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Strong-coupling limit in the evolution from BCS superconductivity
to Bose-Einstein condensation

P. Pieri* and G. C. Strinati†

Dipartimento di Matematica e Fisica, Sezione INFM, Universita` di Camerino, I-62032 Camerino, Italy
~Received 22 December 1999!

We consider the problem of the crossover from BCS superconductivity to Bose-Einstein condensation in
three dimensions for a system of fermions with a mutual attractive interaction, for which we adopt the
simplifying assumption of a suitably regularized point-contact interaction. We examine in a critical way the
fermionic ~self-consistent! T-matrix approximation, which has been widely utilized in the literature to describe
this crossoverabove the superconducting critical temperature, and show that it fails to yield the correct
behavior of the system in the strong-coupling limit, where composite bosons form as tightly bound fermion
pairs. We then set up the correct approximation for a ‘‘dilute’’ system of composite bosons and show that a
class of diagrams has to be considered in the place of the fermionicT-matrix approximation for the self-energy.
This class of diagrams correctly describesboth the weak- and strong-coupling limits, and consequently results
in an improved interpolation scheme for the intermediate~crossover! region. In this context, we provide also a
systematic mapping between the corresponding diagrammatic theories for the composite bosons and the con-
stituent fermions. As a preliminary result to demonstrate the numerical effect of our class of diagrams on
physical quantities, we calculate the value of the scattering length for composite bosons in the strong-coupling
limit and show that it is considerably modified with respect to the result obtained within the self-consistent
fermionic T-matrix approximation.
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I. INTRODUCTION

The problem of the crossover from BCS superconduc
ity to Bose-Einstein~BE! condensation has attracted cons
erable interest lately,1 and especially after the recent angl
resolved photoemission spectroscopy experiments in cup
superconductors which have shown the existence o
~pseudo! gap at temperatures above the superconduc
transition temperatureTc .2,3 This observation has prompte
the proposal by many authors of the possible presenc
quasibound fermionic pairsabove Tc and up to a second
temperature scaleT* .

From the theoretical point of view, this crossover proble
~as well as related crossover problems, like the one ass
ated with the Mott transition4! poses a compelling challenge
because approximations that are valid on the one side o
crossover are not necessarily valid on the opposite side
addition, the crossover region is characterized~or even de-
fined! by the absence of a ‘‘small’’ parameter, which wou
allow one to control the approximations. For systems that
sufficiently ‘‘dilute’’ ~such that, for instance, for a give
strength of the interparticle interaction, the densityr can be
taken to be arbitrarily small!, one could directly exploit the
well-known results obtained for ‘‘dilute’’ fermionic system
with rF5r, on the one hand,5 or for ‘‘dilute’’ bosonic sys-
tems withrB5r/2, on the other hand,6 to get a correct de-
scription of the limits on the two sides of the crossover.

For a ‘‘dilute’’ fermionic system the two-body equatio
plays an essential role.5 In particular, in three dimensions th
low-energy two-body scattering process can be parametr
in terms of thescattering length aF , which is negative for
weak coupling and positive for strong coupling~i.e., in the
presence of a bound state for the attractive interaction!, and
diverges when the coupling strength suffices for the bo
state to appear. For strong coupling,aF gives the size of the
PRB 610163-1829/2000/61~22!/15370~12!/$15.00
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bound state. The many-body approach to a ‘‘dilute’’ ferm
onic system then relies on the identification of the man
body T matrix with aF , which, in the repulsive case, is a
ways possible in the low-density limit. The classification
diagrams is thus made in terms of the small parameterkFaF

~where kF is the Fermi wave vector of the noninteractin
system!. In the case of interest to us of anattractive interac-
tion, however, past the critical interaction strength where
two-body problem develops a bound state, the many-bodT
matrix acquires a singularity ~pole! for all interaction
strengths and no identification of theT matrix with aF is
clearly possible any longer. The smallness of the param
kFaF both in the weak- and strong-coupling limit7 might not,
therefore, be sufficient to guarantee that an approxima
selected for the weak-coupling limit is still valid in th
strong-coupling limit.

In particular, theT-matrix approximation for the fermi-
onic self-energy~which has invariably been regarded in th
literature as representingthe dilute-approach approximation
to the BCS-BE crossover problem!7–12 is not expected to
remain valid as soon as the two-body bound state devel
This statement is consistent with the physical picture thatas
soon as the two-body bound state develops, it is the resid
interaction between the composite bosons to determine
‘‘diluteness’’ condition of the systemand not the original
attraction between the constituent fermions which produ
the bound state to begin with and relatively to which t
system is in the strong-coupling limit.13 It is then clear that a
correct description of the strong-coupling limit can be o
tained only by selecting the relevant approximations direc
for a dilute system of composite bosons, rather than relying
on the fermionicT-matrix approximation, which is valid by
construction for adilute system of fermions.

From previous work on the functional-integral approa
15 370 ©2000 The American Physical Society
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PRB 61 15 371STRONG-COUPLING LIMIT IN THE EVOLUTION FROM . . .
to the crossover from BCS to BE,14–16 one knows that ap-
proximations~like the BCS mean field at zero temperatur!,
which give a satisfactory account of the weak-coupling lim
become inadequate in the strong-coupling limit, and t
only when including fluctuation corrections at least at t
one-loop level a sensible description of the effective boso
system in the strong-coupling limit results. This remark h
actually suggested that the crossover problem should be
with in reverse,15 that is, by first envisaging approximation
which give a satisfactory description of the strong-coupl
~bosonic! limit and by extrapolating them toward the wea
coupling ~fermionic! limit, where they are expected to wor
properly as well.17

One then anticipates the set of many-body~self-energy!
diagrams, which describe the bosonic limit, to be mu
richer than the corresponding set of diagrams which desc
the fermionic limit. In fact, from the previous discussion w
do not expect the fermionicT-matrix approximation to be
appropriate for describing the ‘‘dilute’’ bosonic limit prop
erly. We will indeed show below that the fermionicT-matrix
approximation corresponds in the strong-coupling limit
the standard bosonic Hartree-Fock approximation, and t
for this reason, it misses all but one of the infinite set
self-energy diagrams associated with a ‘‘dilute’’ boson
system.18

In this paper, we present the formal theory for the cho
of the fermionic self-energy diagrams starting from t
strong-coupling side, for temperaturesabove Tc ~in the sense
that no anomalous single-particle fermionic propagator w
be considered! and for three spatial dimensions. The corr
sponding theory belowTc , as well as in lower spatial dimen
sions, remains to be developed. An extensive numer
study based on this approximation is under way and will
discussed separately. The only numerical calculation p
sented in this paper concerns the value of the compo
boson scattering lengthaB in the strong-coupling limit.

