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X-ray resonant reflection from magnetic multilayers: Recursion matrix algorithm
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Recursion equations for»@2 scattering matrices have been derived to calculate resonant x-ray reflection
from magnetic multilayers. The solution has been basically reduced to that found in Stepahd®hys. Rev.
B 57, 4829(1998 for grazing incidence x-ray diffraction from crystalline multilayers.

[. INTRODUCTION duced to four linear equations containing the product of 4
X 4 transfer matrices of individual layers. The results of Ref.
For a number of years the majority of magnetic material29 have been applied to calculate the x-ray resonant reflec-
studies were carried out with neutrons, while x rays wergtivity of a five-layer system with one resonant lay@How-
solely used as an auxiliary tool to obtain the crystal structuresver, the details and the restrictions of the calculations were
data of the materials:® The magnetic scattering of x rays not discussed.
was not of practical interest because of its weakness as com- Another similar analysis has been carried out for the x-ray
pared to the usual x-ray charge scattering. The situationeflection from multilayers under the conditions of s
changed after the discovery of a huge resonant enhancemdrduer resonance. > In Ref. 31 a special case was consid-
for the x-ray magnetic scattering near some absorptioered where the two x-ray eigenpolarizations in each layer are
edge$:’ Since then the resonant x-ray magnetic scatteringrthogonal and directed in the same way for all of the layers.
has become a new experimental tool for the investigation of'hen, the reflectivity of Mesbauer multilayer could be re-
magnetic materials. duced to the Parratt scalar recursive equations. In Ref. 32 the
At the beginning, the resonant magnetic x-ray scatteringet of four linear equations for>44 transfer matrices was
was mostly measured around high-angle Bragg peaks frorbtained as in the optics of anisotropic multilay&tginally,
bulk magnetic materialé=12 or thick magnetic fims3 in a thesis by Barofi the solution was obtained in the form
Nowadays, the increasing interest in thin magnetic films anaf recursive equations for>22 reflection and transmission
multilayers has stimulated the application of grazing inci-matrices. That approach is the closest to what is suggested in
dence x-ray techniques that are specifically sensitive to theur paper. However, Ref. 33 did not contain the analysis of
structure of thin surface layers. Grazing incidence resonargpecial cases such as possible matrix singularities or the sim-
x-ray reflection has been utilized for the investigation of anplifications for hard x rays, etc. Also, of course, the specifics
iron film!* and magnetically coupled Ag/Ni multilayé?. of magnetic scattering were not discussed since the work was
Resonant grazing incidence x-ray diffractfbias been ap- devoted to the Mssbauer resonance. Some other theoretical
plied to the studies of magnetic effects at {J@&nd CqPt  attempts to build the theory of x-ray resonant reflection from
surfaces’ 8 Resonant x-ray diffuse scattering at grazing in-magnetic multilayers are underw4y® but we believe that
cidence has been used to measure the magnetic roughnesstody do not overlap with this presentation.
Co/Cu multilayers? a 50-A-thick C@ oy o5 film? and a In our study we analyze the x-ray reflection from an arbi-
Fe/Gd multilayer! trary stack of resonant magnetic and nonmagnetic layers.
In the conditions of magnetic resonance, the amplitude offhe problem is basically reduced to that of dynamical graz-
x-ray scattering becomes anisotrdffitand the conventional ing incidence x-ray diffraction from a crystalline
Parratt® and Abele* techniques to calculate the x-ray re- multilayer® i.e., to the (2<2) recursive matrix algorithm
flection are generally not applicable. Thus a theory is refor scattering matrices of individual layers. The formulas de-
quired to calculate the resonant x-ray reflectivity from mag-rived are valid for the whole x-ray wavelength range, and the
netic multilayers. This would also provide the x-ray wave simplifications are demonstrated for the medium-energy and
fields inside the layers which are required for the calculatiorhard x rays with small grazing incidence angles and weak
of grazing incidence diffractidi®® and diffuse x-ray interaction with matter.
scattering’ with the distorted wave Born approximation In Sec. Il the conventional reflection from nonresonant
technique. media with scalar susceptibility is derived. The idea is to
To our knowledge, the problem of calculating x-ray reso-introduce a common approach to both magnetic and non-
nant reflection from magnetic multilayers has not been fullymagnetic reflection, noting, moreover, that magnetic multi-
addressed. Perhaps, the closest analogs to this task are thgers are often sandwiches of resonant and nonresdoant
theories for the reflection of visible light from a multilayer nonmagneticlayers.
consisting of anisotropic layef&?° In these theories the In Sec. lll the reflectivity of a layer with an aligned ori-
Maxwell equations for the electromagnetic waves are reentation of resonant scatterers is analyzed. At the end of that
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U= (y§+ xo) 2 )

Thus in the general case of x-ray reflection from isotropic
media there are two internal waves? andE® correspond-
ing to theu® and u(®, respectively. Since the waves in
homogeneous media are transverg&)(k'=0), each of

