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Excitation spectra and thermodynamic response of segmented Heisenberg spin chains

Stefan Wessel and Stephan Haas
Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484

~Received 26 January 2000!

The spectral and thermodynamic response of segmented quantum spin chains is analyzed using a combina-
tion of numerical techniques and finite-size scaling arguments. Various distributions of segment lengths are
considered, including the two extreme cases of quenched and annealed averages. As the impurity concentration
is increased, it is found that~i! the integrated spectral weight is rapidly reduced,~ii ! a pseudogap feature opens
up at small frequencies, and~iii ! at larger frequencies a discrete peak structure emerges, dominated by the
contributions of the smallest cluster segments. The corresponding low-temperature thermodynamic response
has a divergent contribution due to the odd-site clusters and a subdominant exponentially activated component
due to the even-site segments whose finite-size gap is responsible for the spectral weight suppression at small
frequencies. Based on simple scaling arguments, approximate low-temperature expressions are derived for the
uniform susceptibility and the heat capacity. These are shown to be in good agreement with numerical solu-
tions of the Bethe ansatz equations for ensembles of open-end chains.
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I. INTRODUCTION

Low-dimensional electron systems are known to be p
ticularly sensitive to disorder.1 It is therefore difficult to re-
alize pure one- or two-dimensional behavior at very low te
peratures and small frequencies in nature.2 This is somewhat
disappointing in light of recent detailed theoretical pred
tions for the low-energy scaling behavior of paradigma
quantum-many-body models, such as antiferromagnetic
chains and ladders.3–7 It is the enhanced quantum fluctu
tions in these compounds, which give rise to particular lo
temperature scaling regimes in very pure samples, and a
same instance make them highly unstable towards extern
induced low-temperature transitions, such as localization
impurity scattering or three-dimensional long-range order
due to residual small couplings between the low
dimensional subsystems.8,9

It has recently been demonstrated that in certain o
dimensional~1D! subsystems, such as random-exchange
random-spin chains, anomalously extended states can pe
against disorder.10–14The physical picture is that while mos
spins are bound in randomly distributed valence bonds,
unbound spins interact via virtual excitations, resulting in
zero-frequency band with power-law scaling.15 Furthermore,
in the case of spin ladders and spin-Peierls compounds,
ing with randomly placed nonmagnetic impurities may ac
ally induce quasi-long-range ordering due to effect
inverse-power-law interactions between the resid
‘‘pruned’’ spins.16,17This replacement of an originally shor
ranged spin-liquid state by impurity-induced quasi-lon
range order can be viewed as a realization of the ‘‘order
disorder’’ phenomenon.

In other compounds, impurity scattering may complet
destroy the connectivity within one-dimensional subsyste
If this is the case extended states cannot survive. Le
examine two specific realizations of such segmented qu
tum spin systems:~i! CuO chains, with nonmagnetic impu
rities, and~ii ! pinned charge-density waves in quasi-1D m
terials. The first situation can be realized by doping
PRB 610163-1829/2000/61~22!/15262~7!/$15.00
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quasi-1D compound such as SrCuO2 with Zn. In the pure
material, antiferromagnetic superexchange between ne
boring Cu21dx22y2 electrons is mediated by the filled O22 p-
orbitals. By substituting Zn21 for Cu21, static vacancies are
created, and the infinite chain is separated into segmen
length l which follow a discrete distribution.18,19 A second
physical way of realizing segmented spin chains is the p
ning of one-dimensional charge-density waves. If there
competition between poorly screened long-ranged repul
Coulomb forces and short-range attractive forces, highly
homogeneous density wave modulations occur, favoring p
ticular segment lengths.20 Even small impurity scattering
leads to a pinning of such structures.

