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The spectral and thermodynamic response of segmented quantum spin chains is analyzed using a combina-
tion of numerical techniques and finite-size scaling arguments. Various distributions of segment lengths are
considered, including the two extreme cases of quenched and annealed averages. As the impurity concentration
is increased, it is found thai) the integrated spectral weight is rapidly reducéd,a pseudogap feature opens
up at small frequencies, andi) at larger frequencies a discrete peak structure emerges, dominated by the
contributions of the smallest cluster segments. The corresponding low-temperature thermodynamic response
has a divergent contribution due to the odd-site clusters and a subdominant exponentially activated component
due to the even-site segments whose finite-size gap is responsible for the spectral weight suppression at small
frequencies. Based on simple scaling arguments, approximate low-temperature expressions are derived for the
uniform susceptibility and the heat capacity. These are shown to be in good agreement with numerical solu-
tions of the Bethe ansatz equations for ensembles of open-end chains.

. INTRODUCTION quasi-1D compound such as SrGu@ith Zn. In the pure
material, antiferromagnetic superexchange between neigh-

Low-dimensional electron systems are known to be parboring Clinxz—yz electrons is mediated by the filled?Op-
ticularly sensitive to disordérlt is therefore difficult to re-  orbitals. By substituting Z#" for Ci?*, static vacancies are
alize pure one- or two-dimensional behavior at very low tem-created, and the infinite chain is separated into segments of
peratures and small frequencies in natuéis is somewhat length| which follow a discrete distributiof'® A second
disappointing in light of recent detailed theoretical predic-physical way of realizing segmented spin chains is the pin-
tions for the low-energy scaling behavior of paradigmaticning of one-dimensional charge-density waves. If there is
guantum-many-body models, such as antiferromagnetic spicompetition between poorly screened long-ranged repulsive
chains and ladders. It is the enhanced quantum fluctua- Coulomb forces and short-range attractive forces, highly in-
tions in these compounds, which give rise to particular low-homogeneous density wave modulations occur, favoring par-
temperature scaling regimes in very pure samples, and at thigular segment lengttf®. Even small impurity scattering
same instance make them highly unstable towards externallgads to a pinning of such structures.
induced low-temperature transitions, such as localization by In both cases, there are ensembles of correlated spin seg-
impurity scattering or three-dimensional long-range orderingnents which are most straightforwardly modeled by taking
due to residual small couplings between the Ilower-appropriate averages over distributions of finite clusters with
dimensional subsysterfis. open boundary conditions. The specific form of the distribu-

It has recently been demonstrated that in certain onetion function strongly depends on the details of how the seg-
dimensional1D) subsystems, such as random-exchange anthents are formed. For example, in the case of randomly
random-spin chains, anomalously extended states can persigiped CuO chains ddiscrete¢ Poisson distribution is
against disordet?~#The physical picture is that while most natural*®'°whereas for pinned, spatially modulated density
spins are bound in randomly distributed valence bonds, thevaves, only two or three cluster sizes may dominate. An
unbound spins interact via virtual excitations, resulting in aimportant factor, determining the proper distribution func-
zero-frequency band with power-law scalittgzurthermore, tion, is the (metajstability of the random realizations: are
in the case of spin ladders and spin-Peierls compounds, dofhey obtained from a quenched or an annealed cooling pro-
ing with randomly placed nonmagnetic impurities may actu-cedure? While in quenched realizations all clusters that occur
ally induce quasi-long-range ordering due to effectiveat high temperatures also have nonvanishing weight in the
inverse-power-law interactions between the residuakero-temperature distribution function, slower “annealed”
“pruned” spins®’ This replacement of an originally short- cooling processes can lead to preferred sizes and shapes. In
ranged spin-liquid state by impurity-induced quasi-long-particular, segments with an electronic closed shell configu-
range order can be viewed as a realization of the “order byation have more stable groundstates than others, and thus
disorder” phenomenon. receive a higher weight in an annealed cooling proééss.

