understand since we expectets collapse onto a single smooth curve with the scaling variable
that this result should be independent of boundary conditiofT—T,)LY” for both models with the known value=0.67 (Ref.
in this high-temperature regime whege<L: Thus one ex- 31), as shown in main parts.

pects the same value~2 for the FTBC in this high- JWith L=4, 6,8, and 16 anéb) RD with L=4, 6, 8, and 10,

temperature regime. This in turn suggests a discontinuo . o .
jump in thez value fromz~2 to z~1.5 asT, is approached and show the results of the iterative intersection method. We
obtain agaire~1.5 andz~2.0, as well as the estimations of

from above, since~ 1.5 atT; was observed in the scaling of the critical temperatured ~2.200 andT,~2.194 for (a

'fjhe linear resistance in Sec. IVB 1. This possibility is alSORSJD and(b) RD, respectively. We believe that the exis-
iscussed in Sec. V. . ) ; S . .
tence of an unique intersection point in each dynamics with
the valueT.~2.200 obtained for RSJD, which is in very
good agreement witil;~2.200 obtained previously from
The short-time relaxation method described in Sec. Ill Bthe resistance scaling, and witfi,~2.2018 from MC
probes the relaxation towards equilibrium from a nonequilib-simulations®* make this short-time relaxation method very
rium configuration. We start with the presentation of the re—reliable. One notes that the slight temperature shift for RD is
sults obtained for RSJD and RD with the FTBC. Using theagain the effect of the finite time step, as already observed in
scaling form ofTﬂ in Eq. (35) at T, where the scaling func- the calculation of the linear resistance. We have also checked
tion has only one scaling variablé_?, we first show in Fig. the dependence oa values and observed no significant

12 the scaling plot ofy at T=2.20 for (3) RSJD with L changes in~resulting values d@f. and z in a broad range
=4, 8, and 16 antb) RD with L=6, 8, and 10, respectively. Where 0.4¢<0.9. Usingz and T found from the intersec-
All the data can be made to collapse onto a single curve in §on method, we in Fig. 13 confirm that the full scaling form
broad range of the scaling variable for 1.5 andz~2.0 for  is borne out to high precision with=0.67 determined from
RSJD and RD, respectively. However, the above metho®C simulations®

presumes priori knowledge ofT.. To circumvent this, one We next consider the short-time relaxation for PBC, and
can alternatively use an intersection method with a fixedshow in Fig. 14 the scaling plot a't=2.20,T//=F¢(t/LZ), for
value ofa=tL "7 in the first argument of the scaling form in (a) RSJD and(b) RD. Treatingz as a free parameter, we
Eq. (36) (see Sec. llIB. In insets of Fig. 13 we display data obtainz~ 1.2 andz~2 for RSJD and RD, respectively. This
points atT=2.17, 2.19, 2.20, 2.21, and 2.23 f@) RSJD  suggests that the value for RSJD with the PBC is lower than

3. Short-time relaxation scaling
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FIG. 15. Binder’s fourth order cumulant in 4D determined from
FIG. 14. Short-time relaxation af in 3D with the PBC affT ~ MC simulations, RSJD, and RD fdr=4, 6, and 8 at several tem-
=T,=2.20 as functions of the scaling variatile™? for () RSJD  peratures betweefi=3.05 andT=3.40. Data points for MC and
with L=4 and 8, and forb) RD with L=4, 6, and 8. From the RSJD coincide within error bars and giVg~3.31, whereas the
scaling collapse~1.2 andz~2.1 are found foa) RSJD andb)  RD results show a relative large dynamic shiftTtp~3.25.

