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The suppression of the static magnetic momighbf a superconducting plate in the critical state by a
sweeping magnetic fielﬂ(t), applied perpendicularly to a dc magnetic figld has been studied experimen-
tally and theoretically. For every quarter-period of a sweeping fi€tdl of changing polarity with an ampli-
tudehg, a noticeable decrease bf can be observed both for the paramagnetic and diamagnetic initial states
even for smallh, compared toH. Numerical simulations within the framework of two existing theoretical
approaches have been performed in order to study the evolution of the distribution of the magnetic induction
and the suppression of the magnetic moment. It turns out that the Cleaz-Benztez double critical-state
model describes this process qualitatively well in the first quarter-period for relatively high valirgs Af
significant disagreement with the experimental data is observed for small values of the transverse magnetic
field. On the other hand, the two-velocity hydrodynamic model provides an adequate explanation of the main
features of the suppression Mff for both paramagnetic and diamagnetic states and any valugs of

[. INTRODUCTION Nevertheless, the magnetic field torque can bend vortices
near the sample edges. This bending occurs only in finite
The electrodynamics of hard superconductors is a veryegions near the edges where there is penetration of the trans-

complex problem if the external magnetic field changes botkgrse component! sin(e) of the external magnetic field

its modulus and direction. This problem has drawn consider(herea is the angle betweeH and the vortek The length

able attention from many research groups for a long time, . - region is of the order afH sin(a)/4mJ.,% which is a
The major difficulties are connected to the specific properties

of the flux-line system. It is well known that, in spite of the marg.inal amount for long sampled(is the critical current
vortex magnetic interaction, vortices in bulk hard supercon9€nSity- _ _
ductors cannot follow the direction of the external magnetic 10 describe the behavior of hard 1super(_:0nductors in a
field (see, for example, Ref)lindeed, the gain in the Gibbs otating magnetic field, many authdrs" took into account
free energy due to the vortex system orientation along th&n |m4p501r2taln7t physical phenomenon called flux-line
external magnetic field is proportional to the lengtiof the ~ cutting™>=“~=" Only by this phenomenon can vortices
vortex, whereas the work against pinning forces is proporchange their orientation. The double critical-state model for
tional to the second power &f The same result can easily the description of the electrodynamics of hard superconduct-
be obtained by comparing the inflecting torque acting on &rs was proposed theoretically in Ref. 18 and developed in
straight vortex, which is created by the magnetic field, withRef. 19. This model is based on the concepts of both flux-
the retaining torque of the homogeneous pinning force. Théine cutting and flux-line pinning. It allows the explanation
former is proportional to the vortex length Being propor-  of many interesting experimental results in classicaf-20-22
tional to L?, the latter is much higher than the first one. and highT, (Refs. 23—2Y superconductors. The large num-
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ber of examinations and verifications of this model appar-

ently provides evidence that the problem of the description 60| sample A98

of hard superconductors placed in a magnetic field changing NE

its direction has been completely exhausted. However, there 5 40}

exist some experimental facts which are rather difficult to 2

interpret within the double critical-state modéf—3" The S Tre
common feature of the phenomena observed in these papers ~" 2o sampEEt DC method B
is the suppression of a dc shielding current inside all spatial — AC method
regions where the penetration of an ac transverse magnetic O 4 6 & 10
field is observed. For example, the effect of a sweeping

transverse magnetic fieldater we shall denote this field as H (kOe)

H,) on the static magnetic momeht, caused by a longitu-
dinal dc magnetic field, was studied in Refs. 32, 34, and
37. The suppression dil, W_as observed in the caset, surements of the ac magnetic susceptibiligolid curveg for
<H, andHy~H,. To explain the observed phenomena A moles A98 and G21
- . . . ples an .

theoretical approach inspired by the double critical-state
model was developed in Refs. 1, 37, and 38. In comparison
with the Clem—Peez-Gonzéez model, this approach takes tional Laboratory. This crystal has a diagonal length 2.2 cm
into account the influence of the flux-line cutting on the con-and thickness 0.9 cm along tleeaxis.
dition of force balance for the vortex system. This model The measurements of the magnetizatidny were per-
(called the two-velocity hydrodynamic modebredicts the formed by two methods. In the first approadh, was moni-
existence of different spatial zones inside the supercontored using a vibrating sample magnetomg¥sM) with a
ductor. In one of them, the collapse zone, the modulus of theibrating frequency of 83 Hz and vibrating amplitude of 0.4
magnetic inductionB(x) turns out to be homogeneous. mm. The dc magnetic fielt{={0,0H,} with the strength up
There is also another zone, the Clem zone, where the spatig 12 kOe and the spatial nonuniformity in the sample region
distribution ofB is described by the model developed in Ref.as low as 0.1% was created by an electromagnet. The
18. samples were mounted so tHatwas parallel to its surface

In this paper we present an experimental investigation ofthe yz plang. The sweeping fieldh(t) was induced by an
the phenomenon of the static magnetic mondntsuppres-  additional solenoid. The sample was located in its central

sion by the sweeping transverse magnetic fi¢)Jd We mea- homogeneous field zone. The magnetic fielﬁi(t)

sure the dependendé,(H,) obtained under various condi- ={0H,(t),0} was strictly parallel to the sample surface and
o (o e, Tose e, presied g o v o . Th T ves e
the fra.mework of the double critical-state mocﬂSbc..III A along the longest dimension of the samples. The sweeping

and the two-velocity hydrodynamic ongec. Il B). The Iflfgo%agg triangular pulse form with the amplitugeof up
main equations of both models are presented at the beginning ) .