In other compounds, impurity scattering may completely In this work, we systematically study such ensembles of
destroy the connectivity within one-dimensional subsystemsantiferromagnetically correlated spin clusters, focusing on
If this is the case extended states cannot survive. Let uthe evolution of the corresponding low-energy features in the
examine two specific realizations of such segmented quardynamical spin excitation spectrum and on the uniform static
tum spin systems(i) CuO chains, with nonmagnetic impu- susceptibility as a function of the hole concentration. In par-
rities, and(ii) pinned charge-density waves in quasi-1D ma-ticular for small clusters, quantum effects are imporfant,
terials. The first situation can be realized by doping awhich makes any theoretical approach to this problem chal-
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lenging. We therefore attack this task numerically, using ex-
act numerical diagonalizatiéh and scaling laws derived even  (a) odd  (b)
from conformal field theory to calculate the static and dy-
namical magnetic response for variable segment $fzes.

This paper is organized as follows. In the next section, a =2 ,M A
procedure to obtain excitation spectra for segmented Heisen-
berg chains is explained. The appropriate distribution func-
tions are derived, and the evolution of the spectra with im-
purity concentration is discussed. In the subsequent section,
the static magnetic response, i.e., the uniform susceptibility,
and the heat capacity are calculated for various ensembles of
finite chains. In the final section we conclude with a discus- , . =20 L =19
sion of possible extensions and experimental consequences 00 10 20 30 00 10 20 3.0 40
of the procedure outlined in this paper. o o/

S(n,w,l)

FIG. 1. Finite-size scaling of the staggered dynamical structure
Il. EXCITATION SPECTRA AT T=0 factor of the antiferromagnetic spi%lHeisenberg chain with open
. . . boundary conditions. The poles have been given a widthe of
In this section, we study the zero-temperature dynamical g 13, (g) chains with an even number of sitéb) chains with an
response of randomly segmented spin-1/2 Heisenberg chaiggg number of sites.
with open boundary conditions. The Hamiltonian for a chain

of lengthl is given by where the coefficients; ,3; ,a; ,b;, andc; can be treated as
-1 fit parameters. In Fig. 2 the pole positions and amplitudes of
H=JE S-S 1) the lowest thr_ee poIe_s are shown for cIus_ters of up to 20
= L sites, along with the fits to the above scaling equations. In
particular for the larger-size segments, these equations give
whereJ>0 is the antiferromagnetic exchange constant. Wean excellent fit to the numerical data. In the shorter segments
examine the dynamical structure factfq,w,l) of finite  higher-order logarithmic corrections for the amplitudes be-
chains with open ends: come increasingly relevant, and the quality of the fits dete-
riorates slightly in this regime. Note also, that the peak of the
1 22 one-site cluster ab=0 has an amplitude that does not fol-
S(q"‘”l):E nzl [(nISgI0)*0(0—EntEg). (2 jow the general trend. The amplitudes shown in Fig. 2 cor-
respond to the dynamical spin response per[&tg (2)]. In
HereZ is the partition function|0) is the ground state, and  the following, we will consider averages over ensembles of
runs over all possible final states. Let us first concentrate ofinite chains, where the amplitudes of the individual seg-
the staggered magnetization ments enter as extensive quantities. In this case, the segment
amplitudes per site shown in Fig. 2 have to be multiplied by
the segment length[Egs.(6) and (7)].

|
§,=2 (-1"S). (3)

4.0

ThenS(7,w,1) is well defined for open boundary conditions (@) aven, {(c) odd

and chains of an even or odd number of sitda the case of

-
evenl there is a unique singlet ground state, whereas one has 3 20 | 1 1
to take into account the doublet nature of the ground state for ol % '\.\_\_\’\B‘H