RD, respectively. . )
the PBC, the same critical temperature is expected also for

z~1.5 obtained from the same short-time relaxation methodh® FTBC since all static quantities such Bs should not

for RSJD with the FTBC, whereas for RD a valge-2 is  depend on boundary conditions used. _
obtained both for the FTBC and PBC. As already observed OnceTe is known from the calculation of the Binder's
in 2D, RSJD with the PBC has a very large decay time scal€umulant, we can use the simple finite-size scaling form Eq.
in contrast to RSJD with the FTBC as well as to RD with (32 for the linear resistance calculated with the FTBC by
both the PBC and FTBC. Eq. (30 (we use® =2000 for both RSJID and RDIn Fig.

16(a), we plot the linear resistand® versusL at T=3.31

(RSJD andT=3.25(RD), and from the least-squares fit we

find z=2.1 for RSJD andz~2 for RD, respectively. In ad-
For completeness we also determmnie 4D* As a pre-  dition, we also measure the short-time relaxation with the

requisite we first estimat&, through the use of MC simula- FTBC and present the result for RD bt=6 and 8 in the

tions in conjunction with the finite-size scaling analysis ofinset of Fig. 16a) by using the simple scaling form at

the Binder’s fourth-order cumuldfitU, which is indepen- =T,=3.25, i.e.,y=F ,(tL~?), which yieldsz~2.0 in ac-

C. 4D XY model

dent ofL precisely afT, cordance with the result from the resistance scaling. For
4 RSJD with the FTBC, we construct the intersection plot for

UL, T)=1- (Im[*) the short-time relaxatiofsimilar to Fig. 13 for 3D as dis-

' 3(|m|2)2' played in the inset of Fig. 1), and getz=2.0 andT,

_ ~3.31 from the unique crossing point. It is interesting to
with the order parametem=Z3,e'’/L*. The results are note that the critical temperature obtained here for RSJD
shown in Fig. 15 and ;~3.31 is found from MC simulation  with the FTBC is in a perfect agreement with found from
with the PBC, which is consistent with earlier rep8ttbut  the Binder's cumulant method for the other boundary condi-

has a higher accuracy. From the MC simulations we alsgo the PBC. We then make the full scaling plot fin the
verified thatv in 4D has the expected mean-field value 5 part of Fig. 160) with the mean-field value=0.5 and

=1/2 (see, e.g., Ref. 45Since, as noted in the previous g egtimated valuek, = 3.31 andz= 2.0 above, resulting in
section, the size of the discrete time step in the integration of very smooth collapse.

the dynamic equations of motion can lead to an effective |, short. we get~2 in 4D with the FTBC regardless of
increase of temperature, we explicitly determine the effectivgy,, dynam,ics we ussee Table 11l for a summary of results
Tc for RSJID and RD with the time stept=0.05 from the i ig reassuring since the valae 2 is usually expected in

crossing point oJ(L,T): Figure 15 shows that there is N0 45 \yhere the phase transition acquires a mean-field
significant difference between the effective and nominal tem 11,45

perature for RSJD, leading td.(RSJD)}=T.(MC)~3.31. nature.
On the other hand, for RD we from the crossing point obtain
T.~3.25 at the same time stept=0.05, in parallel with

what was found for RD in 3D. It is to be noted that although As is clear from the simulation results presented in Sec.
the above critical temperatures have been obtained only with/ for two-, three-, and four-dimensionXY models, a very

V. DISCUSSIONS AND COMPARISONS
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T 1 T TABLE lll. Dynamic critical exponent for 4D RSJD and RD
both with the FTBC.

(a) 08+
RSJD RD

Resistance scaling ~2 ~2
. Short-time relaxation 2(0) 2.01)

04 06 08 a=3 (Refs. 8, 24, 26, and 46together with the scaling
#12 argument thaa=z+ 1.2t may also be directly obtained
from the simple argument of the escape over the boundary
o oz o e presented in Sec. IV A with the resut=1/eT°®—2, com-

gg, 2 g 21 - “EL\ bined with the universal jump condition at the KT transition
0.01 Y RSJ z=2.1 QT 1/eTCC=4 24748 which leads toz=2 at the transition. For

the 2D XY model, the KT transition temperature i5~0.9
L (Ref. 3) and as seen from Table |, RSJD with the FTBC
does give the expected value. However, RSJD with the con-
. T . . . . ventional PBC does in fact not give the expected value: the
1L ] supercurrent scaling gives=1.5 and the short-time relax-
1r (b) g T ation givesz~1.2.

