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We consider the problem of the crossover from BCS superconductivity to Bose-Einstein condensation in
three dimensions for a system of fermions with a mutual attractive interaction, for which we adopt the
simplifying assumption of a suitably regularized point-contact interaction. We examine in a critical way the
fermionic (self-consistentT-matrix approximation, which has been widely utilized in the literature to describe
this crossoverabovethe superconducting critical temperature, and show that it fails to yield the correct
behavior of the system in the strong-coupling limit, where composite bosons form as tightly bound fermion
pairs. We then set up the correct approximation for a “dilute” system of composite bosons and show that a
class of diagrams has to be considered in the place of the fernTiemiatrix approximation for the self-energy.

This class of diagrams correctly descritieghthe weak- and strong-coupling limits, and consequently results

in an improved interpolation scheme for the intermediatessoverregion. In this context, we provide also a
systematic mapping between the corresponding diagrammatic theories for the composite bosons and the con-
stituent fermions. As a preliminary result to demonstrate the numerical effect of our class of diagrams on
physical quantities, we calculate the value of the scattering length for composite bosons in the strong-coupling
limit and show that it is considerably modified with respect to the result obtained within the self-consistent
fermionic T-matrix approximation.

[. INTRODUCTION bound state. The many-body approach to a “dilute” fermi-
onic system then relies on the identification of the many-
The problem of the crossover from BCS superconductivbody T matrix with ag, which, in the repulsive case, is al-
ity to Bose-EinsteinBE) condensation has attracted consid-ways possible in the low-density limit. The classification of
erable interest lately,and especially after the recent angle- diagrams is thus made in terms of the small paramigter
resolved photoemission spectroscopy experiments in cupratevhere kg is the Fermi wave vector of the noninteracting
superconductors which have shown the existence of 8ysten). In the case of interest to us of attractiveinterac-
(pseudd gap at temperatures above the superconductingon, however, past the critical interaction strength where the
transition temperatur&,.>3 This observation has prompted two-body problem develops a bound state, the many-Body
the proposal by many authors of the possible presence ohatrix acquires a singularity (pole) for all interaction
quasibound fermionic pairabove T and up to a second strengths and no identification of the matrix with ag is
temperature scal€*. clearly possible any longer. The smallness of the parameter
From the theoretical point of view, this crossover problemk_a. bothin the weak- and strong-coupling limimight not,
(as well as related crossover problems, like the one assodiherefore, be sufficient to guarantee that an approximation
ated with the Mott transitich poses a compelling challenge, selected for the weak-coupling limit is still valid in the
because approximations that are valid on the one side of th&rong-coupling limit.
crossover are not necessarily valid on the opposite side. In |, particular, theT-matrix approximation for the fermi-

addition, the crossover region is characterizedeven de- i self. energywhich has invariably been regarded in the
fined by the absence of a sm.all parameter, which would literature as representine dilute-approach approximation
allow one to control the approximations. For systems that are . the BCS-BE crossover problef2 is not expected to
sufficiently “dilute” (such that, for instance, for a given remain valid as soon as the two-body bound state develops
strength of the interparticle interaction, the dengitgan be This statement is consistent with the physical picture thsit .
taken to be arbitrarily small one could directly exploit the soon as the two-body bound state deF\)/e)I/o 5 itpis the resi(’jual
wgll-known results obtained for “dilut(_e” fermioniclsystems interaction between ¥he composite bosor?s ,to determine the
with pe = p, on the one handor for "dilute” bosonic sys “diluteness” condition of the systerand not the original

tems withpg=p/2, on the other hanfifo get a correct de- ) . . _
scription of the limits on the two sides of the crossover. attraction between the constituent fermions which produces

For a “dilute” fermionic system the two-body equation the bound state to begin with and relatively to which the
plays an essential rofein particular, in three dimensions the System is in the strong-coupling linfit.It is then clear that a
low-energy two-body scattering process can be parametrizegPrrect description of the strong-coupling limit can be ob-
in terms of thescattering length a, which is negative for tained only by selecting the relevant approximations directly
weak coupling and positive for strong couplifige., in the  for a dilute system of composite bospnather than relying
presence of a bound state for the attractive interagtimnd  on the fermionicT-matrix approximation, which is valid by
diverges when the coupling strength suffices for the bounaonstruction for ailute system of fermions
state to appear. For strong couplirag, gives the size of the From previous work on the functional-integral approach
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to the crossover from BCS to BE; ' one knows that ap- “low-density” approximation for composite bosons in the
proximations(like the BCS mean field at zero temperajure next section. Our construction rests on a judicious choice of
which give a satisfactory account of the weak-coupling limit,the fermionic interaction, whickalbeit without loss of gen-
become inadequate in the strong-coupling limit, and thaerality) greatly reduces the number and considerably simpli-
only when including fluctuation corrections at least at thefies the expressions of the Feynman diagrams to be taken
one-loop level a sensible description of the effective bosoniinto account.
system in the strong-coupling limit results. This remark has
actually suggested that the crossover problem should be dealt A. Regularization of the fermionic interaction
with in reverse'® that is, by first envisaging approximations
which give a satisfactory description of the strong-coupling
(bosonig limit and by extrapolating them toward the weak-
coupling (fermionic) limit, where they are expected to work
properly as welt’

One then anticipates the set of many-badglf-energy H=2 f dr 3(r)
diagrams, which describe the bosonic limit, to be much 7

We begin by considering the following simple model
Hamiltonian for interacting fermionéve set Planck: and
Boltzmannkg constants equal to unity throughgut

