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The influence of the charging effect on the proximity correction in the conductance of a mesoscopic
superconductoff)/normal-metallN) coupled system is theoretically investigated. The most important contri-
bution of the proximity correction in the conductance of a diffusive normal metal comes from the correction in
the local conductivitydso(r). The correction in the conductance is givendfy= (1/L§,)fvo,.5a(r)dr. Because
of the retro property of Andreev reflection and the long rangeness of the Coofpendicle-particle ladder
Andreev reflection at th&/N interface affects the local conductivity at a point in the normal region far from
the interface(within the phase coherence lengthy). If the S/N interface is very small and has a low
transparency, single Andreev reflection is strongly suppressed by the Coulomb blockade at a low temperature
(kgT<Ec, Ec=€%2C) in an exponential manner exp4Ec/(ksT)}, whereC is the capacitance of th&/N
junction. Nevertheless, the proximity correction in the conductance is only suppressed with power law
kg T/(4E;) because the charged state is an intermediate state in the process of the proximity correction in the
conductivity. This is quite different from the charging effect on the proximity correction of the current flowing
through theS/N interface, which is strongly suppressed by the charging effect.

[. INTRODUCTION vestigate the influence of the fluctuation on the conductance
correction because what is the most important contribution to
In the last decade, much attention has been paid to thiéhe conductance modulation BN coupled structures was
interference effects in the normal transport in superconductanot clear at that time.
(S)/normal-metallN) coupled systems. In such systems the How the “quantum fluctuation in the phase” affects the
change in a macroscopic phase difference between supercaoguasiparticle interferences in Andreev interferometers is a
ductor electrodes affects the normal transport. This phenomery intriguing question because the phase is the most im-
enon is an interference effect of quasiparticles. After the theportant quantity in the interferences. As a first step to an-
oretical prediction by Spivak and Khmelnifskthat such an  swering this question, here we investigate the influences of
interference can be observed in weak localization effects ithe phase quantum fluctuation on the proximity correction in
an SN coupled system, Nakano and Takayanagi proposed @ne normal conductance of a mesoscopic wire attached to a
model, which is now called the “Andreev interferometér®  superconductor via a sing®N interface.
For Andreev interferometers with diffusive normal metals, According to studies using Keldysh nonequilibrium
recently it has been established that the most important corGreen’s-function techniqué$;!® there are mainly two types
tribution to the interference is different from usual mesos-of proximity effects on the conductance of &N coupled
copic fluctuations, such as weak localizations or universasystem. One is the renormalization of the tunneling conduc-
conductance fluctuatiors’ tance at theS/N interface(i). The other is the correction of
On the other hand, the charging effect in a small tunnethe local conductivity in the diffusive normal-metal region
junction is one of the most interesting topics in mesoscopidii).*=®
physics®~1°If two metal electrodes are contacted via a very We will give an explanation of the typ@) proximity
small area interface with a very small capacitance, the chargffect in terms of the Kubo-formula approach of the linear-
ing energy evokes a so-called Coulomb blockade, that is, aresponse theor¥f. This enables us to investigate the charging
exponential suppression of electron transfers through the ireffects caused at a very sm&iIN interface on the conduc-
terface. A perspective description of this charging effect isance corrections by using a description of the charging ef-
given by introducing the quantity “phase’y), which is the  fects that is similar to that by Bruder and co-workers. Huck,
canonical variable to the number of the excess chafges Hekking, and Kraméf investigated the charging effect on
that causes a charging energy. the tunneling current through tI#N interface. At a glance,
Bruder and co-workers investigated the influence ofthe situation we consider in this paper might look like their
charging energy on some superconducting proximity effectswork. However, what they analyzed is the charging effect in
such as penetration of the order parameter and magnetic subfe type¢i) proximity effect. We investigate the current that
ceptibility in a normal metal attached to a superconductor vidlows only through the normal-metal part. In this case, only
a smallS/N interface!'~**They used a description with the the typeii) proximity affects the conductance because there
phase variable above. In their description the charging efis no net tunneling current through tt®N interface. We
fects on the proximity effects are expressed as results of theill show that the charging effect appears in quite a different
quantum fluctuation of the phase. However, they did not in-manner for the typéi) and type¢ii) proximity effects.
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The rest of this paper is organized as follows. In the next Taking into account the lowest-order correction of impu-
section, we give the Kubo-formula approach to the proximityrity scattering, the conductivity can be divided into the local
correction in the conductance of a normal-metal wire atpart and nonlocal paff
tached to a superconductor. A brief review of the relation
between the fluctuation of the phase and the charging effect a(r,r)=a(r)[8(r —r")+V,Vd(r—r")], (4)
in a very small junction is given in Sec. lll. Based on the
ideas in these two sections, we derive a theory for the inﬂUWhereg(r—r’) is a sharply peaked function of the widith
ence of the charging effects on the proximity correction inyhere| is the elastic mean free path due to impurity scatter-
the conductance of mesoscopic normal-metal wires in S€Gngs. The first term is the local part and the second the non-
IV. In Sec. V, results and discussions are presented. local. The nonlocal part cannot be neglected when the con-

sidering the local current conservation. However, by
Il. LINEAR-RESPONSE THEORY FOR neglecting the mesoscopic correlations in electric fields, we

SUPERCONDUCTING PROXIMITY CORRECTIONS get the “average” conductance,

IN THE NORMAL CONDUCTANCE
OF A MESOSCOPIC METAL WIRE

1
G=— | dro(r), 5
Hekking and Nazarov showed that an Andreev interfer- szvol. o(r) ©

ometer works even if a diffusive normal metal is usgd.
However, the conductance modulation they got was veryor a sample that is macroscopically homogeneous in space.
small because, as described below, two proximity correctionslere,L is the sample length. Therefore only the local part of
on the local conductivity cancel out each other at the zerothe conductivity contributes to theverageconductance un-
temperature and at the zero-bias voltage IMfit®'°It was  der these assumptions. This corresponds to taking into ac-
established a few years ago from calculations using theount only the contributions that appear in a kinetic equation
Keldysh nonequilibrium Green’s-function technique that theapproach for electronic transports like Boltzmann equation
conductance modulation in an Andreev interferometer with acalculation. Equatiori5) is valid when the classical electric
diffusive normal-metal region is the modulation of theer-  field is uniform in space. Therefore it is not applicable for a
age conductancé? which is different from the modulation spatially inhomogeneous sample because the electronic field
in the mesoscopic conductance fluctuation predicted by Spivaries with the position and it is not given (r)=E,
vak et al. The amplitude of the former can be comparable to=V/L. However, we can use
the normal conductance without proximity corrections. It is
not so clear when this was first pointed out, however, the 1
physics had appeared in early works by Zaitsev and 0G=— f So(r)dr (6)
co-worker$®?! although they did not emphasize its impor- L=/ vol.
tance.