In order to understand the role played by the boundary
°® 1> conditions we consider a system with an open boundary,
08 | 0.5 which is appropriate to describe a superconducting film and a

) film of “He in usual experiments. In such a case, when a
> - vortex-antivortex pair is introduced into the ground state and

3.25 3.31 3.35 then annihilated across the boundary, the system relaxes

06 B T . back to the original ground state. The FTBC has been de-

° signed to keep the advantage of the PBC, which reduces the

4 o B finite-size effect compared to the free boundary condition, as
6 = “u much as possible, while allowing this relaxing back. This
8 o relaxing back is, however, prohibited by the conventional

. PBC/ One may note that the escape-over-barrier argument

: ! : : : : in Sec. IV A implicitly presumes this relaxation back as a
4 3 2 1 0 1 2 3 part of the escape process. One should also note that, when
(T-T, )L1/v comparing to ex_peri_ments_ With_ open boundaries, the FTBC
c has to be used in simulations instead of the PBC whenever
FIG. 16. (a) Determination ot in 4D XY model with the FTBC the relaxfation process across the boundary .is important. This
from the resistance scaling forR~L 2 for L=4, 6, and 8 aff,  Perspective suggests that the observed difference between
=3.31 for RSJD and af,=3.25 for RD(see Fig. 15 From the the FTBC and PBC at the KT transition for RSJD is due to
slopes in log-log plotz~2 is concluded for both dynamics. Inset: the additional constraint on the physics caused by the PBC.
short-time relaxation ofy for 4D RD with the FTBC atT=T, This can be substantiated _somewhat further by ?tu‘?'y'”g
=3.25 is shown against the scaling variable? for L=6 and 8  the low-temperature phase in 2D, where an ubiquitous
andz=2.0 is found.(b) Finite-size scaling ofj for 4D RSJD with “quas!”_ Cm'(.:a.“ty W'th a dlyerglng correlauo_n length makes
the FTBC forL=4, 6, and 8 a = 3.25, 3.30, 3.31, 3.32, and 3.35. the critical finite-size scaling method applicable. In Ref. 8,
As shown in inset, the intersection method givies=3.31 withz ~ 2~ 3.3 atT=0.80 was found for the FTBC from the resis-
=2.0. The main part displays the full scaling plot of the fogm tanCNe scaling in agreement with the expected vaiue
=F,(t/L% (T—To)L™) with a=tL?=2.8 and the mean-field value = 1/eT¢C—2~3.4 within numerical errors. However, an es-
v=1/2. timate of the equilibrium scaling for the PBC &t=0.85 in
Ref. 8 gavez~1.6 instead of the expected resedt 2.8 (see

entangled picture emerges as regards to the dynamic critickiig- 3 in Ref. 8. Thus in this low-temperature phagele-

exponentz. In this section we discuss the main features.  termined with the PBC appears to be smaltex @) than the
one with the FTBC £>2). However, the value for the

FTBC is the relevant one when comparing with experiments.
The situation abovel. is as follows: The finite linear
We start our discussion with 23ee Table | for summary resistanceR calculated from the fluctuations af for the

of resultg and first focus on RSJD at the KT transition. For FTBC [see Eq.(30)] can be related to the conductivity cal-

a 2D superfluid and superconductor the most widely exculated for the PBC through the connectiBr Rg l/o(w

pected value ig= 2 although there have been a few different =0)] with o(w) in Eq. (20). We have explicitly checked

suggestiongRefs. 28—-30 The valuez=2 can be inferred this relation in our simulations &= 1.4, by comparing the
from the observed nonlinear current-voltadeM) exponent two values for the FTBC and PBC, respectively, and found