FIG. 1. X-ray reflection and our choice of coordinate system.ina vectorss() has only two independent Componerﬁéj)
Vectors i, and «, denote incident and specularly reflected waves,:(E(j) EW), where as in vacuumg and o poIarizatioHs
ke )

. . . ~ o !
respectively, is the angle of these waves to the surfagg, are 506 chosen in the plane of reflection and perpendicular to it,
the unit vectors in the directions of and 7 polarization.

respectively.
. . . On the other hand, ther and ¢ components can be
section the problem of resonant reflection from a magnetic. . o4 as separate waves because they are not linked
layer is reduced to that of grazing |nC|de_nce d|f_fract|on. through the wave equatidigg. (4)]. Then, we can conclude

n S,ec' IV'a _short survey of Ref._36 IS provided for thethat the reflection from homogeneous media produces four
reader’s convenience. Also some minor differences betwee\rlwvaves inside the slab—twoe and two s ones—and the po-
our case and Ref. 36 are pointed out. larizations are not exchanged P
teclr?nisiz anecgﬁsspet '[Sr?en:ne vc;f;\d?rig?jlggagsgifagin% %L: " The boundary conditions for the waves must be satisfied
. d 30 -omp . ; . for the lateral components§; and H; of electric fields and
literature? Section V also contains the discussion of POS- - anetic fields. respectivel Sinet<[k X E], this gives
sible applications and further developments. 9 » 1eSP Y- ' 9

Il. NONRESONANT X-RAY REFLECTION Eom v =S EO 0
(SCALAR MEDIA SUSCEPTIBILITY ) Yotor™ Yoter™ &) Ex

Consider first the usual specular reflection of x rays from
a slab with flat interface. The wave field in vacuum consists .
of the incident and specular waves with the amplituigs EortEsr= 2, E(, 8
andEg, respectively:

E (r)=(E,e “70?+ Eg ™ <7?)ei T, 1) e
_ — j
Here yo=sin®,; ®, is the incidence angle. Since electro- YoFos yoEw_j:zl,z uPEy ©
magnetic waves in vacuum are transverlSe=0), each of
the waveskE, and Eg can be split intoo- and #-polariza-
tion components chosen perpendicularly to the incidence Eop+Eqg, = E [uDED —n ED] (10)
plane, and in this plane respectivébee Fig. 1 TS A xoomE
The electric field of the waves inside the isotropic slab
must satisfy Maxwell’s wave equatich: where Egs.(9) and (10) are for Hyx —k,E,, Hyoc(k,Ey
3 —k,E,), respectively, anah, = k,/k=(1— y3)*2
2, .2 _ With the condition that the waves inside the media are
;1 Vo (1 X0 1611 E; (=0, @ transverse, Eqg7)—(10) can be transformed to

where indexi =1,2,3 lists thex,y,z components ang is
the mean dielectric susceptibility of the medsze below. B _ el 12
Due to the lateral homogeneity of the problem, the lateral YoEor VOES”_J-g‘Yz UPEL €™, (1)
component ofik does not change at refraction and therefore
the wave fieldE(r) inside the media can be represented as

E(I’):EeiKUZHW'r. 3 Eo,t ESU:'EZ EETj), (12

The parameteu has the same physical meaning for the
waves inside the slab ag, for the vacuum waves, but unlike
Yo it can be a complex number due to absorption or total YoEos— YoEsy= > UMED (13
reflection. =12
Substituting Eq(3) into Eq. (2) we get

[(%6—u?)+ xolE=O. (@) EortEer= 2, V€Y, (14)
i=1.2
The condition for a nonzero solution to E@)—the disper-

sion equation—is where the parametar=1+ y, is the dielectric permittivity

2 2) 4y of the media.
(7%~ U+ X0=0, ® Finally, Egs.(11)—(14) can be presented in the<4t ma-
which brings trix form
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1 0 1 0 Eoo magnetic moment of atom, respectively;,, are the reso-
0 E nant magnetic scattering amplitudésee Ref. 6 for more
0m details.
Yo 0 =7 O Esr Since the directions of vectors and e can be chosen
0 v% 0 —9/ \Eg, arbitrarily, the dielectric susceptibility of a resonant mag-
netic medium is a tensor:
1 0 1 0 EY
0 12 0 12 E® Xij = (XoTA) 8 — iB€jxM+CM;My,, (17)
u® 0 u® 0 E® 19 yhere by the usual constitutive relationship relating refrac-
0 uWjel2 o @yl ESTZ) tive index to scattering length,
For hard-_and medium—energy_ X rays one can takﬁ and Xo=— ﬂ Na(—Zat fL+if1), (18)
the equations forr and 7 polarizations become equivalent. T 7
As follows from Eq.(6), the imaginary parts of roots*)
and u‘® must have opposite signs. Let us chooséuth] Ny - -
>0 and Inju®]<0. Then, the amplitudes of the waves A=——nylFu+F;4], (19
corresponding tai) decrease and those fof?) increase
with z (i.e., towards the slab interiprThe former and the \2r
latter waves can be interpreted as the refracted incigant B=—ny[Fu—F1 1], (20)
aw