Now we know that the conductance modulation in an An- i - : o )
dreev interferometer arises from the correction in the locaP? (") if the conductivity without the correction is uniform
conductivity in the normal region. Here, we will express and the correction is small, that §G|<|Go|, whereGy is

such a phenomena in terms of the Kubo-formula approach € conductance without proximity correction.

for the correction in conductancéG and in conductivity

A. Local conductivity and conductance B. Superconducting proximity corrections in local conductivity
The current densityj(r) induced at the point by an The invest_igations using the Keldysh none?quil_ibriu_m
electric field applied at the point’ is given by the Kubo- Green’s-function method have made clear that in diffusive
formula approach of linear-response théfrgs transport cases the most important contribution to the prox-

imity correction in normal conductance comes from the
proximity correction in the local conductivii® Here we
j(r)=f dr'o(r,r")E(r"), (1) show the Kubo-formula picture for the corrections.
vol. We consider the system in Fig. 1. This is the simplest
where “vol.” means the integration in space over the geometry for con5|dt_ar§t|ons about the proximity corrections
in the local conductivity of a mesoscopic metal wire. Al-
sample, and . .
though Andreev interferometers have more complicated ge-
, s, ometries, the essence of the charging effect on Andreev in-
a(r,r)=Crir) (20 terferometers already exists in the geometry in Fig. 1, as
is the conductivity obtained by the evaluation of the current-descr'b.ed in later sections.
. In this geometry, there is also a bypass current that flows
current correlation. From Eq(2), the conductance of a . '
: via the superconductor region. It causes a conductance cor-
sample is . . o
rection comparable to the correction by the proximity effect,
| L i.e., type(ii). However, here we neglect this bypass current
__ T , p , because such a current has nothing to do with the quasipar-
G \Y VZJVOJ\,d_drdr o(r,r)E(rE(r), ©) ticle interferences. Actually, we can distinguish the contribu-
tion of the proximity correction from the entire conductance
whereV is the voltage applied across the sample. by measurement of the magnetoresistance of the geometry in
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Normal-Metal  Superconductor
(Diffusive) Island

7

FIG. 1. Normal-metal interferometer with a superconducting is-
land. The ring structure is formed in order to pick up the proximity
correction for the whole conductance. A gate is set for detecting the
charging effect.

Fig. 1. This is because the proximity correction oscillates

with the period in magnetic field corresponding to the flux of ~ FIG- 3. Perturbation expansion of the proximity correction in
h/2e. the local conductivityo(r). (a) Without perturbation (b) and (c)

The normal transport in the normal region is affected byconductivity suppressions, ard) conductivity enhancementb) _
$(c)+(d):0 at the absolute zero-temperature and the zero-bias

the attached superconductor via Andreev reflections at th - )
S/N interfaces. When an electrghole) comes to the inter- voltage. Arrows show an example of the combination of the spin

face, it is reflected as a holelectron. Following the nota- directions.

tions by Kresir?® we express Andreev reflection diagram- o _ o

matically as shown in Fig. 2. ment due to proximity effects. This conductivity enhance-
The normal-metal wire is assumed dirty enoughi<l ~ Ment is a Maki-Thompson type of superconducting

fluctuation?® The usual Maki-Thompson effect appears en-
getically near the superconductivity, that is, just above the
uperconducting critical temperature. On the other hand, the
proximity enhancement here appears spatially near the super-
onductivity.

<Ly, Wwherehg is the Fermi wavelength in the normal re-
gion. In the conductance measurement of the sample, on
the typetii) proximity effect appears because there is no ne
current flowing through th&/N interface.

By taking into account the lowest-order corrections due ta® .
y 9 It should be noted that the second, the third, and the last

Andreev reflection, the conductivity with the proximity cor- I | h oth h |
rection is given by the sums of the contributions of the dia-I8"MS exactly cancel out each other at the absolute zero-
grams in Fig. 3. t_emperature an(_i a_t the zero_-blqs voltage limits. Early inves-
The first term(a) gives the conductivity without proximity tigations of proximity correction in conductance by usn."ng.the
corrections. The secon@) and third (c) correspond to the Kubo-formula approacH treatedSN systems at such a limit.
diminishment in the conductivity caused by the exclusion of! N€réfore the importance of these terms was not emphasized.
At a finite temperature or at a finite bias voltage, however,

guasiparticle density of states in normal region due to prox:

imity effects. The last term gives a conductivity enhance_diminishment terms decay with the energy more rapidly than

the enhancement term, and the last term exceeds the second
and third and gives a large conductance enhancement. The

Normal metal , ESup(?fc?nductor enhancement becomes most significant near the Thouless
electron temperaturekgT~D/LZ, whereD is the diffusion constant
— > in the normal wire. This is the origin of the so-called “re-
entrant behavior,” which have been observed recently in ex-
periments.
—€—0—— Andreev reflection forms a two-electron correlation that
hole enhances the conductivity. However, Andreev reflection also

decreases the density of states of the single electron. There-
(@) fore, in order to consider the superconducting proximity ef-
fect, it is very important to take into account self-consistently
the modification in the electronic states due to Andreev re-
(roto) (roto') flections. This makes diagrammatical perturbation treatments
e 00 e of the proximity correction difficult at a low energy where
multiple Andreev reflections are effective. Taking into ac-

S/N Interface count the processes in Figgb3-3(d) at the same time, we

(b) can expand the applicable energy of the perturbation calcu-
lation.
FIG. 2. Andreev reflection at th&N interface and its diagram- The rapid decay of the conductivity diminishment with

matic expression. the increase of the energy is explained as follows. In the
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propagators with two successive Andreev reflections in Fig. Normal metal Superconductor

3(b) or 3(c), a quasiparticle has to traverse two times the

round trip from the point ~r,,r, to theS/N interface. The ko1 Andraev Reflection

time for one round trip is of the order af/D, wherex is the (r,7) —T>— T 0-%0)

distance from th&/N interface to the point. For a point at X X

the end of the wire, the time is the inverse of the Thouless (r12)

energyEsy,. Then, for this process to be effective, the qua- -k

siparticle coherence should be kept longer than th& 2.

At a finite temperature, this gives a decay of

exd —vkgT/D2x] to the processes in Fig(l® or 3(c). As a

result, the process is effective for the conductivity at pojnt FIG. 4. Anomalous amplitude s (rq,t;) ¢ (r2,t2)).

which is within regionL; from the S/N interface, where

Lr=VD/(kgT) is the thermal diffusion length. gator is the electron-hole correlation of E&). This result
~On the other hand, the enhancement process needsgg (7) s the same as that obtained by quasiclassical Keldysh

single round trip. Therefore the diminishment processg een’s-function approaches.

dore(r) needs time reversal symmetry that is two times e emphasize that they(ty,t,,r1,r>) is not the ampli-

longer than that needed by the enhancement proceg§ge of the condensation, or, in other words, the amplitude of
8T anon(r). In other words, the d|m|.n_|shlm(.ant and the en-4 Cooper pair. The condensation amplitude is
hancement are comparable at a positiamithin the thermal lim, [FN(r1.72,t1,15)], which means the probability

d|ffus_|on length from theS/N. mtgrface. oo amplitude where the both electrons exist at the same time at
This phenomenon also justifies our takmg Into ac_counrthe same position with the precision ofAl/the inverse of
only the lowest{second} order Andreev reflection contribu- h ducti Th d ) litud
tions as in Fig. 3. Higher-order contributions include mul-t € superconducting gap energy. The condensation amplitude
. S . decreases exponentially with the distance from the supercon-
tiple Andreev reflections, or in other words, plural round ductor(S)/normal-metalll)  interface by the factor
g;f;[s'_n -Il;h(?lljx] a\:\/ehers:?sp:ﬁzsr?:mb:ryof rzun(;i(r;itosr Tkl:lge exf —x/L+], as does the conductivity diminishment contribu-
summatioa of m’ulti le Andreev reflections is truncztéd]at tion, wherex is the distance from th&N interface. The
—~L-/x. Especiall gt an end of the normal wine's that condensation carries the nondissipative current, that is, the
T/X. ESP y ’ supercurrent in a thermal equilibrium state, and the “par-

satisfyn< VErn/(kgT) are valid. Very near th&N inter- ticle” of the propagator carries the dissipative current under

face, higher-order terms should be taken into account. How; finite applied voltage.

ever, at the zero energy limit, the conductivity enhancement The anomalous Green's functiory consist of the

and the diminishment cancel each other out at every .Ordeﬁarticle-particle propagator, the so called “cooperdfiAnd
and no divergence appears in the perturbation calculation. Andreev reflection, as illustrated in Fig54
It should be noted that the truncation described above is" g, se of the’retro property of Aﬁdréev reflection and

va[|d f.or the proximity correction of the con(_juctlwty ata ipe long rangeness of the cooperon, this enhancement pen-
point in the normal region. When we consider a current

) ) . etrates into a given point in the normal region far away from
through theS/N interface, multiple Andreev reflections be- g P g y

. o . the S/N interface within the phase coherence length,).
come important because the renormalization of the mterfacgrom Fig. 3 and Eqs(6) and (7), we can roughly estimate
conductance is determined mainly by the electronic states i : ‘ !

the magnitude of the conductance correction as
the vicinity of theS/N interface, those are strongly modified g
by the multiple Andreev reflections.