3.0

odd|. Using numerical diagonalization techniques, we have

obtainedS(,w,l) with =1, ...,20. Theresulting spectra 0.0 . —
are shown in Fig. 1. We observe that segments of even (b) (d)
length| havel/2 major peaks at non-zero frequencies, while 06 e Rt
those of odd length have a significant pole«sst 0 and ( < 04} I ]
—1)/2 additional peaks at higher frequencies. The higher k'_._-/'/PH':_,_*H-._._.
energy peaks have a more complex structure, because some 02 ¢ e | ]
of the final states are singlets. Zero-frequency peaks occur 0.0 e W
only in the odd-length segments, reflecting the fact that their 0 4 8 1216 0 5 10 15 20
groundstates are doublets. ! !
As in the case of closed finite Chajrﬁsequatlons derived FIG. 2. Finite-size scaling of the first three poles of the stag-

frlom Conformal ﬁel_d theory can geiztgsed to thract the finite'gered dynamical structure factor of sginHeisenberg chains with
size scaling behavior &(7,,l). To leading order, the  gpen houndary conditions. The symbols show the values obtained

I ; ; 28 . g o o
pole positions and amplitudes are givertti/ by numerical diagonalizations, and the solid lines are the result of a
fit to Egs. (3) and (4). Circles: first poles, squares: second poles,
wi()=ea;/l+ B /I[In(1)], 4) diamonds: third polega) pole positions for chains of even length,

(b) the corresponding amplitude) and (d) analogous results for
Ai(h)=a;+b;In(1+1)+ciIn[1+In(1+1)], (5) chains of odd length.
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The finite-size scaling behavior of the lowest pole posi- 1.00
tions for open spin-1/2 Heisenberg chains has recently been 0.75 (d)
obtained, using conformal field theory methd8<ur nu- 0.50

merical values of the coefficientg and B; are in excellent 0.25
agreement with these findings. However, a field-theoretical 0.00
determination of the corresponding amplitudes appears notto < (75

8
be available at this time. We, therefore, rely on the results of £ 0.50 (e)
the numerical diagonalization study which are presented in 0'25
Fig. 2. '

Now consider an infinite Heisenberg chain, doped with 0.00
nonmagnetic impurities, resulting in an ensemble of open- D73 (c) (f
end segments of various lengthsThe average dynamical 0.50 ¢
spin structure factor can then be calculated from 025§ Jun .

00%0 10 20 30 00 10 20 30 40
S(m,w)=2, IP(NS(m,,l), (6) A o/
|

FIG. 3. Evolution ofS(7,w) of the segmented antiferromag-
netic spin% Heisenberg chain as a function of the impurity concen-
Efration.(a)—(l‘) spectra fopp=0.1,0.3,0.5,0.6,0.7,0.9. The solid lines
represent the quenched case, and the dashed lines represent the
annealed case.

whereP(l) is an appropriately chosen distribution function.
Using the pole structure of the response functions for th
individual segments, we obtain

S(mw)=2 2 IPHAS-wi(). (D o .
b of each segment as shown in Fig. 2, i.e., the indexEq. (7)
In practice, thes function in Eq.(7) is replaced by a Lorent- 'Uns fromi=1to 3. Also, a cutoff lengthya,=10000 is
used in the sum ovel. The resulting frequency-integrated

zian of width €, which will be taken as=0.1J throughout ) N ;
the paperP(l) determines the weight of each segment in theSt@ggered dynamical structure factr) = fdwS(7,«) is

ensemble average, and extrinsic factors favoring certain cludlen given by

ter shapes over others enter through this function. If the Fmax

chain ;egmen_tatiqn occurs cqmp!etely randomzly, the Icorre- S(W):E IP(1)S(,1), 9)
sponding distribution function is given B(l)=p<(1—p)", =

wherep e[0,1] is the concentration of vacant sites2° This

distribution function is normalized by where S(m,1) is the frequency-integrated dynamical struc-

