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An extension of density-functional theory, designed to treat spin-density waves and antiferromagnetic sys-
tems, is presented. The nonlocal nature of the antiferromagnetic correlations and possible noncollinearity in
spin space are incorporated via an additional fundamental variable, the staggered density, which supplements
the spin densities of conventional density-functional theory. Inclusion of this variable is justified by both
physical and methodological considerations. We prove the corresponding Hohenberg-Kohn theorem, derive the
pertinent Kohn-Sham equations, and present several approximate functionals depending explicitly on the
staggered density. As a first test the formalism is applied to two simple model systems, a one-dimensional
electron gas with a short-range interaction, and the three-dimensional electron gas with Coulomb interactions.
These calculations serve to test the developed formalism, but also already allow us to draw a number of
conclusions regarding the stability and nature of possible spin-density wave states in homogeneous electron
systems.

[. INTRODUCTION terms of local or semilocal approximations. Below we out-
line the construction of a density-functional formalism, de-
Spin-density waves(SDW'’s) and antiferromagnetism signed specifically for antiferromagnetic systems and spin-
(AFM) are complex subjects with pervasive ramifications indensity waves. Nonlocal antiferromagnetic correlations and
condensed-matter physics. The itinerant linear SDW irPossible noncollinearity in spin space are explicitly incorpo-
chromiunt and its alloys’ the itinerant helical SDW in fcc rated, both on the level of the Kohn-Sham equations and in
iron,? the complex, often noncollinear, spin ordering in rare-the exchange-correlation functional.
earth compound&? the isolating antiferromagnetic states in A recent monograptt points out that DFT can be prac-
transition-metal oxide®, and the SDW found in low- ticed on three levels(i) the setup of a DFT formalism and

dimensional systems such as organic condutfasd quan- the derivgtion of the peF“”em existepce theorel_(ﬁs,the
tum dots’ continue to challenge electronic structure calcuIa-(:.?nStrw:t'o.n and apalyss of approxmgte functlpnals, and
tions. (iii) numerical applications of the resulting machinery. The

. . . . o resent paper reports results from all three levels. In Secs.
_Densny-functlpnal the_or)(DFT),fo'ltjlgglapamcular n Its ﬁA—II DRN(FE) desc?ibe the formalism, derive the basic theo-
spin-dependent incarnation as spin . (SDFT), is by . rems, and discuss their physical interpretation. In Sec. Il E
now the standard tool for the calculation of the electronic,,, present several approximate functionals, which can be
and magnetic properties of materié‘fé..S The most popular ;seq in conjunction with the DFT, and in Sec. Il F we dis-
approximations to DFT, the local-spin-density approxima-css prospects for numerical implementation of the formal-

tion (LSDA) and the various generalized gradient approxi-ism_ In Sec. Iil, finally, we report first applications to simple
mations(GGA's) have been enormously successful in manymodel systems. Two appendices deal with the more technical
areas of physics and quantum chemisfry/but did encoun- issues ofu representability and the connection to diagram-

ter serious problems in the description of the electronic anghatic many-body theory. An abbreviated account of part of
magnetic properties of SDW states and AFM materi&ld®  this work has appeared in a recent paifer.

In the present paper we take as a working hypothesis that
these probl_ems are due to the fact that local and semi!ocal Il. DENSITY-FUNCTIONAL EORMALISM
approximations such as LSDA and GGA do not explicitly FOR SPIN-DENSITY WAVES
account for nonlocal AFM correlations. While in an unpolar-
ized state the average magnetization is zero, and in the fer- The original Hohenberg-Kohn theoréfguarantees that
romagnetic state the local magnetization is, on the averag#he ground-state wave function and thus all ground-state ob-
the same everywhere in the systémnd thus reasonably well servables are functionals of the ground-state particle density.
described within a local approximatiprthe long-range spa- Although a formalism based on this density alone is thus, as
tial variation of the magnetic order in antiferromagnetic anda matter of principle, sufficient to discuss all ground-state
noncollinear spin configurations implies the existence ofproperties of many-body systems, it is in practice often ad-
strongnonlocalcorrelations, which are hard to account for in vantageous to supplement the particle density by other vari-
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ables, in order to improve the quality of the unavoidabledescribes the coupling of the spin densitieg.(r)

approximations to the exchange-correlation functional. This:<\i,3(r)ﬁ,a(r)> to the external potentiab,(r) and the
strategy turned out to be highly successful in SOFT.  hemical potentias. In a similar way, the last two terms of
which supplements the density by tzecomponent of the g4 (9) describe the coupling of the staggered density to an
spin magnetization(or, equivalently, spin-resolved partial external staggered potenti&(r,r’)
densitie$.}**°> More recently it was also used in DFT for o
superconductors,2’where the additional variable is the su- X A A
perconducting order parameter, and in current-density- S=j drj dr’S(r,r')\I’}r(r)\Ifl(r’). (6)
functional theory, where it is the paramagnetic current
density?®?°In some cases, such as in DFT for superconductThis external staggered potential allows to write the Hamil-
ors and in SDFT for ferromagnetic systems, the additionatonian explicitly in terms of the staggered density. It serves
variable can be interpreted as the order parameter of as a formal device to generate a dependence of the exchange-
symmetry-broken ground state. In others, such as in currentorrelation functional on the self-consistently produced stag-
density-functional theory and in SDFT for nonferromagneticgered density. Unless a truly external staggered potential is
systems, such an interpretation is not generally possible, byresent(e.g., induced via the proximity field of an adjacent
the additional variables still describe essential physical deantiferromagnets(r,r’) can be set equal to zero in the final
grees of freedom, which would be extremely hard to accoungquations. It then plays the same role in the present formal-
for on the basis of the particle density alone. ism as does the external magnetic field in applications of
In the case of SDW states we pursue the same strateg§DFT to systems without such fields, or the external pair
and include a suitably chosen additional variable that charpotential in DFT for superconductofs.
acterizes some essential degrees of freedom of the SDW After these preliminaries it is now straightforward to
state. Our candidate for this additional variable is $teg- adapt the Hohenberg-Kohn proof bgductio ad absurdum
gered densitydefined in terms of field operators as the ex-(see Appendix A for a constrained search formulgtiand
pectation value show that the ground-state densitiag(r) and pg(r,r’)
R R uniquely determine the ground-state wave function. One
ps(r,r") ::(\Ir%f(r)\pl(r’))_ (1)  readily obtains the following generalization of the three sub-
statements of the original Hohenberg-Kohn theorémThe
Our reasons for choosing precisely this quantity are disground-state wave functiog is a functional of the set of
cussed in Secs. I B and 1l D, and illustrated by model Ca'-densities{nT N .psh, i.e., g=yln;,n ,ps]. Consequently,
culations in Sec. Ill. At present we only note that the stag-this set contains the complete information about the ground

gered density obviously describes spin-dependent spatialltate of the systentii) The ground-state energy can be writ-
nonlocal correlations between particles at sitendr’, and  ten as

that such correlations are clearly important for AFM and
SDW states. E[nT lnl 1pS]: EU+ ES+FHK[nT !nl :Ps]v (7)