— X =

(r0.70)

t—=ro

In the remainder of this section, for simplicity, we pay E~<i)2 9)
attention to the conductivity enhancement term unless stated Gy |Gy’
otherwise. The diminishment term is restored in the result
and discussion in Secs. IV and V. whereGy is the conductance of the normal-metal wire with-

Under the approximation neglecting the nonlocal part ofout proximity corrections, ané+ is the tunneling conduc-
the conductivity, the local conductivity enhancement by thetance of theS/N interface when both materials are in the
last term in Fig. 3 is given by normal state.

Here, it is useful to comment why the impurity correc-
tions taken into account in Fig. 3 are the most important.
With respect to proximity correction processes, it is possible
to take many kinds of diagrams with different types of vertex
corrections. A diagram having vertex corrections for current
vertices contributes only when the particle of the “hole,”
that is, the upper propagator and the lower propagator in Fig.

Fn(r,r’ 6t = Iim (- o(r, ) no(r' 1)), (80  3(d), take the same path for the round trip to & inter-
oy face. As a result, it merely gives a mesoscopic fluctuation in
the conductivity. On the other hand, if the vertex corrections
anduvg is the Fermi velocity in the normal region. We can for Andreev reflection vertices are taken, as in Fig. 3, the
think of the last term of Fig. 3 as corresponding to the clasupper and the lower propagator can take paths that are inde-
sical transport of an extraordinary “particle” whose propa- pendent to each other. This is not a mesoscopic fluctuation

So(r,0)(ve)?FR(r,)FR(T, o), (7)

where FR® s the retardedadvancell anomalous Green’s
function in the normal region, which is
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and gives a large contribution in the conductivity, resultingcorrection, which changes the average conductance. This

in a large conductance correction. makes the analyses of normal conductance corrections much

easier. Mesoscopic fluctuations, such as weak localizations

IIl. CHARGING EFFECTS AND QUANTUM and universal conductance fluctuations are sensitive to the

FLUCTUATIONS IN THE PHASE OF A SMALL sample shape. However, the details of the sample geometry
SUPERCONDUCTOR/NORMAL-METAL JUNCTION are not important in the local conductivity correction and the

. resulting correction o&verageconductance due to the prox-
Charging effects on the charge transfer across a smail,lnity effect.
tunnel junction were actively researched around 1990.  Syppose a normal-metal wire has a superconducting is-
perspective description of the effects is given by introducingand on it, via an insulator, and this results in a small low-
an operator of called the “phase.” Charging energy evokedapacitance/I/N tunnel junction(Fig. 1). This is similar to
by an electron transfer through the junction, causes a timghe model discussed by Bruder and co-workéré The gate
evolution of the phase. The fluctuation in the phase supglectrode on the superconducting island can change the ef-

presses the charge transfers across the junction and the effegttive charging energy of tH&N junction via control of the
is exactly the same as the phenomenon called the “CoulomByerage number of excess charges at the junction.

blockade.’® The phase is defined by

e [t IV. EFFECTS OF THE PHASE QUANTUM FLUCTUATION
o(t)= Hf dt'Vv(t'), (10) ON THE TRANSPORT PROPERTY IN A
- SUPERCONDUCTING PROXIMITY SYSTEM

whereV(t) is the voltage across the junction. The phase is an A. Proximity correction with phase fluctuation
operator which works on the excess charge numlgt of

the junction like Now we consider the proximity effects induced in the

normal-metal region, taking into account the phase dynam-

gielige ieh=q—2, (11) |c|s Aafinite gate voltag®/ is applied to the superconducting
island.
and satisfies the relation We start from the Hamiltonian of the system described in
) Appendix A. Following the procedure by Bruder and co-
[e.q]=i. (12)  \workers, hereafter we use the imaginary time expression for

Green’s functions. The proximity effects are treated as the
perturbations due to Andreev reflections at 8l interface.
h(t)=(e'*Me=1#(0)) (13) To emphasize that the charging effect on the proximity
correction of the local conductivity, we first briefly consider
In the case of a small capacitance normal-metalnother superconducting proximity effect, the order-
(N)/insulator( )/normal-metalN) junction with a highly re- parameter penetration into the normal region. By taking into
sistive electromagnetic environment, the tunneling curren@ccount the lowest-order contribution of Andreev reflection,
through the junction is suppressed in the exponential manndhe absolute value of the order parameter is calculated like
e Ec/(sT) if the conditionsksT,eV<Ec, and Gr<1/R, ; ;
are satisfied by the applied voltage temperaturerl, and 2 4f J' 2 f f
tunnel conductanc&r . Ry is the quantum resistan¢ge?. [on(r 7o) Un(r 7o) =]t 0 A7 A,d for 0 d70z A
This is the Coulomb blockade. 5 , )
If the applied bias voltage across the junction is zero, the XA 027 s(r 02T 02 To2™ To2)
fluctuation in the phase is a quantum fluctuation. According X Fo(1 b= Toys T 7o)
to the description above, we can think of the Coulomb block- stfor™ o1, 7017 70

An important quantity is the correlation functidn

ade as an obstruction of the charge transfer caused by the X Nard To1, To1 02, Thy)
“quantum fluctuation of the phase.”
The quantum fluctuations in the phase in superconductor XGN(Fo1— 1, To1— 7o)
(S)/insulator()/superconductoff) tunnel junctions have , ,
been intensively investigated in the contexts of macroscopic X GN(Fo1 =T 701~ 7o)
guantum tunneling, dissipative phase transition, macroscopic X Gn(F =T o2: To— To2)
quantum coherence, and Bloch oscillatiéhghe effective N 0270 o
action treatment for the phase variableSk/S tunnel junc- XON(T =T 02,70~ T0o), (14

tions gave a transparent view in the analysis of the effect of

the quantum fluctuation in the phase. Some people extend&1€rén

the treatment to the analyses of the supercurrent that flows )

through a superconductor/normal-metal/superconductor IN(T2:T1:72.71) = —(T L o(r2, 72 I o (11, 72)]),

(SIN/S) system ands/I/N/1/S systems228:29 (15
Bruder and co-workets*commented that the estimation and F is the anomalous Green’s function in the supercon-

of the normal conductance correction with the charging efductor region.

fect is difficult because the spatial dependence should be

considered. However, now we know the dominant contribu-  Fg(r,,r1;75,71) =(T [¢¥s - o(r2,72) ¥s,,(r1,71)1),

tion to the conductance correction is the local conductivity (16

is the normal temperature Green'’s function,
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B=1/(kgT), and A, is the area of theS/N interface. Andreev Reflection 1 (e ->h e
(---)av means the quantum-mechanically averaged value in (ro1,701) n
the thermal equilibrium,