transmittedl waves and the ones specularly reflected from the

lower interface of the slab, respectively. For a thick Slab 5
lower interface one can tak&€!?)=E®=0. Then the four c mn [2F 1 FrmFy il (21)
linear Egs.(15) are sufficient to find the remaining four un- T g MESTI0 Tl TI-1b

known amplitude€,,, Es,, EY), andE) . If the slab is a
multilayer, the boundary conditions like E(L5) can be ap- ; . . " .
plied a){ each interface?l so that each Iay%r adds fourpmorg]at.e”al’n"’1 |s_the densﬂy of the atoms. of typea. a.nd n
unknown amplitudes and four more equations. Thus th@articularny is the density of magnetic atoms; is the
problem remains soluble. antisymmetric Levi-Civita symbol ;3= €531= 6312=_1,

Of course, in the case ofonresonank-ray reflection the €132~ €213~ €31= — 1, all otherejj=0). The renormalized
boundary conditions forr and 7 polarizations can be split amplitudesFy=3\Fy,/(8wr) are substituted instead of
into independent 2 matrix equations for each of the the originalF,, because they are commonly discussed in the
polarizations® We make use of the 44 formalism in order literatur€ and more convenient for comparing with, .
to develop a common approach to both the usual case and tA&€y are, in general, complex, the imaginary part being re-
resonantx-ray reflection from magnetic layers where the po-lated to absorption.

The sum in Eq.(18) is over all the types of atoms in the

larizations interfere with each other. Equations(19)—(21) correspond to the case where all the
magnetic moments are aligned in one direction. In the case
IIl. RESONANT X-RAY REFLECTION of a partial alignmentny,, must be corrected for some de-

(TENSOR MEDIA SUSCEPTIBILITY ) magnetization factor.

A. Susceptibility tensor B. Wave equation: General case

In the case of magnetic resonance the total amplitude for \yith the tensor media susceptibility given by Ej7) the
coherent elastic scattering of x rays from a magnetic atom i§,5ye Eq.(2) now become¥
given by’

3
3\ a 2_ 2 -

3\ . e The substitution oE;(r) in the form of Eq.(3) brings
- ﬁ'[Fll_ Fi-1](efXe)-M

3
3\ o Zl[(73‘“2)5”+ninj+Xij]Ej=0, (23
+%[ZFlo_Fll_Fl—l](ef*'M)(Q'M)a (16) a

wheren;=k;/, i.e.,ny=(1-5)*? n,=0, n,=u. A non-
where f is the usual nonmagneticharge scatteringpart  trivial solution for Eq.(23) requires the following dispersion
known as the Thompson scattering amplitydg=rq(—Z equation:

+f'+if"), ry is the classical electron radiud,is the num-

ber of electrons in the atonf, andf” are the nonresonant 1+ xyx— U? Xxy Xxz+Uny

dispersion correctiols A =2m/« is the x-ray wavelength;

e, e, andM are the unit vectors representing the polariza- 5
tions of incident and scattered waves and the direction of the XzxT Uny Xzy Yot Xzz

Xyx 7(2)+ny_ u? Xyz =0, (29



PRB 61 X-RAY RESONANT REFLECT

which provides the fourth order polynomial equation éor

uQ;+ulQ,+u?Q3+uQ,+Qs=0. (25)
Here
Q1=1+xzz, (26)
Q2= Ny(Xxz+ X2, (27
Q3= XxoXaxt XyXzy— (1 X22) (Y5 + Xyy)
—(LH X (¥t X22), (28)

Q4= nx[XxyXyz+ XyxXzy™ (Xxzt X2( 7§+ny)]a (29

Q5:(1+Xxx)[(7%+ny)(7%+Xzz)_Xszzy]
_Xxyny( 7(2)+XZZ)_XXZXZX( 7(2J+ny)

t XxyXz2xXyzT XyxXxzXzy - (30)

Let us prove that Eq(25) always has two rootsi’) with
Im[u*2]>0 and the other two roots with [n®*]<0 cor-
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instead of two on the right-hand side. Substituting E3p)
into the boundary conditions one arrives at

1 0 1 0\ {Eq,
0 1 0 1 || Eo,
Y 0 —vy% O Esr
0 0 ~— %Yo Esr
1 1 1 1y [EP
b® @ L@ @ | ED N
“luw @ e @ || e | (36)
W w® w® @] | g
where
v = U(j)Pf(j)— nxpgj) , (37)

For a thick slab with one interface only the reflected waves
inside the slab vanistE®=E® =0, and Eqs(36) provide

responding to transmitted and reflected waves in the M&ne remaining four unknown amplitud&s, , E.., E®, and
’ T Y y H

dium, respectively. That can be done with the help of th
following imaginary experiment. First we “switch off” the
anisotropy by setting; = xod;; . Then, Eq.(25) reduces to
the form

[u?—(¥5+x0)1°=0, (3D

which clearly has the two roots with [m*?]>0 and the
other two with Infu®®#]<0. Now let us continuously pro-
ceed from Eq(31) to Eq.(25) by virtue of continuous varia-
tion in x;; . At such a transition the number of positive and
negative imaginary parts cannot change at any point becau
that would imply the possibility of anisotropic media with
zero absorption (Ifiu®]=0) which is physically impos-
sible. So, the number of roots with Juf)]<0 and
Im[u)]>0 must be always 2 and 2, respectively.