A. Hamiltonian and Hohenberg-Kohn theorem where the HohenbergTKohn functiord),k is defined as the
ground-state expectation value
In order to set up a density-functional formalism in terms
of the staggered density we write the basic many-body FHK:<¢|:I-+ U|¢>, (8)
Hamiltonian as
andE, and Eg are the expectation values ®f and S+ S,
A=T+0+V+5+8" 2 respectively. The functiondfyy is an universal functional
of the densities in the sense that it does not depend on the
The first three terms on the right-hand side of this equatiorzxternal potentials{v,,,S}. (iii) The ground-state energy

have their usual meaning. In units in whigkri =m=1, functional is minimized by the ground-state densities. The
V2 finite temperature version of these statements is simply ob-

fZE f dr\ir't(r) v ‘ifg(r) 3) talngd. by replacing the ground-state wave function by the
> v 2 statistical operator and the ground-state energy by the grand

potential in thermal equilibrium.
is the kinetic energy,

1 B. Exchange-correlation functional and physical interpretation
2 AT, Tt ’ i
U:E 2 f drf dr \If:r,(r)\lflr,(r ) of the staggered density
oo As is standard practice in DFT, the universal functional
1 . . Fhk is now rewritten by extracting the noninteracting kinetic
X———W ()W (1) (4)  energy and all those terms which can be expressed explicitly
lr—r'| in terms of the selected set of densities. In the present case
. . . . . we write
is the interelectronic Coulomb interaction, and
A A Fukln:,ny,psl=:Tn; ,n,ps]+Uy[ng,n ]
V= driv,(r)—w]¥ (W (r 5
S Jateo-uiionn e ~Udpd+ERin npd O
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which serves as a definition of the so-called reducedoncollinear. Similar considerations apply to the transition
exchange-correlation functionarxecd[m N ,ps]. HereTgis  between a transversally polarized SDW and a longitudinally
the kinetic energy functional of noninteracting electrons, andgpolarized SDW, observed in chromium at temperatures be-
low the Neel temperaturé.Although each of the two SDW
1 n(ryn(r’) in itself is (most likely) collinear, a description of the change
Unlny ,nl]=§J er’ dr'——— (10 in the magnetic state requires a formalism capable of de-

_ !
r=r’] scribing twisted magnetizations. In particular, from the point

is the standard electrostatic repulsion, expressed in terms 6f view of the transverse SDW, the longitudinal SDW is

n=n;+n,. Uy results from the first-order Hartree diagram characterized by a large staggered density, and vice versa. In
after substituting n,(r)=—iG,,(r,r,t—0%), where these cases the staggered density cannot be interpreted as an

G, (r.r',t) is the spin-dependent one-particle Green'sorder parameter for noncollinear magnetizations because it is

function. Similarly, the term nonzero glso. in one of the linear phases or domains, but by
construction it still accounts for the nonlocal spin-dependent
lps(r,r")|2 correlations present in these systems.
Ux[Ps]:J dff dr'W (13)

results from the spin-off-diagonal part of the first-order ex- C. Kohn-Sham equations

change diagram, expressed in terms of the staggered density According to Eq.(9) the reduced exchange-correlation
ps(r,r')=—iG (r’',r,t—07). Although U, results from functional E;‘f:d contains only the spin diagonal part of the
the exchange energy it will henceforth be called gtag- exchange diagram. For later convenience we also define the
gered Hartree ternbecause it contains the staggered densityfull exchange-correlation functional

in a similar fashion in which the conventional Hartree term

Uy contains the particle density, and is treated on the same

footing with this term throughout. Alternatively, the stag- EMIng g ,psl:=—Ulpsd +ERIn, 0 ,psl, (12
gered Hartree term can be regarded as a correlation effect

(missed by standard approximate correlation functionals . _ ) ) .
since correlation is usually defined with respect to convenWhich is an exchange-correlation functional in the literal
tional (unrestricted Hartree-Fock, in which unlike spins are S€NSe, in that it contains all many-body aspects of the prob-
uncorrelated, whereas the staggered Hartree term arises frdffT beyond the conventional Hartree tetry .

the spin-off-diagonal part of the exchange diagram, which is Unlike Uy andU,, the kinetic energy terris cannot be

disregarded in conventional Hartree-Fock theory and couple€Presented explicitly as a density functional. Following the
unlike spins. steps of Kohn and Shadfhwe employ an orbital representa-

If the Green’s function is diagonal in spin space, the stagtion Of this functional. To this end we introduce a set of
gered density is zero arld,[ p] vanishes. For noncollinear auxiliary single-particle equations, the SDW Kohn-Sham
spin configurations, such as realized in helical or cante@duations, which allow to calculate the densities of the inter-
SDW, frustrated AFM, domain walls, multilayers, etc., the gctmg syste'm frqm the equations of 'motlon of a n'onlnteract—
Green’s function is not diagonal in spin space, ahdyields  'N9Y systen? in suitably chosen effective external fieldgr)

a nonzero contribution to the total energy. Since the doubl@nd S(r.r"). The Hamiltonian describing this auxiliary sys-
integral in Eq.(11) is positive semidefinite, this contribution €M is simply
to Fyk on its own always tends to lower the total energy.

These observations suggest that the staggered density can e A A
be interpreted as a kind of order parameter for the noncol- He=T+Ve+5+8, (13
linear magnetic state, an interpretation which is further sup-

ported by the formal similarity between the staggered denSi%vhere the subscrips refers to the effective potentials. In

and the order parameter for superconductorsvith the order to diaonalize this Hamiltorian we nerforr & canon;
standard convention that in case of a collinear spin configu-r r lag 12 IS titonian we per -

ration the resulting preferred axis is taken to be the quantical transformation from the field operatdis,(r) to quasi-
zation axis, the staggered density is nonzero only in the norparticle operatory,,, via

collinear phase and thus indeed acts like an order parameter

for this phase.