In both cases, there are ensembles of correlated spin
ments which are most straightforwardly modeled by tak
appropriate averages over distributions of finite clusters w
open boundary conditions. The specific form of the distrib
tion function strongly depends on the details of how the s
ments are formed. For example, in the case of rando
doped CuO chains a~discrete! Poisson distribution is
natural,18,19 whereas for pinned, spatially modulated dens
waves, only two or three cluster sizes may dominate.
important factor, determining the proper distribution fun
tion, is the ~meta-!stability of the random realizations: ar
they obtained from a quenched or an annealed cooling
cedure? While in quenched realizations all clusters that oc
at high temperatures also have nonvanishing weight in
zero-temperature distribution function, slower ‘‘anneale
cooling processes can lead to preferred sizes and shape
particular, segments with an electronic closed shell confi
ration have more stable groundstates than others, and
receive a higher weight in an annealed cooling process.21

In this work, we systematically study such ensembles
antiferromagnetically correlated spin clusters, focusing
the evolution of the corresponding low-energy features in
dynamical spin excitation spectrum and on the uniform sta
susceptibility as a function of the hole concentration. In p
ticular for small clusters, quantum effects are importan21

which makes any theoretical approach to this problem ch
15 262 ©2000 The American Physical Society
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PRB 61 15 263EXCITATION SPECTRA AND THERMODYNAMIC . . .
lenging. We therefore attack this task numerically, using
act numerical diagonalization22 and scaling laws derived
from conformal field theory to calculate the static and d
namical magnetic response for variable segment sizes.18

This paper is organized as follows. In the next section
procedure to obtain excitation spectra for segmented Hei
berg chains is explained. The appropriate distribution fu
tions are derived, and the evolution of the spectra with
purity concentration is discussed. In the subsequent sec
the static magnetic response, i.e., the uniform susceptibi
and the heat capacity are calculated for various ensemble
finite chains. In the final section we conclude with a disc
sion of possible extensions and experimental conseque
of the procedure outlined in this paper.

II. EXCITATION SPECTRA AT TÄ0

In this section, we study the zero-temperature dynam
response of randomly segmented spin-1/2 Heisenberg ch
with open boundary conditions. The Hamiltonian for a cha
of length l is given by

H5J(
i 51

l 21

Si•Si 11 , ~1!

whereJ.0 is the antiferromagnetic exchange constant.
examine the dynamical structure factorS(q,v,l ) of finite
chains with open ends:

S~q,v,l !5
1

lZ (
n51

l

u^nuSq
zu0&u2d~v2En1E0!. ~2!

HereZ is the partition function,u0& is the ground state, andn
runs over all possible final states. Let us first concentrate
the staggered magnetization

Sp
z 5 (

n51

l

~21!nSn
z . ~3!

ThenS(p,v,l ) is well defined for open boundary condition
and chains of an even or odd number of sitesl. In the case of
evenl there is a unique singlet ground state, whereas one
to take into account the doublet nature of the ground state
odd l. Using numerical diagonalization techniques, we ha
obtainedS(p,v,l ) with l 51, . . . ,20. Theresulting spectra
are shown in Fig. 1. We observe that segments of e
length l havel /2 major peaks at non-zero frequencies, wh
those of odd length have a significant pole atv50 and (l
21)/2 additional peaks at higher frequencies. The hig
energy peaks have a more complex structure, because
of the final states are singlets. Zero-frequency peaks o
only in the odd-length segments, reflecting the fact that th
groundstates are doublets.

As in the case of closed finite chains18 equations derived
from conformal field theory can be used to extract the fin
size scaling behavior ofS(p,v,l ).23–28To leading order, the
pole positions and amplitudes are given by18,27,28

v i~ l !5a i / l 1b i / l @ ln~ l !#, ~4!