Thus, as distinct from a nonresonant x-ray reflection, the
magnetic resonance produces four waves inside the med{a

(the two transmitted and two reflected onedth different
critical angles for total external reflectigthe latter are given
by the conditionu’=0 at zero absorption

For each of the waves Eq&3J) give (j=1,...4):

Eil): p)((J)Ey) ,
EP=pPUE)D, (32
where
()= 2 _ (i) ()
Px _[Xxy(')’o+Xzz) Xzy()(xz"'LI n) /DY, (33

ng):[)(zy(l_u(j)2+Xxx)_Xxy(sz+ u(j)nx)]/D(j)i( )
34

D)= (Xxz+ u(j)nx)(sz+ u(j)nx)

_(1_u(j)2+Xxx)('yg+Xzz)- (35
The boundary conditions are still given by Ed3)—(10)

E>.

y

C. Wave equation: Special case of magnetization perpendicular
to the reflection plane

Equations(36) can only be solved if the scattering matrix
on the right-hand side is not singular. The singularity may
occur when either some roots) coincide or all thev)) or
w() become zero.

As we have seen in the previous section, the former situ-

ion occurs in the absence of magnetic resonance when all

%e off-diagonal terms of;; become zero. Then one has to

use Eq.(15) instead of Eq(36). Note that there is no con-
tinuous transition between these two types of equations be-
cause they are for different sets of wave fields.
The matrix singularity of the latter typ()=0 or w))
0] can only occur wheny,,=x,,=0. Otherwise, the
erms on the right-hand side of Eq83), (34), and(37) have
different orders of magnitude and cannot yield zero sum. The
condition x,,= x,y=0 providesP{’=P{’=0 and thus im-
plies decoupling oE, andE, from E, .

Proceeding to Eq(17), we find that the case of,,
= Xzy="0 in the resonant magnetic media requiMg=M,
=0, i.e., the magnetization vector must be parallel tohe
axis. ForM||Y the dispersion equatiditg. (24)] reduces to

1-&-)()()(—u2 0 XxztUuny
0 7(2)+ny_ u? 0 =0, (39
— Xxzt Uny 0 7(2)+Xzz
and gives fxx= xz2
(u2_7(2)_ny)(u2_'y(2)_Xzz_ 6)=0, (40)
8= X 1+ Xx) = =B (1+ x0)- (41)

The two roots of this equation™ == (y5+ x,,)*? provide

with the only difference that now there are four wave modesE{"*=E{*?=0 and an arbitrarye{("®. The other two
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U=+ (y2+ y,+ 5)1/2 provide E(Z Y=0 and EZ?Y Equations(33)—(35) are considerably simplified as well
=RE?Y whereR{) are given by Eq (39). Substituting and one obtains
these solutlons into the boundary conditioi73—(10), one - i
obtains Y o310, 0= = o LU= 5= Xy,
L (51)
() = (M, M)
1 0 1 0\ /Egy WHE=UTUE
0 1 0 1 Eo It is worth noting that the above simplifications are equiva-
i lent to neglectinde, and using the transverse waves approxi-
Yo 0 =% O Esr mation for hard x rays inside magnetic slab. In this case, the
0 9% 0 —1v/ \Eg, main effect of magnetic resonance on x-ray reflection is the
) interaction betweew and 7 polarizations.
1 0 1 0 Ey Consider now the cases where the magnetization vector
0 v® o @||ED M is directed along one of the coordinate axes.
= (42)
u 0 u® o E® 1. M|
0 w® o w®\g® The dispersion Eq(24) is reduced to
with 1 0 u
pO=yMRY 0 Y+txotA-u*>  —iB |[=0, (52
, u iB 2+ Yot A
=~ [uDxt N1+ X V(= 0), (43 ToTXo
. and provides the roots"?3%= + (y3+ xo+ A+ B)'2 as also
wh=RY follows from Eq. (50). Thus, when the incident x rays are
0 ) parallel to the magnetization direction, the magnetic reso-
=—(u¥n,+ x, )/ (ng— 3). (44 nance affects the reflection of any polarization. Also, the

polarizations are interacting. There are two critical angles for
total reflectiond .= (yo+A=B)Y? but they are close since
B is in general small.

Equation(42) looks similar to Eq(15), but unlike the scalar
case here one has an interaction betwgmandE, and the
x-ray waves in the magnetic media are not transverse.