. ; . We also used another procedure to measure the magnetic
of the corresponding subsections. Theoretical results ObrhomentM A sinale laver 38 B&S managanin wire electric
tained for the dependendé,(H,) on the basis of the two- z 9 Y g

: . . . . heater was intimately and noninductive(gifilarly) wound
velocity hydrodynamic model are consistent with experimen- ) . .

. . . around the large single crystal. A 10 000—turn pickup coil
tal ones. Different scenarios of the evolution of the collapse

S braced the crystal and was series opposition connected to
zone and the Clem zone when the transverse magnetic fie . . .
) . . ; a balancing coil of the same area and number of turns which
H, increases are studied numericalsee Appendix B

did not “see” the sample but was permeated By The
signal from this pickup coil “pair” fed an electronic ampli-

FIG. 1. The critical current density; vs the magnetic field{
estimated from magnetization loofashed curvgsand from mea-

Il. EXPERIMENT fier integrator Wh.iCh drove th& axis of anX—Y'recorder.
_ The X axis was driven by the voltage across calibrated shunts
A. Experimental procedure placed in the circuits of the solenoid generatiigor of a

To study the effect of an ac magnetic field on the staticrectangular coil embracing the length of the solenoid and
magnetization of hard superconductors, we have used a nurgeneratingh(t). ConsequentlyM, could be continuously
ber of platelike melt-textured YB&€u;O,_,; samples pre- monitored as eithe?{ or h was impressed and varietdl,
pared by different technological groups. The plates were cutvas calibrated assuming perfect shielding in the linear weak-
off from the homogeneous part of melt textured ingots infield regime wher{ was impressed after zero-field cooling.
such a way that the largest faces of these slabs were parall€leasurements were done at liquid nitrogen temperaiure
to theab crystallographic plane. Most of the data discussed=77 K and atT~83 K.
in this paper have been obtained for samples A98 and G21 The critical current density].., in samples A98 and G21
with sizes of 8<5x0.21 mnt and 8.3<4x0.4 mn?, re-  was estimated using the magnetization lodps(#), in zero
spectively. The critical temperature of both samples wasc fieldh=0. Our evaluation gives thé.() dependences
above 90 K and the width of the transition was as small ashown in Fig. 1 by dashed curves. We have also compared
0.5 K. We also made measurements on a large hexagontidese findings with the results obtained by measuring the ac
single crystal YBaCu;O;_ 5 provided by Donglu Shi at the magnetic susceptibility. The ac technique and the method of
University of Cincinnati and John R. Hull at Argonne Na- J. calculation were described in Ref. 39. According to this
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FIG. 2. The suppression of the magnetization lobpg) for FIG. 4. The dependence M, on the initial cycles of the trans-
sample A98 by the ac magnetic field with different amplitudes:  verse magnetic fielth(t). Results are obtained for sample G24,
=0 (solid curvg, 300 Oe(dashed curvg 600 Oe(dotted curvgg =11 kOe. Curvesa) and(b) correspond to the paramagnetic and

and 1000 Ogpointg. Only the right halves of the magnetization diamagnetic cases, respectively.
loops are shown.

. . ) .. cooling. The fieldH which leads to the maximunvl e,
paper, the imaginary part of the ac magnetic susceptibilitycorresponds td,. This quantity was also determined, al-
x"(H), of a superconducting plate in the dc figtland the  thoygh less accurately, by noting the figidwhere the initial
probe ac field with the amplitude (both parallel to thez ~ (zero-field-cooleimagnetization curve merges with the hys-
axis) is related to the critical current densif(7) by the teresis loop. These measurements yielg=1850 Oe and
equation 950 Oe at 77 K and 83 K for the single crystal. The double

_ penetration fieldHy was determined by measuring the
(4ch/9md) xad X"(H),  H<Hg, growth of the isothermoremanent magnetization as a func-
-~ " Py tion of the to and fro sweep off after zero-field cooling.

