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Influence of phase quantum fluctuations on superconducting proximity correction
in normal-metal wire conductance
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NTT Basic Research Laboratories, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198, Japan

~Received 17 December 1999!

The influence of the charging effect on the proximity correction in the conductance of a mesoscopic
superconductor(S)/normal-metal(N) coupled system is theoretically investigated. The most important contri-
bution of the proximity correction in the conductance of a diffusive normal metal comes from the correction in
the local conductivityds(r ). The correction in the conductance is given bydG5(1/LN

2 )*vol.ds(r )dr. Because
of the retro property of Andreev reflection and the long rangeness of the Cooperon~particle-particle ladder!,
Andreev reflection at theS/N interface affects the local conductivity at a point in the normal region far from
the interface~within the phase coherence lengthLf). If the S/N interface is very small and has a low
transparency, single Andreev reflection is strongly suppressed by the Coulomb blockade at a low temperature
(kBT,EC , EC5e2/2C) in an exponential manner exp$24EC /(kBT)%, whereC is the capacitance of theS/N
junction. Nevertheless, the proximity correction in the conductance is only suppressed with power law
kBT/(4EC) because the charged state is an intermediate state in the process of the proximity correction in the
conductivity. This is quite different from the charging effect on the proximity correction of the current flowing
through theS/N interface, which is strongly suppressed by the charging effect.
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I. INTRODUCTION

In the last decade, much attention has been paid to
interference effects in the normal transport in supercondu
(S)/normal-metal(N) coupled systems. In such systems t
change in a macroscopic phase difference between supe
ductor electrodes affects the normal transport. This phen
enon is an interference effect of quasiparticles. After the t
oretical prediction by Spivak and Khmelnitskı˘i1 that such an
interference can be observed in weak localization effect
an SN coupled system, Nakano and Takayanagi propose
model, which is now called the ‘‘Andreev interferometer.’’2,3

For Andreev interferometers with diffusive normal meta
recently it has been established that the most important
tribution to the interference is different from usual meso
copic fluctuations, such as weak localizations or univer
conductance fluctuations.4–7

On the other hand, the charging effect in a small tun
junction is one of the most interesting topics in mesosco
physics.8–10 If two metal electrodes are contacted via a ve
small area interface with a very small capacitance, the ch
ing energy evokes a so-called Coulomb blockade, that is
exponential suppression of electron transfers through the
terface. A perspective description of this charging effec
given by introducing the quantity ‘‘phase’’ (w), which is the
canonical variable to the number of the excess charges~q!
that causes a charging energy.

Bruder and co-workers investigated the influence
charging energy on some superconducting proximity effe
such as penetration of the order parameter and magnetic
ceptibility in a normal metal attached to a superconductor
a smallS/N interface.11–13 They used a description with th
phase variable above. In their description the charging
fects on the proximity effects are expressed as results of
quantum fluctuation of the phase. However, they did not
PRB 610163-1829/2000/61~22!/15398~14!/$15.00
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vestigate the influence of the fluctuation on the conducta
correction because what is the most important contribution
the conductance modulation inSN coupled structures wa
not clear at that time.

How the ‘‘quantum fluctuation in the phase’’ affects th
quasiparticle interferences in Andreev interferometers i
very intriguing question because the phase is the most
portant quantity in the interferences. As a first step to
swering this question, here we investigate the influence
the phase quantum fluctuation on the proximity correction
the normal conductance of a mesoscopic wire attached
superconductor via a singleS/N interface.

According to studies using Keldysh nonequilibriu
Green’s-function techniques,14,15 there are mainly two types
of proximity effects on the conductance of anS/N coupled
system. One is the renormalization of the tunneling cond
tance at theS/N interface~i!. The other is the correction o
the local conductivity in the diffusive normal-metal regio
~ii !.4–6

We will give an explanation of the type-~ii ! proximity
effect in terms of the Kubo-formula approach of the linea
response theory.16 This enables us to investigate the chargi
effects caused at a very smallS/N interface on the conduc
tance corrections by using a description of the charging
fects that is similar to that by Bruder and co-workers. Hu
Hekking, and Kramer17 investigated the charging effect o
the tunneling current through theS/N interface. At a glance,
the situation we consider in this paper might look like th
work. However, what they analyzed is the charging effect
the type-~i! proximity effect. We investigate the current th
flows only through the normal-metal part. In this case, o
the type-~ii ! proximity affects the conductance because th
is no net tunneling current through theS/N interface. We
will show that the charging effect appears in quite a differe
manner for the type-~i! and type-~ii ! proximity effects.
15 398 ©2000 The American Physical Society
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The rest of this paper is organized as follows. In the n
section, we give the Kubo-formula approach to the proxim
correction in the conductance of a normal-metal wire
tached to a superconductor. A brief review of the relat
between the fluctuation of the phase and the charging e
in a very small junction is given in Sec. III. Based on t
ideas in these two sections, we derive a theory for the in
ence of the charging effects on the proximity correction
the conductance of mesoscopic normal-metal wires in S
IV. In Sec. V, results and discussions are presented.

II. LINEAR-RESPONSE THEORY FOR
SUPERCONDUCTING PROXIMITY CORRECTIONS

IN THE NORMAL CONDUCTANCE
OF A MESOSCOPIC METAL WIRE

Hekking and Nazarov showed that an Andreev interf
ometer works even if a diffusive normal metal is used18

However, the conductance modulation they got was v
small because, as described below, two proximity correcti
on the local conductivity cancel out each other at the ze
temperature and at the zero-bias voltage limit.4,6,18,19It was
established a few years ago from calculations using
Keldysh nonequilibrium Green’s-function technique that t
conductance modulation in an Andreev interferometer wit
diffusive normal-metal region is the modulation of theaver-
age conductance,4,6 which is different from the modulation
in the mesoscopic conductance fluctuation predicted by
vak et al. The amplitude of the former can be comparable
the normal conductance without proximity corrections. It
not so clear when this was first pointed out, however,
physics had appeared in early works by Zaitsev a
co-workers20,21 although they did not emphasize its impo
tance.

Now we know that the conductance modulation in an A
dreev interferometer arises from the correction in the lo
conductivity in the normal region. Here, we will expre
such a phenomena in terms of the Kubo-formula approa

A. Local conductivity and conductance

The current densityj (r ) induced at the pointr by an
electric field applied at the pointr 8 is given by the Kubo-
formula approach of linear-response theory16 as

j ~r !5E
vol.

dr8s~r ,r 8!E~r 8!, ~1!

where ‘‘vol.’’ means the integration in space over th
sample, and

s~r ,r 8!5^ ĵ ~r ! ĵ ~r 8!& ~2!

is the conductivity obtained by the evaluation of the curre
current correlation. From Eq.~2!, the conductance of a
sample is

G5
I

V
5

1

V2Evol.
E

vol.
drdr8s~r ,r 8!E~r 8!E~r !, ~3!

whereV is the voltage applied across the sample.
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Taking into account the lowest-order correction of imp
rity scattering, the conductivity can be divided into the loc
part and nonlocal part,22

s~r ,r 8!5s~r !@ d̄~r 2r 8!1¹a¹b8d~r 2r 8!#, ~4!