Although there is thus an intimate relation between the - - -
staggered density and noncollinear magnetism, there may be\I’U(r)IZk [ekio(N) viq + ﬁpkla(rh’kl]:; Pno(1) Yn )
advantages in a formulation based on the staggered density (14)
even for collinear spin configurations. One example is the
antiferromagnetism of chromium. Chromium displays a pro-
nounced domain structure, evidenced, e.g., by neutronwheren=(kr) is a complete set of quantum numbers for the
scattering experimentsAlthough the spins are most likely quasiparticles. The transformati¢h4) couples spin up and
(but not certainl§®) collinear within each domain, the do- spin down in a similar way in which the Bogolubov trans-
mains can differ from each other both in the wave vector offormation of superconductivit{ couples particles and holes.
the SDW(Q domain$ and its polarizatiortS domaing. Both The transformation(14) diagonalizes the Hamiltonian
the domain walls and the global magnetic structure are thugl3) if the coefficientse,,, satisfy the following equation:
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hg (1) Jdr’ .Sy

(PnT(r))

(Pnl(r)

Jdr'...sg(r',r) hg, (1)

‘Pm(”)

15
(Pni(r) 13

:En

where

N V?
hSo’(r):<_7+vSo’(r)_M . (16)

These are the desired single-particle equatforihe effec-
tive single-particle potentialss, and Ss are determined, as
usual, by appealing to the Hohenberg-Kohn variational prin

ciple. Explicitly one finds

Usa(r):Uexto(r)+vH[n](r)+UXC,O'[nT 1nl 1ps](r)

17

and

Sy(r.r")=Sexdr.r") +Sulps](r.r') +Sclng.n L, psI(r.r’),
(18)

where

(19

n(r’)
_r’

r

vulnln)= | ar i
(r,r’)
SH[ps](r,r’)=—p(—,. (20)
[r—r']
5E>r<ec({nT Ny Ps]

ong(r) ’ @1

UXC,(r[nT 1nl 1ps](r):
and

5E>r<eﬁnT Ny Ps]

22
5p5(|’,r,) ( )

ch[nT vnl vps](r!r,):

The densities are expressed in terms of the eigenfunctions

Eq. (15) by

ng<r>=§ Q% (1) no(F) (23)

and

ps,(r,r'):g Ok (D en (1), (24)

where the sums extend over all occupied orbitals.
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Egs. (7) and (9). Experience with recent GGA and meta-
GGA calculation¥ suggests that such a procedure may ad-
equately account for the most important features of the
evaluated energy functional.

D. Methodological aspects of the staggered density:
staggered Hartree term, nonlocality, and noncollinearity

We have pointed out already that the staggered density
describes the kind of correlations expected to be important in
spin-density-wave states, and that it can, under certain cir-
cumstances, be interpreted as the order parameter for the
noncollinear magnetic phase. Another useful feature of a for-
mulation in terms of the staggered density is that it allows us
to extract from the exchange-correlation energy one more
term, the staggered Hartree tetdy, as compared to con-

ventional DFT or SDFT(which extract onlyTg and Uy).
Since the extracted terms are not subjected to the approxi-
mations made for the exchange-correlation functional, this
yields an improved representation of the spin degrees of free-
dom in the SDW state.

Similar Hartree terms also appear in the theory of charge-
density wavesCDW's) and superconductivity. In the CDW
case this is simply the conventional electrostatic Hartree
term, the paramount importance of which is obvious. In the
superconducting case there appears additionally an anoma-
lous Hartree term, containing the superconducting order pa-
rameter. The importance of this anomalous Hartree term is
underlined by the numerical finding that this term on its own
is larger in magnitude than the entire remainimgduced
exchange-correlation functional within the random-phase
approximatior?’

On the basis of these experiences we expect the staggered
Hartree term to be crucially important in the spin-density-
wave case as well. An explicit example is the archetypical
SDW state described by Overhaud&r? Overhauser's cal-
culation showed that within the Hartree-Fock approximation
for the homogeneous interacting electron gas a helical SDW
state has lower total energy than the paramagnetic state. The
difference in energy between these phases arises from the
gain in exchange energy in the helical SDW state, i.e., from

ecisely the term we have identified above as the staggered

artree term. This example strongly suggests that the stag-
gered Hartree term is an essential ingredient for calculations
of the energetic stability of noncollinear SDW states.

Note that in the CDW and superconducting cases the elec-
trostatic and anomalous Hartree terms are detrimental to for-
mation of the ordered state, while in the SDW state the stag-
gered Hartree term favors order. This effect has never been
systematically investigated or exploited in density-functional
theories, since these are not normally formulated in terms of
the staggered density.

More generally, since the formalism advocated in the

Equations(15)—(24) form a closed set of, in principle present paper is based on spinor orbitals and not on product

exact, equations for the spin-density-wave state, which haveepresentations of the single-particle orbitals, the variational
to be solved self-consistently. As a possible alternative to @rinciple guarantees that the resulting ground-state energy
self-consistent solution of the full cycle, one might envisagecannot be higher, but may well be lower, than that reached
performing a self-consistent Hartree-Fock or DFT calcula-with an implementation of DFT based on simple products.
tion based on two-component spinors, but without explicity The same is true in Hartree-Fock theory: the energy obtained
accounting for the staggered density during iteration, and awithin the conventiona{unrestricted Hartree-Fock method,
the end of the calculation plug the resulting self-consistentvhich proceeds in terms of product representations for the
densities once in the SDW-DFT energy functional given bysingle-particle orbitals, can often be lowered by the general-
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ized Hartree-Fock methad; 3 which proceeds in terms of complementary in scope, compared to those mentioned

two-component spinor orbitals. above>?%39-4Lgince it explicitly accounts for the intrinsi-
The exchange energy of the generalized Hartree-Fockally nonlocal nature of antiferromagnetic correlations. On
method can be written as the methodological level it can be interpreted as an attempt
to carry over into DFT as much as possible of the desirable
1 ) [ Voo (F,17)]? aspects of the generalized Hartree-Fock mettmzhlocal
Ex:_zf drf dr 2 W (25 variables and noncollinear spin configuratipnahile still
oo

avoiding to use the full density matrior which no Kohn-
Sham system exists

2 (I sl
——Zjdrfdr( + (26)

Ir=r'] Ir—r’| E. Construction of approximate functionals

where v,/ (r r,):<ﬁ,T/(r,)ﬁ, (r)) is the spin-dependent Recalling the definition of the full exchange-correlation

single-particle density matrix, and the second equality fol_;unctlon?l, given in Eq_.(12),f ohnel carll émmgmately wrltel
lows from the first one with the definitions own a first approximation of the local-density type, namely

n(r, )=y (rr )+ oy (rr'), (27) Exe[ny N .psl=—Ulps +E™ [y n 1, (3D
N ) , where ELSPA[n, ,n|] is the conventional LSDA functional.
SAr.r) =y L)+ yp (e, @8 This approxim;tioln assumes that the staggered Hartree term
N , , U, already takes care of the most important nonlocal stag-
S =ilyp(nr) =yl (29 gered correlations, so that the reduced exchange correlation
N N , functional can safely be approximated by the conventional
SArr)=yn(nr) =y re. B9 'spAin terms ofn, andn; only. If this assumption can be
The spin vectorS is related to the magnetization by justified (for example by recalling that, is the lowest-order
= oS, whereug=q#%/(2mc) is the Bohr magneton. perturbative term arising from spin offdiagonal Green’'s

The appearence of the two variableg,r’) andS(r,r’) functions, Eq. (31) is indeed a reasonable approximation.
in Eq. (26) would suggest to employ these as basic ingredi- In general, however, it is expected that direct us& gin
ents in attempts to go beyond Hartree-Fock by includingconnection with the conventional LSDA, which breaks the
correlation effects via DFT. However, use of both of theserotational invariance of the exact functional, tends to overes-
variables on the same footing is equivalent to using the fullimate the energy lowering achieved by forming a noncol-
spin-dependent density matrix,..(r,r’). This density ma- linear spin configuration. This expectation is corroborated by
trix is not noninteracting representable, i.e., there exists no many-body calculation€*> which imply that the depen-
Kohn-Sham-system of noninteracting particles which reprodence of the correlation energy on the staggered density is
duces the density matrix of the interacting systéminy  such that AFM becomes energetically less favorable, i.e., the
attempt to build a Kohn-Sham-type density-functional for-staggered correlations work against the staggered Hartree
malism on these variables is thus doomed to fail. term.