2. M||Y

. _ In this case the dispersion equation is given by &89)
With the assumptions that even at the resonapgee-  and the simplified form of it may be written as
main small (;; |<1) and the angles of x rays to the surface

D. Wave equation: Simplifications for hard x rays

are also small yo O(xij) 1, which are reasonable for hard- 1 0 u
z)r;de(;,\(t)jmm energy x rays, we can simplify the expressions 0 7(2)+Xo+ A+C—1u? 0 ~0. (53
! u 0 ¥2+ xot+ A
Q:i=1, (45) Note that Eq(50) is also valid. The roots given either by Eq.
. 46 (50) or Eq. (53) areu®d=+ (y2+ yo+A+C)*? and u®¥
Q2= Xz Xax: 46 _ . (va+ xo+A)¥2 As we have discussed, the polarizations
_ 2 2 are not interacting in this case. F;;=0, the contributions
Q3= = (%Fxyy) = (% F X229, 47 6f A and C to u™ cancel each other and then only the

5 reflection of 7w polarization is affected by the resonance.
Q4:XxyXyz+nyXzy_ (XXZ+XZX)(70+ny)y (48)

3. M|z
2 2
Q5= (70 Xyy) (Yo Xzd ~Xy2Xzy- (49 The dispersion Eq24) may be approximated as
Further simplification is possible if the amplitude of reso- 1 0 u
nance scattering does not essentially exceed the usual Th-
ompson contribution x;;|<|xo|. Then, estimatingu®~ y§ 0 %2+ xotA—u? 0 =0, (59
~|xi;| we find that the order of the terms @, andQ, in u 0 Y2+ xo+ A+C

the dispersion Eq(25) is small as compared to the others.
Neglecting these terms, the roat§) can be found analyti- and the respective roots até®=+(y3+ xo+A)Y? and
cally: u@d=+(y5+ xo+ A+C)¥2 We find that in the approxi-
mation for hard x rays the polarizations are not interacting
2 2 2\2 1/2 . . . .
o u,—uz again. AtF,,=0 the only affected polarization is.
2 - ( 2 +Xm)(m} ' (50 Thus, in the case of hard x rays and the magnetization
vector directed along th¥ or Z axis (alongo or 7 polariza-
where uZ=y3+ xss, and o and 7 axes for grazing x rays tion, respectively Egs. (36) and (42) become formally
coincide withY and — Z respectively. equivalent® to Eq. (15). This corresponds to “viewing” by

2
, Uptu

u
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hard x rays the resonant magnetic media as a nonmagnetic T(incident wave) R T(incident wave)
one. The only exception is that the critical anglés 0 0 0 Ro
=(xs9? for the total x-ray reflection differ for the=o )’ V4 ) V4
ands= 7 incident polarizations, respectively. b

P P y }4 ,* p(incident wave)

E. Reflectivity of magnetic multilayer

s
For a multilayer, the &4 matrix boundary conditions of \/" s
the above type can be imposed at each interface: TR ¢
A
SEy=51E1, L/
—— Tn+] Rn+]
SFVE=8F508, @) o)

FIG. 2. Schematic illustrating the derivation of matrix recursion
equations for x-ray resonant reflection in the case&ph single
layer and(b) a multilayer. T, and R, denote the two-component

L) - (V)
SNflﬁNflngl SnINEn- (59) vectors containing the amplitudes of transmitted and reflected
waves, respectively.
Here &,= (Eq, Eop, Esy, Esy) and&,=(ER, EQ), EX, PeEEY
Effn)) are the four-component vectors, andS,, are the char- IV. RECURSION 2 X2 MATRIX FORMULAS
acteristic 4<4 matrices of the layers as introduced at the left FOR RESONANT X-RAY REFLECTION

and the right sides of Ed36), respectively. FinallyF.(V'")

are the diagonal A4 matrices

FROM A MULTILAYER

In the following consideration we make use of the ap-
proach developed by KoRffor nongrazing x-ray diffraction
from multilayer with multiple Bragg- and Laue-case reflec-
UL . . tions. The Bragg- and Laue-case x-ray waves in that problem
z;'~ denote the coordlnates of the upper and the lower interz,n pe viewed as being analogous to the transmitted and
faces of layers, respectively. _ reflected waves in our problem. The basic idea of Kohn is
At thI.S point .the problem of resonant x-ray reflection fro_m that Eq.(57) diverges because the vacuum amplitudigare
magnetic media has been reduced to that of the grazings, ght together with the substrate amplitudgs. The
incidence x-ray diffraction from a crystalline multilay&r. o amplitudes are of the order of 1, while the latter ones
Thus the rest of this section as well as the next one presen{s,,, e evanescent in a thick multilayer. A better way is to
a nearly complete repetition of Ref. 36. This review is pro-g, , eqq the reflectivity of a multilayer containing- 1 inter-
vu_jed fqr the reader’s convenience. We also point out SOMg;ceq yig that of a multilayer witm interfaces. Then the
mlnAo:querfencesl. luti EQs(55) | recursion must converge because the effect of additional

irect formal solution to Eqs(55) is lower interfaces on the reflectivity decreases with the dis-
o . L v tance of the interfaces from the surface.
E=8,"81F181"8F - - SyT i SFN N, (BT) We start with the following renormalizing of x-ray
amplitudes'”

