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Density-functional theory for spin-density waves and antiferromagnetic systems
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An extension of density-functional theory, designed to treat spin-density waves and antiferromagnetic sys-
tems, is presented. The nonlocal nature of the antiferromagnetic correlations and possible noncollinearity in
spin space are incorporated via an additional fundamental variable, the staggered density, which supplements
the spin densities of conventional density-functional theory. Inclusion of this variable is justified by both
physical and methodological considerations. We prove the corresponding Hohenberg-Kohn theorem, derive the
pertinent Kohn-Sham equations, and present several approximate functionals depending explicitly on the
staggered density. As a first test the formalism is applied to two simple model systems, a one-dimensional
electron gas with a short-range interaction, and the three-dimensional electron gas with Coulomb interactions.
These calculations serve to test the developed formalism, but also already allow us to draw a number of
conclusions regarding the stability and nature of possible spin-density wave states in homogeneous electron
systems.
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I. INTRODUCTION

Spin-density waves~SDW’s! and antiferromagnetism
~AFM! are complex subjects with pervasive ramifications
condensed-matter physics. The itinerant linear SDW
chromium1 and its alloys,2 the itinerant helical SDW in fcc
iron,3 the complex, often noncollinear, spin ordering in ra
earth compounds,4,5 the isolating antiferromagnetic states
transition-metal oxides,6 and the SDW found in low-
dimensional systems such as organic conductors7,8 and quan-
tum dots,9 continue to challenge electronic structure calcu
tions.

Density-functional theory~DFT!,10,11 in particular in its
spin-dependent incarnation as spin DFT12,13 ~SDFT!, is by
now the standard tool for the calculation of the electro
and magnetic properties of materials.14,15 The most popular
approximations to DFT, the local-spin-density approxim
tion ~LSDA! and the various generalized gradient appro
mations~GGA’s! have been enormously successful in ma
areas of physics and quantum chemistry,16,17but did encoun-
ter serious problems in the description of the electronic
magnetic properties of SDW states and AFM materials.18–23

In the present paper we take as a working hypothesis
these problems are due to the fact that local and semil
approximations such as LSDA and GGA do not explici
account for nonlocal AFM correlations. While in an unpola
ized state the average magnetization is zero, and in the
romagnetic state the local magnetization is, on the aver
the same everywhere in the system~and thus reasonably we
described within a local approximation!, the long-range spa
tial variation of the magnetic order in antiferromagnetic a
noncollinear spin configurations implies the existence
strongnonlocalcorrelations, which are hard to account for
PRB 610163-1829/2000/61~22!/15228~13!/$15.00
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terms of local or semilocal approximations. Below we ou
line the construction of a density-functional formalism, d
signed specifically for antiferromagnetic systems and sp
density waves. Nonlocal antiferromagnetic correlations a
possible noncollinearity in spin space are explicitly incorp
rated, both on the level of the Kohn-Sham equations and
the exchange-correlation functional.

A recent monograph14 points out that DFT can be prac
ticed on three levels:~i! the setup of a DFT formalism an
the derivation of the pertinent existence theorems,~ii ! the
construction and analysis of approximate functionals, a
~iii ! numerical applications of the resulting machinery. T
present paper reports results from all three levels. In S
II A–II D we describe the formalism, derive the basic the
rems, and discuss their physical interpretation. In Sec.
we present several approximate functionals, which can
used in conjunction with the DFT, and in Sec. II F we d
cuss prospects for numerical implementation of the form
ism. In Sec. III, finally, we report first applications to simp
model systems. Two appendices deal with the more techn
issues ofv representability and the connection to diagra
matic many-body theory. An abbreviated account of part
this work has appeared in a recent paper.24

II. DENSITY-FUNCTIONAL FORMALISM
FOR SPIN-DENSITY WAVES

The original Hohenberg-Kohn theorem10 guarantees tha
the ground-state wave function and thus all ground-state
servables are functionals of the ground-state particle den
Although a formalism based on this density alone is thus
a matter of principle, sufficient to discuss all ground-sta
properties of many-body systems, it is in practice often
vantageous to supplement the particle density by other v
15 228 ©2000 The American Physical Society
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ables, in order to improve the quality of the unavoidab
approximations to the exchange-correlation functional. T
strategy turned out to be highly successful in SDFT,12,13

which supplements the density by thez component of the
spin magnetization~or, equivalently, spin-resolved partia
densities!.14,15 More recently it was also used in DFT fo
superconductors,25–27where the additional variable is the s
perconducting order parameter, and in current-dens
functional theory, where it is the paramagnetic curre
density.28,29In some cases, such as in DFT for supercondu
ors and in SDFT for ferromagnetic systems, the additio
variable can be interpreted as the order parameter o
symmetry-broken ground state. In others, such as in curr
density-functional theory and in SDFT for nonferromagne
systems, such an interpretation is not generally possible,
the additional variables still describe essential physical
grees of freedom, which would be extremely hard to acco
for on the basis of the particle density alone.

In the case of SDW states we pursue the same stra
and include a suitably chosen additional variable that ch
acterizes some essential degrees of freedom of the S
state. Our candidate for this additional variable is thestag-
gered density, defined in terms of field operators as the e
pectation value

rs~r ,r 8!ª^Ĉ↑
†~r !Ĉ↓~r 8!&. ~1!

Our reasons for choosing precisely this quantity are d
cussed in Secs. II B and II D, and illustrated by model c
culations in Sec. III. At present we only note that the sta
gered density obviously describes spin-dependent spat
nonlocal correlations between particles at siter and r 8, and
that such correlations are clearly important for AFM a
SDW states.

A. Hamiltonian and Hohenberg-Kohn theorem

In order to set up a density-functional formalism in term
of the staggered density we write the basic many-bo
Hamiltonian as

Ĥ5T̂1Û1V̂1Ŝ1Ŝ†. ~2!

The first three terms on the right-hand side of this equa
have their usual meaning. In units in whichq5\5m51,

T̂5(
s

E drĈs
†~r !S 2

¹2

2 D Ĉs~r ! ~3!

is the kinetic energy,

Û5
1

2 (
ss8

E drE dr8Ĉs
†~r !Ĉs8

†
~r 8!

3
1

ur2r 8u
Ĉs8~r 8!Ĉs~r ! ~4!

is the interelectronic Coulomb interaction, and

V̂5(
s

E dr@vs~r !2m#Ĉs
†~r !Ĉs~r ! ~5!
is
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describes the coupling of the spin densitiesns(r )

5^Ĉs
†(r )Ĉs(r )& to the external potentialvs(r ) and the

chemical potentialm. In a similar way, the last two terms o
Eq. ~2! describe the coupling of the staggered density to
external staggered potentialS(r ,r 8),

Ŝ5E drE dr8S~r ,r 8!Ĉ↑
†~r !Ĉ↓~r 8!. ~6!