VZ
5o )%(r)

richer than the corresponding set of diagrams which describe 1 : +

the fermionic limit. In fact, from the previous discussion we t3 > J drdr’ g (r)g, . (r')

do not expect the fermionicT-matrix approximation to be o0’

appropriate for describing the “dilute” bosonic limit prop- XV (T =)o (1) (1), (2.2

erly. We will indeed show below that the fermioniematrix ) o ] ) )
approximation corresponds in the strong-coupling limit toWherey,(r) is the fermionic field operator with spin projec-
the standard bosonic Hartree-Fock approximation, and thafion o=(T.1), mis the fermionic(effective mass,u is the
for this reason, it misses all but one of the infinite set offérmionic chemical potential, and ¢q(r —r’) is aneffective
self-energy diagrams associated with a “dilute” bosonicppten_tlalthat proyldes theattractlon between 'fermlons. To
system'® simplify the ensuing many-body diagrammatic structure con-
In this paper, we present the formal theory for the choiceSiderably(and yet preserving the physical effects we are af-
of the fermionic self-energy diagrams starting from thete?, we gdopt forVeq the simple form of a “contact”
strong-coupling side, for temperaturaisove T, (in the sense Potentiat
that no anomalous single-particle fermionic propagator will V(T —1")=008(r—1"), (2.2)
be consideredand for three spatial dimensions. The corre- ) _ ) _ _ )
sponding theory beloW,, as well as in lower spatial dimen- wherev, is a negative constant. With this choice, the inter-
sions, remains to be developed. An extensive numericgiction affects only fermions with opposite spins in the
study based on this approximation is under way and will bd1amiltonian(2.1) owing to the Pauli principle. A suitable
discussed separately. The only numerical calculation preiegularizationof the potential(2.2) is, however, required to
sented in this paper concerns the value of the compositdl€t accurate control of the many-body diagrammatic struc-
boson scattering lengtfg in the strong-coupling limit. ture. In particular, the equatidin the center-of-mass frame

The plan of the paper is as follows. In Sec. Il we discuss m 1 dk m
some introductory material, which is necessary for setting up = f —
(2m)% k2

our “low-density” approximation for composite bosons. 4mag  vo
Specifically: We introduce a suitable regularization for thefor the fermionic scattering length a associated with the

frzgz::)n':ﬁep?(Iarlléfaor?tt?:f;slgf;?)(;tlfzrr]r,n\?é)r;:i(;:h dai‘!O\rA;Smu: z/?lé’eslﬁf;potential(z.Z) is ill defined, since the integral over the three-
y g : dimensional wave vectok is ultraviolet divergent. The

marize the mapping onto a bosonic system in the strongx : : ; : :
coupling limit, obtained by the procedure of Ref. 15: We_éfunctlon potential(2.2) is then effectively regularized, by

discuss the standard fermioniematrix approximation and introducing an ultraviolet cutofk, in the integral of Eq.

show how the Hartree-Fock approximation for composite(z'g) and lettingvo—0 asko—<2, in order to keef. fixed

bosons results from it in the strong-coupling limit. In Sec_ztgchgtsgmnét%yaluttla. 'frhe r(aEqu;r%;j rglatlc;'n ctj)etwee@and
[, we introduce the theory of the “low-density” Bose gas "° is obtained directly from Eq(2.3). One finds

(2.3

for composite bosons and obtain the fermionic self-energy 2.2 3
from the bosonic self-energy in the “low-density” approxi- Vo= T > (2.9
mation. In Sec. IV we present the numerical calculation for ko magkg

the composite-boson scattering lengily in the strong-  henk |ag|>1. With the regularizatior2.4) for the poten-
coupling limit and discuss the physical implications of our 5| the classification of the many-body diagrams gets con-
result. Section V gives our conclusions. siderably simplified, since only specific substructures of
these diagrams survive when the lirkg— is eventually
Il BUILDING BLOCKS OF THE DIAGRAMMATIC ta_lken. In particulgr, in order to pbt_ain a finite result for a
STRUCTURE FOR COMPOSITE BOSONS given Feynman diagram, the vanishing strgngth _of the poten-
tial vy should be compensated by an ultraviolet divergence in
In this section we discuss the diagrammatic structure thatome internal momentum integration. Two examples of al-
generically describes the composite bosons in terms of thiernative behaviors are given in Figgajland Xb). For the
constituent fermions, as a preliminary step for setting up thearticle-particle ladder of Fig.(&) the internal momentum
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FIG. 1. (a) Particle-particle ladder angh) series of particle-hole *oi\ ;F
bubbles. Note that for a point-contact potential the particle-particle i
——

ladder depends only on the sum of the incomingtgoing four

momenta. Four momenta are indicated and spin labels are repre- -
sented by up and down arrows. q 'fx 4,
25 o5
integration associated to every rung is divergent in the limit fd\? <&
ko— 00 and compensates the vanishing yielding the finite /—ﬁ
result: -/ ~k-qtq
/q \ q,
m dk 3
Fo@) =~ gt [ o .
TaE (27) FIG. 2. Four- and six-point vertices for composite bosons. In-
coming and outgoing bosonic four momenta are indicated, as well
tan B&(K)/2]+tanH BE(k—q)/2] m -1 as four momenta on each fermionic line. Spin labels are understood
2[E(K) + E(k—q)—1Q,] K2 ) to alternate on successive fermionic lines.

(2.5 As far as the dressing of the particle-particle ladder is
. concerned, the above statements can be justified in a rigorous
where £(k) =k?/(2m) — . For the particle-hole bubble se- ¢;qpion by resorting, e.g., to functional-intjegral methodsg. Be-
ries of Fig. 1b) we obtain instead a vanishing result, since, ¢, 45ing to consider such functional-integral methods it is,
in this case, the internal momentum integration is cut off by, ever, important to examine in detail the analytic behav-
the Fermi factors and thus converges. In an analogous WaYor of our building block['s(q) in the weak- and strong-
one can show that in the particle-particle channel the Contriéoupling limits2?
butions of the vertex corrections and of the two-particle ef- | 114 weak-coupling limit, one readily obtains to lowest
fective interactions other than the rung vanish for our ChOiC%rder inkeag :
of the potential, since they both contain a factor of the
particle-hole type. Arap
It is thus evident from these considerations that, with our Fo(q)~———, (2.9
choice of the fermionic interaction, trekeleton structuref
the diagrammatic theory can be constructed only with thavhich allows us to classify the diagrammatic structure in
particle-particle laddef2.5) plus an infinite number of inter- powers ofkeag . In the strong-coupling limitwhereby8u
action vertices, like the ones depicted in Figh2sidesone ~— —),”" on the other hand, the particle-particle ladder
spare single-particle fermionic Green’s function that enterd o(d) has the followingpolar structure’
the fermionic self-energy diagrams, which in turn contains,
T