whered̄(r 2r 8) is a sharply peaked function of the widthl,
wherel is the elastic mean free path due to impurity scatt
ings. The first term is the local part and the second the n
local. The nonlocal part cannot be neglected when the c
sidering the local current conservation. However,
neglecting the mesoscopic correlations in electric fields,
get the ‘‘average’’ conductance,

G5
1

L2Evol.
drs~r !, ~5!

for a sample that is macroscopically homogeneous in sp
Here,L is the sample length. Therefore only the local part
the conductivity contributes to theaverageconductance un-
der these assumptions. This corresponds to taking into
count only the contributions that appear in a kinetic equat
approach for electronic transports like Boltzmann equat
calculation. Equation~5! is valid when the classical electri
field is uniform in space. Therefore it is not applicable for
spatially inhomogeneous sample because the electronic
varies with the position and it is not given byE(r )5E0
5V/L. However, we can use

dG5
1

L2Evol.
ds~r !dr ~6!

for the correction in conductancedG and in conductivity
ds(r ) if the conductivity without the correction is uniform
and the correction is small, that isudGu!uG0u, whereG0 is
the conductance without proximity correction.

B. Superconducting proximity corrections in local conductivity

The investigations using the Keldysh nonequilibriu
Green’s-function method have made clear that in diffus
transport cases the most important contribution to the pr
imity correction in normal conductance comes from t
proximity correction in the local conductivity.4,5 Here we
show the Kubo-formula picture for the corrections.

We consider the system in Fig. 1. This is the simpl
geometry for considerations about the proximity correctio
in the local conductivity of a mesoscopic metal wire. A
though Andreev interferometers have more complicated
ometries, the essence of the charging effect on Andreev
terferometers already exists in the geometry in Fig. 1,
described in later sections.

In this geometry, there is also a bypass current that flo
via the superconductor region. It causes a conductance
rection comparable to the correction by the proximity effe
i.e., type~ii !. However, here we neglect this bypass curre
because such a current has nothing to do with the quas
ticle interferences. Actually, we can distinguish the contrib
tion of the proximity correction from the entire conductan
by measurement of the magnetoresistance of the geomet
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Fig. 1. This is because the proximity correction oscilla
with the period in magnetic field corresponding to the flux
h/2e.

The normal transport in the normal region is affected
the attached superconductor via Andreev reflections at
S/N interfaces. When an electron~hole! comes to the inter-
face, it is reflected as a hole~electron!. Following the nota-
tions by Kresin,23 we express Andreev reflection diagram
matically as shown in Fig. 2.

The normal-metal wire is assumed dirty enough;lF! l
!LN, wherelF is the Fermi wavelength in the normal re
gion. In the conductance measurement of the sample,
the type-~ii ! proximity effect appears because there is no
current flowing through theS/N interface.

By taking into account the lowest-order corrections due
Andreev reflection, the conductivity with the proximity co
rection is given by the sums of the contributions of the d
grams in Fig. 3.

The first term~a! gives the conductivity without proximity
corrections. The second~b! and third ~c! correspond to the
diminishment in the conductivity caused by the exclusion
quasiparticle density of states in normal region due to pr
imity effects. The last term gives a conductivity enhanc

FIG. 1. Normal-metal interferometer with a superconducting
land. The ring structure is formed in order to pick up the proxim
correction for the whole conductance. A gate is set for detecting
charging effect.

FIG. 2. Andreev reflection at theS/N interface and its diagram
matic expression.
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ment due to proximity effects. This conductivity enhanc
ment is a Maki-Thompson type of superconducti
fluctuation.25 The usual Maki-Thompson effect appears e
ergetically near the superconductivity, that is, just above
superconducting critical temperature. On the other hand,
proximity enhancement here appears spatially near the su
conductivity.

It should be noted that the second, the third, and the
terms exactly cancel out each other at the absolute z
temperature and at the zero-bias voltage limits. Early inv
tigations of proximity correction in conductance by using t
Kubo-formula approach24 treatedSNsystems at such a limit
Therefore the importance of these terms was not emphas
At a finite temperature or at a finite bias voltage, howev
diminishment terms decay with the energy more rapidly th
the enhancement term, and the last term exceeds the se
and third and gives a large conductance enhancement.
enhancement becomes most significant near the Thou
temperature,kBT;D/LN

2 , whereD is the diffusion constant
in the normal wire. This is the origin of the so-called ‘‘re
entrant behavior,’’ which have been observed recently in
periments.

Andreev reflection forms a two-electron correlation th
enhances the conductivity. However, Andreev reflection a
decreases the density of states of the single electron. Th
fore, in order to consider the superconducting proximity
fect, it is very important to take into account self-consisten
the modification in the electronic states due to Andreev
flections. This makes diagrammatical perturbation treatme
of the proximity correction difficult at a low energy wher
multiple Andreev reflections are effective. Taking into a
count the processes in Figs. 3~b!–3~d! at the same time, we
can expand the applicable energy of the perturbation ca
lation.

The rapid decay of the conductivity diminishment wi
the increase of the energy is explained as follows. In

-

e

FIG. 3. Perturbation expansion of the proximity correction
the local conductivitys(r ). ~a! Without perturbation,~b! and ~c!
conductivity suppressions, and~d! conductivity enhancement.~b!
1~c!1~d!50 at the absolute zero-temperature and the zero-
voltage. Arrows show an example of the combination of the s
directions.
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propagators with two successive Andreev reflections in F
3~b! or 3~c!, a quasiparticle has to traverse two times t
round trip from the pointr;r 1 ,r 2 to theS/N interface. The
time for one round trip is of the order ofx2/D, wherex is the
distance from theS/N interface to the pointr. For a point at
the end of the wire, the time is the inverse of the Thoul
energyETh . Then, for this process to be effective, the qu
siparticle coherence should be kept longer than the 2x2/D.
At a finite temperature, this gives a decay
exp@2AkBT/D2x# to the processes in Fig. 3~b! or 3~c!. As a
result, the process is effective for the conductivity at poinr,
which is within regionLT from the S/N interface, where
LT5AD/(kBT) is the thermal diffusion length.

On the other hand, the enhancement process nee
single round trip. Therefore the diminishment proce
ds ren(r ) needs time reversal symmetry that is two tim
longer than that needed by the enhancement pro
dsanom(r ). In other words, the diminishment and the e
hancement are comparable at a positionr within the thermal
diffusion length from theS/N interface.

This phenomenon also justifies our taking into acco
only the lowest-~second-! order Andreev reflection contribu
tions as in Fig. 3. Higher-order contributions include m
tiple Andreev reflections, or in other words, plural rou
trips. They are suppressed by a factor li
exp@2nAkB /Dx#, wheren is the number of round trips. Th
summation of multiple Andreev reflections is truncated an
,LT /x. Especially at an end of the normal wire,n’s that
satisfy n,AETh /(kBT) are valid. Very near theS/N inter-
face, higher-order terms should be taken into account. H
ever, at the zero energy limit, the conductivity enhancem
and the diminishment cancel each other out at every o
and no divergence appears in the perturbation calculatio

It should be noted that the truncation described abov
valid for the proximity correction of the conductivity at
point in the normal region. When we consider a curre
through theS/N interface, multiple Andreev reflections be
come important because the renormalization of the interf
conductance is determined mainly by the electronic state
the vicinity of theS/N interface, those are strongly modifie
by the multiple Andreev reflections.