Ai~ l !5ai1bi ln~11 l !1ci ln@11 ln~11 l !#, ~5!
-
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where the coefficientsa i ,b i ,ai ,bi , andci can be treated as
fit parameters. In Fig. 2 the pole positions and amplitudes
the lowest three poles are shown for clusters of up to
sites, along with the fits to the above scaling equations
particular for the larger-size segments, these equations
an excellent fit to the numerical data. In the shorter segme
higher-order logarithmic corrections for the amplitudes b
come increasingly relevant, and the quality of the fits de
riorates slightly in this regime. Note also, that the peak of
one-site cluster atv50 has an amplitude that does not fo
low the general trend. The amplitudes shown in Fig. 2 c
respond to the dynamical spin response per site@Eq. ~2!#. In
the following, we will consider averages over ensembles
finite chains, where the amplitudes of the individual se
ments enter as extensive quantities. In this case, the seg
amplitudes per site shown in Fig. 2 have to be multiplied
the segment length l@Eqs.~6! and ~7!#.

FIG. 1. Finite-size scaling of the staggered dynamical struct
factor of the antiferromagnetic spin-1

2 Heisenberg chain with open
boundary conditions. The poles have been given a width oe
50.1J. ~a! chains with an even number of sites,~b! chains with an
odd number of sites.

FIG. 2. Finite-size scaling of the first three poles of the sta
gered dynamical structure factor of spin-1

2 Heisenberg chains with
open boundary conditions. The symbols show the values obta
by numerical diagonalizations, and the solid lines are the result
fit to Eqs. ~3! and ~4!. Circles: first poles, squares: second pole
diamonds: third poles.~a! pole positions for chains of even length
~b! the corresponding amplitudes,~c! and ~d! analogous results for
chains of odd length.
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15 264 PRB 61STEFAN WESSEL AND STEPHAN HAAS
The finite-size scaling behavior of the lowest pole po
tions for open spin-1/2 Heisenberg chains has recently b
obtained, using conformal field theory methods.28 Our nu-
merical values of the coefficientsa i andb i are in excellent
agreement with these findings. However, a field-theoret
determination of the corresponding amplitudes appears n
be available at this time. We, therefore, rely on the results
the numerical diagonalization study which are presented
Fig. 2.

Now consider an infinite Heisenberg chain, doped w
nonmagnetic impurities, resulting in an ensemble of op
end segments of various lengthsl. The average dynamica
spin structure factor can then be calculated from

S~p,v!5(
l

lP~ l !S~p,v,l !, ~6!

whereP( l ) is an appropriately chosen distribution functio
Using the pole structure of the response functions for
individual segments, we obtain

S~p,v!5(
l

(
i

lP~ l !Ai~ l !d„v2v i~ l !…. ~7!

In practice, thed function in Eq.~7! is replaced by a Lorent
zian of widthe, which will be taken ase50.1J throughout
the paper.P( l ) determines the weight of each segment in
ensemble average, and extrinsic factors favoring certain c
ter shapes over others enter through this function. If
chain segmentation occurs completely randomly, the co
sponding distribution function is given byP( l )5r2(12r) l ,
whererP@0,1# is the concentration of vacant sites.19,29 This
distribution function is normalized by

(
l 51

`

lP~ l !512r, ~8!

and forr!1 it can be approximated byP( l )'r2exp(2rl).
We also note that since the total number of clusters per si
given by nc5( l P( l )5r(12r), the average length of th
clusters isl av5( l lP( l )/nc51/r. The above distribution de
scribes the case of quenched disorder in the infinite ch
i.e., the positions of the impurities are uncorrelated. In
annealed cooling process, even length segments are fav
over odd ones, because they have a lower ground-state
ergy. We describe this situation by a similar distributi
function Pa( l )5Cr2(12r) ld0,lmod2 whereC is determined
by the normalization condition~8!. Only even length spin
segments occur in a chain with this distribution function
the impurities. Note, that according to common terminolo
all of the ensemble averages which are discussed here
‘‘quenched’’ because frozen disorder realizations are us
In this paper, the terms ‘‘annealed’’ and ‘‘quenched’’ on
refer to the cooling procedures giving rise to different dis
bution functions. For true annealed disorder, however,
disorder variables would have to be treated dynamically.