_ (r1,71) (rs,72)
i
Nanl To1, 7015 To2: T02) = < eXP{E[@(ToD+ @(7o1)]

i
—§[€0(702)+€0(762)]]>
AV (ro2,%02)
~(explile(701) — @(T02) I})av Andreev Reflection 2 (h >¢e)
=han{ T2~ To1)- (17)
] ) Kanom(r,icoy)

Andreev reflection becomes instantane¢d$és’ — 7)] and
local in spacdg &(r’ —r)] under the conditions FIG. 5. Proximity conductivity correction with a charging ef-

fect.

eV, kgT<Ec<A. 18 . . . .
B ¢ (18 Since this is the classical product of two particle propagators,

ﬁt should decrease exponentially due to the charging effect

We used this approximation to derive the last expression i ; . h
Eqg. (17). The phase fluctuation caused by the charging effectPec"’luse each propagator in the process is exponentially sup-

appears through the correlation functiog, in Eq. (17). The pre_?sgq as we saw above. it for th - L
correlation function corresponds to the propagator of the e e | IS IIS notda Cto'r'rtect_ltﬁsu tl o;t € prOX|tm|ty correctltl)(n n |
ergy emissior{absorption of the charging energy ttfrom) . e local conductivity. The electromagnetic response kerne
the electromagnetic environment. In this process of the® the two-body-propagator expressed by
order-parameter penetration, a real energy transfer is needed. . N
Therefore the correlation function gives an exponential sup-{TL¥n - o(r2, 72) ¥y, (2, 72) N (T2, 1) N o(F1, T ])
pression in the Coulomb blockade situation. 8 P 8 8

Similarly, for the excitation of a particle of the propagator o<|t|4f dToJ dT(’)J dTozf d79,9n(T01— T1)
(n(7s) (1)), itis necessary that a real energy be emitted 0 0 0 0
to the environment. Therefore if the excitation energy is

_ ! _ _ !
smaller than the charging ener§y. , the excitation is expo- XGN(= ¥ 7o) In(— 7oz T2) On(— Tor 72)

nentially suppressed. This makes the propagation of the par- X F( To1— o) Fo( Too— To2)

ticle short range in space. When positiois away from the

S/N interface by distancg, there is a characteristic time for X hy(To1, To13 T025 To23 T15 T2) s (22
particle excitation even in the absence of the charging effect.

From a rough estimation we get where

’ 2 ’ i

To— 71|~ | 7o~ 2| ~XID>hIA~| 19— T, 19 ) , ! ,
7o ml~[ 70— o= ml (19 htr(7'011701?702’702?71:7'2):<9XP{§[€D(TO1)+<P(701)]
for times in the anomalous amplitude in Fig. 4. These time .
restrictions come from the Green'’s functiofig(r, 7). When _'_[(P(TOZ)JF o(r )]] >
this is combined with the charging effect, we can know that 2 02
an excitation of the particle should experience the exponen- _
tial suppression eXp-2Ecx?/D] if the excitation energy is ~(explil¢(70) — ¢(T02) ]}) av
smaller than charging enerdy . =h _ 29

Therefore the penetration of Cooper pairs and induced (702~ o). 22

anomalous amplitude in the normal region are exponentially-g gerive this expression, we assumed the condition of Eq.
suppressed by the phase fluctuations. For the supercurrer@i,g)_ This process is illustrated in Fig. 5.

which exists in ar8INISgeometry, the exponential suppres-  This hecomes more intuitive if we illustrate the image of
sion is inevitable because the carrier of the current, that isye term in real space as in Fig. 6. What is most important is
the Cooper pair, is exponentially suppressed by the chargings fojlows. The number of excess charges is the same before
effect, as described above. the first Andreev reflection aty,( 7o,) and after the second at

Now we proceed to the proximity correction in the elec- - . pecause each Andreev reflection causes two-particle
tronic transports in the normal region. The simple extrapola:tunne"ng in opposite directions. Therefdig(rg,— 701) has

tion of Eq.(7) in Sec. Il to the case under a charging effect, finjte expectation value under the average with the unper-

AV

gives the conductivity enhancement turbed(without Andreev reflectionsstates. This is quite dif-
ferent from the order parameter and particle excitation,
S (Yn(r2, ) Un(F 1, TN U(F 2, 72) (T 1, 71)). which has only an exponentially suppressed value under the

(20 Coulomb blockade condition.
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0O-29
105,
electron-hole pair creation ) Andreev Reflection 1 Cg
+Q + gg—q V
. C g
electron-hole pair annihilation z
r2,T2) Q+ —Qq
Gz
N ‘ c
Andreev Reflection 2
_C
et +Q-§a
— Z1()
7
FIG. 6. Image of the conductivity enhancement term in real Vbias
space.
Z1(w)

The lowest-order contribution to the local conductivity
enhancement from the kernel in Fig. 5 is given from the FIG. 7. Effective circuit for the phase motionZw) is the

linear-response theory as impedance of the normal-metal wire without proximity correction.
_(UFTe|)3 [Kanord @,7) —Kanon{0.) ] quasi-one-dimensional case, where the width of the wire is
80 anorf @,1) = Vy ® ' much smaller than the length, the boundary conditions are
(23
Cp(r_rOawm)|rex+,x,:oa (27)

where 1 =I/v¢ is the elastic scattering time, any, is the .
volume of the normal-metal wire. The factoo {7e;)/Vy wherer e X, ,x_ means that is at an end of the normal

appears from the normalization of the functiétr —r’) in ~ WI'®

Eq. (4). We_z can find in Eqs(24) _and(25) that this contribution i§
We can get the proximity correction kernel with the tem- classical from the viewpoint of the transport of the particle
perature Green’s functions, whose propagator i§y. The propagator consists of two
electrons that travel on the same path to 818l interface
VNezvﬁ (cooperon. This is finite owing fo the.mesoscopic effeg:t:
Kanonfi®,,F)= H E’ (kgT)? Re{j:N( ro—o, However, once the propagator is obtained, the conductivity
@) ,en is determined by the short-range propagation of the particle

within the length of the elastic mean free pathEquation
. (29 (26) is nothing more than the linearized Usadel equation,
which appears in the Keldysh Green’s-function analyses for
nonequilibrium superconductivities.
By using a calculation similar to that above, we can get
the conductivity diminishing contribution of the proximity
correction of the secontb) or third (c) term in Fig. 3 with

1 1 )
+§8n FN r,w|+§8n hy(iep)

where X’ means to take the sum with,'s and ¢,'s that
satisfy the conditions «—w,)(w,—w,—¢&,)>0 and
w|(w;—&,)>0. The anomalous Green'’s function is given by

(o= lim Fny(rs,r, o) the kernel
rl,rzﬁr -
. VNe Vg , )
_RoGr( [ri—ryl Kreri®, 1) =— %n (ksT) R'{fN(r,wer
AV 1 | Sg'{wm]
IVN . .
+§8n)}—N(r'w|_wv+ Esn)htr(iﬁ‘n) .
XfAldron(r,ro;wm), (25)

(28
whereG+ is the conductance of the interface when both elecThis term corresponds ﬂéﬁ(r)Fﬁ(r) [FQ(r)FQ(r)] of the
trodes are in normal states, aAdis the area of the interface. |egg|-time Green’s functions, which decreases with the dis-

Cp(r.ro;@m) is the cooperon(particle-particle laddey  tance from theS/N interface in an exponential manner like
which is the solution of the differential equation exd —r/L].