In the remainder of this section, for simplicity, we pa
attention to the conductivity enhancement term unless st
otherwise. The diminishment term is restored in the res
and discussion in Secs. IV and V.

Under the approximation neglecting the nonlocal part
the conductivity, the local conductivity enhancement by
last term in Fig. 3 is given by

ds~r ,v!}^vF&2FN
R~r ,v!FN

A~r ,v!, ~7!

whereFR(A) is the retarded~advanced! anomalous Green’s
function in the normal region, which is

FN~r ,r 8,t,t8!5 lim
r 8→r

^cN2s~r ,t !cNs~r 8,t8!&, ~8!

and vF is the Fermi velocity in the normal region. We ca
think of the last term of Fig. 3 as corresponding to the cl
sical transport of an extraordinary ‘‘particle’’ whose prop
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gator is the electron-hole correlation of Eq.~8!. This result
Eq. ~7! is the same as that obtained by quasiclassical Keld
Green’s-function approaches.

We emphasize that theFN(t1 ,t2 ,r 1 ,r 2) is not the ampli-
tude of the condensation, or, in other words, the amplitude
a Cooper pair. The condensation amplitude
limr 1 ,t1→r 2 ,t2

@FN(r 1 ,r 2 ,t1 ,t2)#, which means the probability
amplitude where the both electrons exist at the same tim
the same position with the precision of 1/D, the inverse of
the superconducting gap energy. The condensation ampli
decreases exponentially with the distance from the super
ductor(S)/normal-metal(N) interface by the factor
exp@2x/LT#, as does the conductivity diminishment contrib
tion, wherex is the distance from theS/N interface. The
condensation carries the nondissipative current, that is,
supercurrent in a thermal equilibrium state, and the ‘‘p
ticle’’ of the propagator carries the dissipative current und
a finite applied voltage.

The anomalous Green’s functionsFN consist of the
particle-particle propagator, the so called ‘‘cooperon,’’26 and
Andreev reflection, as illustrated in Fig. 4.5,7

Because of the retro property of Andreev reflection a
the long rangeness of the cooperon, this enhancement
etrates into a given point in the normal region far away fro
the S/N interface within the phase coherence length (Lf).
From Fig. 3 and Eqs.~6! and ~7!, we can roughly estimate
the magnitude of the conductance correction as

dG

G0
;S GT

G0
D 2

, ~9!

whereG0 is the conductance of the normal-metal wire wit
out proximity corrections, andGT is the tunneling conduc-
tance of theS/N interface when both materials are in th
normal state.

Here, it is useful to comment why the impurity corre
tions taken into account in Fig. 3 are the most importa
With respect to proximity correction processes, it is possi
to take many kinds of diagrams with different types of vert
corrections. A diagram having vertex corrections for curre
vertices contributes only when the particle of the ‘‘hole
that is, the upper propagator and the lower propagator in
3~d!, take the same path for the round trip to theS/N inter-
face. As a result, it merely gives a mesoscopic fluctuation
the conductivity. On the other hand, if the vertex correctio
for Andreev reflection vertices are taken, as in Fig. 3,
upper and the lower propagator can take paths that are i
pendent to each other. This is not a mesoscopic fluctua

FIG. 4. Anomalous amplitude,^c↑(r 1 ,t1)c↓(r 2 ,t2)&.
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and gives a large contribution in the conductivity, resulti
in a large conductance correction.

III. CHARGING EFFECTS AND QUANTUM
FLUCTUATIONS IN THE PHASE OF A SMALL

SUPERCONDUCTORÕNORMAL-METAL JUNCTION

Charging effects on the charge transfer across a s
tunnel junction were actively researched around 1990.9 A
perspective description of the effects is given by introduc
an operator of called the ‘‘phase.’’ Charging energy evok
by an electron transfer through the junction, causes a t
evolution of the phase. The fluctuation in the phase s
presses the charge transfers across the junction and the
is exactly the same as the phenomenon called the ‘‘Coulo
blockade.’’8 The phase is defined by

w~ t !5
e

hE2`

t

dt8V~ t8!, ~10!

whereV(t) is the voltage across the junction. The phase is
operator which works on the excess charge number ‘‘q’’ of
the junction like

eiw(t)qe2 iw(t)5q22, ~11!

and satisfies the relation

@w,q#5 i . ~12!

An important quantity is the correlation function9

h~ t !5^eiw(t)e2 iw(0)&. ~13!

In the case of a small capacitance normal-me
(N)/insulator(I )/normal-metal(N) junction with a highly re-
sistive electromagnetic environment, the tunneling curr
through the junction is suppressed in the exponential man
e2EC /(kBT) if the conditionskBT,eV,EC , and GT,1/RQ
are satisfied by the applied voltageV, temperatureT, and
tunnel conductanceGT . RQ is the quantum resistanceh/e2.
This is the Coulomb blockade.

If the applied bias voltage across the junction is zero,
fluctuation in the phase is a quantum fluctuation. Accord
to the description above, we can think of the Coulomb blo
ade as an obstruction of the charge transfer caused by
‘‘quantum fluctuation of the phase.’’

The quantum fluctuations in the phase in supercondu
(S)/insulator(I )/superconductor(S) tunnel junctions have
been intensively investigated in the contexts of macrosco
quantum tunneling, dissipative phase transition, macrosc
quantum coherence, and Bloch oscillations.27 The effective
action treatment for the phase variable inS/I /S tunnel junc-
tions gave a transparent view in the analysis of the effec
the quantum fluctuation in the phase. Some people exten
the treatment to the analyses of the supercurrent that fl
through a superconductor/normal-metal/supercondu
(S/N/S) system andS/I /N/I /S systems.12,28,29

Bruder and co-workers11,12commented that the estimatio
of the normal conductance correction with the charging
fect is difficult because the spatial dependence should
considered. However, now we know the dominant contri
tion to the conductance correction is the local conductiv
all
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correction, which changes the average conductance.
makes the analyses of normal conductance corrections m
easier. Mesoscopic fluctuations, such as weak localizat
and universal conductance fluctuations are sensitive to
sample shape. However, the details of the sample geom
are not important in the local conductivity correction and t
resulting correction ofaverageconductance due to the prox
imity effect.

Suppose a normal-metal wire has a superconducting
land on it, via an insulator, and this results in a small lo
capacitanceS/I /N tunnel junction~Fig. 1!. This is similar to
the model discussed by Bruder and co-workers.11,12The gate
electrode on the superconducting island can change the
fective charging energy of theS/N junction via control of the
average number of excess charges at the junction.

IV. EFFECTS OF THE PHASE QUANTUM FLUCTUATION
ON THE TRANSPORT PROPERTY IN A

SUPERCONDUCTING PROXIMITY SYSTEM

A. Proximity correction with phase fluctuation

Now we consider the proximity effects induced in th
normal-metal region, taking into account the phase dyna
ics. A finite gate voltageVg is applied to the superconductin
island.