2
in principle, all self-energy insertions originating from self- —iQ,+———uglegt
v 4m B 0

consistency. The ladder and the vertices of Fig. 2 contain,

by construction, only “bare” single-particle fermionic Fo(a)~~ mPag . q? '
Green’s functions. These vertices serve to connect the lad- iQ,- am M8
ders among themselves, thus generating complex diagram- 2.7

matic structures. In analogy with the so-called Hikami verti-

ces occurring in the weak-localization probléfwe referto  where we have used the definitigug=2u+ €, for the

these vertices as the four, six,., -point vertices, in the bosonic chemical potential§=1/(maZ) being the bound-
order. state energy of the two-body problgnNote that(apart from
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the residue being different from unjtghe expressiori2.7) ktq T k'+q
resembles a “free” boson propagator with Matsubara fre- - -
quency(), (v integey, wave vectorg, and mass . It is B
thus evident that the classification of diagrams developed for =——)=—— <= X I
a “dilute” system in weak couplingiwhich relies on the
finite value(2.6) of the particle-particle ladder—cf. Ref) 5 - -
can no longer be utilized in the strong-coupling limit, since
in this case the particle-particle ladder does not reduce to a
constant but develops a polar structicé Eq.(2.7)]. In the (a)
strong-coupling limit, a different classification scheme is
therefore required to organize the diagrammatic structure
for a “dilute” system This point was not properly realized dao ktq, ktq,

g g ——" ~——"
by previous work on the BCS to BE crossover and especially — < O O

2 S S
by the work of Ref. 7, where the “diluteness” condition of 1) X T ?@; + 3 *;
the system was explicitly assumed both in the weak- and AR\ S N\
strong-coupling limit. q, q, k+q k+q,

B. Mapping onto a bosonic system via functional integrals (b)

We briefly review the procedure of Ref. 15 to extract the 5 5 Graphical correspondend@) between the “bare”

set of _ef_fective bpso_nic in_teractions menti_oned above fro”bropagator for composite bosofrepresented by a thick linend

the original fermionic action. By performing a Hubbard- e fermionic particle-particle ladder of Fig(al, and (b) between
Stratonovich transformation, the original fermionic partition the effective two-boson interaction and the four-point vertex of Fig.
function Z= [DcDc exp{—S} was written in Ref. 15 as£ 2, where now the spin labels have been explicitly indicated in the
= [Db* Db exp{—S} in terms of bosonic variables, where internal lines. Note that the fermionic lines composing the four-
the “effective” bosonic action can be expressed as a seriegoint vertex have been rearranged with respect to Fig. 2, in order to

expansionSys= =" 13((9%') . The first term of this expansion resemble the bosonic vertex more clos@gcordingly, the fermi-

is quadratic and reads onic lines never intersect each other in the four-point vertap-
propriate powers of3/V as required by Eqg2.9) and(2.11) have

1% _ been indicated explicitly.
Si=5 2 Ib(@|To (@), 2.8

where V is the quantization volume. The “bare” bosonic It is worth noting the following features of the above expres-

propagator is thus expressed in terms of the particle-partici&ions: (i) The interaction2.11) depends on wave vectoas
ladder(2.5), by writing well ason Matsubara frequenugs, revealing in this way the
composite nature of the boson§; The energy denomina-
B tors in Eq.(2.11) correspond to single-particléare fermi-
(b* (a)b(@))sz1=7;To(a). (2.9 onic Green’s functions, sincg°(k)= (k)% (iii) The fac-
tor of 2 in the definition(2.11) corresponds to the two
different sequences of spin labels that can be attached to the
four fermionic Green’s functions, as shown graphically in
: g Tl Fig. 3(b) (where the identification with the effective two-
phasize that the identificatio2.9) (as well as the other re- o5n interaction is also indicatedeeping track of the spin
sults of this subsectigrholdsirrespectiveof the value of the | 5pels will, in fact, prove important in the following to es-

fermionic scattering lengtlar . Nonetheless, referring to & (apjish the desired mapping between the bosonic and fermi-

system of interacting composite bosons acquires physicg,ic diagrammatic structures.

meaning in the strong-coupling limit only. , When considering the sus{? + S of the quadratic and
The quartic term in the expansion d. is instead given quartic actions, the bosonic propagastbr*(q)b(q))s<§f)+5<¢f)

b
y can be expressed in terms of the “bare” bosonic propagator
) _ ~ (2.9 and of the effective two-boson interactig@.11) via
Sef 4BV q12q4 Uz(ds - - - Ga)b* (A1)b™ (92)b(d3)b(q), Wick’s theorem. The topology of the resulting diagrammatic
(2.10  structure, as well as the symmetry factor of each diagram, are
identical to those obtained for trugoint-like) bosons:223
The associated fermionic diagrammatic structure can then be

This identification is shown graphically in Fig(a8 for a
definite choice of the spin labelghis convention will be
maintained in the rest of the papelt is important to em-

where the(four-poiny effective two-boson interactioreads

(cf. Fig. 2 constructed whenever needed by the correspondence rules
~ Y\2 2 shown in Fig. 3.
Ux(Qy .. .04) = 5ql+q2,q3+q4( [—5,) BV > As an example of this correspondence, we show in Fig. 4
k the bosonic propagator to first order in the interaction, to-
1 gether with the associated fermionic diagrams for the two-