Here we wish to evaluate and analyzeS(p,v) andS(p)
by using the finite-size scaling behavior of the lowest f
poles in the spectrum. This few-mode approximation h
been shown to be valid for sufficiently large impurity co
centrations, but it tends to underestimate the spectral
sponse for very smallr.18 Let us use the lowest three pole
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of each segment as shown in Fig. 2, i.e., the indexi in Eq. ~7!
runs from i 51 to 3. Also, a cutoff lengthl max510 000 is
used in the sum overl. The resulting frequency-integrate
staggered dynamical structure factorS(p)5*dvS(p,v) is
then given by

S~p!5(
l 51

ł max

lP~ l !S~p,l !, ~9!

where S(p,l ) is the frequency-integrated dynamical stru
ture factor at wave vectorp, with the scaling form

S~p,l !5a1b ln~11 l !1c ln@11 ln~11 l !#. ~10!

Comparing the values ofS(p) obtained from exact numeri
cal diagonalizations of ensembles of finite clusters with
result for S(p) within the three-mode approximation, on
finds that the three-mode approximation tends to undere
mateS(p) for small impurity concentrations. The differenc
in the integrated weight is due to neglecting the higher f
quency poles that become more relevant for larger clus
and thus smaller impurity concentrations. This weight can
approximately restored by adding the properly normaliz
dynamical structure factor of an infinite Heisenberg cha
broadened bye to DS(p,v)}e/(v21e2)/p, neglecting
logarithmic corrections. It turns out that these corrections
S(p) are only relevant for very low impurity concentration
and are negligible forr.0.2. The resulting spectra ar
shown for differentr in Fig. 3 for the quenched and th
annealed case.

For both types of impurity distribution functions there a
two main features that occur inS(p,v) upon increasing the
number of vacancies in the infinite chain. First, the integra
spectral weight decreases rapidly upon increasing the im
rity concentration. This is shown explicitly in Fig. 4, wher
the solid lines in part~a! and~b! represent the dependence
S(p) on r. Note that in the annealed case the integra
spectral weight is decreasing at a slower rate than in
quenched case, especially for large impurity concentratio
This is due to the fact, that the integrated spectral weigh

FIG. 3. Evolution ofS(p,v) of the segmented antiferromag
netic spin-12 Heisenberg chain as a function of the impurity conce
tration.~a!–~f! spectra forr50.1,0.3,0.5,0.6,0.7,0.9. The solid line
represent the quenched case, and the dashed lines represe
annealed case.
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finite chains is a monotonous function ofl. Thus the total
response increases if at constant impurity concentration
odd-length segments~starting with l 51) are substituted by
even-length segments~starting withl 52). Most of the sup-
pressed spectral weight comes from the low-energy c
tinuum of the response function due to the large segment
can be shown by considering a lowest-order single-mode
proximation thatS(p,v) is in fact exponentially suppresse
at low frequencies.18

The second common feature is the emergence of a
crete peak structure at larger frequencies~of orderJ), domi-
nated by the contributions of the smallest cluster segme
The dominant segments, occuring according to the distr
tion function P( l ), can be identified from these higher e
ergy peaks. In the annealed case, the smallest segmen
the two-site clusters with a pole inS(p,v,l ) at v51J, and
the four-site chain with a major pole atv50.66J. These
poles are well separated from the low-energy continuum
carry most of the spectral weight ofS(p,v) at impurity
concentrationsr>0.5 @Figs. 3~c!–3~e!#. The pole of the
smallest segment atv51J dominates the dynamical re
sponse function in the annealed case at high concentrat
r.0.7. One thus expects that most of the spectral weight
be obtained from the two-site cluster forr close to one. In
fact, from Eq.~9! one finds

S~p!'2P~2!S~p,2!'
12r

2
, r→1, ~11!

explaining the linear behavior ofS(p) for large impurity
concentrations. Since in the quenched case the single
sites and the three-site chains are also present, their
frequency poles contribute strongly to the spectral weig
The major pole of the three site chain atv51.5J is the first
well-defined pole to separate from the low-energy continu
upon increasing the impurity concentration, as can be see
Fig. 3~a! already atr50.1. It dominates the spectrum awa