We start from the Hamiltonian of the system described
Appendix A. Following the procedure by Bruder and c
workers, hereafter we use the imaginary time expression
Green’s functions. The proximity effects are treated as
perturbations due to Andreev reflections at theS/N interface.

To emphasize that the charging effect on the proxim
correction of the local conductivity, we first briefly consid
another superconducting proximity effect, the orde
parameter penetration into the normal region. By taking i
account the lowest-order contribution of Andreev reflectio
the absolute value of the order parameter is calculated li

ucN~r ,t0!cN~r ,t0!u2}utu4E
0

b

dt01E
AI

d2r 01E
0

b

dt02E
AI

3d2r 02FS~r 022r 028 ,t022t028 !

3FS~r 018 2r 01,t018 2t01!

3ham~t01,t018 ;t02,t028 !

3GN~r 012r ,t012t0!

3GN~r 018 2r ,t018 2t0!

3GN~r 2r 02,t02t02!

3GN~r 2r 028 ,t02t028 !, ~14!

whereGN is the normal temperature Green’s function,

GN~r 2 ,r 1 ;t2 ,t1!52^Tt@cN,s~r 2 ,t2!cN,s
† ~r 1 ,t1!#&,

~15!

andFS is the anomalous Green’s function in the superco
ductor region.

FS~r 2 ,r 1 ;t2 ,t1!5^Tt@cS,2s~r 2 ,t2!cS,s~r 1 ,t1!#&,
~16!
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b51/(kBT), and AI is the area of theS/N interface.
^•••&AV means the quantum-mechanically averaged valu
the thermal equilibrium,

ham~t01,t018 ;t02,t028 !5 K expH i

2
@w~t01!1w~t018 !#

2
i

2
@w~t02!1w~t028 !#J L

AV

;^exp$ i @w~t01!2w~t02!#%&AV

[ham~t022t01!. ~17!

Andreev reflection becomes instantaneous@d(t82t)# and
local in space@d(r 82r )# under the conditions

eV,kBT,EC!D. ~18!

We used this approximation to derive the last expression
Eq. ~17!. The phase fluctuation caused by the charging ef
appears through the correlation functionham in Eq. ~17!. The
correlation function corresponds to the propagator of the
ergy emission~absorption! of the charging energy to~from!
the electromagnetic environment. In this process of
order-parameter penetration, a real energy transfer is nee
Therefore the correlation function gives an exponential s
pression in the Coulomb blockade situation.

Similarly, for the excitation of a particle of the propagat
^cN(t f)cN(t i)&, it is necessary that a real energy be emit
to the environment. Therefore if the excitation energy
smaller than the charging energyEC , the excitation is expo-
nentially suppressed. This makes the propagation of the
ticle short range in space. When positionr is away from the
S/N interface by distancex, there is a characteristic time fo
particle excitation even in the absence of the charging eff
From a rough estimation we get

ut02t1u;ut082t2u;x2/D@\/D;ut02t08u ~19!

for times in the anomalous amplitude in Fig. 4. These ti
restrictions come from the Green’s functionsGN(r ,t). When
this is combined with the charging effect, we can know th
an excitation of the particle should experience the expon
tial suppression exp@22ECx2/D# if the excitation energy is
smaller than charging energyEC .

Therefore the penetration of Cooper pairs and indu
anomalous amplitude in the normal region are exponenti
suppressed by the phase fluctuations. For the supercur
which exists in anSINISgeometry, the exponential suppre
sion is inevitable because the carrier of the current, tha
the Cooper pair, is exponentially suppressed by the char
effect, as described above.

Now we proceed to the proximity correction in the ele
tronic transports in the normal region. The simple extrapo
tion of Eq. ~7! in Sec. II to the case under a charging effe
gives the conductivity enhancement

ds}^cN~r 2 ,t2!cN~r 1 ,t1!&^cN
† ~r 2 ,t2!cN

† ~r 1 ,t1!&.
~20!
in

in
ct

n-

e
ed.
-

d
s

r-
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e

t
n-

d
ly
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-
t

Since this is the classical product of two particle propagato
it should decrease exponentially due to the charging ef
because each propagator in the process is exponentially
pressed as we saw above.

This is not a correct result for the proximity correction
the local conductivity. The electromagnetic response ker
is the two-body-propagator expressed by

^Tt@cN,2s~r 2 ,t2!cN,2s
† ~r 2 ,t2!cN,s~r 1 ,t1!cN,s

† ~r 1 ,t1!#&

}utu4E
0

b

dt01E
0

b

dt018 E
0

b

dt02E
0

b

dt028 GN~t012t1!

3GN~2t11t018 !GN~2t021t2!GN~2t028 1t2!

3FS~t012t018 !FS~t028 2t02!

3htr~t01,t018 ;t02,t028 ;t1 ,t2!, ~21!

where

htr~t01,t018 ;t02,t028 ;t1 ,t2!5 K expH i

2
@w~t01!1w~t018 !#

2
i

2
@w~t02!1w~t028 !#J L

AV

;^exp$ i @w~t01!2w~t02!#%&AV

[htr~t022t01!. ~22!

To derive this expression, we assumed the condition of
~18!. This process is illustrated in Fig. 5.

This becomes more intuitive if we illustrate the image
the term in real space as in Fig. 6. What is most importan
as follows. The number of excess charges is the same be
the first Andreev reflection att01(t02) and after the second a
t02(t01) because each Andreev reflection causes two-par
tunneling in opposite directions. Thereforehtr(t022t01) has
a finite expectation value under the average with the unp
turbed~without Andreev reflections! states. This is quite dif-
ferent from the order parameter and particle excitati
which has only an exponentially suppressed value under
Coulomb blockade condition.

FIG. 5. Proximity conductivity correction with a charging e
fect.
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The lowest-order contribution to the local conductivi
enhancement from the kernel in Fig. 5 is given from t
linear-response theory as

dsanom~v,r !5
~vFtel!

3

VN

@Kanom~v,r !2Kanom~0,r !#

v
,

~23!

wheretel5 l /vF is the elastic scattering time, andVN is the
volume of the normal-metal wire. The factor (vFtel)

3/VN

appears from the normalization of the functiond̄(r 2r 8) in
Eq. ~4!.

We can get the proximity correction kernel with the tem
perature Green’s functions,

Kanom~ ivn ,r !5
VNe2vF

2

h ( 8
v l ,«n

~kBT!2 ReFFNS r ,v l2vn

1
1

2
«nDFNS r ,v l1

1

2
«nDhtr~ i«n!G , ~24!

where (8 means to take the sum withv l ’s and «n’s that
satisfy the conditions (v l2vn)(v l2vn2«n).0 and
v l(v l2«n).0. The anomalous Green’s function is given

FN~r ,vm!5 lim
r 1 ,r 2→r

FN~r 2 ,r 1 ,vm!

5
RQGT

AIVN
S 11

ur 12r 2u
l

sgn@vm# D
3E

AI

dr0Cp~r ,r 0 ;vm!, ~25!

whereGT is the conductance of the interface when both el
trodes are in normal states, andAI is the area of the interface
Cp(r ,r 0 ;vm) is the cooperon~particle-particle ladder!,
which is the solution of the differential equation

D~¹22ieAW !2Cp~r ,r 0 ;vm!1~ u2vmu1D/Lf
2 !Cp~r ,r 0 ;vm!