X —— — — . fermion Green’s function in the particle-particle channel.
e(=k)e(kt0z) e(—k+01~ds) e(k+qq) Note that the minus sign, which is associated with one power
(2.11 of the interaction in the bosonic diagram, is associated in-
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q’ A typical value of the two-boson effective interaction is
obtained by considering the strong-coupling linBiw—
—oo and settingy;=---=0,=0 in Eq.(2.11). One gets
q q ~ V\2( m2ag\ 2
14 14 U2(0)22<E) (W) UZ(O), (2.12)
= wheré®
B 4w (2ag)
v U(0) = —— == (213
m The factorm?ag/(8) in Eq. (2.12 reflects the difference
between the true bosonic propagator and the particle-particle
+ + ladder in the strong-coupling limjtf. also Eq.(2.7)]. Owing
N -k R -k —_ to this differencep,(0) given by Eq.(2.13 [and notu,(0)
L *a L@ given by Eq.(2.12] has to be identified with the boson-
O(Cl) ) B .
. ! boson interaction at zero four momenta. We return to the
7 - . ~ .
1 ! difference between, andu, in Sec. Il A%
+ Recalling further that the scattering lengal§®™ within
1 t the Born approximation, obtained for a pair of true bosons
— > —_ (each of mass &) mutually interacting via a two-body po-
NG kiq IXC) tential with Fourier transfornu,(0) at zero wave vector, is
. -k ktq' -k o given by a5°"=2mu,(0)/(4w), Eq. (2.13 yields the fol-
1 ! lowing relation between the bosonic and fermionic scattering
° lengths:
o) ag’"=2ag. (2.149

FIG. 4. Graphical correspondence between the composite-bosoh€ result(2.14) was also obtained in Ref. 7 within the fer-
propagator and the two-fermion Green’s function in the particle-mionic self-consistenT-matrix approximatioriwhich corre-
particle channel, to first order in tHeur-point interaction vertex. ~Sponds to the bosonic Hartree-Fock approximation of Fig. 4
This vertex can be identified from Fig. 2 by settigg=qs=q and  in the strong-coupling limit—see the next subsectjavhere
d,=0,=9q’ therein. it was erroneously regarded to be the value of the scattering

lengthag for a “dilute” system of composite bosons. We
stead with the presence of a closed loop in the correspondingill, in fact, show in Sec. IV that the resu(2.14 actually
fermionic diagramgthe minus signs associated with the fer- differs from ag, whenall diagrams associated with a “di-
mionic interaction being already taken into account in thelute” system of composite bosons are taken into account.
definition of the particle-particle ladderNote also that the Besides the four-point vertg.11), the composite nature
bosonic self-energy insertion of Fig. 4 has the same topologief the bosons producéan infinite set of additional vertices.
cal structure of the bosonic Hartree-Fock self-energy diain particular, from the mapping of Ref. 15 we obtain the
gram. following expression for the six-point vertegf. Fig. 2):

|
V)3 2

-1
D (-1

BY % e(—k)e(k+0qy) e(—k—0+0s)

as(Ql o Oe) = 5q1+q2+q3,q4+q5+q5<,3

1
X .
e(k+0,+ 03— 0s)e(—k+0d;—q4) e(k+ Q)

(2.15

In the strong-coupling limit, whereblyu| is the relevant en- structed with the four- and six-point vertices, respectively
ergy scale in the problem, from dimensional considerationglike, for instance, the ones depicted in Figs. 4 andThe
we getly(B8/V) %~ |32 andUs(B/V)3~| |~ (in three value of the diagram of Fig. 5 is smaller than the value of the

dimensions For this reason, the contribution of the three- diagram of Fig. 4 by the quantity

boson vertex2.15 is suppressed with respect to the contri-
bution of the two-boson vertef2.11). To be more precise, —
one should compare the values of similar diagrams con- |l

|l ="

- 3
262/2|,U«|1/2 (keap)®. (2.16
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FIG. 5. Graphical correspondence between the composite-boson FIG. 6. (a) Self-energy diagrams corresponding to the self-
propagator and the two-fermion Green’s function in the particle-consistent fermioni@-matrix approximatior(full lines here repre-
particle channel, to first order in th&x-point interaction vertex. sent self-consistent fermionic single-particle Green’s functions and
This vertex can be identified from Fig. 2 by settiog=qs=4, spin labels have been suppregs&elf-energy corrections entering
q:=04=9q’, andgz=qs=q" therein. the particle-particle ladder, obtained by contracting ¢hk four-

point vertex andc)—(e) six-point vertex(full lines now represent
Here, the factors containing the Fermi energs the “bare” fermionic single-particle Green’s functions
[=k2/(2m)=(37?p)??I(2m)] originate from the bosonic
cycles(cf. Sec. Il), while the factorgu| and|x|*? originate ~ ceived for arepulsivefermionic interaction of finite range
from the residue in Eq2.7). The diagram of Fig. 5 can thus (thus excluding bound stateand with the scattering length
be neglected in comparison to the diagram of Fig. 4, sinc&r always positive(albeit small. The fermionic self-energy
krar<1 in the strong-coupling limit. diagram associated with this approximation is depicted at the

The above argument can be made more general, by shodeft in Fig. 6@, and is obtained by closing the particle-
ing thatall interaction vertices can be neglected in compari- particle ladder with a single-particle Green’s function in the
son with the four-point vertex in the strong-coupling liftit  only possible way[ The diagram at the right in Fig(& was
In this limit, one can thus construct all diagrams representingncluded by Galitskii original treatmefithut vanishes for our
the two-particle Green’s function in the particle-particle choice of the attractive potential since it contains forbidden
channel in terms of the “bare” ladder and of the four-point interactions between parallel spins. By the same token, no
interaction vertex only. This is precisely what one wouldSpin summation needs to be considered for the fermionic
expect on physical grounds, since the interactions involvingoop at the left in Fig. &).] In Fig. 6@ all single-particle
more than two bodies become progressively less effective difies are regarded to tzelf-consistentand thus contain self-
the composite bosons overlap less when approaching trenergy insertions of the same kind of the ones depicted in the
strong-coupling limit. In the next subsection we will show figureZ’ In this way, the self-consistent fermiorifcmatrix is
how the (self-consistentfermionic T-matrix approximation ‘“conserving” in the Baym-Kadanoff sens&* Recalling

can be examined in terms of the four, six, . , -vertex func-  that (with our regularization of the potentjathe particle-
tions in the strong-coupling limit. particle ladder depends only on the sum of the incoming
(outgoing four-momenta, the self-energy of Fig(ah reads