D(V—2ieA)’Cp(r,o;0m) + (|200| + D/LE)Cp(r Fo;@m) B. Quantum fluctuation of the phase

=VN83(r—ryp), (26) To estimate the charging effect, we have to analyze the
. N ) correlation functionh,(7) in Eq. (22). The analysis can be
with the boundary conditions at tt&N interface, at the ends  carried out by a calculation similar to that for the usual single
of the wire, and on the side walls of the wir.is the vector electron tunneling conductance. From the viewpoint of the
potential of the applied magnetic field. Here we took the phase motion, the measurement setup in Fig. 1 is converted
axis along the wirex is the x component of point. In the into the schematic circuifFig. 7).
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In the setup with a gate electrode, there are two degrees of
freedom of chargé’ One is chargeQ, induced across the

gate capacitanc€y, the other iQ. induced across th&/N

junction capacitanc€. The normal-metal part is the envi-
ronmental impedance from the viewpoint of the phase mo- Wy
tion. The charges are expressed by the island charged

the continuous charg® by a canonical transformation;

_ C
QC_Q_ C qv
Cg
Q=-Q- ¢l (29

INFLUENCE OF PHASE QUANTUM FLUCTUATIONS ON . ..
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N-wire S /
v N-lead

N-lead

——— X-axis

—-), WS e
FIG. 8. Quasi-one-dimensional model for calculation.
fect is weak even if we estimate it using the overestimation.

Hereafter, we use the simple symt®{ for the gate con-
trolled effective charging energy insteadig’ (V) because

whereCy=C+Cy. The phases are canonical conjugates ofit is clear what it means in the context.

these charges and are given

P-=P~ Pg,
_ C Cy 30

After some calculations, the correlation functibig(r) is
obtained as

ho(7)=A, (1) Ay(7), (31
where

A ()= (T e(Co/o)e- e OO,

Cq4\2
=ex C_z Jo (7], (32
Ay(r)=(T.e eV 1, (33
JUT):f:dw_? quRt;wg)] CO&(%B%)
X[cosiwg7) —1]—sinhwg|7]) |, (34
_ 1
O oy 2w %

In Eq. (33), (- -)Seﬁw,] means the average is taken by using

the effective actiorS.q ¢] of the phasey.

The correlation functiorh,(7) can be estimated as de-
scribed in Appendix B. Its Fourier transform is given by

1_e_4BEC'(Vg)
hy(ie) =—F———, 36
o)==, (39

whereE¢' (V) is the effective charging energy for the gate

controlledS/N junction.

In the derivation, we neglected the friction for the phase
fluctuation by ignoring the dissipation for the phase motion

due to charge transfé& , . Therefore we know that E¢36)

might give an overestimation of the charging effect. In other
words, the true influence of the charging effect should be
smaller than the one given by E@6). As we will show, the

suppression of the proximity corrections by the charging ef-

V. RESULTS AND DISCUSSION

A. Proximity correction on the conductance of
a normal-metal wire with a single S/N interface

Here we show the results for some concrete models. First,
we analyze a simple metal wire with a superconducting is-
land. Suppose the geometry illustrated in Fig. 8. Assuming
the wire is much narrower than the phase coherence length
L, and that the lengthy is much larger than the width, we
can take the cooperon as quasi-one-dimensional. Then, Eq.
(26) for the cooperorC, can be solved as

Ly SinH k(2w (X—Ly) ]

ColXom =5 omcosik2amly] "

where

k(o) = 38
(wm) N5} (39)
From Egs.(23) and(24), finally we get the correction in the
dc conductivity,
1 [ RgGr |?
5“a”°"(x)“’0§(ANNN(0>)

XJ"" ng(E)

©

> (kgT)

n=—=

9T

E=z

Re{sinr'[m(x—LN)]sink[K(x— La)]

Ky COSH k Ly]x_ coshk_Ly]

X hy| i (39

2n77)
B

Similarly, for the conductivity diminishment contribution,

1| RoGr ZF ng(E)
5"f‘”‘x)_"°§(ANNN<0>) ITE |

- . B )
« S (kBT)Re{(smt[KJr(x LN)]])
= N

n=—o Kk, coshw, L

(40)
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After the integration over the volume of E), the con- 0.16 —— .
ductance corrections are given by 014
w 012}
G? =  dng(E)

5Ganom:G_ z JE Zx (kgT) 8GkeD) [
0 E=z ™ Gr?/Go |
2nw 0.06 |
2he| 15 0.04}

xRg — 0.02
Ly(ksx_)cosh ki Ly]cosh k_Ly] ver

0

stinl’[(f@r-l— Kk_)Ly] B Sinf[(K+—K)LN]]

FIG. 9. Calculated temperature dependence of the conductance

Kyt K_ Ky—K_ :
corrections.
(41
Similarl tance from theS/N interface, a term with finiten decays
Y monotonically with the distance. Therefore, the conductivity
G2 (= 4n (E) o corrections of a sample that is longer than the thermal diffu-
5Gren:G_Tf z ;E E (kgT) sion length, the term ofi=0 dominates, are expected that
0J —= E= n=-—ow
’ 8(0r) 1 »
1 . ~
o +sin{ 2k, Ly]) t(, 2n77) 50(01)|g .0 4EcB’ (44)
L3(k coslik, Ly? "\ B ]| o
The total conductance correction I$G= 656G om
(42 — 6G,en. Equation(44) also suggests:
where (ksT)®  for keT<Eqy,Ec,
<+2. 2|n|77) 43 ) const  for Erp<kgT<Ec,
K+=K| ZZ21Z—
- B OGIEckeTlX\ () 1)2  for Eg<kaT<Ery, O
-1
Equations(39) and (40) show that the charging effects (kgT) " for Ec,Erp<kgT.

appear in the proximity corrections of the local conductivity The results of the numerical calculation of the conduc-

as an exponential cutoff whose characteristic length is on th : . : : :
order of the thermal diffusion lengtiD(8) 2. Summing up E’:\Cr‘\sczclc;r;?]c;‘jtl&g)s X‘;hsiggv\évmo':ui;thge charging effect, using

;N.'E)h tn’ I |sf<ilhea; that i:hiéempe.r?tql:@'I} E”Th the”c_<|)_2.- Figure 10 shows the growth of the conductance correc-
ributions of the terms are infintesimaily Smail. TS 415 from the zero temperature. The curves are plotted with

IS thte facf[hthatbnelthfr tr]le ent(;rgy emission tto the envllronfhe log-log scale in order to clarify the power of the rise. As
meen _noro e'kiesotrrihlgr:oro;nm N eqvwgn(r)nr?ln tﬁza.rteaalproﬂwe third and first lines in Eq45) give, whenE-=0 the
cess 1S possibie at t W temperature. y Virtual Xz o rection 5G rises with ksT)2, and whenEc=2Eqy, it
citation of the environment contributes to the proximity

. . > rises with kzT)3. WhenE.=0.1E1,, we can see the tran-
process. Physically, the meaning of this is as follows. An_... e .
Andreev reflection needs two-particle tunneling through theortion of the power from 3 to 2 neaT~Ec=0.1E,. This

S/N interface, and the tunneling evokes a charged state in means that above the temperature, the conductivity correc-

L . .~ . fion pr n r with “real” emission he environ-
Coulomb blockade situation. However, in the process in F|g{1i0 process can occur with “real” emission to the enviro

. . ment.
6, the charged state can be included as a quantum interme-
diate state because each two-particle tunneling is in the op-
posite direction.