5VNd3~r 2r 0!, ~26!

with the boundary conditions at theS/N interface, at the ends
of the wire, and on the side walls of the wire.AW is the vector
potential of the applied magnetic field. Here we took thex
axis along the wire.x is the x component of pointr. In the

FIG. 6. Image of the conductivity enhancement term in r
space.
-

quasi-one-dimensional case, where the width of the wire
much smaller than the length, the boundary conditions a

Cp~r 2r 0 ,vm!ur Px1 ,x2
50, ~27!

where r Px1 ,x2 means thatr is at an end of the norma
wire.

We can find in Eqs.~24! and~25! that this contribution is
classical from the viewpoint of the transport of the partic
whose propagator isFN . The propagator consists of tw
electrons that travel on the same path to theS/N interface
~cooperon!. This is finite owing to the mesoscopic effec
However, once the propagator is obtained, the conducti
is determined by the short-range propagation of the part
within the length of the elastic mean free pathl. Equation
~26! is nothing more than the linearized Usadel equati
which appears in the Keldysh Green’s-function analyses
nonequilibrium superconductivities.

By using a calculation similar to that above, we can g
the conductivity diminishing contribution of the proximit
correction of the second~b! or third ~c! term in Fig. 3 with
the kernel

K ren~ ivn ,r !5
VNe2vF

2

h ( 8
v l ,«n

~kBT!2 ReFFNS r ,v l2vn

1
1

2
«nDFNS r ,v l2vn1

1

2
«nDhtr~ i«n!G .

~28!

This term corresponds toFN
R(r )FN

R(r ) @FN
A(r )FN

A(r )# of the
real-time Green’s functions, which decreases with the d
tance from theS/N interface in an exponential manner lik
exp@2r/LT#.

B. Quantum fluctuation of the phase

To estimate the charging effect, we have to analyze
correlation functionhtr(t) in Eq. ~22!. The analysis can be
carried out by a calculation similar to that for the usual sin
electron tunneling conductance. From the viewpoint of
phase motion, the measurement setup in Fig. 1 is conve
into the schematic circuit~Fig. 7!.

l

FIG. 7. Effective circuit for the phase motion. 2Z1(v) is the
impedance of the normal-metal wire without proximity correctio
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In the setup with a gate electrode, there are two degree
freedom of charge.30 One is chargeQg induced across the
gate capacitanceCg , the other isQc induced across theS/N
junction capacitanceC. The normal-metal part is the env
ronmental impedance from the viewpoint of the phase m
tion. The charges are expressed by the island chargeq and
the continuous chargeQ by a canonical transformation;

Qc5Q2
C

CS
q,

Qg52Q2
Cg

CS
q, ~29!

whereCS5C1Cg . The phases are canonical conjugates
these charges and are given

w25w2wg ,

c52
C

CS
w2

Cg

CS
wg . ~30!

After some calculations, the correlation functionhtr(t) is
obtained as

htr~t!5Aw2
~t!Ac~t!, ~31!

where

Aw2
~t!5^Tte

i (Cg /CS)w2(t)e2 i (Cg /CS)w2(0)&%env

[expF S Cg

CS
D 2

Jw2
~t!G , ~32!

Ac~t!5^Tte
2 ic(t)eic(0)&Seff[c] , ~33!

Jw2
~t!5E

0

`dvg

vg

Re@Zt~vg!#

RQ
FcothS 1

2
bvgD

3@cosh~vgt!21#2sinh~vgutu!G , ~34!

Zt~v!5
1

ivCS12/Z1~v!
. ~35!

In Eq. ~33!, ^•••&Seff[c] means the average is taken by usi

the effective actionSeff@c# of the phasec.
The correlation functionhtr(t) can be estimated as de

scribed in Appendix B. Its Fourier transform is given by

htr~ i«n!5
12e24bEC8(Vg)

4EC8~Vg!2 i«n

, ~36!

whereEC8(Vg) is the effective charging energy for the ga
controlledS/N junction.

In the derivation, we neglected the friction for the pha
fluctuation by ignoring the dissipation for the phase mot
due to charge transferGA . Therefore we know that Eq.~36!
might give an overestimation of the charging effect. In oth
words, the true influence of the charging effect should
smaller than the one given by Eq.~36!. As we will show, the
suppression of the proximity corrections by the charging
of

-

f

e

r
e

f-

fect is weak even if we estimate it using the overestimati
Hereafter, we use the simple symbolEC for the gate con-
trolled effective charging energy instead ofEC8(Vg) because
it is clear what it means in the context.

V. RESULTS AND DISCUSSION

A. Proximity correction on the conductance of
a normal-metal wire with a single SÕN interface

Here we show the results for some concrete models. F
we analyze a simple metal wire with a superconducting
land. Suppose the geometry illustrated in Fig. 8. Assum
the wire is much narrower than the phase coherence le
Lf , and that the lengthLN is much larger than the width, we
can take the cooperon as quasi-one-dimensional. Then,
~26! for the cooperonCp can be solved as

Cp~x,vm!5
LN

D

sinh@k~2vm!~x2LN!#

k~2vm!cosh@k~2vm!LN#
, ~37!

where

k~vm!5
A2vm

AD
. ~38!

From Eqs.~23! and~24!, finally we get the correction in the
dc conductivity,

dsanom~x!5s0

1

D2 S RQGT

ANNN~0! D
2

3E
2`

`

dz
]nF~E!

]E U
E5z

(
n52`

`

~kBT!

3ReFsinh@k1~x2LN!#sinh@k2~x2LN!#

k1 cosh@k1LN#k2 cosh@k2LN#

3htrS i
2np

b D G . ~39!

Similarly, for the conductivity diminishment contribution

ds ren~x!5s0

1

D2 S RQGT

ANNN~0! D
2E

2`

`

dz
]nF~E!

]E U
E5z

3 (
n52`

`

~kBT!ReF S sinh@k1~x2LN!#

k1 cosh@k1LN# D 2

3htrS i
2np

b D G . ~40!

FIG. 8. Quasi-one-dimensional model for calculation.
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After the integration over the volume of Eq.~6!, the con-
ductance corrections are given by

dGanom5
GT

2

G0
E

2`

`

dz
]nF~E!

]E U
E5z

(
n52`

`

~kBT!

3ReF 2htrS i
2np

b D
LN

3 ~k1k2!cosh@k1LN#cosh@k2LN#

3H sinh@~k11k2!LN#

k11k2
2

sinh@~k12k2!LN#

k12k2
J G .

~41!

Similarly,

dGren5
GT

2

G0
E

2`

`

dz
]nF~E!

]E U
E5z

(
n52`

`

~kBT!

3ReF ~2 1
2 1sinh@2k1LN# !

LN
3 ~k1cosh@k1LN# !2

htrS i
2np

b D G ,

~42!

where

k65kS 62iz2
2unup

b D . ~43!