ture factor at wave vectorr, with the scaling form

i P()=1—)p, ® S(mh=a+bin(1+)+cin1+In(1+1)]. (10
I=1

Comparing the values @&(#) obtained from exact numeri-
and forp<1 it can be approximated bj(l)~ p?exp(—pl). cal diagonalizations of ensembles of finite clusters with the
We also note that since the total number of clusters per site isult for S(7) within the three-mode approximation, one
given by n.==,P(l)=p(1—p), the average length of the finds that the three-mode approximation tends to underesti-
clusters id 5, = 2IP(I)/n.=1/p. The above distribution de- mateS() for small impurity concentrations. The difference
scribes the case of quenched disorder in the infinite chairin the integrated weight is due to neglecting the higher fre-
i.e., the positions of the impurities are uncorrelated. In amuency poles that become more relevant for larger clusters
annealed cooling process, even length segments are favoradd thus smaller impurity concentrations. This weight can be
over odd ones, because they have a lower ground-state eapproximately restored by adding the properly normalized
ergy. We describe this situation by a similar distribution dynamical structure factor of an infinite Heisenberg chain,
function P,(1)=Cp?(1—p)' 8ojmosz WhereC is determined  broadened bye to AS(w,w)xel/(w?+ €?)/m, neglecting
by the normalization conditiori8). Only even length spin logarithmic corrections. It turns out that these corrections to
segments occur in a chain with this distribution function forS(#) are only relevant for very low impurity concentrations
the impurities. Note, that according to common terminologyand are negligible forp>0.2. The resulting spectra are
all of the ensemble averages which are discussed here astown for differentp in Fig. 3 for the quenched and the
“quenched” because frozen disorder realizations are usechnnealed case.

In this paper, the terms “annealed” and “quenched” only  For both types of impurity distribution functions there are
refer to the cooling procedures giving rise to different distri-two main features that occur B 7, ) upon increasing the
bution functions. For true annealed disorder, however, th@umber of vacancies in the infinite chain. First, the integrated
disorder variables would have to be treated dynamically. spectral weight decreases rapidly upon increasing the impu-
Here we wish to evaluate and analy2emr, w) and S( ) rity concentration. This is shown explicitly in Fig. 4, where
by using the finite-size scaling behavior of the lowest fewthe solid lines in parta) and(b) represent the dependence of
poles in the spectrum. This few-mode approximation hass(w) on p. Note that in the annealed case the integrated
been shown to be valid for sufficiently large impurity con- spectral weight is decreasing at a slower rate than in the
centrations, but it tends to underestimate the spectral reguenched case, especially for large impurity concentrations.
sponse for very sma.'® Let us use the lowest three poles This is due to the fact, that the integrated spectral weight of
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2.0 —— , ———— from the low-energy pseudobranch until, at intermediate
_yg| | uenched (&) ||  amnedled (o) | concentrations, the lowest-energy poles of the two- and four-
A ‘ site clusters are also separated from the continuum. Charac-
@ 10 | teristic features of the underlying impurity distribution can
§ a5 | :hus be read off from the higher frequency part of the spec-

) rum.

0.0 =SS N £ S The major difference between the two impurity distribu-

0.6 ) + d tions we have studied lies in the rate at whispmr,w) is
- i T e suppressed for small frequencies. Consider the annealed case
3 04 ¢ S, k ] first. The even-site segments do not have a pote-ad due
3 TN . 3 to their inherent finite spin gap. Thus the exponential sup-

02 .- . -k

: pression of the contributions from the large segments leads
- to the development of a pseudogap at small frequencies with

0.0+ v U L T
0.0 02 0.4 06 08 0.0 02 04 06 08 1.0
P P

increasing impurity concentration. The finite values of
S(r,0) are due to our replacement of tAepeak in Eq.(7)

by Lorentzians. This mimics the various broadening mecha-
nisms in real materials, such as thermal broadening, scatter-
ing from phonons, and interactions with out-of-chain impu-
rities. As shown in Fig. &), the residual spectral weight
S(7r,0) is exponentially suppressed with increasingn Fig.

4(d) the important higher-energy peaks are compared to
S(7,0), clearly indicating the reduction of the zero-
frequency weight in the annealed case.