i

04 r

A. Discussion of the 2DXY model
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good agreemerit. From this observation, we expect that in lying dynamics is purely relaxationdsuch as RD in this
this high-temperature phase where the correlation length iwork, MC dynamics in Ref. 46, and Langevin dynamics in
smaller than the linear size of the systdRandz are inde- Ref. 26, or it has an additional constraint like local current
pendent of boundary conditions. Furthermore, in this tem<onservation in the RSJD case.
perature regime, transport properties like the linear resistance Although the short-time relaxation method applied to RD
are dominated by free vorticéwith densityng) and accord- gives the expected value~2 at T, it fails to yield the
ingly we expectRxngx &2 (Ref. 2, leading toz=2 for  equilibrium size scaling value beloWl,. In addition, if we
both boundary conditions. However, from a computationalcompare the decay behaviors at and belby shown in
point of view, the calculation of the size-convergedor the  Figs. 4 and 7, respectively, we notice that the time scale of
FTBC in the high-temperature phase becomes difficult as wéhe relaxation does not depend significantly on the tempera-
approachT; from above, due to the diverging correlation ture or on the boundary condition, in sharp contrast to RSJD.
length. On the other hand, if we instead focus on the scalingVe suggest the following reason: In RD the relaxations of
of the characteristic frequenay,, which is expected to be spin waves and vortices are effectively decoupled and the
proportional toR and can be calculated for the PBC, then weshort-time relaxation in this case only probes the spin-wave
do indeed find an indication of the expected behaviegg, degrees of freedom, which follow the purely relaxational dy-
~¢72, as seen in Fig. 8 for the PBC. For the FTBC thisnamics with the trivial exponere=2 at anyT, while the
result is consistent with our observatiar=2.0 at T, resistance scaling probes the vortex degrees of freedom. This
whereas for the PBC the scaling Bt givesz~1.5, which is then in contrast to RSJD with the FTBC where both de-
differs from the expectation. Why is there then a differencegrees of freedom are strongly coupled, leading to the same
in the PBC between values at and abové.? The pointis  relaxation time(and accordingly the sanevalug for i and
that the long-time relaxation abovk, is governed by the R It is also interesting to note that=2 was also found in
thermally created free vortices, whose density satisfies Ref. 21 from the MC simulations of the 2RY model with
« &2, whereas the behavior preciselyTat, wherens=0,is  the PBC at and belowW, by using a similar short-time re-
instead dominated by the bound pairs of vortices and antitaxation method.
vortices. The conclusion is then that the constraint imposed
by the PBC on the vortex-antivortex escape gives rise to this ) )
peculiar discontinuity of precisely aff .. This is in contrast B. Discussion of the 3DXY model
to the FTBC case whereappears to be a continuous func-  We next turn to the 3DXY model (see Table Il for a
tion of T. summary of results The discussion for the 2D case in Sec.
Next we compare the results from the dynamic scaling inv A regarding the boundary conditions carries over to 3D,
equilibrium and the short-time relaxation method whichand we expect that the FTBC has to be used whenever the