Equations~39! and ~40! show that the charging effect
appear in the proximity corrections of the local conductiv
as an exponential cutoff whose characteristic length is on
order of the thermal diffusion length (Db)(1/2). Summing up
with n, it is clear that at a temperaturekBT.ETh , the con-
tributions of the terms ofnÞ0 are infinitesimally small. This
is the fact that neither the energy emission to the envir
ment nor the absorption from the environment as a real p
cess is possible at the low temperature. Only the virtual
citation of the environment contributes to the proxim
process. Physically, the meaning of this is as follows.
Andreev reflection needs two-particle tunneling through
S/N interface, and the tunneling evokes a charged state
Coulomb blockade situation. However, in the process in F
6, the charged state can be included as a quantum inte
diate state because each two-particle tunneling is in the
posite direction.

This is physically quite different from the Andreev tun
neling current through theS/N interface, which was ana
lyzed by Huck, Hekking, and Kramer.17 In the case of the
tunneling current, two electrons should transfer through
S/N interface as a real process. The process needs rea
ergy emission or real energy absorption. In the Coulo
blockade situation, that is,kBT,eV,EC , such emission and
absorption are almost impossible as described above. Th
fore the Andreev tunneling current cannot avoid the ex
nential suppression by the Coulomb blockade.

Contrary to the fact that finite energyz simultaneously
gives an exponential decay and sinusoidal oscillation to
spatial dependence of the local conductivity with the d
e

-
o-
x-

n
e
a
.
e-

p-

e
en-
b

re-
-

e
-

tance from theS/N interface, a term with finiten decays
monotonically with the distance. Therefore, the conductiv
corrections of a sample that is longer than the thermal di
sion length, the term ofn50 dominates, are expected tha

ds~0,r !

ds~0,r !uEC50
;

1

4ECb
. ~44!

The total conductance correction isdG5dGanom
2dGren. Equation~44! also suggests:

dG@EC ,kBT#}5
~kBT!3 for kBT,ETh ,EC ,

const for ETh,kBT,EC ,

~kBT!2 for EC,kBT,ETh ,

~kBT!21 for EC ,ETh,kBT.

~45!

The results of the numerical calculation of the condu
tance corrections with and without the charging effect, us
Eqs.~41! and ~42! are shown in Fig. 9.

Figure 10 shows the growth of the conductance corr
tions from the zero temperature. The curves are plotted w
the log-log scale in order to clarify the power of the rise. A
the third and first lines in Eq.~45! give, whenEC50 the
correction dG rises with (kBT)2, and whenEC52ETh it
rises with (kBT)3. WhenEC50.1ETh , we can see the tran
sition of the power from 3 to 2 nearkBT;EC50.1ETh . This
means that above the temperature, the conductivity cor
tion process can occur with ‘‘real’’ emission to the enviro
ment.

FIG. 9. Calculated temperature dependence of the conduct
corrections.

FIG. 10. Growth of the proximity correction at low temperatur
for various charging energies.
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As a result, in contrast to the Coulomb blockade, wh
gives exponential suppression exp@24EC /(kBT)#, the charg-
ing causes a decrease in the proximity correction in
normal-metal conductance with the power lawkBT/(4EC).
The charging effect does not strongly suppress the proxim
correction in the local conductivity and the resulting corre
tion in the conductancedG.

Another explanation for this weak suppression is possi
As can be seen in Fig. 5, the time lagt012t02 between two
Andreev reflections can be shorter than 1/EC because it is
possible that, for example,

ut012t02u!ut012t1u,ut022t2u. ~46!

Therefore, in the proximity correction process, the time d
ing which the system is in the charged state can be m
shorter compared to the other proximity effects which hav
time constriction like Eq.~19!.

B. Phase quantum fluctuation in interferometer

For a real measurement, the calculated model in Fig.
too simple to distinguish the proximity correction from th
entire conductance. In order to do that, an interferometer
that in Fig. 1 is necessary. However, the above quantita
discussion of the charging effect for the model is still va
for an interferometer because the interference in the
structure is quite simple.

Suppose a geometry with a ring, as illustrated in Fig.
The ring is pierced by a magnetic field. If we solve differe
tial equation~26! with the boundary conditions for the quas
one-dimensional interferometer structure illustrated in F
11, we immediately get the cooperon in the structure. T
derivation is given in Appendix C. The solutions, Eqs.~C2!–
~C4!, show that the interference is a simple Aharonov-Boh
type interference in a single-channel ring, if we imagine
cooperon itself is a particle with the charge 2e. Now, we
focus on the conductance correction in the left partx0,x
because the correction is the right partx,x0 is not so sen-
sitive to the magnetic field.

More simplification is possible when the temperature
lower than the Thouless energy (kBT,ETh), where now
ETh5D/(LL1LR1pR0)2. Approximating variables tha
slightly depend on the geometry as constants, the sys
with the loop at the low temperature is quantitatively equiv
lent to the much simpler system illustrated in Fig. 12.

It is a single wire with a transmission controller at po
tion x5Lb , where the left node of the loop is. Magnetic flu
piercing the loop is taken over by the controller, which mo
fies the transmission coefficient for the cooperontcoop with
the relation

tcoop5cosF2p
F

F0
G , ~47!

FIG. 11. Quasi-one-dimensional model for the interference.
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where F05h/e is the quantum flux. This simplification is
possible because, as discussed in Sec. II, the transpo
classic, or ‘‘local,’’ as expressed in the first term of the righ
hand side in Eq.~4!. The conductivity oscillation due to the
interference comes from the oscillation in the propagator
Eqs.~C2!–~C4!. In the case of a mesoscopic fluctuation, t
interference appears in the correlation between two or m
propagators. The interference in the proximity correctio
does not come from the mesoscopic ‘‘transport,’’ but from
mesoscopic propagator, which corresponds to the particl

At the magnetic field corresponding to the fluxF
5kF0/2, wherek is an integer, the anomalous amplitud
FN(r ) has a large magnitude even at the left end of the w
(x5LN) because the transmission is unity. On the oth
hand, forF5(2k11)F0/4, FN is blocked atx5Lb because
the transmission is closed. An increase in magnetic fi
gives the cycle between these ‘‘open’’ and ‘‘close’’ cond
tions. From the viewpoint of the proximity conductance co
rection, this cycle corresponds to changing the length of
normal wire betweenLL1LR1pR0 and LR1pR0. There-
fore the conductance correction oscillates with the period
flux h/(2e) when the magnetic field is increased. Since t
conductance correction of a single wire is given from t
conductivity corrections in Eqs.~41! and ~42!, we can esti-
mate the amplitude of the oscillation in the magnetocond
tance. Taking care to the fact that the Thouless energyETh
changes with the effective length of the normal regio
which now oscillates, and the energy dependence of the
rection can be normalized by the Thouless energy, the
plitude is approximately given by

Aosc[dG@F50,kBT#2dG@F5F0/4,kBT#

;dG@F50,kBT#2dG@F50,kBT/r L
2#r L , ~48!

where

r L5
LL1LR1pR0

LR1pR0
. ~49!

As discussed for the single-wire geometry, from Eqs.~45!
and ~48!,

Aosc;dG@F50,kBT#H ~121/r L! for kBT,ETh ,EC ,

@121/~r L!3# for EC,kBT,ETh .
~50!