The plan of the paper is as follows. In Sec. II we discu
some introductory material, which is necessary for setting
our ‘‘low-density’’ approximation for composite boson
Specifically: We introduce a suitable regularization for t
fermionic point-contact interaction, which allows us to sele
readily the relevant classes of fermionic diagrams; We su
marize the mapping onto a bosonic system in the stro
coupling limit, obtained by the procedure of Ref. 15; W
discuss the standard fermionicT-matrix approximation and
show how the Hartree-Fock approximation for compos
bosons results from it in the strong-coupling limit. In Se
III, we introduce the theory of the ‘‘low-density’’ Bose ga
for composite bosons and obtain the fermionic self-ene
from the bosonic self-energy in the ‘‘low-density’’ approx
mation. In Sec. IV we present the numerical calculation
the composite-boson scattering lengthaB in the strong-
coupling limit and discuss the physical implications of o
result. Section V gives our conclusions.

II. BUILDING BLOCKS OF THE DIAGRAMMATIC
STRUCTURE FOR COMPOSITE BOSONS

In this section we discuss the diagrammatic structure
generically describes the composite bosons in terms of
constituent fermions, as a preliminary step for setting up
,
t

ic
s
alt

h
e

t,
f

e

ll
-

al
e
e-
e-

s
p

t
-

g-

e
.

y

r

at
e
e

‘‘low-density’’ approximation for composite bosons in th
next section. Our construction rests on a judicious choice
the fermionic interaction, which~albeit without loss of gen-
erality! greatly reduces the number and considerably sim
fies the expressions of the Feynman diagrams to be ta
into account.

A. Regularization of the fermionic interaction

We begin by considering the following simple mod
Hamiltonian for interacting fermions~we set Planck\ and
BoltzmannkB constants equal to unity throughout!:

H5(
s

E dr cs
†~r !S 2

¹2

2m
2m Dcs~r !

1
1

2 (
s,s8

E dr dr 8cs
†~r !cs8

†
~r 8!

3V eff~r2r 8!cs8~r 8!cs~r !, ~2.1!

wherecs(r ) is the fermionic field operator with spin projec
tion s5(↑,↓), m is the fermionic~effective! mass,m is the
fermionic chemical potential, andV eff(r2r 8) is aneffective
potential that provides theattraction between fermions. To
simplify the ensuing many-body diagrammatic structure c
siderably~and yet preserving the physical effects we are
ter!, we adopt forV eff the simple form of a ‘‘contact’’
potential19

V eff~r2r 8!5v0d~r2r 8!, ~2.2!

wherev0 is a negative constant. With this choice, the inte
action affects only fermions with opposite spins in t
Hamiltonian ~2.1! owing to the Pauli principle. A suitable
regularizationof the potential~2.2! is, however, required to
get accurate control of the many-body diagrammatic str
ture. In particular, the equation~in the center-of-mass frame!

m

4paF
5

1

v0
1E dk

~2p!3

m

k2
~2.3!

for the fermionic scattering length aF associated with the
potential~2.2! is ill defined, since the integral over the thre
dimensional wave vectork is ultraviolet divergent. The
d-function potential~2.2! is then effectively regularized, by
introducing an ultraviolet cutoffk0 in the integral of Eq.
~2.3! and lettingv0→0 ask0→`, in order to keepaF fixed
at a chosenfinite value. The required relation betweenv0 and
k0 is obtained directly from Eq.~2.3!. One finds

v052
2p2

mk0
2

p3

maFk0
2

~2.4!

whenk0uaFu@1. With the regularization~2.4! for the poten-
tial, the classification of the many-body diagrams gets c
siderably simplified, since only specific substructures
these diagrams survive when the limitk0→` is eventually
taken. In particular, in order to obtain a finite result for
given Feynman diagram, the vanishing strength of the po
tial v0 should be compensated by an ultraviolet divergence
some internal momentum integration. Two examples of
ternative behaviors are given in Figs. 1~a! and 1~b!. For the
particle-particle ladder of Fig. 1~a! the internal momentum
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15 372 PRB 61P. PIERI AND G. C. STRINATI
integration associated to every rung is divergent in the li
k0→` and compensates the vanishingv0, yielding the finite
result:

G0~q!52H m

4paF
1E dk

~2p!3

3F tanh@bj~k!/2#1tanh@bj~kÀq!/2#

2@j~k!1j~kÀq!2 iVn#
2

m

k2G J 21

,

~2.5!

wherej(k)5k2/(2m)2m. For the particle-hole bubble se
ries of Fig. 1~b! we obtain instead a vanishing result, sinc
in this case, the internal momentum integration is cut off
the Fermi factors and thus converges. In an analogous w
one can show that in the particle-particle channel the con
butions of the vertex corrections and of the two-particle
fective interactions other than the rung vanish for our cho
of the potential, since they both contain a factor of t
particle-hole type.

It is thus evident from these considerations that, with o
choice of the fermionic interaction, theskeleton structureof
the diagrammatic theory can be constructed only with
particle-particle ladder~2.5! plus an infinite number of inter
action vertices, like the ones depicted in Fig. 2~besidesone
spare single-particle fermionic Green’s function that ent
the fermionic self-energy diagrams, which in turn contai
in principle, all self-energy insertions originating from se
consistency!. The ladder and the vertices of Fig. 2 conta
by construction, only ‘‘bare’’ single-particle fermioni
Green’s functions. These vertices serve to connect the
ders among themselves, thus generating complex diag
matic structures. In analogy with the so-called Hikami ve
ces occurring in the weak-localization problem,20 we refer to
these vertices as the four, six,. . . , -point vertices, in the
order.