(3chBrd){1=[1-x"(H)/Xmad " H> H(ll') The field sweep which gene?ates the maximum remaldbz%t
corresponds  to H; . These measurements gavlslﬂ;

HereH is the value of the magnetic field where the probe =3300 Oe and 1700 Oe at 77 K and 83 K. The critical-state

ac field penetrates the whole sample, the plus sign iNBq. model, takingJ,«<H ~", leads to (—|;/Hp)“+1:2; hencen

is used in the regior{<H,,, and the minus sign corre- ~0.2 for the single crystal. This value foris in harmony

sponds to field${>"H,, whereH,, is the field at the maxi- with the structure of the magnetization envelopes.
mum of x”(H). A simple way to define the value &f; is by

the relationx”(H1) = (8/9)Xmayx- The Jo(H) curves calcu- B. Experimental results
lated from these data are represented by solid lines in Fig. 1. i
The magnetic field dependence of the critical current density 1€ dependence of the magnetic morriéiton the trans-

for both samples A98 and G21 can be approximately deYe'Se magnetic fieldh was studied for two main starting
scribed by a power function with an exponeat-0.3. The points on the static magnetization curve. These positions are

characteristic value of. is a few tens of kA/cr schematically shown in Fig. 2 by points A and B. The point
The magnetic fieldcdependence f can be evaluated A corresponds to the diamagnetic branch of this curve. Later

also by measuring the full penetration and double penetratio e shall caI'I such a starting position as the diamagnetic
fields H, andHZ . The full penetration field, was deter- ranch or diamagnetic case. Position B corresponds to a

mined by measuring the growth of the thermoremanent mag@aramagnetlc portion of _t_he magnetization curve. We shall
netization M as a function ofH present during field call such a starting condition as the paramagnetic case.
zrem The typical dependence of the longitudinal magnetic mo-

ment M, on the transverse sweeping magnetic fiélg

J(H)=

400) H=6kOe a =h(t) is presented in Figs. 3—5. The main feature of all
~ 200l T~ these curves is an essential suppression of the magnetic mo-
) _— ment under the action of the fiel(t). It is a striking fact
EN 0 that the magnetic momemd!, is suppressed by more than
e tm_.__.\_,_b half after a rotation of the external magnetic fidﬁdthrough
200 T only 3° (see Figs. 3 and)4 We consider this suppression

> using as an example curya) in Fig. 3 which corresponds to

-400[ . . a paramagnetic branch ®,. It is remarkable that the no-

-400 200 0 200 400 ticeable suppression &fl, occurs for each quarter-period of
Hy (Oe) the change of the sweeping field. The strongest suppression

is observed for the first quarter-period. We draw attention to
FIG. 3. The dependence M, on the initial cycles of the trans- the fact that a similar suppression takes place for the diamag-
verse magnetic fielth(t). Results are obtained for sample G214,  netic branch oM, as well[see curveb)]. The phenomenon
=6 kOe. Curvega) and (b) correspond to the paramagnetic and is strongly pronounced not only bt-H (Fig. 5 but even in
diamagnetic cases, respectively. the caseh<H (Figs. 3 and 4
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500 T of which are difficult to measure. Both models can pretend to
H=500 Qe a qualitative description of the phenomenon, and we will
T~83 K therefore compare the theoretical and experimental results
qualitatively. We will study the different scenarios of the
2501 N evolution of the vortex system under the change of the trans-

verse magnetic field.

A. Double critical-state model

1. Main equations of the model

r The double critical-state model was suggested by Clem

< and Peez-Gonziez to generalize the well-known Bean

-o50L - critical-state model for the case where the external magnetic
field changes not only in its modulus but in direction as well.

According to this model, the gradient of the moduBif
H=950 Oe the magnetic induction as well as the gradient of the tilt

-500 | 1 angled of B with respect to the axis, chosen arbitrarily in
-1000 -500 0 500 1000 the sample plane, cannot exceed certain corresponding criti-
H, (Oe) cal values.
The double critical-state model for a plane superconduct-
FIG. 5. lllustrates the dependenceME for the Ial’ge hexagonal |ng Samp'e of thicknesd operates with the fo”owing set of
YBCO single crystal on the initial cycles of the transverse magneticequations for the spatial distributions of the modulus of the

field h(t). H andh(t) were applied along the flat surfaces of the magnetic inductiorﬁ(x) and the tilt angled(x). The first

hexagonal crystal, hence to thec axis, withh(t) directed along a fi th M " 1 ith the di
diagonal length. Each full cycle spans several seconds. The beha(}?ur equations are the usual Viaxwell equations wi € dis-
placement current being neglected:

ior displayed here was observed at 77 K and 83 K withsituated

47 M, (G)

along either the diamagnetic or paramagnetic critical-state enve- IB - 99 A
lopes of the hysteresis curves over the rafige 1200 Oe where —=——J, — =1 2)
the field of the copper wire wound solenoid remained constant X c X C

throughout the cycles di(t). At 83 K each half-cycle diminishes I N

|[M,| more effectively for a chosen amplitudig than at 77 K since 1 J9 JE __ } @ E H@ __ l ﬁ
ho/H,~1 at 83 K whilehy/H,~1/2 at 77 K. Application of sev- X X c Jt’ X X c at’
eral (i.e., =10) cycles at 83 K diminishefM,| to near zero in all 3
cases but did not lead to any reversal of the sign of the residu
magnetization.

a}l—|ereE is the electric fieldJ is the current density; signis

and| denote vector components across and along the mag-
netic inductionB(x), respectively. The double critical-state
model also involves the material equations which can be
Mitten as follows:

Note that the shape d¥l,(h) curves depends on the ex-
perimental conditions. There exist two kinds Mf,(h) de-
pendence. To demonstrate this, let us consider for the sake

dgfinitenes; the curveb) in Figs. 3., 4, and 5 related to the P13 =3 (B)]sgr(dt), |IH> 3,
diamagnetic branches ®fl,. The difference between these El= L @
curves is most pronounced for the first quarter-period of the 0, 0=|J|=J;,
change ofh(t). The first portions of curvéb) in Fig. 3 and  5pg

the curve in Fig. 5 are bulging downward whereas the cor-

responding portion in Fig. 4 is mostly bulging upward. The [N =3l B)1sgraly, |3l=Jl,
analogous difference is observed for the paramagnetic E'= 0. 0s|J”|sJ|(‘3. 5

branches oM, .
HereJ; and Jl are the critical current densities, across and

L. DISCUSSION alongB, respectively;p! andp* are effective flux-flow and
flux-line-cutting specific resistivities. The curredt is re-

The aim of this section is the comparison of the experi—lated to flux-line pinning whereag the curre]&tis defined bY.
mental data with the results of calculations of the magnetiche threshold angle of the flux-line cutting. Both quantities
moment suppression under the action of the transverse magt€ considered as independent phenomenological parameters.
netic field within two established theoretical models. One of hE_’ b_ounde_lry conditions consist in the equality of the mag-
them is the well-known double critical-state model, which Netic induction on both surfa(ies of the sapwple to the external
was formulated in its final form in Ref. 18. The second magnetic fieldB(x=—d/2)=B(x=d/2)=H.
model, suggested in Refs. 1, 37, and 38, provides a more : _ )
detailed description of the vortex system behavior in crossed 2 Correlation of the experimental results with the double
ac and dc magnetic fields. Unfortunately, both models do not critical-state model
account for all features of very complex vortex dynamics. In  We performed numerical simulations of the spatial distri-
addition, they contain a number of intrinsic parameters soméution of the magnetic inductioB(x) and the tilt angle
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x/d FIG. 7. The evolution of th&(¢) (a) and9d(€) (b) distributions

for the paramagnetic initial state calculated within the double

FIG. 6. The evolution of th&(£) () and 9(¢&) (b) distributions ~ critical-state. model forH=0.6H, with H,=1800 Oe, 3 =3,
for the diamagnetic initial state calculated within the double=3.18<10" A/m? and h,=1200 Oe. Curves labeled O corre-
critical-state model for H=H, with H,=1800 Oe, Jé:‘]l spond to the initial stateh(=0). Curves labeled 1, 3, and 5 show
=3.18<10" A/m?, and hy=1200 Oe. Curves labeled 0 corre- the distributions at the ends of the first, third, and fifth quarter-
spond to the initial stateh(=0). Curves labeled 1, 2, 3, and 4 show Periods of the fielch(t), respectively.
the distributions at the ends of the first, second, third, and fourth
quarter-periods of the fieltl(t), respectively. =9 mm. When the fielch(t) grows, the vortices with non-

) _zero angles begin their penetration into the sample and the

9(x) for the parameters close to the experimental conditionsgistributionsB(£) and 9(£) change as well. The picture of
Additionally, we carried out the numerical calculation of the these changes is demonstrated by the sequences of curves in

change of the component of the magnetic moment, Fig. 6. Curves 1 show the profilé &) (a) and 9(&) (b) for
4o the case when the transverse magnetic figlj reaches its
_ 1 _ first maximum valuen, (the end of first quarter-perigdThe
M, dX[B,(x)—H], (6) AP . : \
4md ) —ar2 distribution ofb(¢) is seen to preserve the diamagnetic pro-

file but the magnitude db becomes higher. The reason is the
increase of B=H=(H2+h3)'? on the surface of the

del | ith diff hicknedsand critical sample. The region where the vortices with new orientation
model samples with di _erentt icknegsand critical current 5, penetrated corresponds to spatial intervals in Fiy. 6
densityJ.(B) were considered. Below we present results for,

o = with 9#0. Naturally, this region expands for highéag.
two samples thhj—O.B mm and 9 mm, the Cf'f;gal currzent Curves 2 in Fig. 6 correspond to the subsequht=0 (the
densities  J;(B)=(5x10%[1+B/2x 10°0¢] Alcm