This is physically quite different from the Andreev tun-

neling current through th&/N interface, which was ana- 0.1}
lyzed by Huck, Hekking, and Kraméf.In the case of the SGQLBD
tunneling current, two electrons should transfer through the Gr /0(?’6)1 ]

S/N interface as a real process. The process needs real en-
ergy emission or real energy absorption. In the Coulomb

blockade situation, that i&sT,eV<E., such emission and 0.001

absorption are almost impossible as described above. There-

fore the Andreev tunneling current cannot avoid the expo- 0.0001 , . .
nential suppression by the Coulomb blockade. 0.01 kBT/EThOJ

Contrary to the fact that finite energy simultaneously

gives an exponential decay and sinusoidal oscillation to the FIG. 10. Growth of the proximity correction at low temperatures
spatial dependence of the local conductivity with the dis-for various charging energies.
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S L n Rg Lp
> % U S ¢
x=Xg=0 < Ly L, X=X4=0 14
x=-Le NN x= L

N-wire ring

. . . . Transmission Controller
FIG. 11. Quasi-one-dimensional model for the interference.

FIG. 12. Equivalent system at a low temperature for the loop
As a result, in contrast to the Coulomb blockade, whichgeometry in Fig. 11.
gives exponential suppression ex@E:/(ksT)], the charg-
ing causes a decrease in the proximity correction in thevhere ®y=h/e is the quantum flux. This simplification is
normal-metal conductance with the power l&gT/(4Ec).  possible because, as discussed in Sec. Il, the transport is
The charging effect does not strongly suppress the proximitglassic, or “local,” as expressed in the first term of the right-
correction in the local conductivity and the resulting correc-hand side in Eq(4). The conductivity oscillation due to the
tion in the conductancéG. interference comes from the oscillation in the propagator of
Another explanation for this weak suppression is possibleEgs.(C2)—(C4). In the case of a mesoscopic fluctuation, the
As can be seen in Fig. 5, the time lag,— 7o, between two  interference appears in the correlation between two or more
Andreev reflections can be shorter thaEd/because it is propagators. The interference in the proximity corrections

possible that, for example, does not come from the mesoscopic “transport,” but from a
mesoscopic propagator, which corresponds to the particle.
| To1— Tod <€ | 701— 71|, | T02— 72| (46) At the magnetic field corresponding to the fluk

=k®dy/2, wherek is an integer, the anomalous amplitude

_Theref(_)re, in the proxir_nity correction process, the time d“r'FN(r) has a large magnitude even at the left end of the wire
ing which the system is in the charged state can be muc =L,) because the transmission is unity. On the other

shorter compared to the other proximity effects which have §,44q ford = (2k+1)d /4, Fy is blocked a= L, because

time constriction like Eq(19). the transmission is closed. An increase in magnetic field
gives the cycle between these “open” and “close” condi-
B. Phase quantum fluctuation in interferometer tions. From the viewpoint of the proximity conductance cor-
For a real measurement, the calculated model in Fig. 8 i£ction, this cycle corresponds to changing the length of the
too simple to distinguish the proximity correction from the Normal wire between. +Lg+ 7Ry and Lg+ mR,. There-
entire conductance. In order to do that, an interferometer likd®re the conductance correction oscillates with the period of
that in Fig. 1 is necessary. However, the above quantitativlu* N/(2€) when the magnetic field is increased. Since the
discussion of the charging effect for the model is still valid conductance correction of a single wire is given from the

for an interferometer because the interference in the rinQO”dUCtiViW corrections in Eq¢41) and (42), we can esti-
structure is quite simple. mate the amplitude of the oscillation in the magnetoconduc-

Suppose a geometry with a ring, as illustrated in Fig. 11f@nce. Taking care to the fact that the Thouless en&rgy
The ring is pierced by a magnetic field. If we solve differen-changes with the effective length of the normal region,
tial equation(26) with the boundary conditions for the quasi- Which now oscillates, and the energy dependence of the cor-
one-dimensional interferometer structure illustrated in Figection can be normalized by the Thouless energy, the am-
11, we immediately get the cooperon in the structure. Thélitude is approximately given by
derivation is given in Appendix C. The solutions, ES2)—

(C4), show that the interference is a simple Aharonov-Bohm- Aops=G[D=0kgT]— 6G[P=Dy/4kgT]

type interference in a single-channel ring, if we imagine the — SG[D=0KaT1— SGI P =0kaT/r21r 48
cooperon itself is a particle with the charge.2Now, we [ keT] [ keT/rilre, (48
focus on the conductance correction in the left pgX  where

because the correction is the right partx, is not so sen-

sitive to the magnetic field. L +Lg+ 7Ry

More simplification is possible when the temperature is rL:W' (49)
lower than the Thouless energkgT<Eqy,), Where now R 0
Ern=D/(L_+Lg+7Ry)% Approximating variables that as discussed for the single-wire geometry, from E6#5)
slightly depend on the geometry as constants, the systeg},q (48),
with the loop at the low temperature is quantitatively equiva-

lent to the much simpler system illustrated in Fig. 12. (1—1/r,) for kgT<Eqp,Ec,
It is a single wire with a transmission controller at posi- A .~ G[®=0kgT] 3
tion x=L,,, where the left node of the loop is. Magnetic flux [1=2r)°] for Ec<kgT<Ern.

piercing the loop is taken over by the controller, which modi- (50
fies the transmission coefficient for the coopetggy, with Ay is of the same order afG(®=0) if L, =Lg+ 7R,.
the relation On the other hand, at a high temperatég,<kgT<A,
@ the most phase-sensitive contribution is the proximity correc-
teoop= co{2w—}, (47)  tion of the conductivity in the right lead, and the oscillation
@y is given by
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0.1 . correction of the simple wire. This is the most significant
manifestation that the proximity correction of the “average”
0.08 conductance is caused by the “classical” transport of a me-
$GkeD soscopic particle.
G1?/Go
0.04 C. Charging effect on an Andreev interferometer
Up to this point, we have considered the proximity cor-
0.02 rections in the normal region of normal-metal—
superconductor coupled systems that have onlySihein-
0 terface. Andreev interferometer seems to be more interesting

for investigating the proximity corrections because the mac-
roscopic phases appear explicitly in it.

FIG. 13. Numerical calculation for the magnetoconductance os- Here, we will briefly discuss the phase fluctuations due
cillation due to the proximity correction in the interferometer in Fig. the charging effects on an Andreev interferometer, that is, an

11. SN coupled system with pluréd/N interfaces.
As described in the previous sections, we are interested in
Etn . conductance for the current that flows without passing
5G(<I>=O)—5G(<I>)~akB—TGls|n2[27-r<I>/<Do] through theS/N interface. For systems with a sing&N

interface, the quantum fluctuation of the phase does not
strongly destroy the interference effect in the conductance
correction due to the proximity effect. This is mainly be-

) . 5 o cause the time lag between two Andreev reflections in the
whereG; is a positive value of the order &7/Go, whichis  process can be small.