FIG. 1. ~a! Particle-particle ladder and~b! series of particle-hole
bubbles. Note that for a point-contact potential the particle-part
ladder depends only on the sum of the incoming~outgoing! four
momenta. Four momenta are indicated and spin labels are re
sented by up and down arrows.
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As far as the dressing of the particle-particle ladder
concerned, the above statements can be justified in a rigo
fashion by resorting, e.g., to functional-integral methods. B
fore going to consider such functional-integral methods it
however, important to examine in detail the analytic beh
ior of our building blockG0(q) in the weak- and strong
coupling limits.21

In the weak-coupling limit, one readily obtains to lowe
order inkFaF :

G0~q!'2
4paF

m
, ~2.6!

which allows us to classify the diagrammatic structure
powers ofkFaF . In the strong-coupling limit~wherebybm
→2`),21 on the other hand, the particle-particle ladd
G0(q) has the followingpolar structure:7

G0~q!'2
4p

m2aF

11A11S 2 iVn1
q2

4m
2mBD e0

21

iVn2S q2

4m
2mBD ,

~2.7!

where we have used the definitionmB52m1e0 for the
bosonic chemical potential (e051/(maF

2) being the bound-
state energy of the two-body problem!. Note that~apart from

e

re-

FIG. 2. Four- and six-point vertices for composite bosons.
coming and outgoing bosonic four momenta are indicated, as
as four momenta on each fermionic line. Spin labels are unders
to alternate on successive fermionic lines.
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PRB 61 15 373STRONG-COUPLING LIMIT IN THE EVOLUTION FROM . . .
the residue being different from unity! the expression~2.7!
resembles a ‘‘free’’ boson propagator with Matsubara f
quencyVn (n integer!, wave vectorq, and mass 2m. It is
thus evident that the classification of diagrams developed
a ‘‘dilute’’ system in weak coupling~which relies on the
finite value~2.6! of the particle-particle ladder—cf. Ref. 5!
can no longer be utilized in the strong-coupling limit, sin
in this case the particle-particle ladder does not reduce
constant but develops a polar structure@cf. Eq. ~2.7!#. In the
strong-coupling limit, a different classification scheme
therefore required to organize the diagrammatic structu
for a ‘‘dilute’’ system. This point was not properly realize
by previous work on the BCS to BE crossover and especi
by the work of Ref. 7, where the ‘‘diluteness’’ condition o
the system was explicitly assumed both in the weak-
strong-coupling limit.

B. Mapping onto a bosonic system via functional integrals

We briefly review the procedure of Ref. 15 to extract t
set of effective bosonic interactions mentioned above fr
the original fermionic action. By performing a Hubbar
Stratonovich transformation, the original fermionic partitio
function Z5*Dc̄Dc exp$2S% was written in Ref. 15 asZ
5*Db* Db exp$2Seff% in terms of bosonic variables, wher
the ‘‘effective’’ bosonic action can be expressed as a se
expansion:Seff5( l 51

` Seff
(2l ) . The first term of this expansion

is quadratic and reads

Seff
(2)5

V
b (

q
ub~q!u2G0

21~q!, ~2.8!

where V is the quantization volume. The ‘‘bare’’ boson
propagator is thus expressed in terms of the particle-par
ladder~2.5!, by writing

^b* ~q!b~q!&S
eff
(2)5

b

V G0~q!. ~2.9!

This identification is shown graphically in Fig. 3~a! for a
definite choice of the spin labels~this convention will be
maintained in the rest of the paper!. It is important to em-
phasize that the identification~2.9! ~as well as the other re
sults of this subsection! holdsirrespectiveof the value of the
fermionic scattering lengthaF . Nonetheless, referring to
system of interacting composite bosons acquires phys
meaning in the strong-coupling limit only.

The quartic term in the expansion ofSeff is instead given
by

Seff
(4)5

1

4bV (
q1 . . . q4

ũ2~q1 . . . q4!b* ~q1!b* ~q2!b~q3!b~q4!,

~2.10!

where the~four-point! effective two-boson interactionreads
~cf. Fig. 2!

ũ2~q1 . . . q4!5dq11q2 ,q31q4S V
b D 2 2

bV (
k

3
1

e~2k!e~k1q2!e~2k1q12q4!e~k1q4!
.

~2.11!
-

or

a
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d

s

le
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It is worth noting the following features of the above expre
sions:~i! The interaction~2.11! depends on wave vectorsas
well ason Matsubara frequencies, revealing in this way t
composite nature of the bosons;~ii ! The energy denomina
tors in Eq.~2.11! correspond to single-particle~bare! fermi-
onic Green’s functions, sinceG 0(k)5e(k)21; ~iii ! The fac-
tor of 2 in the definition~2.11! corresponds to the two
different sequences of spin labels that can be attached to
four fermionic Green’s functions, as shown graphically
Fig. 3~b! ~where the identification with the effective two
boson interaction is also indicated!. Keeping track of the spin
labels will, in fact, prove important in the following to es
tablish the desired mapping between the bosonic and fe
onic diagrammatic structures.

When considering the sumSeff
(2)1Seff

(4) of the quadratic and
quartic actions, the bosonic propagator^b* (q)b(q)&S

eff
(2)1S

eff
(4)

can be expressed in terms of the ‘‘bare’’ bosonic propaga
~2.9! and of the effective two-boson interaction~2.11! via
Wick’s theorem. The topology of the resulting diagramma
structure, as well as the symmetry factor of each diagram,
identical to those obtained for true~point-like! bosons.22,23

The associated fermionic diagrammatic structure can the
constructed whenever needed by the correspondence
shown in Fig. 3.

As an example of this correspondence, we show in Fig
the bosonic propagator to first order in the interaction,
gether with the associated fermionic diagrams for the tw
fermion Green’s function in the particle-particle chann
Note that the minus sign, which is associated with one po
of the interaction in the bosonic diagram, is associated

FIG. 3. Graphical correspondence~a! between the ‘‘bare’’
propagator for composite bosons~represented by a thick line! and
the fermionic particle-particle ladder of Fig. 1~a!, and ~b! between
the effective two-boson interaction and the four-point vertex of F
2, where now the spin labels have been explicitly indicated in
internal lines. Note that the fermionic lines composing the fo
point vertex have been rearranged with respect to Fig. 2, in orde
resemble the bosonic vertex more closely~accordingly, the fermi-
onic lines never intersect each other in the four-point vertex!. Ap-
propriate powers ofb/V as required by Eqs.~2.9! and ~2.11! have
been indicated explicitly.
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15 374 PRB 61P. PIERI AND G. C. STRINATI
stead with the presence of a closed loop in the correspon
fermionic diagrams~the minus signs associated with the fe
mionic interaction being already taken into account in
definition of the particle-particle ladder!. Note also that the
bosonic self-energy insertion of Fig. 4 has the same topol
cal structure of the bosonic Hartree-Fock self-energy d
gram.