FIG. 4. ~a! and~c! The frequency-integrated dynamical structu
factor at wave vectorp, S(p) ~solid line! and the residual spinon
density of statesS(p,0) ~dashed line! as a function of the impurity
concentrationr. ~a! quenched disorder,~c! annealed disorder.~b!,
~d! Dependence of the amplitudes of the peaks atv50 ~full circles!
v150.66J ~solid line! , v251.0J ~dashed line! andv351.5J ~dot-
ted line! on the impurity concentrationr. ~b! quenched,~d! an-
nealed.
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from the low-energy pseudobranch until, at intermedi
concentrations, the lowest-energy poles of the two- and fo
site clusters are also separated from the continuum. Cha
teristic features of the underlying impurity distribution ca
thus be read off from the higher frequency part of the sp
trum.

The major difference between the two impurity distrib
tions we have studied lies in the rate at whichS(p,v) is
suppressed for small frequencies. Consider the annealed
first. The even-site segments do not have a pole atv50 due
to their inherent finite spin gap. Thus the exponential s
pression of the contributions from the large segments le
to the development of a pseudogap at small frequencies
increasing impurity concentration. The finite values
S(p,0) are due to our replacement of thed peak in Eq.~7!
by Lorentzians. This mimics the various broadening mec
nisms in real materials, such as thermal broadening, sca
ing from phonons, and interactions with out-of-chain imp
rities. As shown in Fig. 4~c!, the residual spectral weigh
S(p,0) is exponentially suppressed with increasingr. In Fig.
4~d! the important higher-energy peaks are compared
S(p,0), clearly indicating the reduction of the zero
frequency weight in the annealed case.

Now consider the quenched case. All odd-length s
ments and especially the dominating one-spin segment s
a pole in their dynamical response function at zero f
quency. Therefore, one expects the rate of suppressio
S(p,0) to be significantly reduced in the quenched case w
respect to the annealed case. This is clearly observed in
4, comparing the value ofS(p,0) for both distributions. In
the quenched case the weight atv50 remains a major con
tribution toS(p), even at large impurity concentrations. Fi
ure 4~a! shows that the reduction ofS(p,0) with increasingr
is less pronounced in the quenched case. In fact, the am
tude of the peak atv50 dominates the spectrum for allr, as
shown in Fig 4~b!.

In Ref. 18, periodic boundary conditions were used
stead of the more appropriate open boundary conditio
Naturally, the effect of the boundary conditions becomes
creasingly important for the smaller participating cluste
Therefore, the results of Ref. 18 are not strongly affected
the choice of boundary conditions for sufficiently low imp
rity concentrations, whereas for larger concentrations m
significant quantitative differences can be seen.33 For this
reason open boundary conditions have been adapted thro
out this work.34

III. THERMODYNAMIC RESPONSE: UNIFORM
SUSCEPTIBILITY AND HEAT CAPACITY

In this section we examine the thermodynamic respo
of segmented spin-1/2 Heisenberg chains. Based on sim
scaling arguments, low-temperature approximations for
uniform susceptibility and the specific heat are derived a
shown to be in good agreement with a numerical solution
the problem, using the Bethe ansatz equations for open
chains. The impurity tail of the low-temperature susceptib
ity ~i.e., the divergence ofx(T) at T50) in an ensemble of
segmented chains is caused by the odd-length segments
fore examining the subdominant contributions of the ev
length segments it is, therefore, necessary to first identify
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15 266 PRB 61STEFAN WESSEL AND STEPHAN HAAS
discuss the dominant divergent contributions of the o
length clusters. This can be achieved by analyzing@x(T)T#.
Its value at zero temperature, lim

T→0
@x(T)T#, gives the

prefactor of the low-temperature impurity tail inx(T). For
chains of even length, which always have a finite spin g
the value of @x(T)T# approaches 0 as T goes to zer
whereas for odd lengthsl, lim

T→0
@x(T)T#51/(4l ). It fol-

lows that in the quenched case

@x~T!T#0~r![ lim
T→0

@x~T!T#~r!