C. Fermionic T-matrix approximation 1
in the strong-coupling limit Se(k)=— B—V 2 I's(k+k")G(k"), (2.17)
k/

The T-matrix approximation for a “dilute” Fermi gas
represents one of the few cases in the many-body theomyherel' is obtained froml', by replacing everywhere the
where the choice of the self-energy diagrams can be cor‘bare” G, with the self-consisteng.
trolled by an external small parametéin the original ver- By exploiting our diagrammatic correspondence rules, the
sion by Galitskii® the T-matrix approximation was con- self-energy insertions ofiy can be interpreted in terms of



15376 P. PIERI AND G. C. STRINATI PRB 61

the four, six, . . ., -point interaction vertices discussed in the

previous subsections. Typical examples are shown in Figs. Q
6(b)—6(e), where the “bare” single-particle lines associated + T
with the vertices are marked by arrows. Note, in particular,

4+ ..

that the diagram of Fig.(6) corresponds to a contraction of

the four-point vertex, while the diagrams of Figgc)e-6(e)

correspond to all possible contractions of the six-point ver- (@)

tex. Additional diagrams not shown in the figure would then

contain interaction vertices of higher order. Note also that

the diagrams of Figs. (6)—6(c) have been already consid- + _’6’_ + @’_

ered in Fig. 4 and in Fig. 5, respectively. From the results of

the previous subsection we then conclude that only the dia- ...

gram of Fig. 6b) needs to be retained in the strong-coupling

limit, the other diagrams being suppressed with respect to it (b)

at least by a factorkrag)® [cf. Eq.(2.16]. The diagram of

Fig. 6(b) corresponds to the Hartree-Fock approximation for,

the self-energy of composite bosdfiNote finally that self-

energy insertions oG° in Eq. (2.17 could be interpreted

similarly, in an open-ended way. , .
The above argument leads us to the conclusion that the TO generalize the above results to a “dilute” system of

fermionic T-matrix approximation reproduces the Hartree-COMPOSitebosons, it is essential to take into accountfitee

Fock approximation to the self-energy of composite boson§uency dependencef the effective two-boson interaction

in the strong-coupling limit. There exist, howevadditional ~ (2:11, which makes the summation over the frequencies in-

contributions to the self-energy of composite bosons whicr$ide the cycle somewhat more involved. _

are of thesame ordex(in the small parametekcag) of the We first observe that from Eq&2.9) and(2.7) it follows

Hartree-Fock approximation just discussed. These contribdhat the “bare” propagato(b™ (q)b(q))s@ can be written

tions are not included in the fermionicmatrix approxima- in the form:

tion and must be considered separately, as discussed in the

next section.

FIG. 7. (a) T-matrix approximation to the self-energy of true
bosonsjb) T-matrix approximation to the self-energy of composite
bosons.

D(q)
(b*(q)b(q))s@)= 7 : 3.
. T-MATRIX APPROXIMATION FOR COMPOSITE eff 0 — CI__
BOSONS v lamHe
In this section we set up an approximation for the fermi- _
onic self-energy, which describes the “low-density” regime With the notation
both in the weak-coupling(fermionic) and in the strong-
coupling (bosonig limits on equal footing. R
—i QV+ T MB
A. Low-density approximation for composite bosons D(q)=— é am 1+ \/1+ 4m
V m?ag €0

Before examining the “low-density” approximation for
composite bosons, it is instructive to briefly recall some stan-
dard results concerning the self-energy for a “dilute” system
of true (point-like) bosons. The argument to select the dia-The factorD(q), which reflects the existence of the internal
grams giving the leading contribution to the self-energy for awave function for the composite bosons, has aatieni (),
“low-density” Bose gas proceeds as follo#d%?® Let is replaced by the complex frequeney along the positive
u(d;,02,93,04) be the (symmetrized bosonic interaction real axis for Reg) =—2u.
potential, assumed to be vanishing fdg|=ry?t (i It is convenient to transfer the factoi3(q) from the
=1,...,4),wherer, is the range of the potential. We shall “bare” propagators to the effective two-boson interactions,
also consider temperatures not much higher than the B®hich these propagators are joined to. Specifically, every
critical temperature, so that we shall assufrep?®. Under ~ propagator associated with an “internal” line of a diagram
these conditions, it turns out thavery cycle in a diagram tranfers a factor/D(q) to each of the two interaction verti-
contributes a factor ¥2~p.3° The point is that factors ces itis joined to, while each propagator associated with one
(efee@—1)"1 arise after summation over the frequenciesof the two “external” lines transfers one factqiD(q) to the
along the cycle. These factors cut off the integrals over theingle interaction it is joined to and assigns the remaining
momentum variable fofg|~TY2, which is of the ordep®  factoryD(q) as a proportionality factor to the “full” propa-
and much smaller thary ! owing to the “diluteness” con- gator, which the diagram is meant to represent. In this way,
dition. It then follows that, for a “low-density” Bose sys- the “full” propagator acquires the same overall facid(q)
tem, the leading self-energy diagrams contain iisimum  of the “bare” propagator(3.1) and the effective two-boson
number of cycles, like the diagrams shown in Fig(ay, interaction of Eq. (2.11) is multiplied by
which constitutes the so-called bosonicT-matrix D (q;) VD (0,) VD(qs) VD(q4). We are then led toescal-
approximatiorf:2% ing the effective two-boson interaction as follows:

(3.2
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B. Coupled equations defining the generalized-matrix
approximation for the BE-BCS crossover

% D(01) VD(d2) VD(q3) VD(da) Once the self-energy diagrams for composite bosons in
(3.9  the “low-density” limit have been selected according to the
s _ above prescriptions, there remains to determine the analytic
with uy(qy . . . d4) given by Eq.(2.11. [Note that the above expression of these diagrams. To this end, it is convenient to
definition accounts, in particular, for the difference betweenstick with the bosonic representation and write down the
U,(0) andu,(0) in Eq.(2.12.] The sum over the common expression for the bosonic propaga(&m*(q)b(q))Seff with
Matsubara frequency which runs along a generic cycle canhe self-energy insertions of Fig(l, making use of the
not be performed explicitly owing to the frequency depen-standard bosonic diagrammatic rufé$3
dence of the two-boson interactian(d:,d2,93,d4). How- Our “full” bosonic propagator is given by Dyson’s equa-
ever, it can be readily verified that all the interaction verticesjon:
appear along the cycle with the dependencg(q B _1 ¢
+0;,0a,0p,9+0d;_1) on the common four momenturg I~Ha)=T "(q)~2E(a),
running along the cycle. From the explicit expressions foryhere the quantity
D(q) anduy(q1,92,93,94) [Egs. (3.2 and (2.11), respec- 5
tively] it can then be readily proved that, when the sum over Eg)(q) - = 2 Fo(q’)t_B(q’ ,0,9,9") (3.5
the common Matsubara frequency is turned into a contour BY