FIG. 4. Graphical correspondence between the composite-b
propagator and the two-fermion Green’s function in the partic
particle channel, to first order in thefour-point interaction vertex.
This vertex can be identified from Fig. 2 by settingq25q35q and
q15q45q8 therein.
on

e-
ri-
,
on
ng

e

i-
-

A typical value of the two-boson effective interaction
obtained by considering the strong-coupling limitbm→
2` and settingq15•••5q450 in Eq. ~2.11!. One gets

ũ2~0!52S V
b D 2S m2aF

8p D 2

u2~0!, ~2.12!

where15

u2~0!5
4p~2aF!

2m
. ~2.13!

The factorm2aF /(8p) in Eq. ~2.12! reflects the difference
between the true bosonic propagator and the particle-par
ladder in the strong-coupling limit@cf. also Eq.~2.7!#. Owing
to this difference,u2(0) given by Eq.~2.13! @and notũ2(0)
given by Eq. ~2.12!# has to be identified with the boson
boson interaction at zero four momenta. We return to
difference betweenũ2 andu2 in Sec. III A.24

Recalling further that the scattering lengthaB
Born within

the Born approximation, obtained for a pair of true boso
~each of mass 2m) mutually interacting via a two-body po
tential with Fourier transformu2(0) at zero wave vector, is
given by aB

Born52mu2(0)/(4p), Eq. ~2.13! yields the fol-
lowing relation between the bosonic and fermionic scatter
lengths:

aB
Born52aF . ~2.14!

The result~2.14! was also obtained in Ref. 7 within the fe
mionic self-consistentT-matrix approximation~which corre-
sponds to the bosonic Hartree-Fock approximation of Fig
in the strong-coupling limit—see the next subsection!, where
it was erroneously regarded to be the value of the scatte
length aB for a ‘‘dilute’’ system of composite bosons. W
will, in fact, show in Sec. IV that the result~2.14! actually
differs from aB , whenall diagrams associated with a ‘‘di
lute’’ system of composite bosons are taken into accoun

Besides the four-point vertex~2.11!, the composite nature
of the bosons produces~an infinite set of! additional vertices.
In particular, from the mapping of Ref. 15 we obtain th
following expression for the six-point vertex~cf. Fig. 2!:

on
-

ũ3~q1 . . . q6!5dq11q21q3 ,q41q51q6S V
b D 3 2

bV (
k

~21!

e~2k!e~k1q2!e~2k2q21q5!

3
1

e~k1q21q32q5!e~2k1q12q4!e~k1q4!
. ~2.15!
ly

the
In the strong-coupling limit, wherebyumu is the relevant en-
ergy scale in the problem, from dimensional considerati

we get ũ2(b/V)2;umu23/2 and ũ3(b/V)3;umu27/2 ~in three
dimensions!. For this reason, the contribution of the thre
boson vertex~2.15! is suppressed with respect to the cont
bution of the two-boson vertex~2.11!. To be more precise
one should compare the values of similar diagrams c
s

-

structed with the four- and six-point vertices, respective
~like, for instance, the ones depicted in Figs. 4 and 5!. The
value of the diagram of Fig. 5 is smaller than the value of
diagram of Fig. 4 by the quantity

umu27/2eF
3 umu

umu23/2eF
3/2umu1/2

;~kFaF!3. ~2.16!
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Here, the factors containing the Fermi energyeF

@5kF
2/(2m)5(3p2r)2/3/(2m)# originate from the bosonic

cycles~cf. Sec. III!, while the factorsumu andumu1/2 originate
from the residue in Eq.~2.7!. The diagram of Fig. 5 can thu
be neglected in comparison to the diagram of Fig. 4, si
kFaF!1 in the strong-coupling limit.

The above argument can be made more general, by sh
ing thatall interaction vertices can be neglected in compa
son with the four-point vertex in the strong-coupling limit.25

In this limit, one can thus construct all diagrams represen
the two-particle Green’s function in the particle-partic
channel in terms of the ‘‘bare’’ ladder and of the four-poi
interaction vertex only. This is precisely what one wou
expect on physical grounds, since the interactions involv
more than two bodies become progressively less effectiv
the composite bosons overlap less when approaching
strong-coupling limit. In the next subsection we will sho
how the ~self-consistent! fermionic T-matrix approximation
can be examined in terms of the four, six,. . . , -vertex func-
tions in the strong-coupling limit.

C. Fermionic T-matrix approximation
in the strong-coupling limit

The T-matrix approximation for a ‘‘dilute’’ Fermi gas
represents one of the few cases in the many-body the
where the choice of the self-energy diagrams can be c
trolled by an external small parameter.26 In the original ver-
sion by Galitskii,5 the T-matrix approximation was con

FIG. 5. Graphical correspondence between the composite-b
propagator and the two-fermion Green’s function in the partic
particle channel, to first order in thesix-point interaction vertex.
This vertex can be identified from Fig. 2 by settingq25q65q,
q15q45q8, andq35q55q9 therein.
e

w-

g

g
as
he

ry
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ceived for arepulsive fermionic interaction of finite range
~thus excluding bound states! and with the scattering length
aF always positive~albeit small!. The fermionic self-energy
diagram associated with this approximation is depicted at
left in Fig. 6~a!, and is obtained by closing the particle
particle ladder with a single-particle Green’s function in t
only possible way.@The diagram at the right in Fig. 6~a! was
included by Galitskii original treatment,5 but vanishes for our
choice of the attractive potential since it contains forbidd
interactions between parallel spins. By the same token,
spin summation needs to be considered for the fermio
loop at the left in Fig. 6~a!.# In Fig. 6~a! all single-particle
lines are regarded to beself-consistent, and thus contain self-
energy insertions of the same kind of the ones depicted in
figure.27 In this way, the self-consistent fermionicT matrix is
‘‘conserving’’ in the Baym-Kadanoff sense.28,29 Recalling
that ~with our regularization of the potential! the particle-
particle ladder depends only on the sum of the incom
~outgoing! four-momenta, the self-energy of Fig. 6~a! reads

SF~k!52
1

bV (
k8

Gs~k1k8!G~k8!, ~2.17!

whereGs is obtained fromG0 by replacing everywhere the
‘‘bare’’ G0 with the self-consistentG.