5 ; ) end of second quarter-peripdVhenh(t)= —h, (the end of
and 3.1&10° Alen?’, and the penetration fieldH,  third quarter-perior B is again a maximum at the sample
=850 Oe and 1800 Oe, respectively. The parallel Cr't'calsurface[curve 3 of(a)] but 9(£) has reversed sign and curve
current densities][':(B) were assumed to be equal to the cor-3 jp (b) is the image of curve 1. In the following quarter-
responding values of; (B). periods bothb(£) and (&) change periodicallythe distri-
The first stage of our simulation was carried out for theputions b(¢) and 9(¢) at the ends of each quarter-period
model sample with thickness 9 mm ahg=1200 Oe. The repeat one of the previous profiles as indicated by the se-
calculated evolution of the spatial distributions of the modu-quences of numbers in Fig].6These periodic changes are
lus of the magnetic inductioB(x) and the tilt angled(x)  reminiscent of the well-known behavior of the distribution
for the diamagnetic branch of the static magnetization curvg(¢) in the usual Bean critical-state model.
is presented in Fig. 6. Here and below all distributi@®{x) The evolution of the profiles ob(¢) and 9(¢) differs
and 3(x) are presented in dimensionless urftsx/d and  essentially for the paramagnetic branch of the static magne-
b=B/H,. Curves labeled 0 in this figure correspond to thetization curve(see Fig. 7. The initial distribution ofo(¢) for
initial distributions ofb(¢) (a) and¥(£) (b) before the trans-  this case is shown by curve 0 in FigaY. The initial angular
verse magnetic fielth(t) was switched on. The angi&(£)  distribution is9(£) =0 everywhere in the samplsee curve
is equal to zero everywhere, and the profile of the modulug in Fig. 7(b)]. The changes of thb(£) and 9(&) profiles
of the magnetic inductiob(¢) is linear sinceJ; is assumed after the first, third, and fifth quarter-periods are demon-
to be independent oB for the model sample withd strated by curves 1, 3, and 5, respectively. The difference of

in the process where the transverse magnetic tig€ld is
swept in cycles between the values-lfy,hy). Several
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FIG. 8. The dependence MZ on the initial Cycles of the trans- FIG. 9. The dependence MZ on the initial CyCleS of the trans-

verse magnetic fielti(t) calculated within the double critical-state Verse magnetic fielti(t) calculated within the double critical-state
model forhy/H=1.4, H=H,=850 Oe,d=0.3 mm, andl;(B) ~ Model fotho/H=0-14,H= 10H,, H,=850 Oe,d=0.3 mm, and
=Jl(B)=5x10%/y1+(B/2000 Oe) A/m. Curves 1 and 2 are J¢(B)=Je(B)=5x10°/y1+(B/2000 Oe) A/r as in the previ-

obtained for the diamagnetic and paramagnetic initial states, respeBus figure. Curves 1 and 2 are obtained for the diamagnetic and
tively (compare with Fig. 5 paramagnetic initial statggompare with Figs. 3 and)4

the evolution of 9(£) in Fig. 7(b) from the corresponding In the experiments the suppression Mf, is shown to be
change ofd(¢) for the diamagnetic cag&ig. 6(b)] consists  qualitatively identical. We observed the step by step suppres-
only in its nonperiodic behavior. The evolution of the profile Sion after each cycle di(t) for both cases. In contrast, the
b(&) in the paramagnetic case differs substantially in comcalculatedM(h) curves show a step-by-step decreasing
parison with the diamagnetic case. For every half-period th&hagnetic moment for the paramagnetic case only. In addi-
height of the paramagnetic triangle in the central region ofion, this decrease leads to the conversion of the paramag-
the sample in Fig. (8) decreases. Besides, the gradient of thenetic state to a brightly pronounced diamagnetic one,
magnetic inductiondB(£)/dé changes its sign near the Whereas in the experiments the magnetic moment is sup-
sample surfaces where the ang}&)+#0 [see Fig. 7a)].  Pressed to a zero value approximately.
Therefore, the distributiob(£) in these regions of the sur- To clarify the situation, we carried out our calculations for
face resembles the diamagnetic one, which is shown in Figd smaller value oh, compared withH. Results of such
6(a) ThUS, the paramagnetic portion b‘(é‘) is damped, calculations fOI‘nOIO.l4H are shown in Flg 9. This figure
whereas the diamagnetic region in F|ga)7 is en|arged7 shows an Unexpected behavior of the magnetiC moment. In
when the numben of half-periods is increased. These fea- Spite of the much smalldt,/H the important feature of the
tures of the evolution of the distributiotg ¢) and 9(¢) are  suppression of the paramagnelit, is conserved. Further,
insensitive to the sample parameters and the magnetic fiel@ie step-by-step strong decreasevbf proceeds until a tran-
dependence of the critical current densify(B). sition into the diamagnetic state is observed. This behavior is
According to these results, the transition of an initial para-Similar to that encountered with a largks/H. In contrast
magnetic type of magnetizatiohl, to a diamagnetic one with the dlamagngtlc case, only.sr.nall suppression occurs.
with an increase o can be expected. We carried out a These results are in plain contradiction with our experiments.
direct calculation of the dependence of the magnetic momenkhe suppression of the magnetic mombhtis symmetrical
M, on the initial cycles of the transverse magnetic fie{t)  for both the diamagnetic and paramagnetic cases. This can
for both the diamagnetic and paramagnetic cases. In accofé@dily be verified by considering the curves displayed in
dance with the studied evolution of the distributiongz) ~ Figs. 3, 4, and 5 and the magnetization loops in Fig. 2.
and 9(&), the magnetic moment is essentially suppressed Thus, thg double crltlcal—gtate model cannot even qualita-
only during the first quarter-period and then changes perioditively explain some essential features of the phenomenon
cally in the diamagnetic casesee curve 1 in Fig. )8 In under_conS|derat|0n._ Therefore, it is necessary to invoke
contrast, in the paramagnetic cab, decreases step by step other |de_as to describe thgse features. We study below the
during every half-period and transfers to the diamagnetiSUPPression of the magnetic moment by the transverse mag-
state after 3 cyclecurve 2 in Fig. 8. netic f|leld within another theoretical model developed re-
At first glance our calculations within the ClemBe-  Cently in Refs. 1, 37, and 38.
Gonzdez model agree relatively well with the experimental
data. Indeed, the magnetic momevi, is suppressed under B. Two-velocity hydrodynamic model
the action of the transverse magnetic field. This suppression
exists for both the diamagnetic and paramagnetic branches of
the static magnetization curve. Moreover, the shapes of both The motion of the vortex system can be described in a
curvesM,(h) in the first cycle of the application df(t) are  two-component hydrodynamic approach. We assume the ex-
similar to the experimental ones shown in Fig. 5. However,stence of two vortex subsystems A and B, which are char-
detailed considerations reveal a pronounced disagreemeatterized by the averaged tilt anglés(x,t) and Jg(X,t)
with the experiments. The main contradiction consists in thevith respect to thez axis, the same vortex densities
asymmetric behavior of th#,(h) suppression for the dia- na(X,t) =ng(x,t)=n(x,t)/2, and the velocitie¥ o(x,t) and
magnetic and paramagnetic cases during subsequent cycl&&(x,t), respectively. The total vortex densityx,t) is con-