Integration over the complex frequenzyeach factou, has o, osents tha-matrix approximation to the self-energy for

acll:t'al?hng thle potshltl\t/(tahreal aiqlsbfct).r RZ?( ?h_':f' composite bosons. The bosoriiematrix is, in turn, defined
is thus clear that the contribution to the frequency sumby the following integral equation:

coming from the singularities due to the frequency depen-~
dence of the bosonic potentials is strongly suppressed by thg,(q,,q,,03,0.)
presence of the Bose factoed?— 1)1 therein, sinced|u|

2Uy(Qy . .. Qg)=Ux(Qy - . . Cs)

(3.9

>1 in the strong-coupling limit. In this limit, the contribu- =U5(q1,92,03,04)
tion of these singularities can thus be neglected, with the 1
result that the cycle is again proportional to the bosonic den- _ - N7 _
sity pg, by the very argument holding for pointlike bosons. BY qE5 U281, Az, s, a Az~ )
We conclude that, for a system of composite bosons in the _
“low-density” limit, the leading diagrams contain jusine XTo(d5)'o(d1+ 92— 0s5)te(d1+ 02— 0s,05,03,04),
cycle like the ones shown in Fig.(d). In analogy with the (3.6

corresponding diagrams of Fig(&gJ for pointlike bosons, we .
shall refer to these diagrams as thenatrix approximation whereu, is proportional to the effective two-boson interac-
for composite bosons tion of Eq.(2.11):

s 1
BY K e(—k)e(k+ay)e(—k+qi;—qs)e(k+0,) "

Up(Qy - . Gg)= 3.7)

With the above expression for the “full” particle-particle 2 i
ladder, we can obtain the fermionic self-energy of interest in P= 5y EK e'“n7G(k), (3.9
analogy to Eq(2.17), by joining the incoming and outgoing
arrows of the particle-particle ladd€rwith a single-particle  where 7 is a positive infinitesimal.
fermionic Green’s function in the only possible way. We  Besides the explicitG® in Eq. (3.8), also all single-

then write particle fermionic Green'’s functions entering the expression
4) for I' are meant to be “bare” ones, in analogy to the
1 (3.9 for I' b ? " i I h
P . 7 .
K)= — T(k+kGOK' 38 original approach by Galitsk : We expect,'ln fa(_:t, that,
2e(k) BY & ( V67K 38 contrary to a statement made in Ref. 7, the inclusion of self-

consistency in the explicit single-particle fermionic Green'’s
with T given by Eq. (3.4 and whereG? is the “bare”  function of Eq.(3.8) should not be essential to represent
single-particle fermionic Green’s function. The self-energycorrectly the fermionic self-energy, either in the strong-
(3.9) has in turn to be inserted into the fermionic Dyson’s coupling limit (where, on physical grounds, it is rather the
equation, to yield the full single-particle fermionic Green'’s bosonic propagator that needs to be represented coprectly
function G. Eventual extrapolation from the strong- to the in the weak-coupling limi{where self-consistency drops out
weak-coupling limit through the crossover region requires usanyway for a “low-density” Fermi systein
to eliminate the chemical potential in favor of the particle By the same token, inclusion of self-consistency in the
densityp, by evaluating single-particle fermionic Green'’s functions entering the ex-
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pression(3.4) for I' would yield contributions of higher or- In a similar way, wedefinethe scattering lengtlag for
der in the small parametédd-ar with respect to the ones composite boson&ach of mass @) in the strong-coupling
retained(both in the weak- and strong-coupling limits limit and for vanishing density, by settingtg(0)

Our theory, which by construction correctly describes in=4zag/(2m), where t5(0)=[8/(m?ag)]%tg(0) and

the strong-coupling limit a system of “low-density” com- To(0)=t. -

. o 15(0)=1g(0,0,0,0)[cf. Egs.(2.12, (2.11), and(3.7)]. This
posite . bo;oﬁn;, reduces  to . thg 'standqrd Galitskil %quantity is expected to be important for the calculation of the
approximation in the weak-coupling limit. In this way, both bosonic self-energ3.5), insofar as the generaliz8dmatrix

weak- and strang-coupling limits are treated correctly. In-¢, composite bosons therein depends weakly on its argu-
deed, since in the weak-coupling limit the bare partlcle—ments

particle Iaddeﬂ“_o becomes _propo_rtlonal @, we can est- To lowest order in the effective interaction for composite
mate the order ikgag of a given diagram contributing to the bosons, we can repladg(0) by u,(0) and write u,(0)

“full” particle-particle ladderI’, by counting the powers of _ Bom e o -
ar in terms of the number of “bare” ladderE, and the Amag "/(2m), within the Born appmx'm"igﬁ'ﬁﬂ' Compari

. . . . son with Eg.(2.13 vyields then the valueag ' "=2ar, as
powers ofkg in terms of the dimensionality of the four- - : B .
vector sums over products of internal single-particle fermi-am'C”‘)mEdIby th(2'14)' This Borln a_p()jpm)_(;_m;tlontg}gle
onic Green'’s functiongwhich can safely be done because all scattering length was erroneously identified as ct
sums are convergentBy this procedure, we obtain that, in bosonic scatterlngllength in Ref. 7. _
the weak-coupling limit, a diagram fdf with L bosonic In order to obtain the exact value 64(0) (and hence of
interaction vertices is smaller by a factde-@)2" with re-  the scattering lengthg), it is convenient to determine first
spect to the “bare” laddef,. The leading diagram for the the auxiliary quantitytg(qg,—q,0,0) by solving the follow-
fermionic self-energy will be thus obtained by closing theing closed-formequation:
“bare” ladder I'j; with a bare fermionic Green’s function,
which corresponds to E@3.8) with I'j in the place ofl". As

our bosonicT-matrix corrections td”, contain at least one ts(9,—9,0,00=u>(9,~q,0,0)

bosonic interaction vertex, they will become irrelevant in the 1 o

Weak-<:20upllng limit, being smaller at least by a factor ~ By u»(g9,—q,9",—q")'e(q")
(krap)© compared to the barg,. OurI" thus reduces td' q’

in the weak-coupling limit, and we fully recover Galitskii's S, ,

theory. Ping g XTo(-q')te(a’,~',00), (4.