Conventional SDFT circumvents this problem by using A simple way to take this into account consists in modi-
only a subset of densities, the particle density) and thez ~ fying the first term on the right-hand side of E@1) such
component of the magnetizatian,(r). However, singling that it approximately accounts for the dependence of the
out thez axis for special treatment is clearly unsuitable for second term. In the spirit of the popular semiempirixal
noncollinear magnetic configurations. Furthermore, in termg&pproximation one sets
of only the local spin densities;(r) andn (r) there is no l
obvious way to account for nonlocality in the functional. Exc[N Ny .psl=—aU,ps]+

Several DFT approaches to noncollinear magnetism hav\%
been developed?*>*~*1The most widely used of these is

E)IZSDA[nT vnl]y (32)

herea is a numerical parameter less than 1, to be adjusted
N 30 o7 for the given system at hand. Note that this approximation,
that of Kibler and collaborators®® which is based on local

rotation matrices, allowing local application of the conven—WhiCh in the following will be referred to as tda approxi-
tional LSDA The,formalisgr]n de engg on the assumption tha ation, in fact goes way beyond the conventioal ap-

: P P qE‘roximation, since it includes charge correlations on the
e

the exchange-correlation potential at one point in space d avel of the LSDA and applies the adjustable parameter only
pends only on the densities at the same point and can thus teg
expressed in terms of the angles diagonalizing the density
matrix at that point, an assumption which is valid within the
framework of local or semilocal aggroximatio?mut does
not account for nonlocal correlatiofis. : .
In the present formulation the staggered density account%eStS ltself to write

for the x andy components of the vect&@(r,r’). Moreover, Efuu[nT n, ps]:_UX[pS]JFEN[nT n]+AELn N, .pq]
H H X 1 ’ ’ 1

the staggered Hartree term.

Clearly, many variations of this idea are possible. If the
exact exchange energy in the SDW state is availéddeis
the case in the model calculations reported beldtsug-

since the staggered density is a nonlocal quantity even a very ™ (33

simple functional of this variable incorporates nonlocal anti-

ferromagnetic correlations which would require an extraor-whereEQ‘[nT ,n, ] is the exact spin diagonal exchange energy
dinarily complex functional in terms of a purely local vari- of the nonmagnetic state atE,[n,,n|,ps] the change in
able. The approach advocated presently is thushis energy in the SDW state. Equati(38) is an exact rep-
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resentation of the full exchange energy, which does not infor all spins, while

volve approximations. In order to approximately include cor-

relations one can now simply add the conventional LSDA Wl V%2 j1(2Y3%e|x—x'])
correlation functional (which takes care of the purely Yoo X X'51)= 22 (41)

!
density-dependent correlationsand multiply the two i [x=x']

ps-dependent terms with the parameterThe full functional
than reads

for spin up andy‘:;‘('r'(x,x’;r)=0 for spin down. Herg(x) is

the first-order spherical Bessel functitfiThe parametric de-
pendence omrr arises from the Fermi wave vector of the
unpolarized systenkg[n(r)], and fromn(r) andm(r). The
resulting diagonal density matrifyL(x,x’;r) is expressed

. ) relative to the local quantization axis, which is parallel to the
Thls.funguonal, referred to pelow as the extendgd ap- |5¢g magnetization. We then rotate this density matrix into
proximation, employs the adjustable parameter only t0 takgne giobal coordinate system, in which the local magnetiza-
care of the ps-dependent correlations, i.e., the termon need not be parallel to the quantization agie values
AE([n;,ny,ps]. It thus goes way beyond the NSImpldBa of the angles required to perform this rotation are obtained
approximation of Eq(32), which approximate€,[n;.n;]  from m(r) and n(r), as in the procedure of Hier and

by the LSDA and absorbs the terE,[n;,n; ,ps] in the  co-workers®9), and use the resulting diagonal components

parameter. ) ) _ ) ¥S,(x,x";r) to evaluate the spin diagonal part of the ex-
A functional which does not require the introduction of an change energy, given by

adjustable parameter is obtained by extending the local-
density concept itself to the present case, i.e., approximating
the exchange-correlation energy of the inhomogeneous, and
possibly noncollinear, system locally by that of a homoge-

neous and collinear one. In order to illustrate one way inThiS procedure yields the energy[n. .n, ,p](r), required

which this can be done, we now construct an exchange-onlls,(1 Eq. (35). Note that the double integral in E#2) has to

LSDA, depending explicitly on the staggered density. The, L .
LSDA for the exchange functional is then be perfomed only once and that substitution of the resulting

function in Eq.(35) results in an expression which is for-
mally no more complicated than the conventional LSDA.

E;ed'LSDA[nT n ,ps]:f e,[ni(r),n (r),ps(r)](r)dx, Apart from the local approximation itself, the only approxi-
(35) mation made is the linear interpolation between a fully spin
polarized and an unpolarized electron gas. The resulting
wheree,[n;,n|,ps](r) is the per volume spin diagonal ex- |ocal-density functional for the spin diagonal exchange en-

change energy of a homogeneous electron gas with spin de@rgy, E;E’d’LSDA[nT N, ,ps], together with the expressidd,

sities n,,, and local staggered densipi(r)=ps(r.r). To  for the spin offdiagonal part, is therefore expected to ad-
calculatee,(r), one first extracts the local magnetization gquately account for the full exchange diagram for arbitrary
vectorm(r) fromn,(r) andpy(r), according to the prescrip-  amount of noncollinearity, and, moreover, to restore rota-
tion tional invariance of the full exchange energy, as far as pos-
sible within a local-density-type approximation. Since this