Now consider the quenched case. All odd-length seg-
finite chains is a monotonous function bfThus the total ments and especially the dominating one-spin segment show
response increases if at constant impurity concentration th@ pole in their dynamical response function at zero fre-
odd-length segmentstarting withl =1) are substituted by quency. Therefore, one expects the rate of suppression of
even-length segmentstarting withl =2). Most of the sup- S(7,0) to be significantly reduced in the quenched case with
pressed spectral weight comes from the low-energy contespect to the annealed case. This is clearly observed in Fig.
tinuum of the response function due to the large segments. #, comparing the value d§(,0) for both distributions. In
can be shown by considering a lowest-order single-mode apghe quenched case the weight«at 0 remains a major con-
proximation thatS(, ) is in fact exponentially suppressed tribution toS( ), even at large impurity concentrations. Fig-
at low frequencies® ure 4a) shows that the reduction & 7,0) with increasing

The second common feature is the emergence of a dids less pronounced in the quenched case. In fact, the ampli-
crete peak structure at larger frequendiefsorderJ), domi-  tude of the peak ab=0 dominates the spectrum for all as
nated by the contributions of the smallest cluster segmentshown in Fig 4b).

The dominant segments, occuring according to the distribu- In Ref. 18, periodic boundary conditions were used in-
tion function P(1), can be identified from these higher en- stead of the more appropriate open boundary conditions.
ergy peaks. In the annealed case, the smallest segments &faturally, the effect of the boundary conditions becomes in-
the two-site clusters with a pole & ,w,l) at w=1J, and  creasingly important for the smaller participating clusters.
the four-site chain with a major pole ai=0.66). These Therefore, the results of Ref. 18 are not strongly affected by
poles are well separated from the low-energy continuum anéhe choice of boundary conditions for sufficiently low impu-
carry most of the spectral weight &(7,w) at impurity Tty concentrations, whereas for larger concentrations more
concentrationsp=0.5 [Figs. 3c)—3(e)]. The pole of the significant quantitative differences can be s&eRor this
smallest segment ab=1J dominates the dynamical re- reason open boundary conditions have been adapted through-
sponse function in the annealed case at high concentratior@yit this work™

p>0.7. One thus expects that most of the spectral weight can
be obtained from the two-site cluster fprclose to one. In
fact, from Eq.(9) one finds

FIG. 4. (a) and(c) The frequency-integrated dynamical structure

factor at wave vectorr, S(7) (solid line) and the residual spinon
density of state$(,0) (dashed lingas a function of the impurity
concentratiorp. (a) quenched disordefc) annealed disorde(b),
(d) Dependence of the amplitudes of the peaks at0 (full circles)
w,=0.66] (solid line) , w,=1.0J (dashed linpand w;=1.5J (dot-
ted ling on the impurity concentratiop. (b) quenched,(d) an-
nealed.

IIl. THERMODYNAMIC RESPONSE: UNIFORM
SUSCEPTIBILITY AND HEAT CAPACITY

1-p In this section we examine the thermodynamic response
S(”)”ZP(Z)S(T"Z)”T' p—1 1) of segmented spin-1/2 Heisenberg chains. Based on simple
scaling arguments, low-temperature approximations for the
explaining the linear behavior () for large impurity  uniform susceptibility and the specific heat are derived and
concentrations. Since in the quenched case the single sp#hown to be in good agreement with a numerical solution of
sites and the three-site chains are also present, their lowhe problem, using the Bethe ansatz equations for open-end
frequency poles contribute strongly to the spectral weightchains. The impurity tail of the low-temperature susceptibil-
The major pole of the three site chainat 1.5] is the first ity (i.e., the divergence of(T) at T=0) in an ensemble of
well-defined pole to separate from the low-energy continuunsegmented chains is caused by the odd-length segments. Be-
upon increasing the impurity concentration, as can be seen fiore examining the subdominant contributions of the even-
Fig. 3@ already atp=0.1. It dominates the spectrum away length segments it is, therefore, necessary to first identify and
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discuss the dominant divergent contributions of the odd- 10°

length clusters. This can be achieved by analyZipgr)T].
Its value at zero temperature, |im [x(T)T], gives the

prefactor of the low-temperature impurity tail }(T). For

chains of even length, which always have a finite spin gap,
the value of [ x(T)T] approaches 0 as T goes to zero,

whereas for odd lengthls IimTéo[X(T)T]=1/(4I). It fol-
lows that in the quenched case