7Ry+L
Xex;{— 0 "R , (51

7TRO+ LR+ LL

insensitive to the flux®, and « is 1 for Ec<Er, and If we ignore the environment of th&/N interfaces in
kgT/Ec for Ec>Eqy,. Therefore the amplitude of the mag- Andreev interferometers, that is, if we assume that the super-
netoconductance oscillation is estimated as conducting circuit, that determines the macroscopic phase

differences, does not affect the charging effect at $h
interfaces and the macroscopic phases are definite, the ex-
trapolation of the above approach to an Andreev interferom-
eter gives the result that the proximity correction which is
for En<Enr<kaT sensitivg to the macroscopic phase differencze of the interfer-
L2kgT cr=Th=ne ometer is suppressed by the factor [expE(L{/D)], where
(52) L, is the distance between tw&N interfaces. Therefore the
for E-r<koT<E sgnsitivity of the interfero_meter is strongly dependent on the
L2EC Th="8 c distance between tw®/N interfaces even at a very low tem-
perature.
The result of the numerical calculation for the interferometer The above assumption, however, is too naive. If we con-
in Fig. 11 using the exact solution in Appendix C is shown insider the quantum-mechanical aspects in the macroscopic
Fig. 13. phase of the Andreev interferometer, we must take into ac-
It shows that the conductance correction oscillates wittcount the quantum-mechanical dynamics of external circuits,
the period ofh/(2e). The temperature dependences of thefor example, an external Josephson juncfibiEven if the
oscillation amplitude are shown in Fig. 14. mechanism which determines the macroscopic phase differ-
The influence of the charging effect and the temperaturence is the same in the sense of classical dynamics of the
dependence are quite similar to the case of the conductivitphase, a difference in the quantum-mechanical aspect can
change the proximity correction in the Andreev interferom-
0.08 — . . : . eter. An analysis of the phase fluctuation effects on Andreev

G2 r{ mRo+ LR

AOSCNG_OeX '7TRO+ LR+LL

007| interferometers will appear elsewheére.
0.06 |
0.051 D. Summary
AgsclksT) | We investigated the influence of the quantum fluctuation
G2/Go on the superconducting proximity correction of the conduc-
i tivity in a normal-metal mesoscopic wire having a supercon-
0.02} ducting island on it via a sma8/N interface. The charging
0.0t energy at the interface causes a phase fluctuation. However,
0 contrary to the Coulomb blockade of the tunneling current

through theS/N interface, the proximity correction of the

conductivity and resulting conductance correction are merely
FIG. 14. Numerical calculation for the amplitude of the magne-suppressed by the power law.

toconductance oscillation due to the proximity correction in the From the viewpoint of the relation between the quantum

interferometer in Fig. 11. fluctuation of the phase and the interference effect, the situ-
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ation can be summarized as follows. The charging effect atjere, 1, is the chemical potential of the normal region,
the S/N interface causes the quantum fluctuation of the_ -~

h H the fluctuation d tst v destrov th ng is the number operator of the excess char@g,
phase. riowever, he fluctuation does not strongly destroy _9 CyVy/e is the average number of the excess charges in-
quasiparticle interference in the proximity conductance COryuced by the gate voltagé,. In this Hamiltonian, the tun-
rection process because two Andreev reflections in the pra; 9° §

in i h other. Therefore the diff eling matrix element is normalized to express that the
CESS can occur In imeé near each other. 1herelore the ditely o ., tunnelings occur only at tt8N interface. We can

ence between .the two phases the qu§15|part|cles g_et at ttﬂfke a grand canonical ensemble even for a small supercon-
Andreev reflections can be small even if the phase is quanducting island at a finite temperature

tum mechanically fluctuating.
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0 R 1 72
APPENDIX A: HAMILTONIAN FOR THE CALCULATION J¢ ()= —f dwg N 2[—+|T|}
- o “4Rq 1+ (RywyCs/4?L B
The Hamiltonian of this system is
arctariCs Ryw/4) 1,
H=Hy+Hs+ Hr+He, (A1) - Cs |ﬂ+ET : (B1)
h . .
where where Ry=1/G, is the dc resistance of the normal-metal
2 wire without the proximity effectw, is an appropriate cutoff
HNZE j 'ﬂL m( )—lﬂN S(r)d3r frequency which is of the order of the gap enedyyin the
o Jvan' 7 2m* Jor2 " superconducting region. In a realistic case, sifGg/Rq

~102~10"3, the argumenCyRyA is smaller than unity.
3 [ Vim0 o) Therefore we get

2RyA

= ~1. (B2
4Rq

|T|+%T2)

C
3 [ Cmd i d 82 A¢_<T>~exn[—(c—§

2 This means that the fluctuation of the phasedardue to the
— s o(r)d3r electromagnetic environment is negligible.
2 ‘/IS,U . .
ar On the other hand, the effective action for the phase mo-
tion (7) in EqQ. (33) is given by

— T
HS_EU‘J fvol.sllls'a(r) 2m*

+2 jvol S[A(r)ll/;‘f(r)w;*o(r)"‘H.C.]d3l’
a X Cz 1

Y
or

0 To1 0 702 A 01 A 02| AV

X CN(T 02— T o1+ To2— To1) €OS #(To2) — (701 ],
e . - (B3)
HC:E(nN_ Ns—Qg)?, (A5)

2
oY

o

B
Ser 1= | d7
+ ; fvol S( - IU“S) lp;o(r) lﬂs,a(r)dsr: (A3) ! J'O

HTZEU: JA[tl//;g(ro)l//N,a(ro)"‘H-C-]dzro (A4)

where Cy(rgo— 91,702~ To1) IS another Cooperon in the
normal region which connects two Andreev reflections at

ny=ny—(y), (AB)  points (fg1,701) and oz, 705). It is given by the solution of
Eq. (26) too. The third term in Eq(B3) expresses the effect
Ns=ng—(ng), (A7)  of the dissipation due to the fluctuation of the island charge

via Andreev reflection tunneling through ti8N interface.
Here we assume that the dissipation is ohmic, or in other
=2, J N, o (1) i o (1), (A8)  words, that the Andreev tunneling can be expressed with a
o JvolN parameterG,, which has a dimension of the conductance
and is smaller tha®+ .
nS:f lﬂ;g(r)lﬂs,g(r)d3r- (A9) Paying attention tq the fact that we cannot distinguish
vol.S and ¢+ 2k, wherek is an integer, we get from E¢33)
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* ) Then, finally
Al,//(T): E e*4ﬂEC(nfnC) e*4EC[|T|*2(n*nc)7+4GARQ|T|]
n=-—ow 1_e74BEC’(Vg)

o - hylieg))=————. (B11)

1 tr n ’ ]
% E e—4BEc(n—nc)2) (B4) 4Ec (Vg)—lsn

n=—wx
wheren, is the charge misfit parameter given by APPENDIX C: COOPERON IN
QUASI-ONE-DIMENSIONAL LOOP STRUCTURE
en.= Cg( Vy— Evbias) ) (B5) _ For the quasi-one-dimensional loop structure illustrated in
2 Fig. 11, the spatial variation of the cooperon is given as

In principle, the charge misfit parameter depends on the piad®llows. We assume a unitary scattering matrix for the three
voltageV,,,cacross the wire. However, in an actual situation,Pranch nodes at=L;,L, as

en.~VyCqy=eQ, because/ > Vyss.

For simplicity, moreover, we consider the case whege 0 12 1K2

is very large so that we have to take into account only the Ss=| 12 -12 12|, (CD
i< _ ; : N

In—n./<1 states. In this case, EB4) is much simplified W2 12 -1

to

N where the first component corresponds to the left/right lead
_ COsl4EcB(n” —nc+1/2) —4EcT] and the second and the third to the upper/lower arm of the
cosf4EcB(n* —nc+1/2)] loop. This assumption means the spatial derivative of the
N cooperon is conserved at the nodes, which means the conser-

X @ “Ecllri=2(" ~ne+12)7+4GaRol7l - (BE)  vation of the proximity current carried by the particle at the
nodes. This is equivalent to the boundary condition for the
quasiclassical Green’s functiofss.