By exploiting our diagrammatic correspondence rules,
self-energy insertions onG0 can be interpreted in terms o

on
-

FIG. 6. ~a! Self-energy diagrams corresponding to the se
consistent fermionicT-matrix approximation~full lines here repre-
sent self-consistent fermionic single-particle Green’s functions
spin labels have been suppressed!; Self-energy corrections enterin
the particle-particle ladder, obtained by contracting the~b! four-
point vertex and~c!–~e! six-point vertex~full lines now represent
the ‘‘bare’’ fermionic single-particle Green’s functions!.
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the four, six, . . . , -point interaction vertices discussed in th
previous subsections. Typical examples are shown in F
6~b!–6~e!, where the ‘‘bare’’ single-particle lines associate
with the vertices are marked by arrows. Note, in particu
that the diagram of Fig. 6~b! corresponds to a contraction o
the four-point vertex, while the diagrams of Figs. 6~c!–6~e!
correspond to all possible contractions of the six-point v
tex. Additional diagrams not shown in the figure would th
contain interaction vertices of higher order. Note also t
the diagrams of Figs. 6~b!–6~c! have been already consid
ered in Fig. 4 and in Fig. 5, respectively. From the results
the previous subsection we then conclude that only the
gram of Fig. 6~b! needs to be retained in the strong-coupli
limit, the other diagrams being suppressed with respect
at least by a factor (kFaF)3 @cf. Eq. ~2.16!#. The diagram of
Fig. 6~b! corresponds to the Hartree-Fock approximation
the self-energy of composite bosons.18 Note finally that self-
energy insertions onG 0 in Eq. ~2.17! could be interpreted
similarly, in an open-ended way.

The above argument leads us to the conclusion that
fermionic T-matrix approximation reproduces the Hartre
Fock approximation to the self-energy of composite bos
in the strong-coupling limit. There exist, however,additional
contributions to the self-energy of composite bosons wh
are of thesame order~in the small parameterkFaF) of the
Hartree-Fock approximation just discussed. These contr
tions are not included in the fermionicT-matrix approxima-
tion and must be considered separately, as discussed i
next section.

III. T-MATRIX APPROXIMATION FOR COMPOSITE
BOSONS

In this section we set up an approximation for the ferm
onic self-energy, which describes the ‘‘low-density’’ regim
both in the weak-coupling~fermionic! and in the strong-
coupling ~bosonic! limits on equal footing.

A. Low-density approximation for composite bosons

Before examining the ‘‘low-density’’ approximation fo
composite bosons, it is instructive to briefly recall some st
dard results concerning the self-energy for a ‘‘dilute’’ syste
of true ~point-like! bosons. The argument to select the d
grams giving the leading contribution to the self-energy fo
‘‘low-density’’ Bose gas proceeds as follows.6,22,23 Let
u(q1 ,q2 ,q3 ,q4) be the ~symmetrized! bosonic interaction
potential, assumed to be vanishing foruqi u*r 0

21 ( i
51, . . . ,4),wherer 0 is the range of the potential. We sha
also consider temperatures not much higher than the
critical temperature, so that we shall assumeT;r2/3. Under
these conditions, it turns out thatevery cycle in a diagram
contributes a factor T3/2;r.30 The point is that factors
(ebjB(q)21)21 arise after summation over the frequenc
along the cycle. These factors cut off the integrals over
momentum variable foruqu;T1/2, which is of the orderr1/3

and much smaller thanr 0
21 owing to the ‘‘diluteness’’ con-

dition. It then follows that, for a ‘‘low-density’’ Bose sys
tem, the leading self-energy diagrams contain theminimum
number of cycles, like the diagrams shown in Fig. 7~a!,
which constitutes the so-called bosonicT-matrix
approximation.6,22,23
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To generalize the above results to a ‘‘dilute’’ system
compositebosons, it is essential to take into account thefre-
quency dependenceof the effective two-boson interactio
~2.11!, which makes the summation over the frequencies
side the cycle somewhat more involved.

We first observe that from Eqs.~2.9! and ~2.7! it follows
that the ‘‘bare’’ propagator̂b* (q)b(q)&S

eff
(2) can be written

in the form:

^b* ~q!b~q!&S
eff
(2)5

D~q!

iVn2S q2

4m
2mBD , ~3.1!

with the notation

D~q!52
b

V
4p

m2aF

S 11
A11

2 iVn1
q2

4m
2mB

e0

D .

~3.2!

The factorD(q), which reflects the existence of the intern
wave function for the composite bosons, has a cut~wheniVn

is replaced by the complex frequencyz) along the positive
real axis for Re(z) >22m.

It is convenient to transfer the factorsD(q) from the
‘‘bare’’ propagators to the effective two-boson interaction
which these propagators are joined to. Specifically, ev
propagator associated with an ‘‘internal’’ line of a diagra
tranfers a factorAD(q) to each of the two interaction verti
ces it is joined to, while each propagator associated with
of the two ‘‘external’’ lines transfers one factorAD(q) to the
single interaction it is joined to and assigns the remain
factorAD(q) as a proportionality factor to the ‘‘full’’ propa-
gator, which the diagram is meant to represent. In this w
the ‘‘full’’ propagator acquires the same overall factorD(q)
of the ‘‘bare’’ propagator~3.1! and the effective two-boson
interaction of Eq. ~2.11! is multiplied by
AD(q1)AD(q2)AD(q3)AD(q4). We are then led torescal-
ing the effective two-boson interaction as follows:

FIG. 7. ~a! T-matrix approximation to the self-energy of tru
bosons;~b! T-matrix approximation to the self-energy of compos
bosons.
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2u2~q1 . . . q4![ũ2~q1 . . . q4!

3AD~q1!AD~q2!AD~q3!AD~q4!

~3.3!

with ũ2(q1 . . . q4) given by Eq.~2.11!. @Note that the above
definition accounts, in particular, for the difference betwe
ũ2(0) andu2(0) in Eq. ~2.12!.# The sum over the commo
Matsubara frequency which runs along a generic cycle c
not be performed explicitly owing to the frequency depe
dence of the two-boson interactionu2(q1 ,q2 ,q3 ,q4). How-
ever, it can be readily verified that all the interaction vertic
appear along the cycle with the dependenceu2(q
1qj ,qa ,qb ,q1qj 21) on the common four momentumq
running along the cycle. From the explicit expressions
D(q) and ũ2(q1 ,q2 ,q3 ,q4) @Eqs. ~3.2! and ~2.11!, respec-
tively# it can then be readily proved that, when the sum o
the common Matsubara frequency is turned into a cont
integration over the complex frequencyz, each factoru2 has
a cut along the positive real axis for Re(z) >2m.