[X(M)Tlo(p)= lim[x(T)T1(p)

T—0
e _p(1-p)
_T“Lnolzl IP(HIX(M)TI()= 42-p)"
(12

with a maximum afp=2-/2~0.586. In the ideal annealed
case only even-length segments contribute to the averageq ground state in a give® sector,Eq(S?
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FIG. 5. Linearized form of the scaling behavior for the low-
temperature susceptibility of segmented Heisenberg chains for im-
purity concentrationg =0.05 (top), 0.1,0.2.. . .,0.9 (bottom).

1), is obtained

and thgrefore{X(T)T]o(p) vanishes.. The Curie constant is ¢om the sefl }={1+1/+3]+5,... +2M—1}. And the
Clp)=lim,__[x(T)T]=(1-p)/4, independent of the ot exited state in th&’>0 sectors can be determined from

length of the contributing segments.
To study the temperature dependencex¢f) we can

the set{l,}={2%%25"+3,25*+5,25*+7, ... | —1}. Using
an iterative method to determine the energy gaps for the

calculate the finite-size susceptibilities from the Bethe ansateven-length segmentd,E;=Ey(S*=1])—Ey(S*=0)), one
equations which determine the energy levels of open Heiserebtains for the low temperature susceptibility of the seg-

berg chains:
. M . .
X +i X—=Xj+ 20 X+ X%+ 2i 13
Xe—i ) J2k X=X — 21 X+ x— 20

Here the number of rootsl determines the toted* com-
ponent of the state through the relati8h=1/2— M. In loga-
rithmic form this equation becomes

M

Xi— Xi
2lctan {(x) =7l + >, |ctan't u)
7k 2
X+ X
+ctan * k2 ') , (14
where all thel are integers wittkk=1, ... M. Given a so-

lution of the above equations for a setl@fs, the energy of
the corresponding eigenstate is

E I-1 X 1

=2 . 15
k§=:1xﬁ+1 139

mented chain:

~ i, P()
[X(T)T](p)—[X(T)T]o(p)+2|:2 1+expAE,/T)’

(16)

where the sum is restricted to evenThis equation can be
evaluated numerically, using the energies from the finite-size
Bethe ansatz equatiofiEq. (15)] and an appropriate distri-
bution functionP(l). It is found that the results fqry(T) T]
typically converge below a length cut-off around,,y
=1000. Results for the quenched case are shown in Fig. 5.
For low temperatures there appears to be a universal scaling
behavior which can be elucidated by expanding @6).

To determine the low-temperature scaling behavior of the
susceptibility we consider the lowest-order finite-size scaling
behavior of the energy gap\E,~ «, /I, neglecting higher-
order logarithmic correction$Eq. (4)] which become in-
creasingly important when larger segments oc(ie., at
very small impurity concentrationsFor low temperatures
one obtains

17
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8 —_——————————— most common distribution functions. These drga rapid
decay of the integrated spectral weight with increasing im-
purity concentration,(ii) a suppression of low-frequency
6t ] poles(pseudogap and(iii) the emergence of a discrete pole
structure at higher energies, dominated by the smallest con-
tributing clusters in the average. While we find that the first
4t 1 two predictions are consistent with the presently available
experimental data, poiritii) might be the hardest to verify
because the corresponding signals in a highly disordered
2t ] sample are typically rather small and broad.