Using the scattering matrices and the boundary conditions
at the both ends of the wirexé —Lg,Ly), we solve the
differential equation for cooperon ER6) and get

l//T

where n” is the smallest integer which satisfies =n..
Equation(B6) showsA,(7) oscillates as a function afic
betweene *EcCal”l and e *Ec(7*Cal7) This corresponds to
the fact that the effective charging energy of & junc-
tion is a function of the gate voltagé, and we express it as
E’C(Vg). Strictly speaking, sinc&, depends on the phase C (X'XO;Z):MO(PeK(z)(x—xo)+Mle—K(z)(x—xo))’
fluctuation, it should be determined self-consistently through P (%)
the equatiort!

for xo<x<L, (in the right leag, and

G 2 1
GA=4RQ(—T) lim [—Im{(kBT)
AINNO) | oy ol V ColY1,Y212)= MMl s+ Y14 M M e [K@ =11y

x> droJ droshylien) + MM el <2~ Y24 M M ge ™ <@ 1Yz,
en JA A
(C3)

X Cn(ro2=To1,0,—&p)

} (B7)  for x,<x<L, (in the loop, and
iwvﬁfeV+i5

Howevgr, here vv2e only comment th@t, is approximately Cp(X,X0;2)=M_ Mg sint x(z)(x—Ly)], (C4)

proportional toG: and that under the Coulomb blockade )

conditionG, is renormalized by the phase fluctuation result-for Ly<x<Ly (in the left lead, where

ing in a value much smaller thad;. Therefore wherG is

small as in the present treatment and assurGipBo<1, we - \/—Ziz— 27 n[keT
k(z)=

can neglect the influence of the fini&, . D , (CH
The Fourier transform offi,,(7) is given by
and
hu(isn)=ksT> holisp—iwghy(ing),  (B)
) Lr=La=Xo,L =Ln—Lp (Co)
where hy(ie,) and h,(iwg) are the Fourier transforms of
A,(7) andA,_(7), respectively. From EqgB2) and (B6),
W _ _ _
WhenRA>1/((ngC§), P=—¢g 2K(Z)(LR+7TR0){COS?[r,n.RO](l_e ZK(Z)’JTRo)e 2k(z)Lg
1— e 4BEC (Vg) +sir[r mRy](1— e~ 2<@7(RotLiyy (C7)

ho(ien) (B9)

CAEC (Vg —ie,
M, =1-e 2<A™Ro(cod[r wRy]+ sir[r mRy]e ™ 2(tL),
ha(iwn)=Béno- (B10) (CY
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LL+ LR"F 7TRO

" Di(2)(MyP)’ 9

1 )
M =—2{1— e 2x(@™Rog~ T ™Ro(cog r Ry

72

—isinraRyle 2<@tL)le «(Alr, (C10

M

&

+isinr WRo]efzK(Z)LL)}e* K(Z)LR,

{1 —e 2k(z) wROeir wRO( Cos:r ’7TR0]

(C1)

Me

_ i e K(Z)LRef 2k(2) 77R0e7 ir WRO{COQ r ’7TR0]
2

X (1—e ARy 2@ 1 j sinfr 7Ry

X(l_e*ZK‘(Z)(WRo‘FLL))}, (C12)
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i e k(2) LR67 ZK(Z)WROeir WRO{COS{r ’7TR0]

Mh: -
X (1—e 2<aA™Ro)e= 2@ —j sinfr 7Ry
X(l_e—ZK(Z)(wR0+LL))}1 (Cl3)
M L=— 2 C0$r 7TR0:|87 k(z)(Lg+ 7Ry + LL)(l_ e*2K(Z)frrR0),
(C19
where
29 c1
r= R_o (}#O, (C1H
dy=hl/e, ® is the magnetic flux piercing the ring. Similarly,
Lc  sinH «(z)|x
ColxX01)= =S H «(2)[x(] (16

D«(z) coshx(z)L]

for —L.<x<0 (in the lead right of the superconducting is-
land).

1B. Z. Spivak and D. E. KhmelnitskiPis’'ma Zh. 'Eksp. Teor. Fiz.
35, 334(1982 [JETP Lett.35, 412(1982)].

2H. Nakano and H. Takayanagi, Solid State Comma@. 997
(1992.

3H. Nakano and H. Takayanagi, Phys. Rev4B 7986(1993.

4Yu. V. Nazarov and T. H. Stoof, Phys. Rev. Let6, 823(1996.

SA. Volkov and H. Takayanagi, Phys. Rev. 3, 11 184(1997.

5A. Volkov, N. Allsopp, and C. J. Lambert, J. Phys.: Condens.
Matter 8, L45 (1996.

7C. J. Lambert and R. Raimondi, J. Phys.: Condens. Mdifer
901 (1998.

8D. V. Averin and K. K. Likharev, inMesoscopic Phenomena in
Solids edited by B. Altshuler, P. A. Lee, and R. A. Webb
(Elsevier, Amsterdam, 1991

9Single Charge Tunnelingvol. 294 of NATO Advanced Study
Institute, Series B: Physicedited by H. Grabert and M. Devoret
(Plenum, New York, 1992

190G, Schm and A. D. Zaikin, Phys. Refl98 237 (1990.

1c. Bruder, R. Fazio, and G. SahoPhys. Rev. B50, 12 766
(19949.

12¢C. Bruder, R. Fazio, and G. SamoPhysica B203, 240 (1994.

13C. Bruder, R. Fazio, A. van Otterlo, and G. SaohdPhysica B
203 247 (1994.

A, 1. Larkin and Yu. N. Ovchinnikov, ifNonequilibruim Super-
conductivity edited by D. N. Langenberg and A. I. Larkin
(North-Holland, Amsterdam, 1986p. 493.

153, Rammer and H. Smith, Rev. Mod. Ph$8, 323(1986.

16R. Kubo, J. Phys. Soc. Jpf2, 570 (1957).

1A, Huck, F. W. J. Hekking, and B. Kramer, Europhys. Lekt,
201(1998.

18E W. J. Hekking and Yu. V. Nazarov, Phys. Rev. L&t, 1625
(1993.

19y, V. Nazarov, Phys. Rev. Let?3, 1420(1994).

20, V. Zaitsev, Phys. Lett. AL94, 315(1994.

2IA. F. Volkov, A. V. Zaitsev, and T. M. Klapwijk, Physica 210
21 (1992.

22C. L. Kane, R. A. Serota, and P. A. Lee, Phys. Re\3B 6701
(1988.

23y, 7. Kresin, Phys. Rev. B4, 7587(1986.

24y Takane and H. Ebisawa, J. Phys. Soc. J#).3466(1992.

25K. Maki, Prog. Theor. Phys39, 897 (1968; R. S. Thompson,
Phys. Rev. BL, 327(1970.

2For example, see articles iBlectron-Electron Interactions in
Disordered Systemsedited by A. L. Efros and M. Pollak
(North-Holland, Amsterdam, 1985

2TFor references, see articles @uantum Tunneling in Condensed
Media edited by Yu. Kagan and A. J. Leggétiorth-Holland,
Amsterdam, 1992

28K, Awaka and H. Fukuyama, J. Phys. Soc. Jp6).2820(1997).

2F. Guinea and G. S¢ho Physica B152, 165 (1988.

30H. Higurashi, S. Iwabuchi, and Y. Nagaoka, Phys. Rev5B
2387(1995.

3IN. Hatakenaka, J. Phys. Soc. Jpf, 3360(1998.

%2H. Nakano and H. Takayanaginpublishedl

33A. V. Zaitsev, Zh. Ksp. Teor. Fiz.59, 896 (1994 [Sov. Phys.
JETP59, 863(1984)].