This external staggered potential allows to write the Ham
tonian explicitly in terms of the staggered density. It serv
as a formal device to generate a dependence of the excha
correlation functional on the self-consistently produced st
gered density. Unless a truly external staggered potentia
present~e.g., induced via the proximity field of an adjace
antiferromagnet! S(r ,r 8) can be set equal to zero in the fin
equations. It then plays the same role in the present form
ism as does the external magnetic field in applications
SDFT to systems without such fields, or the external p
potential in DFT for superconductors.25

After these preliminaries it is now straightforward
adapt the Hohenberg-Kohn proof byreductio ad absurdum
~see Appendix A for a constrained search formulation! and
show that the ground-state densitiesns(r ) and rs(r ,r 8)
uniquely determine the ground-state wave function. O
readily obtains the following generalization of the three su
statements of the original Hohenberg-Kohn theorem:~i! The
ground-state wave functionc is a functional of the set of
densities$n↑ ,n↓ ,rs%, i.e., c5c@n↑ ,n↓ ,rs#. Consequently,
this set contains the complete information about the gro
state of the system.~ii ! The ground-state energy can be wr
ten as

E@n↑ ,n↓ ,rs#5Ev1ES1FHK@n↑ ,n↓ ,rs#, ~7!

where the Hohenberg-Kohn functionalFHK is defined as the
ground-state expectation value

FHK5^cuT̂1Ûuc&, ~8!

and Ev and ES are the expectation values ofV̂ and Ŝ1Ŝ†,
respectively. The functionalFHK is an universal functiona
of the densities in the sense that it does not depend on
external potentials$vs ,S%. ~iii ! The ground-state energ
functional is minimized by the ground-state densities. T
finite temperature version of these statements is simply
tained by replacing the ground-state wave function by
statistical operator and the ground-state energy by the g
potential in thermal equilibrium.

B. Exchange-correlation functional and physical interpretation
of the staggered density

As is standard practice in DFT, the universal function
FHK is now rewritten by extracting the noninteracting kine
energy and all those terms which can be expressed expli
in terms of the selected set of densities. In the present c
we write

FHK@n↑ ,n↓ ,rs#5:Ts@n↑ ,n↓ ,rs#1UH@n↑ ,n↓#

2Ux@rs#1Exc
red@n↑ ,n↓ ,rs#, ~9!
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which serves as a definition of the so-called reduc
exchange-correlation functionalExc

red@n↑ ,n↓ ,rs#. Here Ts is
the kinetic energy functional of noninteracting electrons, a

UH@n↑ ,n↓#5
1

2E drE dr8
n~r !n~r 8!

ur2r 8u
~10!

is the standard electrostatic repulsion, expressed in term
n5n↑1n↓ . UH results from the first-order Hartree diagra
after substituting ns(r )52 iGss(r ,r ,t→01), where
Gss8(r ,r 8,t) is the spin-dependent one-particle Gree
function. Similarly, the term

Ux@rs#5E drE dr8
urs~r ,r 8!u2

ur2r 8u
~11!

results from the spin-off-diagonal part of the first-order e
change diagram, expressed in terms of the staggered de
rs(r ,r 8)52 iG↓↑(r 8,r ,t→01). Although Ux results from
the exchange energy it will henceforth be called thestag-
gered Hartree termbecause it contains the staggered den
in a similar fashion in which the conventional Hartree te
UH contains the particle density, and is treated on the sa
footing with this term throughout. Alternatively, the sta
gered Hartree term can be regarded as a correlation e
~missed by standard approximate correlation functiona!,
since correlation is usually defined with respect to conv
tional ~unrestricted! Hartree-Fock, in which unlike spins ar
uncorrelated, whereas the staggered Hartree term arises
the spin-off-diagonal part of the exchange diagram, which
disregarded in conventional Hartree-Fock theory and cou
unlike spins.

If the Green’s function is diagonal in spin space, the st
gered density is zero andUx@rs# vanishes. For noncollinea
spin configurations, such as realized in helical or can
SDW, frustrated AFM, domain walls, multilayers, etc., t
Green’s function is not diagonal in spin space, andUx yields
a nonzero contribution to the total energy. Since the dou
integral in Eq.~11! is positive semidefinite, this contributio
to FHK on its own always tends to lower the total energy

These observations suggest that the staggered densit
be interpreted as a kind of order parameter for the non
linear magnetic state, an interpretation which is further s
ported by the formal similarity between the staggered den
and the order parameter for superconductors.24 With the
standard convention that in case of a collinear spin confi
ration the resulting preferred axis is taken to be the qua
zation axis, the staggered density is nonzero only in the n
collinear phase and thus indeed acts like an order param
for this phase.

Although there is thus an intimate relation between
staggered density and noncollinear magnetism, there ma
advantages in a formulation based on the staggered de
even for collinear spin configurations. One example is
antiferromagnetism of chromium. Chromium displays a p
nounced domain structure, evidenced, e.g., by neut
scattering experiments.1 Although the spins are most likel
~but not certainly20! collinear within each domain, the do
mains can differ from each other both in the wave vector
the SDW~Q domains! and its polarization~S domains!. Both
the domain walls and the global magnetic structure are t
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noncollinear. Similar considerations apply to the transiti
between a transversally polarized SDW and a longitudina
polarized SDW, observed in chromium at temperatures
low the Néel temperature.1 Although each of the two SDW
in itself is ~most likely! collinear, a description of the chang
in the magnetic state requires a formalism capable of
scribing twisted magnetizations. In particular, from the po
of view of the transverse SDW, the longitudinal SDW
characterized by a large staggered density, and vice vers
these cases the staggered density cannot be interpreted
order parameter for noncollinear magnetizations because
nonzero also in one of the linear phases or domains, bu
construction it still accounts for the nonlocal spin-depend
correlations present in these systems.

C. Kohn-Sham equations

According to Eq.~9! the reduced exchange-correlatio
functional Exc

red contains only the spin diagonal part of th
exchange diagram. For later convenience we also define
full exchange-correlation functional

Exc
full@n↑ ,n↓ ,rs#ª2Ux@rs#1Exc

red@n↑ ,n↓ ,rs#, ~12!

which is an exchange-correlation functional in the lite
sense, in that it contains all many-body aspects of the pr
lem, beyond the conventional Hartree termUH .

Unlike UH andUx , the kinetic energy termTs cannot be
represented explicitly as a density functional. Following t
steps of Kohn and Sham11 we employ an orbital representa
tion of this functional. To this end we introduce a set
auxiliary single-particle equations, the SDW Kohn-Sha
equations, which allow to calculate the densities of the int
acting system from the equations of motion of a nonintera
ing system in suitably chosen effective external fieldsvs(r )
and Ss(r ,r 8). The Hamiltonian describing this auxiliary sys
tem is simply

Ĥs5T̂1V̂s1Ŝs1Ŝs
† , ~13!

where the subscripts refers to the effective potentials. I
order to diagonalize this Hamiltonian we perform a cano

cal transformation from the field operatorsĈs(r ) to quasi-
particle operatorsĝkt , via

Ĉs~r !5(
k

@wk↑s~r !ĝk↑1wk↓s~r !ĝk↓#5(
n

wns~r !ĝn ,

~14!

wheren5(kt) is a complete set of quantum numbers for t
quasiparticles. The transformation~14! couples spin up and
spin down in a similar way in which the Bogolubov tran
formation of superconductivity30 couples particles and holes

The transformation~14! diagonalizes the Hamiltonian
~13! if the coefficientswns satisfy the following equation:
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S ĥs↑~r ! E dr8 . . . Ss~r ,r 8!