5 lim
T→0

(
l 51

`

lP~ l !@x~T!T#~ l !5
r~12r!

4~22r!
,

~12!

with a maximum atr522A2'0.586. In the ideal anneale
case only even-length segments contribute to the aver
and therefore@x(T)T#0(r) vanishes. The Curie constant
C(r)5 lim

T→`
@x(T)T#5(12r)/4, independent of the

length of the contributing segments.
To study the temperature dependence ofx(T) we can

calculate the finite-size susceptibilities from the Bethe ans
equations which determine the energy levels of open Heis
berg chains:

S xk1 i

xk2 i D5)
j Þk

M
xk2xj12i

xk2xj22i

xk1xj12i

xk1xj22i
. ~13!

Here the number of rootsM determines the totalSz com-
ponent of the state through the relationSz5 l /22M . In loga-
rithmic form this equation becomes

2lctan21~xk!5pI k1(
j Þk

M Fctan21S xk2xj

2 D
1ctan21S xk1xj

2 D G , ~14!

where all theI k are integers withk51, . . . ,M . Given a so-
lution of the above equations for a set ofI k’s, the energy of
the corresponding eigenstate is

E

J
5

l 21

4
22(

k51

M
1

xk
211

. ~15!
-

,
,

e,

tz
n-

The ground state in a givenSz sector,E0(Sz,l ), is obtained
from the set$I k%5$ l 11,l 13,l 15, . . . ,l 12M21%. And the
first exited state in theSz.0 sectors can be determined fro
the set$I k%5$2Sz,2Sz13,2Sz15,2Sz17, . . . ,l 21%. Using
an iterative method to determine the energy gaps for
even-length segments,DEl5E0(Sz51,l )2E0(Sz50,l ), one
obtains for the low temperature susceptibility of the se
mented chain:

@x~T!T#~r!5@x~T!T#0~r!12(
l 52

`

8
P~ l !

11exp~DEl /T!
,

~16!

where the sum is restricted to evenl. This equation can be
evaluated numerically, using the energies from the finite-s
Bethe ansatz equations@Eq. ~15!# and an appropriate distri
bution functionP( l ). It is found that the results for@x(T)T#
typically converge below a length cut-off aroundl max
51000. Results for the quenched case are shown in Fig
For low temperatures there appears to be a universal sca
behavior which can be elucidated by expanding Eq.~16!.

To determine the low-temperature scaling behavior of
susceptibility we consider the lowest-order finite-size scal
behavior of the energy gap,DEl'a1 / l , neglecting higher-
order logarithmic corrections@Eq. ~4!# which become in-
creasingly important when larger segments occur~i.e., at
very small impurity concentrations!. For low temperatures
one obtains

FIG. 5. Linearized form of the scaling behavior for the low
temperature susceptibility of segmented Heisenberg chains for
purity concentrationsr50.05 ~top!, 0.1,0.2, . . . ,0.9 ~bottom!.
@x~T!T#~r!2@x~T!T#0~r!'E
0

`

expF2
a1

Tl
2 lnS 1

12r D l Gdl

5A 4a1

T lnS 1

12r DK1FA4a1

T
lnS 1

12r D G

'Ap

2
Aa1

T
F ln

1

12rG23/4

expF2A4a1

T
lnS 1

12r D G , T→0. ~17!
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The expected low-temperature behavior is thus of the fo

@x~T!T#~r!2@x~T!T#0~r!}S T

J D 21/4

e2g/AT/J, ~18!

whereg turns out to be

g5A4
a1

J
lnS 1

12r D . ~19!