probes the relaxation when the system approaches equilibelaxation process associated with the expansion and the sub-
rium. For RSJD with the FTBC there is no difference: thesequent annihilation of a vortex loop across the boundary is
resistance scaling and the short-time relaxation method yielgmportant because the conventional PBC prevents this relax-
the same at and belowT . (see Table)l However, for RSJD ation.
with the PBC the equilibrium scaling and the short-time re- For RSJD,z=~1.5 is found from the linear resistance and
laxation scaling lead to different resulis=1.5 andz=1.2,  the short-time relaxation method for the FTBC, as well as
respectively. In fact by comparing Figs(a@ and 3b) one  from the scaling of the supercurrent correlation at and above
realizes that the approach to equilibrium from the choserr, for the PBC. In addition, the same valae-1.5 is also
starting nonequilibrium configuration is much slower thanfound for RD with the FTBC from the finite-size scaling of
the equilibrium relaxation. Apparently the constraint im- the linear resistance. We note here that the MC simulations
posed on the relaxation by the PBC in combination with theof the lattice vortex loop model in 3DRef. 19 also have
nonequilibrium starting configuration is causing the differ-found the same value. The agreement betweere thaues
ence. for the three different dynamic modelRSJD and RD with
We now turn to the discussions for RD, where for thethe FTBC, and MC dynamics of the vortex loop model with
FTBC we find from the resistance scaling the sanet and  the PBQ was also found in 2D. This value~1.5 obtained
below T, as for RSJD(see Table )l In this context it is in 3D is consistent witlz=d/2 (with d=3 in 3D) for model
interesting to note that the 2RY model with the FTBC is E and model F describing critical dynamics of superfluid
dual to the lattice CG model with the PBEee Ref. 7 for the systems, in the classification scheme of Hohenberg and
mapping between two modg/svhere the same values of the Halperin*'*° Consequently, it is again tempting to conclude
dynamic critical exponentz= zq. = 1/75TCG—2) have been that the result for the 3IXY model can be associated with
found in MC dynamicé® Also, the continuum CG model the vortex loops and that the critical dynamics of RSJD and
with Langevin dynamics of the pure relaxational form hasRD are equivalent as long as the boundary condition allows
been found to give the same valueszdf Accordingly itis  for the proper vortex loop escape over the boundary.
tempting to conclude that the result presented in this work As in 2D, we find that the short-time relaxation method
for the 2D XY model with the FTBC is associated with the for RSJD with the PBQwith the resultz~1.2) does not
vortices and that it is essential to define the model so as teeflect the true equilibrium relaxation corresponding zto
allow for a proper relaxation of vortex-antivortex annihila- ~1.5, and we again suggest that this is due to the constraint
tion across the boundary, which is not the case for the PBGmposed by the PBC. On the other hand, we find that the
Furthermore, the result that=z..,.appears to be universal short-time relaxation method for RD with the FTBC gives
in the sense that it does not matter whether or not the undeez=2.0(1) [see Figs. 1) and 13b)]. We propose the same
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explanation as we did for 2D: The short-time relaxation in C. Discussion of the 4DXY model