It is thus clear that the contribution to the frequency s
coming from the singularities due to the frequency dep
dence of the bosonic potentials is strongly suppressed by
presence of the Bose factor (ebz21)21 therein, sincebumu
@1 in the strong-coupling limit. In this limit, the contribu
tion of these singularities can thus be neglected, with
result that the cycle is again proportional to the bosonic d
sity rB , by the very argument holding for pointlike boson

We conclude that, for a system of composite bosons in
‘‘low-density’’ limit, the leading diagrams contain justone
cycle, like the ones shown in Fig. 7~b!. In analogy with the
corresponding diagrams of Fig. 7~a! for pointlike bosons, we
shall refer to these diagrams as theT-matrix approximation
for composite bosons.
e
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B. Coupled equations defining the generalizedT-matrix
approximation for the BE-BCS crossover

Once the self-energy diagrams for composite bosons
the ‘‘low-density’’ limit have been selected according to th
above prescriptions, there remains to determine the ana
expression of these diagrams. To this end, it is convenien
stick with the bosonic representation and write down
expression for the bosonic propagator^b* (q)b(q)&Seff

with
the self-energy insertions of Fig. 7~b!, making use of the
standard bosonic diagrammatic rules.22,23

Our ‘‘full’’ bosonic propagator is given by Dyson’s equa
tion:

G21~q!5G0
21~q!2SB

(t)~q!, ~3.4!

where the quantity

SB
(t)~q!52

2

bV (
q8

G0~q8! t̄ B~q8,q,q,q8! ~3.5!

represents theT-matrix approximation to the self-energy fo
composite bosons. The bosonicT-matrix is, in turn, defined
by the following integral equation:

t̄ B~q1 ,q2 ,q3 ,q4!

5ū2~q1 ,q2 ,q3 ,q4!

2
1

bV (
q5

ū2~q1 ,q2 ,q5 ,q11q22q5!

3G0~q5!G0~q11q22q5! t̄ B~q11q22q5 ,q5 ,q3 ,q4!,

~3.6!

whereū2 is proportional to the effective two-boson intera
tion of Eq. ~2.11!:
ū2~q1 . . . q4!5
1

bV (
k

1

e~2k!e~k1q2!e~2k1q12q4!e~k1q4!
. ~3.7!
ion
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With the above expression for the ‘‘full’’ particle-particl
ladder, we can obtain the fermionic self-energy of interes
analogy to Eq.~2.17!, by joining the incoming and outgoing
arrows of the particle-particle ladderG with a single-particle
fermionic Green’s function in the only possible way. W
then write

SF~k!52
1

bV (
k8

G~k1k8!G 0~k8! ~3.8!

with G given by Eq. ~3.4! and whereG 0 is the ‘‘bare’’
single-particle fermionic Green’s function. The self-ener
~3.8! has in turn to be inserted into the fermionic Dyson
equation, to yield the full single-particle fermionic Green
function G. Eventual extrapolation from the strong- to th
weak-coupling limit through the crossover region requires
to eliminate the chemical potential in favor of the partic
densityr, by evaluating
n

s

r5
2

bV (
k

eivnhG~k!, ~3.9!

whereh is a positive infinitesimal.
Besides the explicitG 0 in Eq. ~3.8!, also all single-

particle fermionic Green’s functions entering the express
~3.4! for G are meant to be ‘‘bare’’ ones, in analogy to th
original approach by Galitskii.27 We expect, in fact, that,
contrary to a statement made in Ref. 7, the inclusion of s
consistency in the explicit single-particle fermionic Green
function of Eq. ~3.8! should not be essential to represe
correctly the fermionic self-energy, either in the stron
coupling limit ~where, on physical grounds, it is rather th
bosonic propagator that needs to be represented correctl! or
in the weak-coupling limit~where self-consistency drops ou
anyway for a ‘‘low-density’’ Fermi system!.

By the same token, inclusion of self-consistency in t
single-particle fermionic Green’s functions entering the e
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pression~3.4! for G would yield contributions of higher or
der in the small parameterkFaF with respect to the one
retained~both in the weak- and strong-coupling limits!.

Our theory, which by construction correctly describes
the strong-coupling limit a system of ‘‘low-density’’ com
posite bosons, reduces to the standard Galitsk
approximation5 in the weak-coupling limit. In this way, both
weak- and strong-coupling limits are treated correctly.
deed, since in the weak-coupling limit the bare partic
particle ladderG0 becomes proportional toaF , we can esti-
mate the order inkFaF of a given diagram contributing to th
‘‘full’’ particle-particle ladder G, by counting the powers o
aF in terms of the number of ‘‘bare’’ laddersG0 and the
powers of kF in terms of the dimensionality of the four
vector sums over products of internal single-particle ferm
onic Green’s functions~which can safely be done because
sums are convergent!. By this procedure, we obtain that, i
the weak-coupling limit, a diagram forG with L bosonic
interaction vertices is smaller by a factor (kFaF)2L with re-
spect to the ‘‘bare’’ ladderG0. The leading diagram for the
fermionic self-energy will be thus obtained by closing t
‘‘bare’’ ladder G0 with a bare fermionic Green’s function
which corresponds to Eq.~3.8! with G0 in the place ofG. As
our bosonicT-matrix corrections toG0 contain at least one
bosonic interaction vertex, they will become irrelevant in t
weak-coupling limit, being smaller at least by a fact
(kFaF)2 compared to the bareG0. Our G thus reduces toG0
in the weak-coupling limit, and we fully recover Galitskii’
theory.

These considerations also prove that diagrams of the s
order inrB

1/3aB in the bosonic~strong-coupling! limit corre-
spond todifferent orders inkFaF in the fermionic ~weak-
coupling! limit; accordingly, they would have been dis
missed as being irrelevant, if the selection of diagrams wo
have been made directly for the weak-coupling limit.

A complete numerical evaluation of Eqs.~3.7!–~3.9! ex-
ceeds the purposes of the present paper. In the next se
we calculate the scattering length for composite boson
the strong-coupling limit, as a degenerate case of
T-matrix given by Eq.~3.6!. This calculation will ensure us
that the diagrams of Fig. 7~b!, beyond first order in the in-
teraction potential for composite bosons, give contributio
of the same orderof magnitude as the first-order~Hartee-
Fock! diagram. In addition, it will turn out that the series
diagrams depicted in Fig. 7~b! doesnot converge, making
any truncation of the series not appropriate. For this rea
it is essential to solve the complete integral equation ass
ated with this series of diagrams to get a correct descrip
of the strong-coupling limit.