These considerations also prove that diagrams of the same

order inppag in the bosonigstrong-coupling limit corre-  which is obtained from Eq3.6) by settingg; = — q,=q and

spond todifferent orders inkgag in the fermionic(weak-  g,=q,=0. This integral equation can be solved by standard

coupling limit; accordingly, they would have been dis- numerical methods, e.g., by reverting it to the solution of a

missed as being irrelevant, if the selection of diagrams wouldystem of coupled linear equations.

have been made directly for the weak-coupling limit. Before embarking into this numerical calculation, we can
A complete numerical evaluation of Eq8.7)~(3.9) €x-  ptain 4 preliminary estimate of the value 6§(0) with

ceeds the purposes of the present paper. In the next secligiited effort, by neglecting the four-vector dependence of

we calculate the scattering length for composite bosons in- — .

the strong-coupling limit, as a degenerate case of theB as vyell as the frequency depe_ndenceugfon the right-

T-matrix given by Eq.(3.6). This calculation will ensure us and side of Eq(4.1). We thus write approximately

that the diagrams of Fig.(), beyond first order in the in-

teraction potential for composite bosons, give contributions (t_B(O)) -1 (IB(O)>1

of the same orderof magnitude as the first-ordéHartee-
Fock) diagram. In addition, it will turn out that the series of uz(0)
diagrams depicted in Fig.(d) doesnot converge, making

uy(0)

any truncation of the series not appropriate. For this reason, 21+J dq U(q ~q,0 0)1
it is essential to solve the complete integral equation associ- (2m)3 ]
ated with this series of diagrams to get a correct description
of the strong-coupling limit. x% To()To(—q)
IV. NUMERICAL RESULTS FOR THE SCATTERING d 1
LENGTH OF COMPOSITE BOSONS —1— f —3“2(q'_q’0’0)ﬁ
In three dimensions thscattering length acharacterizes (2m)
the low-energy collisions for the scattering from an ordinary 1 1
potential. For the mutual scattering of two particlesch of XE 7 7
massM), a can be expressed by the relati{®)=4ma/M @ i0,— a iQ,+ a
in terms of the ordinaryl matrix t(0) in the limit of vanish- 4m 4m
ing wave vector. In particular, within the Born approxima- om
tion t(0) is replaced by the Fourier trasfora(0) of the :1+f ux(q,—q,0,00—, (4.2
interparticle potential for the vanishing wave vector. (2m)3 q?
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where the last result holds to the leading order in the density a 4
Recalling further from Ref. 15 that r 4|
4 al
u2(q!_q1010):u2(0)—2 (43)
4+(|alag) 25|
in the strong-coupling limit, we obtain for the integral on the 5L
right-hand side of Eq(4.2) the following value(in three
dimension$ 15
qu 002m_0m_4 4.4 i
(277)3U2(Qa °F v)q2 —U2( )’7Ta|:_ ’ ( ) 05 F - L oo
where use has been made of the reult3. We thus obtain 0 02 02 06 08 1 12 14 15 18 2
ag tg(0) 1

aBom  uy(0) 5’

B FIG. 8. Scattering lengtla (in units of ag) vs the coupling
which implies that the contribution of the series diagramsstrengthy of the potential(4.6), obtained by solving numerically
depicted in Fig. 1) is of thesame order of magnitudes the  the integral equatiori4.?) (asterisks The full line represents the
contribution of the first-order (Hartree-Fock diagram  Born approximatiora/ag=2y.
therein.

The above approximate calculation suggests us to combtained by perturbative methofihe perturbative region—

sider in more detail the scattering problem for two truewhere the Born series associated with the integral equation
bosons(each of mas#), mutually interacting via a poten- (4.7) for a repulsive potential would converge—is, in fact,

tial of the form(4.3), namely, limited by aB°"Va<2 and corresponds tg=<0.5]. For this
reason, any truncation of the integral equation would not be
_8mag vy justified. Note also that the difference betwesft?™ and a
u(e) =~ =5 46 | . | -
1+q%/4 increases drastically ag increases\we have verified that

- _ _ _ _ alag is proportional to log at least over eight decades
whereq=|q|ar andy is a dimensionless coupling constant  Full numerical calculation of Eq4.1) requires us to in-
[y=1 andM =2m for the potential(4.3)]. Solving for this  troduce a finite-size mesh for the variablég|( Q) as well
simplified scattering problem will, in fact, be instructive to a5 (q’|, Q’), with the angular integral oveq’ affecting
obtain the solution of the original scattering probléma) only the function@(q,—q,q’,—q’). Equation(4.1) is thus

for composite bosons, since it will) suggest a nontrivial o q,ced to a set of coupled equations for the unknowns
approximation to be carried over to the original E4.1), T« ] . .
g(19],Q;|ql,—Q;0;0), which we have solved by the stan-

and(ii) assess whether the region of interegt(1) belongs . ) . . ,
to the perturbative or nonperturbative regime of the scattergard Newton-Ralphson algorithm with a linear interpolation

ing integral equation. for the integral ovetq’| and()’. In this way we obtain
To this end, we recall the equation satisfied by Thea- —