E dr8 . . . Ss* ~r 8,r ! ĥs↓~r !
D S wn↑~r !

wn↓~r !
D

5enS wn↑~r !

wn↓~r !
D , ~15!

where

ĥss~r !5S 2
¹2

2
1vss~r !2m D . ~16!

These are the desired single-particle equations.31 The effec-
tive single-particle potentialsvss and Ss are determined, as
usual, by appealing to the Hohenberg-Kohn variational p
ciple. Explicitly one finds

vss~r !5vext,s~r !1vH@n#~r !1vxc,s@n↑ ,n↓ ,rs#~r !
~17!

and

Ss~r ,r 8!5Sext~r ,r 8!1SH@rs#~r ,r 8!1Sxc@n↑ ,n↓ ,rs#~r ,r 8!,
~18!

where

vH@n#~r !5E dr8
n~r 8!

ur2r 8u
, ~19!

SH@rs#~r ,r 8!52
rs* ~r ,r 8!

ur2r 8u
, ~20!

vxc,s@n↑ ,n↓ ,rs#~r !5
dExc

red@n↑ ,n↓ ,rs#

dns~r !
, ~21!

and

Sxc@n↑ ,n↓ ,rs#~r ,r 8!5
dExc

red@n↑ ,n↓ ,rs#

drs~r ,r 8!
. ~22!

The densities are expressed in terms of the eigenfunction
Eq. ~15! by

ns~r !5(
n

wns* ~r !wns~r ! ~23!

and

rs~r ,r 8!5(
n

wn↑* ~r !wn↓~r 8!, ~24!

where the sums extend over all occupied orbitals.
Equations~15!–~24! form a closed set of, in principle

exact, equations for the spin-density-wave state, which h
to be solved self-consistently. As a possible alternative t
self-consistent solution of the full cycle, one might envisa
performing a self-consistent Hartree-Fock or DFT calcu
tion based on two-component spinors, but without explic
accounting for the staggered density during iteration, an
the end of the calculation plug the resulting self-consist
densities once in the SDW-DFT energy functional given
-

of

ve
a
e
-

at
t

y

Eqs. ~7! and ~9!. Experience with recent GGA and meta
GGA calculations32 suggests that such a procedure may
equately account for the most important features of
evaluated energy functional.

D. Methodological aspects of the staggered density:
staggered Hartree term, nonlocality, and noncollinearity

We have pointed out already that the staggered den
describes the kind of correlations expected to be importan
spin-density-wave states, and that it can, under certain
cumstances, be interpreted as the order parameter for
noncollinear magnetic phase. Another useful feature of a
mulation in terms of the staggered density is that it allows
to extract from the exchange-correlation energy one m
term, the staggered Hartree termUx , as compared to con
ventional DFT or SDFT~which extract onlyTs and UH).
Since the extracted terms are not subjected to the appr
mations made for the exchange-correlation functional, t
yields an improved representation of the spin degrees of f
dom in the SDW state.

Similar Hartree terms also appear in the theory of char
density waves~CDW’s! and superconductivity. In the CDW
case this is simply the conventional electrostatic Hart
term, the paramount importance of which is obvious. In
superconducting case there appears additionally an ano
lous Hartree term, containing the superconducting order
rameter. The importance of this anomalous Hartree term
underlined by the numerical finding that this term on its ow
is larger in magnitude than the entire remaining~reduced!
exchange-correlation functional within the random-pha
approximation.27

On the basis of these experiences we expect the stagg
Hartree term to be crucially important in the spin-densi
wave case as well. An explicit example is the archetypi
SDW state described by Overhauser.33,34 Overhauser’s cal-
culation showed that within the Hartree-Fock approximat
for the homogeneous interacting electron gas a helical S
state has lower total energy than the paramagnetic state.
difference in energy between these phases arises from
gain in exchange energy in the helical SDW state, i.e., fr
precisely the term we have identified above as the stagg
Hartree term. This example strongly suggests that the s
gered Hartree term is an essential ingredient for calculati
of the energetic stability of noncollinear SDW states.

Note that in the CDW and superconducting cases the e
trostatic and anomalous Hartree terms are detrimental to
mation of the ordered state, while in the SDW state the st
gered Hartree term favors order. This effect has never b
systematically investigated or exploited in density-function
theories, since these are not normally formulated in term
the staggered density.

More generally, since the formalism advocated in t
present paper is based on spinor orbitals and not on pro
representations of the single-particle orbitals, the variatio
principle guarantees that the resulting ground-state ene
cannot be higher, but may well be lower, than that reac
with an implementation of DFT based on simple produc
The same is true in Hartree-Fock theory: the energy obtai
within the conventional~unrestricted! Hartree-Fock method
which proceeds in terms of product representations for
single-particle orbitals, can often be lowered by the gene
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ized Hartree-Fock method,35–38 which proceeds in terms o
two-component spinor orbitals.

The exchange energy of the generalized Hartree-F
method can be written as

Ex52
1

2E drE dr8(
ss8

ugss8~r ,r 8!u2

ur2r 8u
~25!

52
1

4E drE dr8S un~r ,r 8!u2

ur2r 8u
1

uS~r ,r 8!u2

ur2r 8u
D , ~26!

where gss8(r ,r 8)5^Ĉs8
† (r 8)Ĉs(r )& is the spin-dependen

single-particle density matrix, and the second equality f
lows from the first one with the definitions

n~r ,r 8!5g↑↑~r ,r 8!1g↓↓~r ,r 8!, ~27!

Sx~r ,r 8!5g↑↓~r ,r 8!1g↓↑~r ,r 8!, ~28!

Sy~r ,r 8!5 i @g↑↓~r ,r 8!2g↓↑~r ,r 8!#, ~29!

Sz~r ,r 8!5g↑↑~r ,r 8!2g↓↓~r ,r 8!. ~30!

The spin vectorS is related to the magnetization bym
5m0S, wherem05q\/(2mc) is the Bohr magneton.

The appearence of the two variablesn(r ,r 8) andS(r ,r 8)
in Eq. ~26! would suggest to employ these as basic ingre
ents in attempts to go beyond Hartree-Fock by includ
correlation effects via DFT. However, use of both of the
variables on the same footing is equivalent to using the
spin-dependent density matrixgss8(r ,r 8). This density ma-
trix is not noninteractingv representable, i.e., there exists
Kohn-Sham-system of noninteracting particles which rep
duces the density matrix of the interacting system.14 Any
attempt to build a Kohn-Sham-type density-functional fo
malism on these variables is thus doomed to fail.

Conventional SDFT circumvents this problem by usi
only a subset of densities, the particle densityn(r ) and thez
component of the magnetizationmz(r ). However, singling
out thez axis for special treatment is clearly unsuitable f
noncollinear magnetic configurations. Furthermore, in ter
of only the local spin densitiesn↑(r ) and n↓(r ) there is no
obvious way to account for nonlocality in the functional.