1. Main equations of the model
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nected to the magnetic inducti@{x,t) by the local relation a
B(x,t)=®yn(x,t) where®, is the magnetic flux quantum. 10.0- 35
The velocitiesV,(x,t) and Vg(x,t) are expressed via the ’
average hydrodynami®/(x,t), and relativeU (x,t), veloci- a 0 1
ties L 96
an)
U U
= _— = _—— 9.2'
Va=V+ =, Vg=V-3. 7)
The motion of the vortex system results in the change of 00 02 04 06 08 1.0
n(x,t) and 9= (9,+ 9g)/2 which are governed by the con- x/d
tinuity equations
—_ , _ )
at IX /-g\ 0.04 /O 5
o) _ o (19D . ;:/O‘OO ;
Jt __&_X(n' . ) (9_X Zn| | (9_X . ( ) -0.041 /
The vortex mean free pathrepresents the relation of the -0.08;

intervortex distanca=n(x,t) "' to the averaged probabil-

ity p of the flux-line cutting at the vortice intersection. The

electrodynamic equations have been derived in Refs. 1, 37, x/d

and 38 from the condition of the force balance for each of the . .

sublattices A and B and can be presented as follows: _ FIG. 10. The evolution of thé(¢) () and 9(¢) (b) distribu-
tions for the diamagnetic initial state calculated within the two-

velocity hydrodynamic model forH=10H,, hy,=H,, and p

00 02 04 06 08 10

ﬁ =— 4_7TJL sgnve(|V|—|U|/2) =10"“. Curves 0 correspond to the initial state<{0). Curves 1,
IX c ¢ ’ 3, and 5 show the distributions at the ends of the first, third, and
fifth quarter-periods of the fielti(t), respectively.
o9 43 [p+20(|U|2—|V|)]]*?
— =sgnu . (10
X clH cog 9 — ) 9B \2H [99\?
. o e 1/2<a—> cog 9 —9q)sgnVv
Here 3, is the angle between the external magnetic field X pn X
I:|(t) and thez axis; ®(x) is the Heaviside functioh® (x) - p
+0(—x)=1]. The form of this system is sensitive to the =——J |1+ > sgnV. (13
relation between the velocitieg(x,t) and U(x,t). If |V ¢
>|U|/2, then | o
n obtaining Egs.(11)—(13) from Eq. (100 we used|
— 38
B 4w =2\2/pyn.
i TJC sgnv,

2. Correlation of the experimental results with the two-velocity
hydrodynamic model

v _ \/\/EWJJ_ pn'? sgnuU (11) The evolution of the distributions df(¢) and 9(&) cal-
ax ¢ Hcog9—19) ' culated for the diamagnetic case within the two-velocity hy-
. ) ) . drodynamic model is shown in Figs. @ and 1@b), respec-
These equations are clearly seen to be essentially identical {R/ely. Details of the calculation are given in Appendix A.
those of the double critical-state mod@). In the opposite  are and below this calculation was done for a model
case|V|<|U|/2, when the sublattices A and B move in the sample 4 mm thick and magnetic fieit,= 1000 Oe. Other
opposite dire_ctions, the form of the electrodynamic equationf)arameters for this figure arf=10H,, hy=H,, andp
changes radically: =10"*. Curves 0, 1, 3, and 5 correspond to the initial dis-
tribution and the ends of the first, third, and fifth quarter-