trix for two-body scattering. In particular, it is sufficient to ag _tg(0) 1

consider the following degenerate form agom_jz(o) - 2.65

4.9

dg’_u(q-a’tq ’0), (4.7)  within an estimated 5% numerical accuracy.
(2m)® q'2 To verify that this result could not be inferred from a
Vi perturbative expansion of the integral equat@énl), we ca!-
culate eventually the second term on the right-hand side of
which resembles Ed4.1) for composite bosons but lacks its Eq. (4.1) by replacingtg(q’,—q’,0,0) therein withu,(q’,
dependence on Matsubara frequencies. As already noted, theq’ ,0,0) and by settingj=0 everywhere for convenience.
scattering length is related t§0)=t(0,0) by the relatiora In this way we obtain
=t(0)M/(4m). For a spherically symmetric potential,
t(9,0)=t(|qg|,0) and the angular integral in E(.7) can be o o ux(q',—q’,0,0)2
readily performed. The remaining integral oVef can be tB(O):uz(O){l——VE —_—
suitably discretized over a mesh, until convergence is BV g u2(0)
achieved for the desired valu¢0) (200 mesh points have

uqm=wm—f

proved sufficient to get a 1% accuracy in the scattering XTo(q)To(—q') + - -
length.
The results fom (in units ofag) vs y are shown in Fig. 8, o
where the asterisks correspond to the numerical solution of =Uy(0)(1-1.69+- ), (4.9

Eq. (4.7) and the full curve represents the Born approxima-
tion a®°"ar=2y. Note that, in the region of interesty( showing clearly that the geometric series would not converge
~1), a®a~3 andthe solution ofEq. (4.7) cannot be in this case.



15 380 P. PIERI AND G. C. STRINATI PRB 61

To summarize, we have shown that, in the strong-Accordingly, keeping track of the powers of this small pa-
coupling limit, the value ag=2ar obtained for the rameter in the diagrammatic theory can be relevamiy in
composite-boson scattering length within the self-consisterthe weak- and strong-coupling limits. In the intermediate-
fermionic T-matrix approximatiori, is modified to ag  coupling (crossover region, on the other hand, a small pa-
~(3/4)ar by the correct inclusion oéll low-density contri- rameter is lacking and consequently the diagrammatic ap-

butions for a system of composite bosons. proximations cannot be controlled by any means.
For these reasons, implementing the self-consistency of

the fermionic Green’s functions within the fermionic
T-matrix approximatioh does not seena priori to be an

In this paper, we have determined the correct diagramimportant issue for the BCS-BE crossover. Self-consistency,
matic approximation for a “dilute” system of composite in fact, drops out in the weak- and strong-coupling limits
bosons, which form as tightly bound pairs of fermions in thewhen the “diluteness” parameter is small, while in the in-
limit of strong attraction between the constituent fermions.termediate(crossover region inclusion of self-consistency
We have emphasized that it is physically the comparison oWithin the fermionic T-matrix approximation(as well as
the average interparticle distance to the characteristic lengthithin any other approximation over and abovg éannot
associated with theesidualinteraction between the compos- anyway be controllethy the lack of a small parametézven
ite bosons to determine the “diluteness” condition in the though inclusion of self-consistency might produce in prac-
strong-coupling limit of the original fermionic attraction. For tice sizable numerical effegts
this reason, it is essential to treat the residual interaction We have emphasized in this paper that tfeelf-
between the composite bosons with care, in order to contrgtonsistent fermionic T-matrix approximation does not ac-
the strong-coupling limit of the theory appropriately. In this count properly for the boson-boson interaction in the strong-
context, it is worth mentioning that the importance of acoupling limit, at least in three dimensions. This
proper treatment of the residual boson-boson interaction i@pproximation, however, has been recently adopted to dis-
the strong-coupling limit has been emphasized in the piocuss pseudogap and related issues within the negdtive-
neering paper by Nozes and Schmitt-Rink' but never ~Hubbard model intwo dimensions’®~3* Assessing to what
duly taken into account in subsequent work. extent the approach we have developed in this paper can be

We have also shown that the selection of the diagramcarried over to the two-dimensional case is agtriori evi-
matic contributions according to the “diluteness” parameterdent and will require further investigations. From physical
proceeds along quite different lines in the weak-couplingntuition one would expect the bosonic regime to be reached
limit (where the small parameterkigag) and in the strong- €ven more effectively in two than in three dimensions, inso-
coupling limit (where the small parameter ﬁé’%s). Ac- far as the two-fermion bound state is present in two dimen-
cordingly, diagrammatic contributions of ttemmeorder in  sions for any(attractive coupling strength. Our dealing with
pé/3aB in the strong-coupling limit correspond, in general, to the three-dimensional case first was required for manifesting
differentpowers ofk-a in the weak-coupling limit. at the outset the effects on the BCS-BE crossover due to the

Our selection of diagrammatic contributions has rested offrogressive formation of bound-fermion pairs, thus isolating
a suitable regularization of the fermionic interaction, whichthem from other effects which are peculiar to the two-
has caused the ratio between the particle-particle anfimensional case. _
particle-hole contributions to be infinite. For a Hubbard 't S finally interesting to point out the strong analogy
Hamiltonian on a lattice, where this regularization cannot be?€tween the present treatment of the BCS to BE crossover in
applied, we expect the difference between particle-particlé@ condensed-matter system and the so-called Otsuka-Arima-
and particle-hole contributions to be less extreme albeit Sti||achgllos5r3réapplng introduced some time ago in nuclear
appreciable, so that our selection of diagrammatic contribuPYsics,”™ where a systematic mapping between the dia-
tions may still remain valid. grammatic theories fo(rc_omposne _b(_)sons a_mdcpnstltuen)t _

Quite generally, we have remarked that, with our choic€'Mions was also provided, albeit in a quite different physi-
of the fermionic interaction, the most general structure of th&@l context and with the use of approximations more specific
diagrammatic theory is constructed with the “bare” particle- {0 the nuclear problem.
particle ladder plus an infinite set @four, six, ... ,-poin)
vertices. This remains true fany value of the fermionic
coupling and not just in the strong-coupling limit where the  We are indebted to C. Castellani, C. Di Castro, M. Grilli,
composite bosons form. We have also remarked that the “diF. |achello, V. JanisA. Perali, and F. Pistolesi for helpful
luteness” parameterkgag or pé/3aB) emergesnaturally  discussions. P.P. gratefully acknowledges financial support
from the theory, both in the weak- and strong-coupling lim-from the Italian INFM under Contract No. PRA-HTCS/96-
its, without having to be imposed as an external condition98.
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