Exe[n .| .psl=a(—=Ulps]+AE[n; .| ,ps])
+EN[N; 0 1+ EPng ,n 1. (34)

r;r)|2
_— (42
|x=x|

1 S (%,
ey(r)z—if dxf dx’}g‘, ki

— *
my(1) = ol ps (1) +ps(N], (38 functional only depends on the local staggered density, it
. o~ neglects the nonlocal aspects of the antiferromagnetic corre-
my(1)=isolps (1) =ps(r)], 37 |ations, but these still enter the formalism through the stag-
ered Hartree term. As a first shot, the correlation energy can
my(r) = ol My (r) =0, (1)]. 3 ”

then be approximated by the conventional LSDA, so that the
Choosing the local quantization axis parallel tg(r) one  full functional reads

then interpolates between the density matrix for a fully spin-
polarized homogeneous electron gas and that of a spin-
unpolarized gas, to approximate the diagonal components of

the density matrixy“(x,x') for a homogeneous gas with
magnetization equal to that of the inhomogeneous system &t order to take into account also the dependencg&obn

EM'n;,ny,psl=—U[p] +ER* SN, |, pg]

+ESPAn, n]. (43
c 10

pointr. the staggered density one could either generalize the above
il prescription to the correlation enerdyelying on approxi-
L N Yoo (XX ;1) = Voo (X,X;T) mate expressions for the correlation energy in terms of the
’)/O'U'(X’X 'r): full |m(r)| H _ : f B c] ’
I (r)| = [mU(r)| single-particle density matrixy~(x,x’), analogous to Eq.
(42)], or follow the RPA-like prescription recently developed
T Vou(X,X'51), (390 in the framework of DFT for superconductdrs.
full T un Of the four local-density type functionals, Eq81), (32),
where|[m™(r)|=uon(r) and|m*=0, (34), and(493), the first is clearly the simplest to implement,
K2 i1(kelx=x']) While_the second, f[hird, and fourth_are_ expected to_be in-
YU (%, X)) = —— e Z (40)  creasingly more reliable. In the applications reported in Sec.

272 |x=x/|

Il we have, as a compromise, chosen to work with the ex-
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tended Ua approximation, Eq.(34). Note that all these extended to the present case either by employing also an
LSDA functionals are fundamentally different from the con- orbital representation of the staggered Hartree term or by
ventional LSDA, because they depend explicitly on the stagusing the staggered Hartree term as it stands, together with
gered density. the orbital expression for the diagonal part of the exchange
In the remainder of this section we discuss twoenergy. In both cases it is necessary to formulate the EXX
ps-dependent functionals which are conceptually differentequations in terms of spinor orbitals. The resulting combina-
from those described above. Recent work of Kleinflae-  tion of the staggered Hartree term with the exact spin-

sulted in the functionalin our notation diagonal exchange energy has the advantage that it automati-
cally guarantees cancellation of the errors which may
lps(1)Vps(r)* —c.cl? otherwise be induced by approximating the spin diagonal
Fxlps(r)]= —Af dr 3 5 . (49 part of the exchange energy, while treating the offdiagonal
n*ps(r)] part (the staggered Hartree terraxactly.

Another example is DFT for superconductéts?’°2->4

where A is an adjustable parameter, similar to auyr and R .
ps(r) denotes, as above, the local form of the staggered den[?ue to the formal similarity of our Kohn-Sham equatidrs)

sity pq(r.r). Originally it was suggested to add this func- and the Bogolubov—de Gennes equations of superconductiv-

. . —56 . _
tional to either the LSDA or the GGA’ but first applications ity, any program capable of solving the laffef™ can, with

by Kleinman and Bvlandt showed that. at least when com- out substantial modifications, also solve the former. Indeed,
y y ' the calculation is expected to be numerically much less de-

bined W.'th the G.GA’ this functional does not improve agree manding than in the superconducting case. A major source of
ment with experiments. . o . . .
. . . numerical complications in the superconducting case is the
The fact that these authors, following a very different line .
smallness of the superconducting gaph\sg, compared to

of thought, also obtained a functional depending on the Stag nical electronic energy scales. Representative numbers are

gered density provides additional support for introducing thls.2A
) . . ~0.1meV for a BCS-type superconductor and
variable. Moreover, from the present point of view a natural,”’ 1%Cmev for a high—tempergtrljre St?perconductor whisé%h are
though tentative, explanation for the problems encountere . . : i
0 be compared with the typical energy scale for band struc

in the application of Eq(44) can be given. Note that this ; : .
functional depends opg exclusively through combinations ture calculanon_s of about 0.1 to 1 eV. Th'? large difference
in energy requires very accurate calculatiohs By con-

with its gradient, and does not contain terms depending onl rast, the energy gap&spy, associated with the formation

on ps itself. From the point of view of the LSDA/GGA con- ; DY :
cept this already suggests that there may be nongradieﬁ{ a SDW, typically Sat'Sf'éSZASDV";O'leV' SinceAspw
IS several orders of magnitude larger thAgc, numerical

terms missing from the functional. Indeed, within the frame- lculati b ted 1o b ot I h
work of the present approach the Kleinman functiof&d) Cwigudi:r?gsd?nzn € expected 1o be computationally muc

appears to be a gradient correction, which might be used i Finally we mention SDFT cades which incorporate spin-

?ggju(%ﬁ)logr \(’gg; tt)f&? nl(c))tc ilr;ditesnzlxr_lty.?ﬁi sﬂ\j\?ocjllgni?n(?nl()a’di- orbit coupling or are based on the full magnetization vé€tor
ately explain why adding this functional to a conventionalm(.r)' Such codes automatically quk with two-co_mponent
spinors and X2 Kohn-Sham equations. By replacing, e.g.,

GGA did not improve the results obtainéd. . . X .
We finally mention that one can derive a rigorous connec:[he spin-orbit operator in the Kohn-Sham equations by the

tion between the exchange correlation potentials followin n'FegraI over the staggered pot_ent|al, as In E@)' one ob-
from E™ and the fully spin-dependent irreducible self- ains a framework suitable for implementation and calcula-
XC

energy of diagrammatic many-body theory. This connection?Ion of the staggered density.

spelled out explicitly in Appendix B, offers a systematic way
to construct approximate exchange-correlation potentials. IIl. APPLICATION TO SPIN-DENSITY WAVES
IN MODEL SYSTEMS

F. Implementability In order to test the machinery developed so far in this

The model calculations described in Sec. Il are per-paper we now apply it to two simple model systems, a one-
formed by directly calculating the total energy from the ex-dimensional electron gas with short-range interactions, and a
tendedU « approximation to the total energy expression fol- three-dimensional electron gas with Coulomb interactions.
lowing from Egs.(7) and (9). A self-consistent solution of These model systems were chosen for two reasons. First, for
the Kohn-Sham Eq15), on the other hand, is not attempted both model systems generalized Hartree-Fock calculations
in the present paper, and is clearly a more complex task thapredict that a helical SDW has lower total energy than the
the solution of the corresponding equation of conventionahot magnetically ordered stat&>*“® whereas many-body
SDFT. However, it is not always necessary to set up a comealculations beyond Hartree-Fock show that, at least in the
pletely new implementation of DFT in order to use the pro-three-dimensional case, the SDW disappears if correlations
posed formalism. At least three other formulations of DFTare included®~*> Comparison of our DFT calculations with
share features with the present method which facilitate itshese Hartree-Fock and many-body calculations thus allows
implementation. to assess the quality of the approximations for the exchange-

The first of these are the currently very popular exactcorrelation functional and the importance of the staggered
exchange (EXX) or optimized effective potential Hartree term.
methods}’~>! which employ an exact orbital representation ~ Second, due to the relative simplicity of these systems a
of the spin diagonal exchange energy. These methods can kerge part of the calculations can be performed analytically,
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which allows to directly demonstrate essential features of the 15
formalism. We hasten to add that the calculations reported

below do not have predictive value for realistic systems, but Py .
are included only to illustrate our method in some simple 10 ®e .
cases.