Several DFT approaches to noncollinear magnetism h
been developed.5,20,39–41The most widely used of these
that of Kübler and collaborators,5,39 which is based on loca
rotation matrices, allowing local application of the conve
tional LSDA. The formalism depends on the assumption t
the exchange-correlation potential at one point in space
pends only on the densities at the same point and can thu
expressed in terms of the angles diagonalizing the den
matrix at that point, an assumption which is valid within t
framework of local or semilocal approximations,5 but does
not account for nonlocal correlations.42

In the present formulation the staggered density acco
for thex andy components of the vectorS(r ,r 8). Moreover,
since the staggered density is a nonlocal quantity even a
simple functional of this variable incorporates nonlocal an
ferromagnetic correlations which would require an extra
dinarily complex functional in terms of a purely local var
able. The approach advocated presently is t
k
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complementary in scope, compared to those mentio
above,5,20,39–41since it explicitly accounts for the intrinsi
cally nonlocal nature of antiferromagnetic correlations. O
the methodological level it can be interpreted as an atte
to carry over into DFT as much as possible of the desira
aspects of the generalized Hartree-Fock method~nonlocal
variables and noncollinear spin configurations!, while still
avoiding to use the full density matrix~for which no Kohn-
Sham system exists!.

E. Construction of approximate functionals

Recalling the definition of the full exchange-correlatio
functional, given in Eq.~12!, one can immediately write
down a first approximation of the local-density type, name

Exc
full@n↑ ,n↓ ,rs#'2Ux@rs#1Exc

LSDA@n↑ ,n↓#, ~31!

whereExc
LSDA@n↑ ,n↓# is the conventional LSDA functional

This approximation assumes that the staggered Hartree
Ux already takes care of the most important nonlocal st
gered correlations, so that the reduced exchange correla
functional can safely be approximated by the conventio
LSDA in terms ofn↓ andn↑ only. If this assumption can be
justified~for example by recalling thatUx is the lowest-order
perturbative term arising from spin offdiagonal Green
functions!, Eq. ~31! is indeed a reasonable approximation

In general, however, it is expected that direct use ofUx in
connection with the conventional LSDA, which breaks t
rotational invariance of the exact functional, tends to over
timate the energy lowering achieved by forming a nonc
linear spin configuration. This expectation is corroborated
many-body calculations,43–45 which imply that the depen-
dence of the correlation energy on the staggered densi
such that AFM becomes energetically less favorable, i.e.,
staggered correlations work against the staggered Ha
term.

A simple way to take this into account consists in mo
fying the first term on the right-hand side of Eq.~31! such
that it approximately accounts for thers dependence of the
second term. In the spirit of the popular semiempiricalXa
approximation one sets

Exc
full@n↑ ,n↓ ,rs#'2aUx@rs#1Exc

LSDA@n↑ ,n↓#, ~32!

wherea is a numerical parameter less than 1, to be adjus
for the given system at hand. Note that this approximati
which in the following will be referred to as theUa approxi-
mation, in fact goes way beyond the conventionalXa ap-
proximation, since it includes charge correlations on
level of the LSDA and applies the adjustable parameter o
to the staggered Hartree term.

Clearly, many variations of this idea are possible. If t
exact exchange energy in the SDW state is available~as is
the case in the model calculations reported below!, it sug-
gests itself to write

Ex
full@n↑ ,n↓ ,rs#52Ux@rs#1Ex

N@n↑ ,n↓#1DEx@n↑ ,n↓ ,rs#,
~33!

whereEx
N@n↑ ,n↓# is the exact spin diagonal exchange ener

of the nonmagnetic state andDEx@n↑ ,n↓ ,rs# the change in
this energy in the SDW state. Equation~33! is an exact rep-
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resentation of the full exchange energy, which does not
volve approximations. In order to approximately include c
relations one can now simply add the conventional LSD
correlation functional ~which takes care of the purel
density-dependent correlations! and multiply the two
rs-dependent terms with the parametera. The full functional
than reads

Exc
full@n↑ ,n↓ ,rs#'a~2Ux@rs#1DEx@n↑ ,n↓ ,rs# !

1Ex
N@n↑ ,n↓#1Ec

LSDA@n↑ ,n↓#. ~34!

This functional, referred to below as the extendedUa ap-
proximation, employs the adjustable parameter only to t
care of the rs-dependent correlations, i.e., the ter
DEc@n↑ ,n↓ ,rs#. It thus goes way beyond the simpleUa
approximation of Eq.~32!, which approximatesEx

N@n↑ ,n↓#
by the LSDA and absorbs the termDEx@n↑ ,n↓ ,rs# in the
parametera.

A functional which does not require the introduction of
adjustable parameter is obtained by extending the lo
density concept itself to the present case, i.e., approxima
the exchange-correlation energy of the inhomogeneous,
possibly noncollinear, system locally by that of a homog
neous and collinear one. In order to illustrate one way
which this can be done, we now construct an exchange-o
LSDA, depending explicitly on the staggered density. T
LSDA for the exchange functional is then

Ex
red, LSDA@n↑ ,n↓ ,rs#5E eg@n↑~r !,n↓~r !,rs~r !#~r !dx,

~35!

whereeg@n↑ ,n↓ ,rs#(r ) is the per volume spin diagonal ex
change energy of a homogeneous electron gas with spin
sities ns , and local staggered densityrs(r )[rs(r ,r ). To
calculateeg(r ), one first extracts the local magnetizatio
vectorm(r ) from ns(r ) andrs(r ), according to the prescrip
tion

mx~r !5m0@rs* ~r !1rs~r !#, ~36!

my~r !5 im0@rs* ~r !2rs~r !#, ~37!

mz~r !5m0@n↑~r !2n↓~r !#. ~38!

Choosing the local quantization axis parallel tom(r ) one
then interpolates between the density matrix for a fully sp
polarized homogeneous electron gas and that of a s
unpolarized gas, to approximate the diagonal componen
the density matrixĝL(x,x8) for a homogeneous gas wit
magnetization equal to that of the inhomogeneous syste
point r .

gss
L ~x,x8;r !5

gss
full~x,x8;r !2gss

un ~x,x8;r !

umfull~r !u2umun~r !u
um~r !u

1gss
un ~x,x8;r !, ~39!

whereumfull(r )u5m0n(r ) and umunu50,

gss
un ~x,x8;r !5

kF
2

2p2

j 1~kFux2x8u!

ux2x8u
~40!
-
-

e
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for all spins, while

gss
full~x,x8;r !5

21/3kF
2

2p2

j 1~21/3kFux2x8u!

ux2x8u
~41!

for spin up andgss
full(x,x8;r )50 for spin down. Herej 1(x) is

the first-order spherical Bessel function.46 The parametric de-
pendence onr arises from the Fermi wave vector of th
unpolarized system,kF@n(r )#, and fromn(r ) andm(r ). The
resulting diagonal density matrixĝL(x,x8;r ) is expressed
relative to the local quantization axis, which is parallel to t
local magnetization. We then rotate this density matrix in
the global coordinate system, in which the local magneti
tion need not be parallel to the quantization axis~the values
of the angles required to perform this rotation are obtain
from m(r ) and n(r ), as in the procedure of Ku¨bler and
co-workers5,39!, and use the resulting diagonal compone
gss

G (x,x8;r ) to evaluate the spin diagonal part of the e
change energy, given by

eg~r !52
1

2E dxE dx8(
s

ugss
G ~x,x8;r !u2

ux2x8u
. ~42!