Aosc is of the same order ofdG(F50) if LL>LR1pR0.
On the other hand, at a high temperatureETh,kBT!D,

the most phase-sensitive contribution is the proximity corr
tion of the conductivity in the right lead, and the oscillatio
is given by

FIG. 12. Equivalent system at a low temperature for the lo
geometry in Fig. 11.
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dG~F50!2dG~F!;a
ETh

kBT
G1 sin2@2pF/F0#

3expF2
pR01LR

pR01LR1LL
G , ~51!

whereG1 is a positive value of the order ofGT
2/G0, which is

insensitive to the fluxF, and a is 1 for EC,ETh and
kBT/EC for EC.ETh . Therefore the amplitude of the mag
netoconductance oscillation is estimated as

Aosc;
GT

2

G0
expF2

pR01LR

pR01LR1LL
G

35
D

LN
2 kBT

for EC,ETh,kBT,

D

LN
2 EC

for ETh,kBT,EC .

~52!

The result of the numerical calculation for the interferome
in Fig. 11 using the exact solution in Appendix C is shown
Fig. 13.

It shows that the conductance correction oscillates w
the period ofh/(2e). The temperature dependences of t
oscillation amplitude are shown in Fig. 14.

The influence of the charging effect and the temperat
dependence are quite similar to the case of the conduct

FIG. 13. Numerical calculation for the magnetoconductance
cillation due to the proximity correction in the interferometer in F
11.

FIG. 14. Numerical calculation for the amplitude of the magn
toconductance oscillation due to the proximity correction in
interferometer in Fig. 11.
r
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correction of the simple wire. This is the most significa
manifestation that the proximity correction of the ‘‘average
conductance is caused by the ‘‘classical’’ transport of a m
soscopic particle.

C. Charging effect on an Andreev interferometer

Up to this point, we have considered the proximity co
rections in the normal region of normal-metal
superconductor coupled systems that have only oneS/N in-
terface. Andreev interferometer seems to be more interes
for investigating the proximity corrections because the m
roscopic phases appear explicitly in it.

Here, we will briefly discuss the phase fluctuations d
the charging effects on an Andreev interferometer, that is
SN coupled system with pluralS/N interfaces.

As described in the previous sections, we are intereste
conductance for the current that flows without pass
through theS/N interface. For systems with a singleS/N
interface, the quantum fluctuation of the phase does
strongly destroy the interference effect in the conducta
correction due to the proximity effect. This is mainly b
cause the time lag between two Andreev reflections in
process can be small.

If we ignore the environment of theS/N interfaces in
Andreev interferometers, that is, if we assume that the su
conducting circuit, that determines the macroscopic ph
differences, does not affect the charging effect at theS/N
interfaces and the macroscopic phases are definite, the
trapolation of the above approach to an Andreev interfero
eter gives the result that the proximity correction which
sensitive to the macroscopic phase difference of the inter
ometer is suppressed by the factor exp@22EC(LI

2/D)#, where
LI is the distance between twoS/N interfaces. Therefore the
sensitivity of the interferometer is strongly dependent on
distance between twoS/N interfaces even at a very low tem
perature.

The above assumption, however, is too naive. If we c
sider the quantum-mechanical aspects in the macrosc
phase of the Andreev interferometer, we must take into
count the quantum-mechanical dynamics of external circu
for example, an external Josephson junction.31 Even if the
mechanism which determines the macroscopic phase di
ence is the same in the sense of classical dynamics of
phase, a difference in the quantum-mechanical aspect
change the proximity correction in the Andreev interfero
eter. An analysis of the phase fluctuation effects on Andr
interferometers will appear elsewhere.32

D. Summary

We investigated the influence of the quantum fluctuat
on the superconducting proximity correction of the condu
tivity in a normal-metal mesoscopic wire having a superco
ducting island on it via a smallS/N interface. The charging
energy at the interface causes a phase fluctuation. Howe
contrary to the Coulomb blockade of the tunneling curre
through theS/N interface, the proximity correction of the
conductivity and resulting conductance correction are me
suppressed by the power law.

From the viewpoint of the relation between the quantu
fluctuation of the phase and the interference effect, the s

s-
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ation can be summarized as follows. The charging effec
the S/N interface causes the quantum fluctuation of
phase. However, the fluctuation does not strongly destroy
quasiparticle interference in the proximity conductance c
rection process because two Andreev reflections in the
cess can occur in time near each other. Therefore the di
ence between the two phases the quasiparticles get a
Andreev reflections can be small even if the phase is qu
tum mechanically fluctuating.

ACKNOWLEDGMENTS

The authors thank Professor D. Averin and Professor
Schön for their valuable advice. They are also grateful to D
Y. Tohkura and S. Ishihara for their encouragement throu
out this work.

APPENDIX A: HAMILTONIAN FOR THE CALCULATION

The Hamiltonian of this system is

H5HN1HS1HT1HC , ~A1!

where

HN5(
s

E
vol.N

cN,s
† ~r !S 1

2m*
D ]2

]r 2
cN,s~r !d3r

1(
s

E
vol.N

Vimp~r !cN,s
† ~r !cN,s~r !d3r

1(
s

E
vol.N

~2mN!cN,s
† ~r !cN,s~r !d3r , ~A2!

HS5(
s

E
vol.S

cS,s
† ~r !S 1

2m*
D ]2

]r 2
cS,s~r !d3r

1(
s

E
vol.S

@D~r !cS,s
† ~r !cS,2s

† ~r !1H.c.#d3r

1(
s

E
vol.S

~2mS!cS,s
† ~r !cS,s~r !d3r , ~A3!

HT5(
s

E
AI

@ tcS,s
† ~r 0!cN,s~r 0!1H.c.#d2r 0 ~A4!

HC5
e2

2C
~ ñN2ñS2Qg!2, ~A5!

ñN5nN2^nN&, ~A6!

ñS5nS2^nS&, ~A7!

nN5(
s

E
vol.N

cN,s
† ~r !cN,s~r !d3r , ~A8!

nS5E
vol.S

cS,s
† ~r !cS,s~r !d3r . ~A9!
at
e
e

r-
o-
r-

the
n-

.
.
-

Here,mN is the chemical potential of the normal region,ñN

2ñS is the number operator of the excess charge,Qg
5CgVg /e is the average number of the excess charges
duced by the gate voltageVg . In this Hamiltonian, the tun-
neling matrix elementt is normalized to express that th
electron tunnelings occur only at theS/N interface. We can
take a grand canonical ensemble even for a small super
ducting island at a finite temperature.

APPENDIX B: ESTIMATION
OF THE CORRELATION FUNCTION

Assuming that the impedance of the normal-metal wire
mainly Ohmic, then Eq.~34! becomes

Jw2
~t!52E

0

`

dvg

RN

4RQ

1

11~RNvgCS/4!2 Ft2

b
1utuG

;2
arctan~CSRNvc/4!

CS
S utu1

1

b
t2D , ~B1!

where RN51/G0 is the dc resistance of the normal-met
wire without the proximity effect.vc is an appropriate cutoff
frequency which is of the order of the gap energyD in the
superconducting region. In a realistic case, sinceRN /RQ
;1022;1023, the argumentCSRND is smaller than unity.
Therefore we get

Aw2
~t!;expF2S Cg

CS
D 2RND

4RQ
S utu1

1

b
t2D G;1. ~B2!