A. One-dimensional electron gas with short-range interaction °

.-- o
I-l-...-..... .

The approximation we use in these calculations is the ex-
tendedU « approximation EU«), as specified in Eq34)
above. The total energy of the SDW state is written as

ESP"n, ,n | ,ps]=Td 5O+ E[n]
+EMEYYn np ], (45)

where ¢SPW stands for the full set of occupied Kohn-Sham
orbitals. In the nonmagnetic state the corresponding approka
mation is

(E° - E") 10"%,

0

0.0 0.2 0.4 0.6 0.8 1.0
o

FIG. 1. Energy differencéin units of the Fermi energybe-
een the helical SDW state and the nonmagnetic state for a one-
dimensional electron gas with repulsive short-range interactions of
ENTML nl=Td N+ Enln1+ENN. n 1+ ESPAT G, il sFrengthV and a spin-density wave .vect.qr: 2I§F. The change of .
[np.n ]=Td ¢TI+ Euln]+ BN .0 JHEST] T’(A%) sign ata.~0.96 separates the region in which the SDW state is
stable @>a.) from that in which it is unstable d<«a). Dia-
After subtracting the latter from the former and substitutingmonds correspond t@/k-=1.05, circles tov/kg= 1.0, and squares

the explicit expression foE™" EU‘"[nT N ,ps] one obtains  to V/kg=0.95. Note that the energy difference depends rather sen-
sitively on the interaction strength, while the critieais much less

AE[N;,n,ps] =T PV =T "]+ (= Uyl ps] sensitive to changes i, being 0.958, 0.960, and 0.962, respec-
tively.
+AEX[nT1nL1pS]) (47)

The functionals on the right-hand side of this equation havdligher than the energy of the nonmagnetic state. By setting
been evaluated by Overhau¥eand Herring® for single-  Eq. (48) equal to zero and solving fat, this value is found
determinant wave functions, composed of two-componento be
spinors. Since the Kohn-Sham wave function of the present
K2
1+ 2z 1]. (50)
0
If the actuale is larger thane., the SDW is stable; if it is

DFT formulation are of this type, the expressions derived by nv
these authors can be directly taken oyBlote, however, that ac=1-—
smaller, the nonmagnetic state is favored. The critical value

Eq. (5.19 of Ref. 45 is given with the wrong sign. This error K
has been corrected beldwror sufficiently weak interactions
one finds explicitly

AE K Kk, k2K of a thl_Js provides a quantitative measure _of the_ stability of
—~—— — K+ P+ ——(1—a), (48)  the helical SDW state with respect to the inclusion of stag-
N 4 4 4nV gered correlations.

where « is the parameter introduced in E@L7), ko is the Three conclusions can be drawn from this analysis. First,

maximum occupied value in the SDW state\l the number  from Eq.(50) one readily finds that for all nonzero values of

of particles,n their one-dimensional density, the strength  the strenght of the repulsive potenti@l<1. In Overhaus-
of the repulsive short-range interactiof(r —r’)=—Vs(r er's and Herring’s generalized Hartree-Fock calculations

—r'), with V=0, and« is defined by (which implicitly took the value ofa to be oné the SDW
should thus always be stable, as is indeed found by these
ko authors. Note that the term which induces the helical SDW
T ko) 49 for o= a. is the staggered Hartree terh,, together with
SIn*(—V) AE,[n;,n ,ps]. Standard LSDA calculations, which do not

explicitly account for the staggered density and the staggered

where q is the SDW wave vectorg~ky~2kgr for weak Hartree term, can thus not provide a detailed description of
interaction$.*® The coefficient ofx on the right-hand side of the competition of the different ground states and the stabil-
Eq. (48) is precisely that part of the fully spin-dependent ity conditions for the SDW state in this systdand presum-
SDW exchange energy which differs from the correspondingably in others.
normal-state value, i.e., it is identical with the term in paren- Second, for the parameters corresponding to Fig. 1, one
theses in Eq(47). finds from Eq.(50) that «,~0.96. This value indicates that a

In general, one expects that correlations are unfavorablemall amount of staggered correlations is already sufficient
for the energetic stability of the SDW stdf&*°In order to  to suppress the SDW in the present case.
test this in the present case we plot E4B) as a function of Third, by substituting Eq(49) in Eq. (50) and taking the
the parametew and search for a change of sign AE. limit as V—0 one finds thai (V=0)=1, i.e., without in-
Numerical results are presented in Fig. 1, which shows thateractions the SDW is never staljieknown result within the
there is a critical valuer. below which the SDW energy is Hartree-Fock framework of Refs. 33 and 45, but recovered
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here within the DFT framewopk Consequently, for this sys- 18 P T T v
tem a conventional Kohn-Sham calculatideay of the L ) ®

LSDA type) can never reproduce the full set of densities - o0 °

and p of the SDW stategven if it proceeds in terms of 0.8 .00.. T
spinor orbitals unless it features an additional self- | ®e L I
consistent spin-off-diagonal potenti@,(r,r’) which stabi-
lizes the SDW in the noninteracting system.

Critical o
o o
S o
| |
| |
| |

B. Three-dimensional electron gas with Coulomb interaction

1. Extended Wy investigation of the SDW instability

We now turn to an analysis of the three-dimensional elec- 02} A
tron gas with long-range Coulomb interactions. Whereas A, R
within the generalized Hartree-Fock approximation a helical Addaaaa AAAAAAA
SDW state has lower total energy than the nonmagnetic state 0 0 5 4 6 8 10
in this systen?**> many-body calculations which go beyond ;