This procedure yields the energyeg@n↑ ,n↓ ,rs#(r ), required
in Eq. ~35!. Note that the double integral in Eq.~42! has to
be perfomed only once and that substitution of the result
function in Eq. ~35! results in an expression which is fo
mally no more complicated than the conventional LSD
Apart from the local approximation itself, the only approx
mation made is the linear interpolation between a fully s
polarized and an unpolarized electron gas. The resul
local-density functional for the spin diagonal exchange
ergy, Ex

red,LSDA@n↑ ,n↓ ,rs#, together with the expressionUx

for the spin offdiagonal part, is therefore expected to a
equately account for the full exchange diagram for arbitr
amount of noncollinearity, and, moreover, to restore ro
tional invariance of the full exchange energy, as far as p
sible within a local-density-type approximation. Since th
functional only depends on the local staggered density
neglects the nonlocal aspects of the antiferromagnetic co
lations, but these still enter the formalism through the st
gered Hartree term. As a first shot, the correlation energy
then be approximated by the conventional LSDA, so that
full functional reads

Exc
full@n↑ ,n↓ ,rs#'2Ux@rs#1Ex

red, LSDA@n↑ ,n↓ ,rs#

1Ec
LSDA@n↑ ,n↓#. ~43!

In order to take into account also the dependence ofEc on
the staggered density one could either generalize the ab
prescription to the correlation energy@relying on approxi-
mate expressions for the correlation energy in terms of
single-particle density matrixĝG(x,x8), analogous to Eq.
~42!#, or follow the RPA-like prescription recently develope
in the framework of DFT for superconductors.27

Of the four local-density type functionals, Eqs.~31!, ~32!,
~34!, and~43!, the first is clearly the simplest to implemen
while the second, third, and fourth are expected to be
creasingly more reliable. In the applications reported in S
III we have, as a compromise, chosen to work with the
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tended Ua approximation, Eq.~34!. Note that all these
LSDA functionals are fundamentally different from the co
ventional LSDA, because they depend explicitly on the st
gered density.

In the remainder of this section we discuss tw
rs-dependent functionals which are conceptually differ
from those described above. Recent work of Kleinman20 re-
sulted in the functional~in our notation!

FK@rs~r !#52AE dr
urs~r !¹rs~r !* 2c.c.u2

n4/3urs~r !u2
, ~44!

where A is an adjustable parameter, similar to oura, and
rs(r ) denotes, as above, the local form of the staggered d
sity rs(r ,r ). Originally it was suggested to add this fun
tional to either the LSDA or the GGA,20 but first applications
by Kleinman and Bylander21 showed that, at least when com
bined with the GGA, this functional does not improve agre
ment with experiments.

The fact that these authors, following a very different li
of thought, also obtained a functional depending on the s
gered density provides additional support for introducing t
variable. Moreover, from the present point of view a natur
though tentative, explanation for the problems encounte
in the application of Eq.~44! can be given. Note that thi
functional depends onrs exclusively through combination
with its gradient, and does not contain terms depending o
on rs itself. From the point of view of the LSDA/GGA con
cept this already suggests that there may be nongrad
terms missing from the functional. Indeed, within the fram
work of the present approach the Kleinman functional~44!
appears to be a gradient correction, which might be use
conjunction with the local-density-type functionals~31!,
~32!, ~34!, or ~43!, but not on its own. This would immedi
ately explain why adding this functional to a convention
GGA did not improve the results obtained.21

We finally mention that one can derive a rigorous conn
tion between the exchange correlation potentials follow
from Exc

red and the fully spin-dependent irreducible se
energy of diagrammatic many-body theory. This connecti
spelled out explicitly in Appendix B, offers a systematic w
to construct approximate exchange-correlation potentials

F. Implementability

The model calculations described in Sec. III are p
formed by directly calculating the total energy from the e
tendedUa approximation to the total energy expression f
lowing from Eqs.~7! and ~9!. A self-consistent solution o
the Kohn-Sham Eq.~15!, on the other hand, is not attempte
in the present paper, and is clearly a more complex task
the solution of the corresponding equation of conventio
SDFT. However, it is not always necessary to set up a c
pletely new implementation of DFT in order to use the p
posed formalism. At least three other formulations of D
share features with the present method which facilitate
implementation.

The first of these are the currently very popular exa
exchange ~EXX! or optimized effective potentia
methods,47–51 which employ an exact orbital representati
of the spin diagonal exchange energy. These methods ca
-
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extended to the present case either by employing also
orbital representation of the staggered Hartree term or
using the staggered Hartree term as it stands, together
the orbital expression for the diagonal part of the excha
energy. In both cases it is necessary to formulate the E
equations in terms of spinor orbitals. The resulting combi
tion of the staggered Hartree term with the exact sp
diagonal exchange energy has the advantage that it autom
cally guarantees cancellation of the errors which m
otherwise be induced by approximating the spin diago
part of the exchange energy, while treating the offdiago
part ~the staggered Hartree term! exactly.

Another example is DFT for superconductors.25–27,52–54

Due to the formal similarity of our Kohn-Sham equation~15!
and the Bogolubov–de Gennes equations of supercondu
ity, any program capable of solving the latter52–56can, with-
out substantial modifications, also solve the former. Inde
the calculation is expected to be numerically much less
manding than in the superconducting case. A major sourc
numerical complications in the superconducting case is
smallness of the superconducting gap, 2DSC, compared to
typical electronic energy scales. Representative numbers
2DSC'0.1 meV for a BCS-type superconductor and 2DSC
'10 meV for a high-temperature superconductor, which
to be compared with the typical energy scale for band str
ture calculations of about 0.1 to 1 eV. This large differen
in energy requires very accurate calculations.52,54 By con-
trast, the energy gap 2DSDW, associated with the formation
of a SDW, typically satisfies2 2DSDW>0.1 eV. SinceDSDW
is several orders of magnitude larger thanDSC, numerical
calculations can be expected to be computationally m
less demanding.

Finally we mention SDFT codes which incorporate sp
orbit coupling or are based on the full magnetization vecto40

m(r ). Such codes automatically work with two-compone
spinors and 232 Kohn-Sham equations. By replacing, e.g
the spin-orbit operator in the Kohn-Sham equations by
integral over the staggered potential, as in Eq.~15!, one ob-
tains a framework suitable for implementation and calcu
tion of the staggered density.

III. APPLICATION TO SPIN-DENSITY WAVES
IN MODEL SYSTEMS

In order to test the machinery developed so far in t
paper we now apply it to two simple model systems, a o
dimensional electron gas with short-range interactions, an
three-dimensional electron gas with Coulomb interactio
These model systems were chosen for two reasons. First
both model systems generalized Hartree-Fock calculat
predict that a helical SDW has lower total energy than
not magnetically ordered state,33,34,45 whereas many-body
calculations beyond Hartree-Fock show that, at least in
three-dimensional case, the SDW disappears if correlat
are included.43–45 Comparison of our DFT calculations wit
these Hartree-Fock and many-body calculations thus all
to assess the quality of the approximations for the exchan
correlation functional and the importance of the stagge
Hartree term.