IV. NUMERICAL RESULTS FOR THE SCATTERING
LENGTH OF COMPOSITE BOSONS

In three dimensions thescattering length acharacterizes
the low-energy collisions for the scattering from an ordina
potential. For the mutual scattering of two particles~each of
massM ), a can be expressed by the relationt(0)54pa/M
in terms of the ordinaryT matrix t(0) in the limit of vanish-
ing wave vector. In particular, within the Born approxim
tion t(0) is replaced by the Fourier trasformu(0) of the
interparticle potential for the vanishing wave vector.
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In a similar way, wedefinethe scattering lengthaB for
composite bosons~each of mass 2m) in the strong-coupling
limit and for vanishing density, by settingtB(0)
54paB /(2m), where tB(0)5@8p/(m2aF)#2 t̄ B(0) and
t̄ B(0)[ t̄ B(0,0,0,0) @cf. Eqs.~2.12!, ~2.11!, and ~3.7!#. This
quantity is expected to be important for the calculation of
bosonic self-energy~3.5!, insofar as the generalizedT matrix
for composite bosons therein depends weakly on its ar
ments.

To lowest order in the effective interaction for compos
bosons, we can replacetB(0) by u2(0) and write u2(0)
54paB

Born/(2m), within the Born approximation. Compari
son with Eq. ~2.13! yields then the valueaB

Born52aF , as
anticipated by Eq.~2.14!. This Born approximationto the
scattering length was erroneously identified as theexact
bosonic scattering length in Ref. 7.

In order to obtain the exact value oft̄ B(0) ~and hence of
the scattering lengthaB), it is convenient to determine firs
the auxiliary quantityt̄ B(q,2q,0,0) by solving the follow-
ing closed-formequation:

t̄ B~q,2q,0,0!5ū2~q,2q,0,0!

2
1

bV (
q8

ū2~q,2q,q8,2q8!G0~q8!

3G0~2q8! t̄ B~q8,2q8,0,0!, ~4.1!

which is obtained from Eq.~3.6! by settingq152q25q and
q35q450. This integral equation can be solved by stand
numerical methods, e.g., by reverting it to the solution o
system of coupled linear equations.

Before embarking into this numerical calculation, we c
obtain a preliminary estimate of the value oft̄ B(0) with
limited effort, by neglecting the four-vector dependence
t̄ B as well as the frequency dependence ofū2 on the right-
hand side of Eq.~4.1!. We thus write approximately

S t̄ B~0!

ū2~0!
D 21

5S tB~0!

u2~0! D
21

.11E dq

~2p!3
ū2~q,2q,0,0!

1

b

3(
Vn

G0~q!G0~2q!

512E dq

~2p!3
u2~q,2q,0,0!

1

b

3(
Vn

1

iVn2
q2

4m

1

iVn1
q2

4m

511E dq

~2p!3
u2~q,2q,0,0!

2m

q2
, ~4.2!
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where the last result holds to the leading order in the dens
Recalling further from Ref. 15 that

u2~q,2q,0,0!5u2~0!
4

41~ uquaF!2
~4.3!

in the strong-coupling limit, we obtain for the integral on th
right-hand side of Eq.~4.2! the following value~in three
dimensions!

E dq

~2p!3
u2~q,2q,0,0!

2m

q2
5u2~0!

m

paF
54 , ~4.4!

where use has been made of the result~2.13!. We thus obtain

aB

aB
Born

5
tB~0!

u2~0!
.

1

5
, ~4.5!

which implies that the contribution of the series diagra
depicted in Fig. 7~b! is of thesame order of magnitudeas the
contribution of the first-order ~Hartree-Fock! diagram
therein.

The above approximate calculation suggests us to c
sider in more detail the scattering problem for two tr
bosons~each of massM ), mutually interacting via a poten
tial of the form ~4.3!, namely,

u~q!5
8paF

M

g

11q̃2/4
, ~4.6!

whereq̃5uquaF andg is a dimensionless coupling consta
@g51 andM52m for the potential~4.3!#. Solving for this
simplified scattering problem will, in fact, be instructive
obtain the solution of the original scattering problem~4.1!
for composite bosons, since it will~i! suggest a nontrivia
approximation to be carried over to the original Eq.~4.1!,
and~ii ! assess whether the region of interest (g'1) belongs
to the perturbative or nonperturbative regime of the scat
ing integral equation.

To this end, we recall the equation satisfied by theT ma-
trix for two-body scattering. In particular, it is sufficient t
consider the following degenerate form

t~q,0!5u~q!2E dq8

~2p!3

u~q2q8!t~q8,0!

q82

M

, ~4.7!

which resembles Eq.~4.1! for composite bosons but lacks i
dependence on Matsubara frequencies. As already noted
scattering length is related tot(0)[t(0,0) by the relationa
5t(0)M /(4p). For a spherically symmetric potentia
t(q,0)5t(uqu,0) and the angular integral in Eq.~4.7! can be
readily performed. The remaining integral overuqu can be
suitably discretized over a mesh, until convergence
achieved for the desired valuet(0) ~200 mesh points have
proved sufficient to get a 1% accuracy in the scatter
length!.

The results fora ~in units ofaF) vs g are shown in Fig. 8,
where the asterisks correspond to the numerical solutio
Eq. ~4.7! and the full curve represents the Born approxim
tion aBorn/aF52g. Note that, in the region of interest (g
'1), aBorn/a'3 and the solution ofEq. ~4.7! cannot be
y.

s

n-

r-

the

is

g

of
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obtained by perturbative methods@the perturbative region—
where the Born series associated with the integral equa
~4.7! for a repulsive potential would converge—is, in fac
limited by aBorn/a&2 and corresponds tog&0.5#. For this
reason, any truncation of the integral equation would not
justified. Note also that the difference betweenaBorn and a
increases drastically asg increases~we have verified that
a/aF is proportional to logg at least over eight decades!.