This means that the fluctuation of the phase forw2 due to the
electromagnetic environment is negligible.

On the other hand, the effective action for the phase m
tion c(t) in Eq. ~33! is given by

Seff@c#5E
0

b

dtFCS

2

1

2e S ]c

]t D 2

1 inc

]c

]t G
2E

0

b

dt01E
0

b

dt02E
AI

dr01E
AI

dr02S GTRQ

AIVN
D 2

3CN~r 022r 01,t022t01!cos@c~t02!2c~t01!#,

~B3!

where CN(r 022r 01,t022t01) is another Cooperon in the
normal region which connects two Andreev reflections
points (r 01,t01) and (r 02,t02). It is given by the solution of
Eq. ~26! too. The third term in Eq.~B3! expresses the effec
of the dissipation due to the fluctuation of the island cha
via Andreev reflection tunneling through theS/N interface.
Here we assume that the dissipation is ohmic, or in ot
words, that the Andreev tunneling can be expressed wit
parameterGA , which has a dimension of the conductan
and is smaller thanGT .

Paying attention to the fact that we cannot distinguishc
andc12kp, wherek is an integer, we get from Eq.~33!
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Ac~t!5 (
n52`

`

e24bEC(n2nc)2
e24EC[ utu22(n2nc)t14GARQutu]

3S (
n52`

`

e24bEC(n2nc)2D 21

, ~B4!

wherenc is the charge misfit parameter given by

enc5CgS Vg2
1

2
VbiasD . ~B5!

In principle, the charge misfit parameter depends on the
voltageVbiasacross the wire. However, in an actual situatio
enc;VgCg5eQg becauseVg@Vbias.

For simplicity, moreover, we consider the case whereEC
is very large so that we have to take into account only
un2ncu<1 states. In this case, Eq.~B4! is much simplified
to

Ac~t!5
cosh@4ECb~n12nc11/2!24ECt#

cosh@4ECb~n12nc11/2!#

3e24EC[ utu22(n12nc11/2)t14GARQutu] , ~B6!

where n1 is the smallest integer which satisfiesn1>nc .
Equation~B6! showsAc(t) oscillates as a function ofnC
betweene24ECGAutu ande24EC(t1GAutu). This corresponds to
the fact that the effective charging energy of theS/N junc-
tion is a function of the gate voltageVg and we express it a
EC8 (Vg). Strictly speaking, sinceGA depends on the phas
fluctuation, it should be determined self-consistently throu
the equation:17

GA54RQS GT

AINN~0! D
2

lim
eV→0

H 1

V
ImF ~kBT!

3(
«n

E
AI

dr01E
AI

dr02htr~ i«n!

3CN~r 022r 01,vn2«n!G J
ivn→2eV1 id

. ~B7!

However, here we only comment thatGA is approximately
proportional toGT

2 and that under the Coulomb blockad
conditionGA is renormalized by the phase fluctuation resu
ing in a value much smaller thanGT . Therefore whenGT is
small as in the present treatment and assumingGARQ!1, we
can neglect the influence of the finiteGA .

The Fourier transform ofhtr(t) is given by

htr~ i«n!5kBT(
vs

h0~ i«n2 ivs!h2~ ivs!, ~B8!

where h0( i«n) and h2( ivs) are the Fourier transforms o
Ac(t) andAw2(t), respectively. From Eqs.~B2! and ~B6!,
whenRA@1/(vgCS),

h0~ i«n!5
12e24bEC8~Vg!

4EC8~Vg!2 i«n

, ~B9!

h2~ ivn!5bdn,0 . ~B10!
as
,

e

h

-

Then, finally

htr~ i«n!5
12e24bEC8(Vg)

4EC8~Vg!2 i«n

. ~B11!

APPENDIX C: COOPERON IN
QUASI-ONE-DIMENSIONAL LOOP STRUCTURE

For the quasi-one-dimensional loop structure illustrated
Fig. 11, the spatial variation of the cooperon is given
follows. We assume a unitary scattering matrix for the th
branch nodes atx5La ,Lb , as

S5F 0 1/A2 1/A2

1/A2 21/2 1/2

1/A2 1/2 21/2
G , ~C1!

where the first component corresponds to the left/right le
and the second and the third to the upper/lower arm of
loop. This assumption means the spatial derivative of
cooperon is conserved at the nodes, which means the co
vation of the proximity current carried by the particle at t
nodes. This is equivalent to the boundary condition for
quasiclassical Green’s functions.33

Using the scattering matrices and the boundary conditi
at the both ends of the wire (x52LS ,LN), we solve the
differential equation for cooperon Eq.~26! and get

Cp~x,x0 ;z!5M0~Pek(z)(x2x0)1M1e2k(z)(x2x0)!,
~C2!

for x0,x,La ~in the right lead!, and

Cp~y1 ,y2 ;z!5MeM0e[k(z)1r ] y11M fM0e2[k(z)2r ] y1

1MhM0e[k(z)2r ] y21MgM0e2[k(z)1r ] y2,

~C3!

for xa,x,Lb ~in the loop!, and

Cp~x,x0 ;z!5MLM0 sinh@k~z!~x2LN!#, ~C4!

for Lb,x,LN ~in the left lead!, where

k~z!5A22iz22punukBT

D
, ~C5!

and

LR5La2x0 ,LL5LN2Lb ~C6!

P52e22k(z)(LR1pR0)$cos2@rpR0#~12e22k(z)pR0!e22k(z)LR

1sin2@rpR0#~12e22k(z)p(R01LL)!%, ~C7!

M1512e22k(z)pR0~cos2@rpR0#1sin2@rpR0#e22k(z)LL!,
~C8!
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M05
LL1LR1pR0

Dk~z!~M12P!
, ~C9!

M f5
1

A2
$12e22k(z)pR0e2 ir pR0~cos@rpR0#

2 i sin@rpR0#e22k(z)LL!%e2k(z)LR, ~C10!

Mg5
1

A2
$12e22k(z)pR0eir pR0~cos@rpR0#

1 i sin@rpR0#e22k(z)LL!%e2k(z)LR, ~C11!

Me52
1

A2
e2k(z)LRe22k(z)pR0e2 ir pR0$cos@rpR0#

3~12e22k(z)pR0!e22k(z)LL1 i sin@rpR0#

3~12e22k(z)(pR01LL)!%, ~C12!
ns

n
b

y
t

n

Mh52
1

A2
e2k(z)LRe22k(z)pR0eir pR0$cos@rpR0#

3~12e22k(z)pR0!e22k(z)LL2 i sin@rpR0#

3~12e22k(z)(pR01LL)!%, ~C13!

ML522 cos@rpR0#e2k(z)(LR1pR01LL)~12e22k(z)pR0!,
~C14!

where

r 5
2

R0

F

F0
, ~C15!

F05h/e, F is the magnetic flux piercing the ring. Similarly

Cp~x,x0 ;z!5
LC

Dk~z!

sinh@k~z!uxu#
cosh@k~z!Lc#

~C16!

for 2Lc,x,0 ~in the lead right of the superconducting i
land!.
d

1B. Z. Spivak and D. E. Khmelnitskı˘i, Pis’ma Zh. Éksp. Teor. Fiz.
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