[Fg)u"—]ijzﬁij exgiuW iz, (56)

where )i =[F3(F)) 1= 8 exp(-iu)«t,), andt,

is the thickness on theth layer. Calculating the matrix prod- El=rBe,, (58)
uct at the right-hand side of E¢67) and taking into account i _1

that the amplitudes of reflected waves in the substrate ar@"d denotingX,.,=8;"S,.1. Then, all Eqs(55) assume
zero (Ef,3N)=Eff,3=0), one arrives at four linear equations for the universal fornthere and below the primes &), are left

four unknown amplitudesE,,, Eg,, EX), andE). The ou
other amplitudes are given by Ed55) and(32). The above _ _ _
scheme provides ax44 transfer-matrix solution to the prob- En=XnraForabnea, =0, N1 59
lem of resonant and nonresonant x-ray reflection from arhe amplitudes, are constant within the layers and change
multilayer. at the interfaces. Therefore the interfaces can be treated as
As has been mentioned in the introduction, a similar 4“scatterers” for amplitudes. First, let us consider the scatter-
X 4 matrix formalism is used in the optics of visible light to ing at a single interface. For clarity we discuss the reflection
calculate the reflectivity of anisotropic layered methid’It  from the surfacgFig. 2(a)], but our consideration is appli-
has also been applied to calculate the x-ray reflectivity frontable to any internal interface as well. The waves at the
multilayers under the conditions of magnélicand left-hand side of Eq(59) can be classified as two incident
Mossbaue¥ resonances. Although formally thex#4 matrix ~ and two scattered waves. We group them in the vectgrs
method is absolutely correct, its numerical implementation is= (Eq, ,Eq,) andRy=(Es, ,Es,), respectively. In their turn,
often problematic because of possible numerical overflonthe waves at the right-hand side of E§9) can be viewed as
while calculating the matrix product on the right side of Eq.the two transmittedor scattereflwaves and two ones “in-
(57). cident” onto the interface from the slab interior. The former
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and the latter waves are characterized byufh?]>0 and Wi =M +AWITMTT,

Im[u®#]<0, respectively. Although the amplitudes of the

latter waves are zero in a thick slab, we keep them for the WL =W +B ML W

general case where slabs have internal interfaces. Thus we

group the waves below the surface as the vect®ys Wy, ,=B,M[,, (66)

=(EW E®) and R,;=(E® ,E), respectively. Splitting
matricesX andF into four 2X2 blocks we obtain
An:ME+1(1_Wtr1rM:1t+1)_1v

b el elle) e

Ro/ o Fllr/ By= Wi (1= Mp W) % (67)
whereF™ andF~ are the diagonal matrices containing the Starting with the surface and progressively applying Egs.
increasing and decreasing exponential functions, respeg66) to lower interfaces, one arrives at the matrive§ de-

where we define

Xtt Xtr
xrt er

tively. termining the reflectivity of the whole multilayer. The recur-
Equation(60) enables the “scattered” waveR, andT;  sion matrix(RM) solution does not cause any divergences in
to be expressed via the “incident” wavdg andRy: the numerical calculations. As follows from E¢62), the
it . order of M is about one, while the other three blocks are
T _ M® M To 61) small due to the factor6~ and F*) . According to Eq.
Ro Mt MT\Ry) (66), the same ratio of orders is preserved for the blocks

WY, Thus the blockWj is the only one significant for a

where thick multilayer and the solution to the reflection problem is

Mtt:(FJr)*l(Xtt)*l,

Ro=WiT,. (68)
MU= —MUXTFE~, The other matrix blocks converge to zero at the recursions
(66). The reflectivity is calculated a$=|E,|*+|Es,|?
MIt=Xrtxtt)~1, E|Rgl)|2+|R82)|2-
ot Equation(68) can also be used to calculate the difference
T=(X"T-M"X")F". (62 in the reflectivity for “+” and “ —" circularly polarized

Equations(62) have a clear physical interpretation. For ex- ncident x rays. Substituting,, = +iE,, we obtain

ample, the blockM™ is responsible for the scattering Bf P - -
into Ry and the last line in Eq62) implies that the scattering -1 _ 2 MWy 12 Wy1o+ Wi21Wiz
may be a direct transmissid®, — R, and may be a multiple I 17 W11 24 W12 2+ [WR 1 2+ Wi 55l
scattering procesR; — To— T;— Ry. We note that Eq461) , . , )
and(62) do not cause any divergences because the increasirign@!ly, let us find the x-ray wave field amplitudBg and T,
exponential& * are inverted. In the case of a thick substrateinSide the layers. These are required for the interpretation of
vectorR, approaches zero, and th&g=M"tT,. x-ray standing waves and diffuse scattering in reflection
Proceeding to multilayerfFig. 2(b)], the solutions of the from multilayers. Equation63) gives RO:\{V%tTO+WHtRn-
scattering problem for multilayers incorporatingnterfaces However, the direct solutionR,= (W)™ "(Ro—W;To)