Hartree-Fock-type approximatiofi$;*®show that this SDW s
is instable with respect to inclusion of correlations. In the  Fig 2 critical valuea, of the parametera in the three-

present section we test our DFT formalism for this systemgimensjonal Coulomb gas versus density paranmetefor various
We base our treatment on the generalized Hartree-Fock calajyes of the nesting parameferCircles refer tqp=0.9, squares to
culation performed by Overhausérand reviewed by p=0.1, and triangles tp=0.01. As explained in the main text,
Herring;™® which provides us with the fully spin-dependent characterizes the stability of the helical SDW with respect to inclu-
exchange energy for this systefoalculated in terms of a sion of the dependence of the correlation energy on the staggered
Slater determinant composed of two-component spjnorsdensity, a lowera, signaling a more stable SDW. Clearly, low
ready for substitution in Eq47). densitieg(larger) are more favorable for the SDW than high den-
The Fermi surface in this SDW state is characterized bysities, for all values op. Since nesting is stronger for smaller values
the nesting of parallel pieces of distange=2kg, which,  of p, the tendency of stronger nesting to favor the energetic stability
when brought to match, delineate a cylindrical regiorkin of the SDW is immediately obvious from the curves.
space. In order to characterize the nesting properties of the
resulting deformed Fermi surface we employ the nesting pabeld fixed, since this is the situation in which the Hartree-

rameterp, defined by Fock calculation predicts the helical SDW to have lower en-
ergy than the nonmagnetic state. From &J) one obtains a
1 simple expression for the critical value ef at which the
P= n(kalkD)’ (51)  decrease in exchange energjiven by Eq.(5.44 and the

second term in Eq(5.43 of Ref. 45 ceases to compensate
WherekL and kR are |ength and radius of the nesting Cy”n_ the Concomitant increase in kinetiC enemen by the fiI’St
der, respectivelycf. Fig. 20 of Ref. 45 or Fig. 3 of Ref. 34 termin Eq.(5.43 of Ref. 45,
for details of the Fermi-surface geometry in this system
Large nesting is characterized by large valueggofelative

to k, and, consequently, small values pfWithin the gen- ac(Ke,p) = e? (52
eralized Hartree-Fock approximation the SDW is stable only 1+

47Tk|:p
for 0<p<1.

We now follow the same strategy as in the one-This is, in fact, an upper limit for., because the estimates
dimensional case and identify the critical value @fas a  of the various contributions to the total energy on which the
measure for the energetic stability of the SDW with respectalculation is based, are always taken as to underestimate the
to the inclusion of staggered correlations. The expressionstability of the SDW*® From Eq. (52), graphically repre-
corresponding to the functionals in E@7) are somewhat sented in Fig. 2, it is readily seen that low densities and
more complicated in the three-dimensional case than in onstrong nesting favor the SDW as compared to the nonmag-
dimension, but need not be reproduced here because they aretic state.
derived and analyzed in great detail in Ref. @5 the dis- Both the optimal value of (i.e., that which gives the best
cussion in Sec. 5.6 of that referefnc@/e only point out that approximation to the true functionaand the true value of
in our calculations we have corrected an error in Eg43  the nesting parametgy are themselves functionals of the
of Ref. 45, in which the prefactor of the second term on thespin densities and the staggered density. By comparing real-
right-hand side is given ds-/(4), whereas, repeating the istic values for these parameters with the curves one can thus
calculation, we obtaine@?/(2). Although this correction judge the energetic stability of the SDW state. As a conse-
affects the quantitative details of the calculation, the qualitagquence of the rapid drop of the curves with increasiggnd
tive features of the results both of Ref. 45 and of the preserdecreasing one would require values af fairly close to 1
paper do not depend on whether one uses the value obtainéck., to the limit in which the staggered correlations are com-
by us or that of Ref. 45. pletely neglected in order to stabilize the SDW in the me-

We now substitute the formulas of Ref. 45 in our E4)¢)  tallic density regime, even for a considerable amount of nest-
and specialize to the case of smi|l and kg (with k, /kg  ing.
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As an explicit example, takes=4 andkg=5k, , which  a>e«., i.e., for which the SDW state has lower energy than
corresponds to a strongly deformed Fermi surface, with ahe nonmagnetic state. This instability, which is guaranteed
rather wide nesting cylinder. One readily finds thahustbe  to set in at some point ag—0, is to be compared with
larger thana=0.8, in order to obtain a SDW. In the ex- Overhauser's instability, obtained within the generalized
tendedU« approximation the parameter measures the Hartree-Fock approximation, which shows up as sooip as
amount of staggered correlations <1. It follows that including antiferromagnetic correlations
via the extended @ approximation makes the condition for
existence of an SDW instability in the electron gas more
stringent, but does not eliminate the instability completely.

Clearly, the resulting conclusion that for soitudtimately
relative to the staggered exchange energyU,[ps]  Vvery large amount of nesting the SDW is lower in energy
+AE,[n;,n ,ps], a value ofa. closer to one signalling than the nonmagnetic state must be viewed with caution,
weaker staggered correlations. In order to draw conclusionsecausei) the extended) o approximation may not provide
from Eq.(52) one must thus determine which range of valuesa sufficiently detailed description of the correlations in the
for a. is to be regarded as close to(Intuitively one might ~ SDW state, andii) the required large amount of nesting may
guess that, since=0, a value larger than 0.8, as found in be physically unrealistic. However, if taken at face value, it
the above example, can be considered as close to 1, but oiraplies that there is an SDW instability in the homogeneous
needs to compare with physically realizable valuesrah  electron gas which goes along with the formation of a
order to put this intuitive guess on firm ground. strongly deformed Fermi surface. In view of the fact that

To this end we tentatively compare the curves of Fig. 2previously unexpected phases have recently been reported
with experimental data for the itinerant SDW of chromium, for the homogeneous electron ¢4s%° and recalling that
although doubtlessly the homogeneous electron gas providesandard quantum Monte Carlo calculations for the electron-
only a caricature of the true situation for this mef@luseful  gas have not explicitly considered SDW ste&€3the pos-
caricature, thought*3. From the data given in Refs. 1 and sibility of such an instability cannot be discarded.

57 we estimatg~0.54, which together withh,=2.7 yields Since recent perturbative calculations have excluded a
a.=0.83.[Note that the details of the Fermi surface geom-continous phase transition of the electron gas into an antifer-
etry enter only logarithmically in Eq52), so that the value romagnetic state with almost complete certaffftit, must be

of a, does not depend strongly on the estimate Kgrk, concluded that the transition, if it exists, is necessarily of first
made to determing.] It is well known' that the nesting order. The formation of a nonzero staggered density on its
properties of chromium alone, although critically important,own would thus be sufficient to drive the transition first or-
would not be sufficient to stabilize the SDW state of chro-der. Stretching the limits of applicability of the electron-gas
mium if the staggered correlations were not particularlymodel and comparing again with the SDW state in chro-
weak in this material. We thus conclude that=0.83 is to  mium, one finds indeed that the experimentally observed
be regarded as implying weak staggered correlations, iphase transition is weakly first ordetNote that mean-field
agreement with the intuitive guess. theories generally predict the transition to be second order.