RD at criticality does not reﬂec_:t the _true Iong-time relaxatioq In case of the 4DXY model both resistance scaling B
because the vortex loop configurations are still out of equizng short-time relaxation give~2 for RSJD as well as for
librium even wheng/~0 is reached. In this respect it is in- RD (see Table Ill for summary of resultsThis is in perfect
teresting to note that the valuds=2.20 andv=0.67 used accordance with the Hohenberg-Halperin classification
in the scaling collapse fof in Fig. 13b) with z=2.0 agree  Scheme where the RSJD case should be related to models E

with the value expected for the 3RY model and that the @nd F withz=d/2=2 and the RD case with the model A
sameT,=2.20 was used in the resistance scaling in Fi) 9 vgl_ue z=_2. Th_ls in turn just reflects that 4D is the upper
and yieldedz~1.5. critical dimension.
We next discuss the results for RD with the PBC. The
scalings of the supercurrent correlation both at and afigve
(corresponding to the finite-scaling and the finité-scaling,
respectively, as well as the short-time relaxationTat, con- We have found that the size scaling of the resistance for
sistently givez~2. This value corresponds to model A of the XY model with the FTBC gives the dynamic critical
relaxational dynamics in the Hohenberg-Halperin classificaexponentz related to superfluid and superconducting systems
tion schemé™**>The most striking feature in RD is that with an open boundary. This is the case in two, three, and
the scalings al for the FTBC(resistance scalingand PBC  four dimensions both for relaxational and RSJ dynamics. In
(supercurrent scalingcorrespond to different values, i.e, 2D this applies forT<T,, whereas in 3D and 4D the dy-
~1.5 andz~2.0, respectively. namics is critical only at =T.. However, the 3D case with
In the high-temperature phase in 3D whef&€L, one relaxational dynamics has a discontinuity in thealue since
expects thaz is independent of boundary conditioMsCon-  the relaxation timer scales asr«L'® at T., whereas it
sequentlyz~2 found for RD with the PBC at temperatures scales ag &2 just aboveT,.
above T, implies z=~2 also for RD with the FTBC in the The short-time relaxation method, which probes the relax-
same high-temperature regime, again consistent with modealtion from a nonequilibrium configuration, does give the
A.1! In contrast,z determined from the resistance scaling atsame result, except for the 3D case with relaxational dynam-
T, instead givez~1.5 for RD with the FTBC. We propose ics wherez~2 is obtained. This discrepancy shows that al-
the same explanation for this discontinuity D&t T, in the  though the short-time relaxation method very often is reli-
RD case with the FTBC as we did in 2D: AboVg where able and efficient, it cannot always be trusted as a
£<L, the finite value of the resistivity reflects the physics of determination of the critical equilibrium dynamit.

VI. SUMMARY

dissociated vortex loops whereas preciselyl at where the The XY model with the PBC has a different dynamical
resistivity vanishes a& is increased, the physics is domi- size scaling behavior than with the FTBC. In 2D tK&
nated by the large nondissociated vortex loops. model with the PBC and RSJ dynamics gives smaller values

We now compare our results in 3D with earlier studies.of z (z<2) both at and belovil .. This demonstrates that
Values consistent with~ 1.5 have also been found in earlier the boundary condition influences the size scaling properties
simulations:z=1.5(5) was obtained from tHeV character-  of the dynamics. Also in this case there is a discontinuity in
istics of the current-driven RSJ model with an open boundz since r<L1° at T, but 7o £2 just above. This is similar to
ary (Ref. 52, andz=1.5(1) was concluded from the scaling the discontinuity found in 3D for relaxational dynamics. The
of the linear resistance for the MC simulations of t&  short-time relaxation fails to give the equilibriuerat T, for
model in the vortex representation with the PBRefs. 19  the 2D XY model with the PBC and RSJ dynamics.
and 39 which corresponds to the FTBC in the phase repre- In 3D the XY model with RSJ dynamics and the PBC
sentation as mentioned above and explained in Ref. 7. Figives the same result as for the FTBC. Thus in this case the
nally, MC spin dynamics applied to the three comporéMt  boundary condition does not influence the size scaling. This
model gavez=1.38(5) in Ref. 53. On the other hand, the is in contrast to the 3IXY model with relaxational dynamics
experimental situation for higii, superconductors is less which gives different result for the PBC and FTBC.
clear> From several zero field dc conductivity experiments In 4D all determinations give the simple relaxational
z~1.5 has been found on single YBCO-123 crystatd a  value z~2 independent of boundary condition and dynam-
similar resultz=1.6(1) was also obtained for a Bi-2212 ics.
crystal®” However, from the scaling of the magnetoconduc- The actual values determined are consistent with the fol-
tivity of a thick YBCO-123 film z=1.25(5) was found in lowing sequences: théY model with RSJ dynamics and the
Ref. 36, whereas a similar experiment reporzed? in Ref.  PBC atT, is consistent witte=1.5, 1.5, and 2 for the 2D,
55. From a theoretical point of view the renormalization3D, and 4D cases, whereas the FTBC is consistent with
group methods applied to the relaxational mog@ebdel A) =2, 1.5, and 2. Similarly for relaxational dynamics the PBC
yield the resulz=2+c#,**with »~0.02 andc~0.7261, gives the sequence=2, 2, and 2 whereas the FTBC gives
leading toz~2.0. However, as far as we know, no corre-z=2, 1.5, andz=2 for the 2D, 3D, and 4D cases, respec-
sponding calculation has been made for the 3D RSJ modédiively.