Full numerical calculation of Eq.~4.1! requires us to in-
troduce a finite-size mesh for the variables (uqu, V) as well
as (uq8u, V8), with the angular integral overq̂8 affecting
only the functionū2(q,2q,q8,2q8). Equation~4.1! is thus
reduced to a set of coupled equations for the unknow
t̄ B(uqu,V;uqu,2V;0;0), which we have solved by the stan
dard Newton-Ralphson algorithm with a linear interpolati
for the integral overuq8u andV8. In this way we obtain

aB

aB
Born

5
t̄ B~0!

ū2~0!
.

1

2.65
~4.8!

within an estimated 5% numerical accuracy.
To verify that this result could not be inferred from

perturbative expansion of the integral equation~4.1!, we cal-
culate eventually the second term on the right-hand side
Eq. ~4.1! by replacing t̄ B(q8,2q8,0,0) therein withū2(q8,
2q8,0,0) and by settingq50 everywhere for convenience
In this way we obtain

t̄ B~0!.ū2~0!F12
1

bV (
q8

ū2~q8,2q8,0,0!2

ū2~0!

3G0~q8!G0~2q8!1•••G
5ū2~0!~121.691••• !, ~4.9!

showing clearly that the geometric series would not conve
in this case.

FIG. 8. Scattering lengtha ~in units of aF) vs the coupling
strengthg of the potential~4.6!, obtained by solving numerically
the integral equation~4.7! ~asterisks!. The full line represents the
Born approximationa/aF52g.



g

te

m
e
he
ns

o
ng
s-
he
r

tio
tr
is
a

n
io

m
te
in

to

o
ch
an
rd
b
ic
st
bu

ic
th
e-

he
‘‘d

m
on

a-

te-
a-
ap-

of
ic

cy,
its
n-
y

c-

-
ng-

dis-
e-

n be

al
hed
o-

en-

ting
the

ing
o-

y
r in

ima-
ar
ia-

si-
ific

lli,
l
port
-

15 380 PRB 61P. PIERI AND G. C. STRINATI
To summarize, we have shown that, in the stron
coupling limit, the value aB52aF obtained for the
composite-boson scattering length within the self-consis
fermionic T-matrix approximation,7 is modified to aB
.(3/4)aF by the correct inclusion ofall low-density contri-
butions for a system of composite bosons.

V. CONCLUDING REMARKS

In this paper, we have determined the correct diagra
matic approximation for a ‘‘dilute’’ system of composit
bosons, which form as tightly bound pairs of fermions in t
limit of strong attraction between the constituent fermio
We have emphasized that it is physically the comparison
the average interparticle distance to the characteristic le
associated with theresidualinteraction between the compo
ite bosons to determine the ‘‘diluteness’’ condition in t
strong-coupling limit of the original fermionic attraction. Fo
this reason, it is essential to treat the residual interac
between the composite bosons with care, in order to con
the strong-coupling limit of the theory appropriately. In th
context, it is worth mentioning that the importance of
proper treatment of the residual boson-boson interactio
the strong-coupling limit has been emphasized in the p
neering paper by Nozie`res and Schmitt-Rink,31 but never
duly taken into account in subsequent work.

We have also shown that the selection of the diagra
matic contributions according to the ‘‘diluteness’’ parame
proceeds along quite different lines in the weak-coupl
limit ~where the small parameter iskFaF) and in the strong-
coupling limit ~where the small parameter isrB

1/3aB). Ac-
cordingly, diagrammatic contributions of thesameorder in
rB

1/3aB in the strong-coupling limit correspond, in general,
differentpowers ofkFaF in the weak-coupling limit.

Our selection of diagrammatic contributions has rested
a suitable regularization of the fermionic interaction, whi
has caused the ratio between the particle-particle
particle-hole contributions to be infinite. For a Hubba
Hamiltonian on a lattice, where this regularization cannot
applied, we expect the difference between particle-part
and particle-hole contributions to be less extreme albeit
appreciable, so that our selection of diagrammatic contri
tions may still remain valid.

Quite generally, we have remarked that, with our cho
of the fermionic interaction, the most general structure of
diagrammatic theory is constructed with the ‘‘bare’’ particl
particle ladder plus an infinite set of~four, six, . . . ,-point!
vertices. This remains true forany value of the fermionic
coupling and not just in the strong-coupling limit where t
composite bosons form. We have also remarked that the
luteness’’ parameter (kFaF or rB

1/3aB) emergesnaturally
from the theory, both in the weak- and strong-coupling li
its, without having to be imposed as an external conditi
-
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Accordingly, keeping track of the powers of this small p
rameter in the diagrammatic theory can be relevantonly in
the weak- and strong-coupling limits. In the intermedia
coupling ~crossover! region, on the other hand, a small p
rameter is lacking and consequently the diagrammatic
proximations cannot be controlled by any means.

For these reasons, implementing the self-consistency
the fermionic Green’s functions within the fermion
T-matrix approximation7 does not seema priori to be an
important issue for the BCS-BE crossover. Self-consisten
in fact, drops out in the weak- and strong-coupling lim
when the ‘‘diluteness’’ parameter is small, while in the i
termediate~crossover! region inclusion of self-consistenc
within the fermionic T-matrix approximation~as well as
within any other approximation over and above it! cannot
anyway be controlledby the lack of a small parameter~even
though inclusion of self-consistency might produce in pra
tice sizable numerical effects!.

We have emphasized in this paper that the~self-
consistent! fermionic T-matrix approximation does not ac
count properly for the boson-boson interaction in the stro
coupling limit, at least in three dimensions. This
approximation, however, has been recently adopted to
cuss pseudogap and related issues within the negativU
Hubbard model intwo dimensions.32–34 Assessing to what
extent the approach we have developed in this paper ca
carried over to the two-dimensional case is nota priori evi-
dent and will require further investigations. From physic
intuition one would expect the bosonic regime to be reac
even more effectively in two than in three dimensions, ins
far as the two-fermion bound state is present in two dim
sions for any~attractive! coupling strength. Our dealing with
the three-dimensional case first was required for manifes
at the outset the effects on the BCS-BE crossover due to
progressive formation of bound-fermion pairs, thus isolat
them from other effects which are peculiar to the tw
dimensional case.

It is finally interesting to point out the strong analog
between the present treatment of the BCS to BE crossove
a condensed-matter system and the so-called Otsuka-Ar
Iachello mapping introduced some time ago in nucle
physics,35,36 where a systematic mapping between the d
grammatic theories for~composite! bosons and~constituent!
fermions was also provided, albeit in a quite different phy
cal context and with the use of approximations more spec
to the nuclear problem.
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