Comparing now with the above numerical example, on€eThis agreement, gratifying as it is, is of course subject to the
readily concludes that a stable SDW can at best be expecte@dveat that the electron gas only very imperfectly mimicks
for Fermi surfaces with large nesting pieces, or for verythe true physics of chromium.
small staggered correlations. This conclusion is, of course, in
agreement with more detailed many-body calculations and

with experiment. IV. SUMMARY

AEC[”Trnl1ps]=Ec[nTrn11ps]_E?[nTanj] (53

The present paper advocates a density-functional ap-
proach to spin-density wave states, based on the identifica-

Clearly we have not discovered anything really new in thetion of the staggered density as additional fundamental vari-
previous subsection, we have only demonstrated that the prable, and on an exact treatment of the corresponding
posed DFT formalisntand the extended « approximation staggered Hartree term. The inclusion of the staggered den-
to it) leads to results which are consistent with many-bodysity among the basic variables is motivated(bythe expec-
results earlier obtained for the same model system andation that the nonlocal staggered density describes the non-
within the limits of the electron-gas approximation, also with local antiferromagnetic correlations better than a purely local
data on chromium. Although our prime aim with this model variable couldJii) the possibility to treat exactly an impor-
calculation was to demonstrate this consistency and to emant (normally implicitly approximated or simply ignorgd
phasize again that it would not have been obtained withoupiece of the fully spin-dependent exchange energy, namely
including the staggered density in the formalism, there ighe staggered Hartree tertiij ) the fact that this staggered
also one interesting piece of information obtainable from theHartree term constitutes the driving mechanism for the tran-
above results which goes beyond a mere consistency test. sition into Overhauser's SDW statgy) the interpretation of

Namely, it follows by inspection from Fig. 2 or from Eq. the staggered density as a kind of order parameter for non-
(52) that o always decreases with increasing(decreasing collinear spin configurations, an@) the variational energy
density and with decreasing (increasing nesting In prin-  lowering made possible by the corresponding two-
ciple one can thus, for any given value of and the component Kohn-Sham orbital@s compared to the one-
density, find an, eventually very small, valuemfor which ~ component orbitals of standard implementations of SDFT

2. Antiferromagnetism in the homogeneous electron gas?
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In order to provide a firm foundation for this approach we sentable. However, this conclusion is foregone. The proof of
have developed the corresponding density-functional formalthe lack of noninteractings representability of the one-

ism from zero, starting with the proof of the generalizedparticle density matrix holds only for the full density matrix

Hohenberg-Kohn theorem in Sec. Il A, proceeding to thel,; 7y and not for each of its components individually. The
derivation of the associated Kohn-Sham equations in Se(ﬁ)roof breaks down if applied to one component,.(r,r’)
IIC, and proposing a number of explicit approximate ’

. . . ) on its own. Since the staggered density is the spin-off-
exchange-correlation functionals in Sec. Il E. A first result, . , 199 . v P
diagonal elementy ,(r’,r), its noninteracting represent-

emerging on the level of the construction of functionals, isa_, .o~ . . i
tentative explanation for the problems encountered in thélblllty is not disproved by the argument of Ref. 14 and re

application of the functional proposed in Ref. 20, as dis-mains an open question. .
cussed towards the end of Sec. Il E. On the contrary, the full set of densitiesand pg of a

As a first numerical test we have applied the resumngnoncollinear SDW state can definitely not_ be reproduced
DFT formalism to two simple model systems for which fom the one-component Kohn-Sham orbitals of conven-
Hartree-Fock and many-body results are available for comtional collinear SDFT because the corresponding staggered
parison purposes. The main conclusions of these model caflensity is necessarily zero. Such a state is thus not fully
culations are(i) For both model systems the results obtainednoninteractingv representable within conventional SDFT.
are consistent with those found by employing many-bodyAn example is the model system of Sec. Il A, for which it
perturbation theory. They are also qualitatively consistentvas found above that the noninteracting system can never
with experimental findings for chromiunii) The parameter reproduce the SDW densities unless a spin-off-diagonal po-
«, introduced in the approximate functiori®4), provides a tential is included in the Kohn-Sham equations.
measure of the magnitude of staggered correlations, relative
to the staggered exchange energy. The critical valyef
this par_ameter provides a measure of the stability of the AppENDIX B: CONNECTION TO DIAGRAMMATIC
SDW with respect to the detrimental effect of staggered cor- MANY-BODY PHYSICS
relations.(iii ) Indirect evidence is obtained for the existence
of an antiferromagnetic instability in the homogeneous elec- We recall that in conventional DFT one can establish an
tron gas. It is predicted thatf a SDW should exist in the exact relation between the irreducible self-energy of dia-
electron gas, the transition from the paramagnetic state igrammatic many-body physics and the exchange-correlation

driven first order by purely electronic effects. potentials>® This so called Sham-Schkr equatiof opens
up a way to systematically construct approximations to the
ACKNOWLEDGMENTS exchange-correlation potentials using diagrammatic pertur-

bation theory*”®” and, by connecting DFT to traditional
many-body physics, sheds light on the nature of the
exchange-correlation functiond.By following standard
stepd*®®we obtain the following integral equations
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APPENDIX A: REPRESENTABILITY ISSUES

The standard proof of the Hohenberg-Kohn theorem by &S NXC(g Y (!

reductio ad absurdurworks only for interacting represent- dwf dyf dY1GHry. @)UY )G @) o
able densities, i.e., densities which are realizable in an inter-

acting system subject to external potentials. It requires only a :f d“’f dyj dy'[GS(r,y,w)

slight extension of the constrained search techifitfreto

extend this to the wider set of al-representable densities, Sxc , A,

i.e, to all those densities which originate from BRbody XYY, 0)GY' 1,0)]eq (B1)
wave function. After defining the generalized Levy-Lieb
functional [which replaces the Hohenberg-Kohn functional d
Fu of Eq. (8)] by an

FLny,n;,ps]=" min (Y|T+0[y). (A1)

Y= (1.0 ps) dwf dyf dy’[és(r’,y,w)OXC(y,y’)é(y’,r,w)]n
all other steps of the constrained search proof of the
Hohenberg-Kohn theorem go through unchanged. _j f f I AS
The derivation of Kohn-Sham equations additionally re- = | de | dy ] dy'[Gr"y,0)

lies on noninteracting representability, i.e., it requires that . ~

the densities are simultaneously reproducable from the orbit- XZ(y,y )Gy 1), (B2)
als of a noninteracting systeth® Since the staggered den-

sity arises from the one-particle density matrix and one can

prove that this density matrix is never noninteracting Where all quantities carrying a caret arex2 matrices in
representabl&’ one might be tempted to conclude that the spin space an@® andG are the Kohn-Sham and the many-
staggered density itself would not be noninteractinggpre- body Green’s function, respectively.
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These equations connect the matrix of exchangeyt, the irreducible self-energy,., defined by extracting

correlation potentials, introduced in our formulation of DFT,

ch,T(r)5(r_r,)
SE(r,r’)

S(C(rlr,)

ch,i(r)é(r_r,) ,
(B3)

Uselr,r'):=

the Hartree terms from the full irreducible self—ene@)y

Cpr o[PSy
(W)= g ey o sr—r)
F3XC(r 1" w). (B4)
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