The observed linearity in Fig. 5 where we have plott
ln@„x(T)T(r)2@x(T)T#0(r)…(T/J)1/4# vs (T/J)21/2 for
variousr confirms the validity of this low-temperature ex
pansion. The free parametera1 can be determined by fitting
g(r) of Eq. ~19! to the exact numerical Bethe ansatz soluti
of @x(T)T#(r) @Eq. ~16!#. As shown in Fig. 6, for suffi-
ciently small concentrations the fit turns out to be very go
giving a153.88J.

A similar procedure can be used to determine the sca
behavior of the specific heat of segmented Heisenberg s
1/2 chains. For the quenched case, one finds

C}S T

J D 25/4

e2g8/AT/J ~20!

at sufficiently low temperatures. The corresponding effect
gapg8 turns out to be

g85g01A4
a18

J
lnS 1

12r D , ~21!

where a fit of the numerical data yieldsg050.182 anda18
54.106J.

IV. CONCLUSIONS

In summary, we have examined the spectral and ther
dynamic response of various ensembles of segmented
ferromagnetic Heisenberg spin-1/2 chains. We have ca
lated the dynamical spin structure factor which can
probed by neutron-scattering experiments. The particular
pendence of this quantity on the impurity concentration
determined by the distribution of segment lengths. Howev
there are several generic features which are observed fo

FIG. 6. Fit of the effective low-temperature gapg. The circles
show the numerical solution of the Bethe ansatz equations, and
solid line is the best fit witha153.88J.
,
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most common distribution functions. These are~i! a rapid
decay of the integrated spectral weight with increasing
purity concentration,~ii ! a suppression of low-frequenc
poles~pseudogap!, and~iii ! the emergence of a discrete po
structure at higher energies, dominated by the smallest c
tributing clusters in the average. While we find that the fi
two predictions are consistent with the presently availa
experimental data, point~iii ! might be the hardest to verify
because the corresponding signals in a highly disorde
sample are typically rather small and broad.

Two main contributions to the low-temperature thermod
namic response of segmented chains can be identifie
dominant divergent component from the odd-side clust
and a subdominant exponentially activated component du
the even-site clusters. The subdominant contribution is a
lyzed by subtracting the impurity tail from the total respon
function, as it is commonly done in the analysis
experiments.19,30 Assuming a certain type of distributio
function, the corresponding effective gaps, hereg for the
uniform susceptibility andg8 for the specific heat, can b
calculated. An analysis of these gaps can thus be used a
indicator of the underlying distribution function of segme
lengths.

Complete segmentation of quantum spin chains, as it
been treated in this work, can be viewed as an extreme
of impurity scattering with an infinitely large on-site repu
sive potential. While this mechanism may indeed lead
segmentation, in many physical realizations longer-range
change paths exist which can partially restore extended s
of the undoped parent systems. Consider for example
doped CuGeO3. This compound is known to have sizeab
next-nearest-neighbor exchange interactions along
CuO2-chain direction, giving rise to an effectiveJ12J2
model. Below the transition temperatureTSP the compound
goes into a dimerized spin-Peierls phase, whereas aboveTSP
it is in a critical quasi-one-dimensional state. This sp
Peierls transition is suppressed upon replacing the Cu at
randomly with Zn,31 most likely because the partial segme
tation due to the nonmagnetic impurities impedes
quantum-critical extended states within the chains which
turn are a prerequisite for Peierls transitions. Because of
longer-range exchange pathsJ2, these extended states are n
completely destroyed, and a remnant spin-Peierls phas
observed in Cu12xZnxGeO3 at sufficiently small impurity
concentrationsx.31

The segmentation of critical one-dimensional syst
competes with transitions such as three-dimensional orde
due to small interchain interactions or Peierls-type tran
tions. Segmented one-dimensional phases are more s
against low-temperature ordering transitions, and criti
states can in turn be created in a controlled manner
impurity-doping short-range ordered systems, for exam
by introducing nonmagnetic sites into quasi-one-dimensio
spin liquids such as two-leg spin-1/2 Heisenbe
ladders.16,13,32
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