Second, due to the relative simplicity of these system
large part of the calculations can be performed analytica
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which allows to directly demonstrate essential features of
formalism. We hasten to add that the calculations repo
below do not have predictive value for realistic systems,
are included only to illustrate our method in some sim
cases.

A. One-dimensional electron gas with short-range interaction

The approximation we use in these calculations is the
tendedUa approximation (EUa), as specified in Eq.~34!
above. The total energy of the SDW state is written as

ESDW@n↑ ,n↓ ,rs#5Ts@fSDW#1EH@n#

1Exc
full, EUa @n↑ ,n↓ ,rs#, ~45!

wherefSDW stands for the full set of occupied Kohn-Sha
orbitals. In the nonmagnetic state the corresponding appr
mation is

EN@n↑ ,n↓#5Ts@fN#1EH@n#1Ex
N@n↑ ,n↓#1Ec

LSDA@n↑ ,n↓#.
~46!

After subtracting the latter from the former and substituti
the explicit expression forExc

full, EUa @n↑ ,n↓ ,rs# one obtains

DE@n↑ ,n↓ ,rs#5Ts@fSDW#2Ts@fN#1a~2Ux@rs#

1DEx@n↑ ,n↓ ,rs# !. ~47!

The functionals on the right-hand side of this equation h
been evaluated by Overhauser33 and Herring45 for single-
determinant wave functions, composed of two-compon
spinors. Since the Kohn-Sham wave function of the pres
DFT formulation are of this type, the expressions derived
these authors can be directly taken over.@Note, however, that
Eq. ~5.19! of Ref. 45 is given with the wrong sign. This erro
has been corrected below.# For sufficiently weak interactions
one finds explicitly

DE

N
'

k0
2

4
2

k0

4
Ak0

21k21
k2k0

2

4nV
~12a!, ~48!

wherea is the parameter introduced in Eq.~47!, k0 is the
maximum occupiedk value in the SDW state,N the number
of particles,n their one-dimensional density,V the strength
of the repulsive short-range interactionV(r2r 8)52Vd(r
2r 8), with V>0, andk is defined by

k5
k0

sinhS qk0

nV D , ~49!

where q is the SDW wave vector (q'k0'2kF for weak
interactions!.45 The coefficient ofa on the right-hand side o
Eq. ~48! is precisely that part of the fully spin-depende
SDW exchange energy which differs from the correspond
normal-state value, i.e., it is identical with the term in pare
theses in Eq.~47!.

In general, one expects that correlations are unfavora
for the energetic stability of the SDW state.43–45 In order to
test this in the present case we plot Eq.~48! as a function of
the parametera and search for a change of sign ofDE.
Numerical results are presented in Fig. 1, which shows
there is a critical valueac below which the SDW energy is
e
d
t

x-

i-

e

nt
nt
y

g
-

le

at

higher than the energy of the nonmagnetic state. By set
Eq. ~48! equal to zero and solving fora, this value is found
to be

ac512
nV

k2 SA11
k2

k0
2
21D . ~50!

If the actuala is larger thanac , the SDW is stable; if it is
smaller, the nonmagnetic state is favored. The critical va
of a thus provides a quantitative measure of the stability
the helical SDW state with respect to the inclusion of sta
gered correlations.

Three conclusions can be drawn from this analysis. Fi
from Eq.~50! one readily finds that for all nonzero values
the strenght of the repulsive potentialac,1. In Overhaus-
er’s and Herring’s generalized Hartree-Fock calculatio
~which implicitly took the value ofa to be one! the SDW
should thus always be stable, as is indeed found by th
authors. Note that the term which induces the helical SD
for a>ac is the staggered Hartree termUx , together with
DEx@n↑ ,n↓ ,rs#. Standard LSDA calculations, which do no
explicitly account for the staggered density and the stagge
Hartree term, can thus not provide a detailed description
the competition of the different ground states and the sta
ity conditions for the SDW state in this system~and presum-
ably in others!.

Second, for the parameters corresponding to Fig. 1,
finds from Eq.~50! thatac'0.96. This value indicates that
small amount of staggered correlations is already suffic
to suppress the SDW in the present case.

Third, by substituting Eq.~49! in Eq. ~50! and taking the
limit as V→0 one finds thatac(V50)51, i.e., without in-
teractions the SDW is never stable~a known result within the
Hartree-Fock framework of Refs. 33 and 45, but recove

FIG. 1. Energy difference~in units of the Fermi energy! be-
tween the helical SDW state and the nonmagnetic state for a
dimensional electron gas with repulsive short-range interaction
strengthV and a spin-density wave vectorq52kF . The change of
sign at ac'0.96 separates the region in which the SDW state
stable (a.ac) from that in which it is unstable (a,ac). Dia-
monds correspond toV/kF51.05, circles toV/kF51.0, and squares
to V/kF50.95. Note that the energy difference depends rather s
sitively on the interaction strength, while the criticala is much less
sensitive to changes inV, being 0.958, 0.960, and 0.962, respe
tively.
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here within the DFT framework!. Consequently, for this sys
tem a conventional Kohn-Sham calculation~say of the
LSDA type! can never reproduce the full set of densitiesn
and rs of the SDW state,even if it proceeds in terms o
spinor orbitals, unless it features an additional se
consistent spin-off-diagonal potential,Ss(r ,r 8) which stabi-
lizes the SDW in the noninteracting system.

B. Three-dimensional electron gas with Coulomb interaction

1. Extended Ua investigation of the SDW instability

We now turn to an analysis of the three-dimensional el
tron gas with long-range Coulomb interactions. Where
within the generalized Hartree-Fock approximation a heli
SDW state has lower total energy than the nonmagnetic s
in this system,34,45many-body calculations which go beyon
Hartree-Fock-type approximations,43–45 show that this SDW
is instable with respect to inclusion of correlations. In t
present section we test our DFT formalism for this syste
We base our treatment on the generalized Hartree-Fock
culation performed by Overhauser34 and reviewed by
Herring,45 which provides us with the fully spin-depende
exchange energy for this system~calculated in terms of a
Slater determinant composed of two-component spino!,
ready for substitution in Eq.~47!.

The Fermi surface in this SDW state is characterized
the nesting of parallel pieces of distanceq'2kF , which,
when brought to match, delineate a cylindrical region ink
space. In order to characterize the nesting properties of
resulting deformed Fermi surface we employ the nesting
rameterp, defined by

p5
1

ln~kR /kL!
, ~51!

wherekL andkR are length and radius of the nesting cyli
der, respectively~cf. Fig. 20 of Ref. 45 or Fig. 3 of Ref. 34
for details of the Fermi-surface geometry in this system!.
Large nesting is characterized by large values ofkR relative
to kL and, consequently, small values ofp. Within the gen-
eralized Hartree-Fock approximation the SDW is stable o
for 0,p,1.