One may argue that since the 3D RSJ model aa fide The z values for a superconductor can be related to the
model of a superconductor the critical dynamics should benonlinearl-V exponenta through the scaling relatioa=1

long the dynamic universality class of model F which de-+z.2*'* The 1-V measurements correspond to an open
scribes superfluids: This gives z=d/2=1.5 for a model boundary and simulations with the FTBC are consistent with
with the static properties given by the 30Y model! the scaling relation, as shown for the 2D case in Ref. 8. On
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the other hand, thevalues calculated with the PBC in 2D do o . . 1

not fulfill the relation becausa>1+z for T<T.. In this f dt<A(t)A(0)>—>%«A(@)—A(O))Z)

sense, the boundary condition has direct physical signifi- 0

cance. in the limit of large®. The left-hand side can, due to trans-

lational invariance, be written as
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(B1)
APPENDIX A: SCALING FORM OF THE

SUPERCURRENT CORRELATION FUNCTION The first term on the right—hand side Igg(A(@)
—A(0))?)/0, and the second term reduces to

For supercurrent correlation scaling in 2D, the superfluid
density ps is proportional to the vortex dielectric function 10 0 . .
1/€(0) which in turn is related to the conductivity by(w) @ fo ds f _ JKA(t+5)A(s)
«1fiwe(w)]. Precisely at the KT transition 4(0) has a

logarithmic size scaling’ 1(e .
=—@f ds([A(s)—A(0)]A(s)) (B2)
1 1 1 0
— o
€(0)  €(0) In(Lic) (A%(@)—A2(0)—2A(0)A(O) +2A2(0))
wherec is a constant. This is consistent with the functional - 20 (B3)
form in terms of a scaling function with a logarithmic cor-
rection for the frequency dependence: ([A(©®)—A(0)1%)
1 1 1 20
- OCI ] FloT). .
€(w) €(0) In(L/c) where we have usedA{s)A(s)=dA?/ds. Thus the sum of
The supercurrent correlation functioB(t) is related to the first two terms on the right-hand side of £B1) is equal
o(w) by a Fourier transform so that to ([A(®)—A(0)]%)/20 and it remains to prove that the
third term vanishes in the limi® — . This can be realized
1 o FuwTr) by changing the order of integration:
Im —— =f dtw coswtG(t)= ———,
e(w) 0 InL/c 1 re 0
- — A(O+t+s)A
whereF (x) =Im[F(x)]. From this it follows that fo dsﬁsdtM(@ HH)A(s)
In(L/c)G(t)xfoc do—F (wr)e1@m” o T Y -
e T € =@ﬁ®dtJ'itds<A(®+t)A(0)) (B5)
» 1. )
:f do—F (wr)e ' *VT=Fg(t/7), 1 (o . .
—e w7 =@f dt(®+t)(A(O®+1)A(0)) (B6)
-0

so that In{/c)G(t) has the scaling fornfrg(t/ 7).

In 3D we have instead &/(0)xpsx1l/L at T, and 1 (e
1/e,,(0)=0 so that this time X (0)— 1/e..(0)ec1/L. This :—f dxx(A(x)A(o)>_ (B7)
means that going through the same steps as above for the 3D 0Jo

case gives the scaling forinG(t) =Fg(t/7). . .
g g (=Fq(t/7) A finite relaxation time 7 means that (A(t)A(0))

xexp(—t/7), which means that the last integral is finite for
any finite 7. This is the case ak; whenever the system size
is finite sincer«L? Consequently, the third term vanished in

The step from Eq(29) to Eq.(30) is equivalent to show- the limit ® — < for any finiteL and the step from Ed29) to
ing that Eq. (30) follows.

APPENDIX B: APPROXIMATION MADE IN THE
NYQUIST FORMULA FOR LINEAR RESISTANCE
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