andn+1 interfaces according to E¢57) can be presented leads to uncertainties like 0/0 for thick multilayers and one
as has to make use of recursions. A combination of EGS)

and(65) yields

(69

Th WE WH To rt gry—21/pprr rt tt
Ro B Wt Wi R,)’ (63 Rn=(1-Mp Wy) (M R 1+ M Wi To),
n n
and To=WiTo+W,R,. (70)
T Wit Wi T Equgtions(?O) must_be progressively applied to all the layers
ntl) | "in+l nt+1 0 (64) starting at the multilayer substrate whdérg=0.
R Wrt rr R ’
0 n+1 n+1 n+1

respectively. Her&\V, andW,, ; are 22 matrices. At the V- NUMERICAL EXAMPLES AND DISCUSSION

same time, according to E¢1) the scattering equations for ~ The theory presented above has been put into the com-

interface f+1) are puter code for calculating the reflectivity and the x-ray wave
fields at the x-ray resonant reflection from magnetic multi-
Th+1 M:mtu Mﬂﬂ Th layers. Since the general recursion matrix formalism is used,

R, - M, o Ryt ®9  the core part of the code is directly borrowed from the graz-

ing incidence diffraction, specular reflectivity, and diffuse
The combination of Eq963)—(65) results in the following  scattering programs presented at [http://
recursion formulas foW, : sergey.bio.aps.anl.ghand numerously verified through the
" " World Wide Web(WWW) interface.
Wi =AWy, Here we discuss several numerical examples which are
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10° = E— =|XoolY?=|x0+ A+ C|1"2=| xol*? becomes the same as for
1074 —GdL, edge resonance the nonresonant media. When, howeverg# 0, these two
104 combinations are also affected by the resonance but the ef-
10°4 fects for oY, and m=Z are equivalent. In any of the
10*4 above cases there is no polarization exchange:¢r or =
:*; 10°4 — o) because the effects are due to the A and C terms in Eq.
8 10 (17) which contribute to the diagonal terms gf, only.
8 Figure 3b) shows the calculated reflectivity fof orien-
10°] o-polarized incident x-rays and tation of the magnetization vector, i.e., when the magnetiza-
10°4 l‘r"’%a"g"me"‘“‘*“a'°"92'“‘s tion is along the projections of the incident and reflected
17 mpolarized incident x-rays and x-ray wave vectors onto the surface. Here also the reflections
ol PORSIITSIHETRAR R of both o- and 7-polarized x rays are equally affected. How-
0 ! 2 8 4 ever, in addition, ar— 7 and m— o cross scattering appears
11;1 ® > Tigef;:zcr:z:f;r;? due to the interactior_1 between the pola_rizatio_ns, as shown by
1o = fEross searteriy at Loedge the Iowgr curve. This curve _plqts the intensity of reflected
mr-polarized x rays when the incident wave is 100%olar-
10°4 ized or vice versa. To measure this effect one needs an x-ray
o ‘O'A'/-\, polarization analyzer at the detector side.
% 10%, i , To measure the polarization exchange without the ana-
% 10" \\ A 3 5 ‘ lyzer, one can use circularly polarized incident x rays. Figure
o 1079 HJ ® B ;‘L 4(a) plots the calculated reflectivity curvé$ andl ~ for the
10°1 ¥ 2 qff ‘s%?,ﬁ §1 clockwise and counterclockwise circularly polarized x rays,
10° @L : fﬁf :5'% respectively. In these two cases the spin of the photons is,
107 =~ or o-polarizid Incident x-rays and W Wr respectively, parallel and antiparallel to the magnetization
1o J120% llgnmont of G along Yomxls "‘.1 vector directed along. Though it is difficult to see the dif-

° ! 2 ° ference between these two reflectivity curves in the absolute

scale, the relative difference presented on Fidp) £learly
demonstrates systematic oscillations with the rms value
about 10%. To calculate this curve we have used(E§).

The oscillations of the relative difference imply a small
angular shift of polarization exchange from the multilayer

aimed at better understanding the effects of magnetic resg€flectivity peaks. This is a typical standing-wave effect.
nance on x-ray reflection. Figure 3 presents the calculatedinus the measurements of"(—17)/(1"+17) can clearly
effect of magnetic resonance for the case of a Gd/Félisplay the magnetic resonance in the sample.

multilayer consisting of 15 periods of 50-A Gd and 35-A Fe. Inorder to provide a test of our theory, we have attempted
The calculations are for the resonance in Gd at theL@d  to reproduce the results by Kao al* Figure 5 presents the
edge(7.243 keVJ. The incident x rays are chosen eitlweror ~ calculated reflectivity of circularly polarized x rays for a
w-linearly polarized, while the reflected intensity is calcu- multilayer consisting of 36-A AlO;, 39-A Co, 5-A Fe,
lated as a sum of and 7 polarizations(i.e., with the as- and 560-A ZnSe on GaAs substrate. The calculations are for

Incidence angle [deg.]