We now follow the same strategy as in the on
dimensional case and identify the critical value ofa as a
measure for the energetic stability of the SDW with resp
to the inclusion of staggered correlations. The express
corresponding to the functionals in Eq.~47! are somewhat
more complicated in the three-dimensional case than in
dimension, but need not be reproduced here because the
derived and analyzed in great detail in Ref. 45~cf. the dis-
cussion in Sec. 5.6 of that reference!. We only point out that
in our calculations we have corrected an error in Eq.~5.43!
of Ref. 45, in which the prefactor of the second term on
right-hand side is given askF /(4p), whereas, repeating th
calculation, we obtainede2/(2p). Although this correction
affects the quantitative details of the calculation, the qual
tive features of the results both of Ref. 45 and of the pres
paper do not depend on whether one uses the value obta
by us or that of Ref. 45.

We now substitute the formulas of Ref. 45 in our Eq.~47!
and specialize to the case of smallkL and kR ~with kL /kR
-
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held fixed!, since this is the situation in which the Hartre
Fock calculation predicts the helical SDW to have lower e
ergy than the nonmagnetic state. From Eq.~47! one obtains a
simple expression for the critical value ofa at which the
decrease in exchange energy@given by Eq.~5.44! and the
second term in Eq.~5.43! of Ref. 45# ceases to compensa
the concomitant increase in kinetic energy~given by the first
term in Eq.~5.43! of Ref. 45!,

ac~kF ,p!5
1

11
e2

4pkFp

. ~52!

This is, in fact, an upper limit forac , because the estimate
of the various contributions to the total energy on which t
calculation is based, are always taken as to underestimat
stability of the SDW.45 From Eq. ~52!, graphically repre-
sented in Fig. 2, it is readily seen that low densities a
strong nesting favor the SDW as compared to the nonm
netic state.

Both the optimal value ofa ~i.e., that which gives the bes
approximation to the true functional! and the true value of
the nesting parameterp are themselves functionals of th
spin densities and the staggered density. By comparing r
istic values for these parameters with the curves one can
judge the energetic stability of the SDW state. As a con
quence of the rapid drop of the curves with increasingr s and
decreasingp one would require values ofa fairly close to 1
~i.e., to the limit in which the staggered correlations are co
pletely neglected!, in order to stabilize the SDW in the me
tallic density regime, even for a considerable amount of ne
ing.

FIG. 2. Critical valueac of the parametera in the three-
dimensional Coulomb gas versus density parameterr s , for various
values of the nesting parameterp. Circles refer top50.9, squares to
p50.1, and triangles top50.01. As explained in the main text,ac

characterizes the stability of the helical SDW with respect to inc
sion of the dependence of the correlation energy on the stagg
density, a lowerac signaling a more stable SDW. Clearly, low
densities~larger s) are more favorable for the SDW than high de
sities, for all values ofp. Since nesting is stronger for smaller valu
of p, the tendency of stronger nesting to favor the energetic stab
of the SDW is immediately obvious from the curves.
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As an explicit example, taker s54 andkR55kL , which
corresponds to a strongly deformed Fermi surface, wit
rather wide nesting cylinder. One readily finds thata must be
larger thanac50.8, in order to obtain a SDW. In the ex
tended Ua approximation the parametera measures the
amount of staggered correlations

DEc@n↑ ,n↓ ,rs#5Ec@n↑ ,n↓ ,rs#2Ec
N@n↑ ,n↓# ~53!

relative to the staggered exchange energy2Ux@rs#
1DEx@n↑ ,n↓ ,rs#, a value ofac closer to one signalling
weaker staggered correlations. In order to draw conclus
from Eq.~52! one must thus determine which range of valu
for ac is to be regarded as close to 1.~Intuitively one might
guess that, sincea>0, a value larger than 0.8, as found
the above example, can be considered as close to 1, bu
needs to compare with physically realizable values ofa in
order to put this intuitive guess on firm ground.!

To this end we tentatively compare the curves of Fig
with experimental data for the itinerant SDW of chromium
although doubtlessly the homogeneous electron gas prov
only a caricature of the true situation for this metal~a useful
caricature, though34,43!. From the data given in Refs. 1 an
57 we estimatep'0.54, which together withr s52.7 yields
ac50.83. @Note that the details of the Fermi surface geo
etry enter only logarithmically in Eq.~52!, so that the value
of ac does not depend strongly on the estimate forkR /kL
made to determinep.# It is well known1 that the nesting
properties of chromium alone, although critically importa
would not be sufficient to stabilize the SDW state of ch
mium if the staggered correlations were not particula
weak in this material. We thus conclude thatac50.83 is to
be regarded as implying weak staggered correlations
agreement with the intuitive guess.

Comparing now with the above numerical example, o
readily concludes that a stable SDW can at best be expe
for Fermi surfaces with large nesting pieces, or for ve
small staggered correlations. This conclusion is, of course
agreement with more detailed many-body calculations
with experiment.

2. Antiferromagnetism in the homogeneous electron gas?

Clearly we have not discovered anything really new in
previous subsection, we have only demonstrated that the
posed DFT formalism~and the extendedUa approximation
to it! leads to results which are consistent with many-bo
results earlier obtained for the same model system a
within the limits of the electron-gas approximation, also w
data on chromium. Although our prime aim with this mod
calculation was to demonstrate this consistency and to
phasize again that it would not have been obtained with
including the staggered density in the formalism, there
also one interesting piece of information obtainable from
above results which goes beyond a mere consistency te

Namely, it follows by inspection from Fig. 2 or from Eq
~52! that ac always decreases with increasingr s ~decreasing
density! and with decreasingp ~increasing nesting!. In prin-
ciple one can thus, for any given value ofa and the
density, find an, eventually very small, value ofp for which
a
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a.ac , i.e., for which the SDW state has lower energy th
the nonmagnetic state. This instability, which is guarante
to set in at some point asp→0, is to be compared with
Overhauser’s instability, obtained within the generaliz
Hartree-Fock approximation, which shows up as soon ap
,1. It follows that including antiferromagnetic correlation
via the extendedUa approximation makes the condition fo
existence of an SDW instability in the electron gas mo
stringent, but does not eliminate the instability completel

Clearly, the resulting conclusion that for some~ultimately
very large! amount of nesting the SDW is lower in energ
than the nonmagnetic state must be viewed with caut
because~i! the extendedUa approximation may not provide
a sufficiently detailed description of the correlations in t
SDW state, and~ii ! the required large amount of nesting ma
be physically unrealistic. However, if taken at face value
implies that there is an SDW instability in the homogeneo
electron gas which goes along with the formation of
strongly deformed Fermi surface. In view of the fact th
previously unexpected phases have recently been repo
for the homogeneous electron gas,58–60 and recalling that
standard quantum Monte Carlo calculations for the electr
gas have not explicitly considered SDW states,60–63 the pos-
sibility of such an instability cannot be discarded.

Since recent perturbative calculations have exclude
continous phase transition of the electron gas into an ant
romagnetic state with almost complete certainty,44 it must be
concluded that the transition, if it exists, is necessarily of fi
order. The formation of a nonzero staggered density on
own would thus be sufficient to drive the transition first o
der. Stretching the limits of applicability of the electron-g
model and comparing again with the SDW state in ch
mium, one finds indeed that the experimentally observ
phase transition is weakly first order.1 ~Note that mean-field
theories generally predict the transition to be second ord!
This agreement, gratifying as it is, is of course subject to
caveat that the electron gas only very imperfectly mimic
the true physics of chromium.