ﬁ: periods of the change df(t), respectively. The characteris-
ax tic feature of curves 1, 3, and 5 ftu(¢) is the existence of
flat sections wherab/dé=0. The size of those portions
R} \/\/57., L (2+ p)pnt? grows with the number of half-periods. We call the collapse
—= J; sgnu. (12 zones the regions where the modulus of the magnetic induc-
X c H cogd— )

tion is homogeneous, since the component of the shielding

Finally, in the case whetV|=|U|/2 and one of the sublat- current density orthogonal tB8 disappears owing to the in-
tices A or B does not move the set of the equations is trangeraction of the sublattices A and B. In accordance with Eq.
formed to the following single equation: (12), these sublattices move in opposite directions during the
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1.2 solid and dotted lines correspond t,=H, and hy

a =0.4H,, respectively. Noticeable damping bf, occurs in
10.81 spite of relatively small amplitudes, with respect to the dc
=~ 0 field H. This result agrees with the experimental data in Figs.
B 104 3 and 4.
Thus, the main features of the suppression of the magnetic
3.5 momentM, under the action of the transverse magnetic field

are adequately described within the framework of the two-
00 02 04 06 08 10 velocity hydrodynamic model. In Appendix B, we analyze
x/d some predictions of this model for the evolution of the Clem
zone and the collapse zone as the transverse magnetic field

0.08 b h(t) is increased.
~ 0.04 1
T N
3 0.00 IV. CONCLUSION
® 0.04. 3 We have studied the nontrivial phenomenon of the strong
-0.08] suppression of the static magnetic moment of a hard super-
conductor by a transverse magnetic field. A remarkable de-
00 02 04 06 08 10 crease ofM, even for small orthogonal fielt(t) was ob-
x/d served and discussed within two established theoretical

. o models. The first of these is the double critical-state model
~ FIG. 11. The evolution of thé(¢) (@) and 9(¢) (b) distribu-  r5n05ed by Clem and Rez-Gonzéez. This model com-
tions _for the paramagnetic initial state calculated within the t""o'prises important features of the flux-line lattice behavior,
velocity hydrodynamic model for=10H,, ho=H,, and p |y the flux-line cutting and the flux-line pinning. The
=10 Curves 0 Cor.res.pon.d to the initial Stam:(o)'.cuwefs L dCIem—F‘eez-Gonz'iaez electrodynamic model is based on
3, and 5 show the distributions at the ends of the first, third, and_. ~.._ . " 2 .
fifth quarter-periods of the fielti(t), respectively. similar insights as.t.he Bean critical-state model. It takes into

account the condition of the balance of force as the usual

critical-state model and an additional condition related to the
change of the transverse fieh(t). Besides the collapse existence of a threshold angle for the flux-line cutting. This
zones, there exists the central part of the sample whergouple critical-state model allows one to interpret some fea-
db/d§#0. The Clem-like equationfL1) are satisfied in this  tyres of the discussed phenomenon. In particular, it describes
region, and we call it the Clem zone. According to Edd),  qualitatively the collapse of the magnetic momét, for
such a zone is characterized by the motion of the vortexe|atively large amplitudes of the transverse magnetic field
sublattices A and B in the same direction. ) during the first half-period of the orthogonal fiehdt). How-

The evolution of the magnetic induction distributiBiix) ever, contrary to our experimental data, the results of calcu-
for the paramagnetic case at the same conditions is displayéations obtained using this model show an asymmetric de-
in Fig. 11. This evolution is very similar to that in the dia- crease ofM, for the diamagnetic and paramagnetic initial
magnetic case. The changes of thg) and J(¢) distribu-  states. The calculated suppressiorivbf occurs only during
tions lead to approximately symmetrical suppression of thehe first quarter-period of the changehuft) for the diamag-
magnetic momeni, in both the diamagnetic and paramag- netic initial state while the moment decreases step by step
netic cases. This is demonstrated by the curves in Fig. 1after every quarter-period in the paramagnetic case. This
obtained for the same parameters as in Figs. 10 and 11. Tlegymmetry is more pronounced at small amplitudespf
with respect to the dc fiel@{. The momentM, is not very
sensitive to the transverse field in the diamagnetic initial case
H=10H, —~ whereas it decreases significantly, changes sign, and obtains

04y T a noticeable negative value in the paramagnetic initial case if
IQ — Hp<ho<H. These predictions of the double critical-state
~ model are in sharp contradiction with the experiment. In
= other words, this model cannot describe the total collection
. of the experimental results even qualitatively for snigjl
-0.41 T The two-velocity hydrodynamic model developed re-