Two main contributions to the low-temperature thermody-
namic response of segmented chains can be identified: a

S — dominant divergent component from the odd-side clusters

0.0 0.2 04 06 08 1.0 and a subdominant exponentially activated component due to
P the even-site clusters. The subdominant contribution is ana-

FIG. 6. Fit of the effective low-temperature gap The circles lyzed by subtracting the impurity tail from the total response

show the numerical solution of the Bethe ansatz equations, and tﬁémcm,m' asggfg IS commonly done in - the a.nal_yS|s_ of
solid line is the best fit with, =3.88J. experiment$®° Assuming a certain type of distribution

function, the corresponding effective gaps, herdor the
The expected low-temperature behavior is thus of the formuniform susceptibility andy’ for the specific heat, can be
calculated. An analysis of these gaps can thus be used as an
T\ ¥ /T indicator of the underlying distribution function of segment
X(DTIp) = [x(MTlo(p)=| 5] & "™, (18 |engths.

Complete segmentation of quantum spin chains, as it has

wherey turns out to be been treated in this work, can be viewed as an extreme case
of impurity scattering with an infinitely large on-site repul-
y= /4ﬂ|n(i>. (19) sive potential. While this mechanism may indeed lead to
J 1- segmentation, in many physical realizations longer-range ex-

The observed linearity in Fig. 5 where we have plottedchange paths exist which can partially restore extended states
IN[O(T)T(p) —[x(M) Tlo(p)(T/NHY4 vs (T/I)"¥2 for  of the undoped parent systems. Consider for example Zn-
variousp confirms the validity of this low-temperature ex- doped CuGe@ This compound is known to have sizeable
pansion. The free parametey can be determined by fitting next-nearest-neighbor exchange interactions along the
¥(p) of Eq.(19) to the exact numerical Bethe ansatz solutionCuQ,-chain direction, giving rise to an effectivé; —J,
of [x(T)T](p) [Eq. (16)]. As shown in Fig. 6, for suffi- model. Below the transition temperatufgp the compound
ciently small concentrations the fit turns out to be very goodgoes into a dimerized spin-Peierls phase, whereas abgye
giving «; =3.88J. it is in a critical quasi-one-dimensional state. This spin-

A similar procedure can be used to determine the scalingeierls transition is suppressed upon replacing the Cu atoms
behavior of the specific heat of segmented Heisenberg spiiandomly with Zn?* most likely because the partial segmen-
1/2 chains. For the quenched case, one finds tation due to the nonmagnetic impurities impedes the
quantum-critical extended states within the chains which in
turn are a prerequisite for Peierls transitions. Because of the
longer-range exchange paths these extended states are not

. . . completely destroyed, and a remnant spin-Peierls phase is
at sufficiently low temperatures. The corresponding effectlveobserved in Cu ,ZnGeO, at sufficiently small impurity
gapy’ turns out to be

—5/4

L) " eym (20)

Cﬁx(j

concentrations.3!
; 1 The segmentation of critical one-dimensional system
I 4ﬂ| competes with transitions such as three-dimensional ordering
Y =0 n : (21) : o : \ .

J 1- due to small interchain interactions or Peierls-type transi-
tions. Segmented one-dimensional phases are more stable
against low-temperature ordering transitions, and critical
states can in turn be created in a controlled manner by
impurity-doping short-range ordered systems, for example

IV. CONCLUSIONS by introducing nonmagnetic sites into quasi-one-dimensional
two-leg spin-1/2 Heisenberg

where a fit of the numerical data yieldg=0.182 anda;
=4.108).

In summary, we have examined the spectral and thermo=P" “‘g‘i'sdg such as
dynamic response of various ensembles of segmented aniﬁdder& o
ferromagnetic Heisenberg spin-1/2 chains. We have calcu-
lated the dynamical spiq structure factor which can be ACKNOWLEDGMENTS
probed by neutron-scattering experiments. The particular de-
pendence of this quantity on the impurity concentration is We thank A. Honecker and B. Normand for useful discus-
determined by the distribution of segment lengths. Howeversions, and acknowledge the Zumberge Foundation for finan-
there are several generic features which are observed for thogal support.
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