IV. SUMMARY

The present paper advocates a density-functional
proach to spin-density wave states, based on the identi
tion of the staggered density as additional fundamental v
able, and on an exact treatment of the correspond
staggered Hartree term. The inclusion of the staggered d
sity among the basic variables is motivated by~i! the expec-
tation that the nonlocal staggered density describes the
local antiferromagnetic correlations better than a purely lo
variable could,~ii ! the possibility to treat exactly an impor
tant ~normally implicitly approximated or simply ignored!
piece of the fully spin-dependent exchange energy, nam
the staggered Hartree term,~iii ! the fact that this staggere
Hartree term constitutes the driving mechanism for the tr
sition into Overhauser’s SDW state,~iv! the interpretation of
the staggered density as a kind of order parameter for n
collinear spin configurations, and~v! the variational energy
lowering made possible by the corresponding tw
component Kohn-Sham orbitals~as compared to the one
component orbitals of standard implementations of SDFT!.
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In order to provide a firm foundation for this approach w
have developed the corresponding density-functional form
ism from zero, starting with the proof of the generaliz
Hohenberg-Kohn theorem in Sec. II A, proceeding to
derivation of the associated Kohn-Sham equations in S
II C, and proposing a number of explicit approxima
exchange-correlation functionals in Sec. II E. A first resu
emerging on the level of the construction of functionals, i
tentative explanation for the problems encountered in
application of the functional proposed in Ref. 20, as d
cussed towards the end of Sec. II E.

As a first numerical test we have applied the result
DFT formalism to two simple model systems for whic
Hartree-Fock and many-body results are available for co
parison purposes. The main conclusions of these model
culations are:~i! For both model systems the results obtain
are consistent with those found by employing many-bo
perturbation theory. They are also qualitatively consist
with experimental findings for chromium.~ii ! The parameter
a, introduced in the approximate functional~34!, provides a
measure of the magnitude of staggered correlations, rela
to the staggered exchange energy. The critical valueac of
this parameter provides a measure of the stability of
SDW with respect to the detrimental effect of staggered c
relations.~iii ! Indirect evidence is obtained for the existen
of an antiferromagnetic instability in the homogeneous el
tron gas. It is predicted that,if a SDW should exist in the
electron gas, the transition from the paramagnetic stat
driven first order by purely electronic effects.
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APPENDIX A: REPRESENTABILITY ISSUES

The standard proof of the Hohenberg-Kohn theorem
reductio ad absurdumworks only for interactingv represent-
able densities, i.e., densities which are realizable in an in
acting system subject to external potentials. It requires on
slight extension of the constrained search technique64,65 to
extend this to the wider set of allN-representable densities
i.e, to all those densities which originate from anN-body
wave function. After defining the generalized Levy-Lie
functional @which replaces the Hohenberg-Kohn function
FHK of Eq. ~8!# by

FLL@n↑ ,n↓ ,rs#ª min
c→(n↑ ,n↓ ,rs)

^cuT̂1Ûuc&. ~A1!

all other steps of the constrained search proof of
Hohenberg-Kohn theorem go through unchanged.

The derivation of Kohn-Sham equations additionally
lies on noninteractingv representability, i.e., it requires tha
the densities are simultaneously reproducable from the o
als of a noninteracting system.14,65 Since the staggered den
sity arises from the one-particle density matrix and one
prove that this density matrix is never noninteractingv
representable,14 one might be tempted to conclude that t
staggered density itself would not be noninteractingv repre-
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sentable. However, this conclusion is foregone. The proo
the lack of noninteractingv representability of the one
particle density matrix holds only for the full density matr

ĝ(r ,r 8) and not for each of its components individually. Th
proof breaks down if applied to one componentgss8(r ,r 8)
on its own. Since the staggered density is the spin-o
diagonal elementg↓↑(r 8,r ), its noninteractingv represent-
ability is not disproved by the argument of Ref. 14 and
mains an open question.

On the contrary, the full set of densitiesn and rs of a
noncollinear SDW state can definitely not be reproduc
from the one-component Kohn-Sham orbitals of conve
tional collinear SDFT because the corresponding stagge
density is necessarily zero. Such a state is thus not f
noninteractingv representable within conventional SDFT
An example is the model system of Sec. III A, for which
was found above that the noninteracting system can ne
reproduce the SDW densities unless a spin-off-diagonal
tential is included in the Kohn-Sham equations.

APPENDIX B: CONNECTION TO DIAGRAMMATIC
MANY-BODY PHYSICS

We recall that in conventional DFT one can establish
exact relation between the irreducible self-energy of d
grammatic many-body physics and the exchange-correla
potentials.66 This so called Sham-Schlu¨ter equation14 opens
up a way to systematically construct approximations to
exchange-correlation potentials using diagrammatic per
bation theory,47,67 and, by connecting DFT to traditiona
many-body physics, sheds light on the nature of
exchange-correlation functionals.66 By following standard
steps14,66 we obtain the following integral equations

E dvE dyE dy8@Ĝs~r ,y,v!Ûxc~y,y8!Ĝ~y8,r ,v!#ss

5E dvE dyE dy8@Ĝs~r ,y,v!

3Ŝxc~y,y8,v!Ĝ~y8,r ,v!#ss ~B1!

and

E dvE dyE dy8@Ĝs~r 8,y,v!Ûxc~y,y8!Ĝ~y8,r ,v!#↓↑

5E dvE dyE dy8@Ĝs~r 8,y,v!

3Ŝxc~y,y8,v!Ĝ~y8,r ,v!#↓↑ , ~B2!

where all quantities carrying a caret are 232 matrices in
spin space andĜs andĜ are the Kohn-Sham and the man
body Green’s function, respectively.
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These equations connect the matrix of exchan
correlation potentials, introduced in our formulation of DF

Ûxc~r ,r 8!ªS vxc,↑~r !d~r2r 8! Sxc~r ,r 8!

Sxc* ~r ,r 8! vxc,↓~r !d~r2r 8!
D ,

~B3!
V.

.

ett

d

ics

an

v.

s

-with the irreducible self-energyŜxc , defined by extracting

the Hartree terms from the full irreducible self-energyŜ

Ŝ~r ,r 8,v!5:S vH~r !d~r2r 8! SH~r ,r 8!

SH* ~r ,r 8! vH~r !d~r2r 8!
D

1Ŝxc~r ,r 8,v!. ~B4!
s of

own

ett.

H.

dily
sent
in
gle

on

l

o-

v.

n,

s.

n,
1E. Fawcett, Rev. Mod. Phys.60, 209 ~1988!.
2E. Fawcett, H. L. Alberts, V. Yu. Galkin, D. R. Noakes, and J.

Yakhmi, Rev. Mod. Phys.66, 25 ~1994!.
3Y. Tsunoda, J. Phys.: Condens. Matter1, 10 427~1989!.
4J.M.D. Coey, Can. J. Phys.65, 1210~1987!.
5L. M. Sandratskii, Adv. Phys.47, 91 ~1998!.
6W. M. Temmerman, A. Svane, Z. Szotek, and H. Winter, inElec-

tronic Density Functional Theory, edited by J. F. Dobson, G
Vignale, and M. P. Das~Plenum, New York, 1998!, p. 327.
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