: : cently is shown to allow a qualitative interpretation of the

-1.0 05 00 05 1.0 complete picture of the static magnetic moment suppression
H /H by the transverse magnetic field. This model provides a more

detailed description of the flux-line lattice dynamics. In par-

FIG. 12. The dependence &1, on the initial cycles of the ficular, it accounts for the change of the condition of the
transverse magnetic field(t) calculated within the two-velocity ~force balance due to the flux-line cutting process. According
hydrodynamic model foh,/H=0.1 (solid line) andh,/H=0.04  to the experiment, the curves calculated within this model
(dotted ling with p=10"%. Upper and lower curves are obtained Show symmetrical suppression of the magnetic moment for
for the diamagnetic and paramagnetic initial states, respectiveljhe diamagnetic and paramagnetic initial states both at large
(compare with Figs. 3, 4, and.5 and small values oh,. The two-velocity hydrodynamic
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model predicts different scenarios of the evolution of the 2.0
distribution of the magnetic inductio with the increase of 1.84 /\
h(t). In some cases as is shown in Appendix B this distribu- 4
tion has an unusual specific form. The observation of such o161 / \
kinds of distribution by direct measurements would be of { 1.4 3
considerable interest. @ / \
1.24 )
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Here we will show the procedure for solving the system
of equations foB(x,t) and 9(x,t) within the two-velocity The system of equations for the two-velocity hydrody-
hydrodynamic model, i.e., Eq$8), (9), and(10). Although ~ namic model can be solved by using, instead of @), a
the latter equationg10) are very compact, their solution relation between the variablesandF given by the expres-
turns out to be a difficult task. It is more convenient to write Sion
them in terms of the velocitieg, and Vg as®

APPENDIX A

V[|F|—1]sgn(F), |F|>1,
B 2m | 7o, 0<|F|=<1.
X~ o SIF(VA+F(VE)], (A1)

Indeed, substituting Eq$Al), (A2), and(A4) into Egs.(8)
and(9), we obtain a pair of coupled nonlinear equations for

(A4)

2
Z\EHcos({)‘—{)‘ )(@) sgr(@ B(x,t) and 9(x,t). These equations are solved numerically
pnl’z 071 ox X for slow variations of the surface boundary conditions, i.e.,
A N for small values of the velocitiegV,|<v and|Vg|<v. In
_aTm _ ‘“7_ this case the resulting spatial distributions Bfx,t) and
S Jo|F(Va) F(VB)+psgr( ax”’ (A2) ¥(x,t) are then practically relaxed and, in fact, independent

of the auxiliary parameter. It should be mentioned that this
method for solving the system of equations for the two-
_ velocity hydrodynamic model is very similar to that em-
Flv)=sg (v). (A3) ployed to solve Egs(2), (3), (4), and (5) of the double
These equations are straightforwardly obtained by using Eqsgritical-state model. There, the auxiliary parameters e
(34), (35), and(36) of Ref. 38 withl =2/2/p+/n, and assum- andpl.
ing, without loss of generalityy,— 95<<0. Let us remark

where the function

that the function sgh(v) coincides with sgn{) everywhere APPENDIX B
except atv=0, where sgh(0) lies within the interval ) o
(-1,1)3 Here we shall discuss some predictions of the two-

velocity hydrodynamic model. It is possible to deduce the
transformation of our field distribution in the case of high

10.8 11.2
Q
{ 1081 5
Q 194 4
Q
T 3
N i
o 104
10.0 ]
- - - - L _»
00 02 04 06 08 1.0 10.04—_,
x/d 00 02 04 06 08 1.0

FIG. 13. The evolution of the(¢) distribution at the end of the x/d
first quarter-period with the increase bf for the paramagnetic FIG. 15. The evolution of the(&) distribution at the end of the
initial state calculated within the two-velocity hydrodynamic model first quarter-period with the increase bf for the paramagnetic
for H=10H,, p=10“. Curves 1, 2, 3, and 4 correspond to the initial state calculated within the two-velocity hydrodynamic model
ho/H,=0.6, 1.0, 1.6, and 2, respectively. The inset shows thefor H=10H,, p=10"3. Curves 1, 2, 3, 4, and 5 correspond to the
analogous distribution fan, /H = 60. ho/Hp=0.2, 1.2, 2.0, 3.5, 4.0, respectively.
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amplitudesh,. One should expect the appearance of thesurfaces before the uniformization of thé¢¢) distribution.
Bean-like profiles of the distributioB,(x) athy>H,, H,. Curves 1 and 2 show the existence of collapse zones near the
This means that the flat portions in the pldit&f) in Fig.  surfaces of the sample and the Clem zone in the middle of
10(a) should be replaced by the portions with/dé+#0; i.e., the sample. The increase bf leads to the appearance of
the Clem zones should appear inside the sample. The sinmew Clem zonescurve 3 and, then, to the disappearance of
plest scenario of such evolution develops as follows. Withthe central Clem zoné&urve 4.
the increase olfiy the collapse zones enlarge and occupy the Finally, we have found another interesting scenario of
whole volume of the sample. Only after this new Clem zonegransformation of thé (&) profile. The plots corresponding
appear near the surfaces of the sample. This scenario is illug this scenario are shown in Fig. 15. Curves 1-3 demon-
trated by Fig. 13. A new Clem zone is clearly seen in thestrate the usual initial development of the collapse zones.
inset to that figure. The homogeneous distributionbok ~ However, for stronger amplitudes, the new Clem zones ap-
displayed by curve 4. pear in the intermediate region of the sample between its
The analysis shows that there exist other scenarios for theiddle and the edge&urves 4 and b In these spatial re-
creation of new Clem zones. Figure 14 illustrates anothegions, the sign of the derivativdb/dé changes after the
scenario when the new Clem zones appear near the sampppearance of the new zones.
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