FIG. 3. Calculated resonant reflection of linearly polarized x
rays from Gd/Fe multilayer at the Gd,;, edge(7.243 ke\j for
different directions of the magnetization and incident polarization.

sumption of no analyzer at the detector $jde the magnetic resonance in Co at the Cg edge(0.7865
keV) and the magnetization vector directed aloXgThe
R=|E,|?+|Es,|?. (7)  resonance scattering amplitudes used in the calculations are

B 5 F10=0, F;;=12+6i, andF,_;=20-14i. The qualitative
The resonant scattering amplitudé§e~0, Fi3=-0.22  agreement of our plot with Fig. 5 of Ref. 30 is quite satis-
+9.35, and F;_;=0.37+9.65 are taken from Ref. 41. factory. We could not achieve a better fit because many pa-
These values correspond to the x-ray energy at the exaeameters of the calculations presented in Ref. 30 were miss-
center of the resonance peZk. ing.

Figure 3a) compares the reflectivity without resonance  Concluding the discussion of numerical examples, we
(gray ling with the resonant reflectivity for the cases wherehave found that the effect of magnetic resonance on x-ray
either the incident x rays ake polarized and the magnetiza- specular reflection is manifested as both a change of refrac-
tion vector is along th& axis, or the incident x rays are  tion and a polarization exchange. The former effect is at least
polarized and the magnetization vector is along Ynhaxis.  three to four orders of magnitude stronger and thus easier to
The latter two caseso(<=Z and7<+<Y) give the same reflec- observe than the latter one. Perhaps it is one of the major
tivity curve shown by the black line. distinctions between grazing incidence resonant reflection

For the other combinationsr¢=Y, and7<Z), the cal- and resonant Bragg diffraction where the refraction effects
culated effect is zero, i.e., the calculated curves completelgre small.
coincide with the nonresonant one. This happens due to the Although the polarization exchange is relatively weak, it
choiceF5=0 in our parameters of calculations. Thexs can be measured with circularly polarized x rays. For the
—C and the critical angle for the total reflectio  reflection from a periodic multilayer one may find the
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T— . . . . . . 10
_ 10 (a)
- 10%4 ) 107
S 0% TN
10" NNAN R _ — 10%)
2 1071 Ty | Iy ~ | o
> i6 ) © P
= 10_71 \ I . .
8 101 > 1073 +_
= 108 — I s =
&) 2 8 -4 =
1071 I l % 1073 o
10-101 1 1 1 1 1 1 1 m =
0.21 fo.s (b) 10°]
= 0.1 10°3 L0.1
+
+:/ 0.0 L 0.0
7 107
: 0 5 10 15 20 25 30 35 40
N 014 Incidence angle [deg.]
. .
021 FIG. 5. The calculations df" andl~ for the case presented in
' 099} 097 Ref. 30. The sample consists of 36-A ,8;, 39-A Co, 5-A Fe,
o 1 2 3 4 5 6 7 8 and 560-A ZnSe on GaAs substrate; the x-ray energy corresponds

Incidence angle [deg] to the Col,;, edge(0.7865 keV.
slicing the real layers into sublayers. Also, a simple account
for the roughness can be added following the procedure de-
reflectivity curvesl * and |~ for the clockwise and counterclock- veloped_ in Ref. 42 which gives the usual D_e_bye-WaIIer_-Ilk_e
wise incident polarizations respectivelf): their normalized dif-  1ctors in th7e dependence of x-ray reflectivity on the inci-
ference. In(a) the difference between the two cases is not appredence anglé Using the latter technique we have calculated
ciable, but in(b) the normalized difference is well seen to vary at the effect of 5-A interface roughness on the curves presented
the level of about- 10%. in Fig. 3. The calculations predict that the roughness should
cause a faster decrease of the reflectivity with the incidence
standing-wave effects in the difference between the reflectivangle, but the ratio I("—17)/(1"+17) would not be af-
ity for clockwise and counterclockwise circular polariza- fected.
tions. Finally, the x-ray wave fields provided by our theory can
be used to calculate the x-ray diffuse scattering from chemi-
VI. CONCLUSIONS cal and magnetic roughness in magnetic multilayers. The
common approach to such calculations is to apply the dis-
We have developed a formalism and a numerical procetorted wave Born approximation which requires the wave
dure to calculate the x-ray resonant reflection from magnetigields for the target without roughness?*2!
multilayers. Using this theory we have predicted the major
peculiarities of the effect of magnetic resonance on the x-ray
reflectivity and provided some tips for their measurement.
Further developments will need to include the real struc- We are grateful to C. S. Nelson and D. Hasi&P9) for
ture effects such as magnetic inhomogeneities and interfacgimulating discussions and to A. Baron for providing us
roughness. However, the treatment for some imperfectionwith a copy of his dissertation. Part of this work was sup-
can be implemented with the present model too. For examplported by the U.S. Department of Energy, Basic Energy Sci-
graded magnetization profiles can be taken into account bgnces, under Contract No. W-31-109-ENG-38.

FIG. 4. Calculated resonant reflection of circularly polarized x
rays from Gd/Fe multilayer at the Gd,, edge(7.243 keV}. (a): the
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