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Spin and orbital contributions to the magnetic scattering of neutrons

K. Ayuel and P. F. de Chaˆtel
Department of Physics, University of Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherlands

~Received 13 December 1999!

The current densities in partially filled electron shells of free atoms or ions, when analyzed in terms of
multipole expansions, do not carry signatures that would distinguish orbital and spin currents. The same holds
for the orbital and spin contributions to elastic neutron scattering amplitude, which are related to Fourier
transforms of the respective current densities. The pitfalls of the so-called dipole approximation, which appears
to enable a distinction, are pointed out and errors involved are calculated for some free-ion and crystal-field
states.
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I. INTRODUCTION

In alloys and intermetallic compounds, rare earth ato
are mostly in their triply ionized state. Due to the localiz
nature of 4f states on the scale of interatomic distances,
ions occupy their free-ion ground states in the solid. T
exchange interaction between ions and external magn
fields only influence the relative occupancy of the 2J11
degenerate levels within the ground-state manifold1 and
weak crystal fields lead to significant mixing only within th
set of the 2J11 states.

In the case of actinides and ambivalent rare-earths,
situation is not quite so simple, because one has to rec
with the admixture of ‘‘divalent’’ and ‘‘tetravalent’’ states
i.e., states involving deviating numbers off electrons. In the
formal description of such mixed-valence statesd or s states
also have to be included, because only isoelectronic confi
rations can be superposed in a meaningful way. As thed and
s electrons are delocalized, the formation of bands and
concomitant quenching of orbital moments must be ta
into account, irrespective of the direct overlap off states, that
is, the width of a pure, unhybridizedf band.

Whereas the description of hybridization of strongly co
related f states with Bloch states remains a challenge
theorists, the reduction of the orbital momentum with resp
to the Russell-Saunders value is generally considered to
measure of such hybridization.2 Therefore, the experimenta
determination of the orbital and spin momentsseparately
is of crucial importance in the study of mixed-valent ra
earth materials and some actinide compounds. Althou
strictly speaking, neutrons cannot distinguish between orb
and spin magnetism, various assumptions and approx
tions have been used to extract such information from m
netic form factors measured by elastic neutron scatter
Most commonly, it is assumed that the magnetic ion is in
Russell-SaundersuL,S,J,MJ& ground state and the dipole ap
proximation is applicable. If, as a further approximation, t
contribution accounting for nonspherical distribution of t
spin magnetism is neglected in the dipole term, the rem
ing contributions can be replaced by simple operator equ
lents. The orbital contribution to the form factor is foun
then to be proportional to the expectations value
sn•L ( j̄ 01 j̄ 2) and the spin contribution tosn•Sj̄ 0, where
PRB 610163-1829/2000/61~22!/15213~8!/$15.00
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sn stands for the neutron’s spin,L andS are the orbital and
spin angular momentum operators, andj̄ 0(q) and j̄ 2(q) are
Bessel transforms of the radial wave function@see below, Eq.
~19!#, which depend on the magnitude of the scattering v
tor q.

Under the above assumption and within the approxim
tions specified, what is customarily called the dipole appro
mation can be applied to the measured form factor. Fitt
the latter with a linear combination ofj̄ 0(q) and j̄ 2(q), the
ratio of the coefficients ofj̄ 0(q)1 j̄ 2(q) and j̄ 0, and hence
the ratiomL /mS of the orbital and the spin moments can
deduced.

The purpose of this paper is to comment on the analy
of form factor data in the customary dipole approximatio
In our considerations we shall relate the form factor to
current density, rather than the magnetization, as is cust
ary. The ambiguity of the atomic magnetizationM (r ) and
consequently, of its Fourier transformM (q), which is related
to the neutron scattering amplitude, has been recogniz3

early and extensively discussed4 and illustrated5 recently. In
these illustrations it appears that the use ofM (r ) to describe
atomic magnetism has no merits over the use of the magn
induction B(r ), since the longitudinal~irrotational! compo-
nent is not accessible to measurement by neutrons
M'(r )5m0

21B(r ). Furthermore,M (r ) functions obtained
for different definitions of the magnetization as solutions
the differential equation

“3M ~r !5 j ~r !, ~1!

which relates the magnetizationM (r ) to the current density
j (r ), turn out to be qualitatively different. The analysis
such functions can easily result in misleading physical int
pretations, while they invariably exhibit some unphysic
contraintuitive features. So it is preferable to discuss the
culated or measured magnetic behavior of atoms in term
physically uniquely defined quantities such as the curr
density and the magnetic fieldB.

Trammell6 was the first one to formulate the magne
scattering of neutrons entirely in terms of current densiti
using the Dirac velocity operator at the outset. Stassis
Deckman7 followed this approach and showed that the ma
netic scattering amplitude can be written as
15 213 ©2000 The American Physical Society
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f ~q!5 i ugur 0

1

2mBq2
s•S q3 K fU E ĵ ~r !eiq•rdVU i L D , ~2!

wherer 0 is the classical electron radius. The vector prod
q3 j (q), where j (q) is the Fourier transform ofj (r ), sug-
gests a limitation of neutron scattering, which, apparen
has no access to the longitudinal component ofj (q). How-
ever, this component is the Fourier transform of the ir
tional component ofj (r ), which vanishes in the case of intra
atomic currents, for which divj50. Atomic current densities
are thus seen to be fully accessible to experimental obse
tion.

In Sec. II, we go back to current densities, in search
characteristics distinguishing spin and orbital currents. In
expectation values in angular-momentum eigenstates no
characteristics are found. In Sec. III, the known7 expressions
for the neutron scattering amplitude due to orbital and s
currents are deduced from the corresponding current de
ties. Maintaining only the dipole term in the multipole e
pansion of the latter gives the proper dipole approximati
which is less restrictive than the customary dipole appro
mation described above. Section IV contains the discus
of j̄ 0 vs j̄ 2 analyses with inclusion of various of contribu
tions and concludes with cautionary remarks concerning
significance of the outcome of such analyses.

II. THE NATURE OF THE CURRENT DENSITY
OF ATOMIC BOUND ELECTRONS

Instead of calculating the expectation value of the Fou
transform appearing in the scattering amplitude~2! directly,
t
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we shall first calculate the expectation value of the curr
density itself. Starting with the definition of the orbital cu
rent density in the nonrelativistic limit of the Dirac equatio
and performing a multipole expansion in terms of vec
spherical harmonics8 YL8M 8

L the orbital current density op
erator can be written in the following form:9

ĵo~r !5mB (
LL 8M 8

~21!M8~ ĵ o!M 8
(L 8)

~L!YL82M 8
L

~er !, ~3!

where (ĵ o)M 8
(L 8)(L) are components of irreducible tensor o

erators of rankL 8 and er is the unit vector pointing in the

direction of r . The matrix elements of (ĵ o)M 8
(L 8)(L) between

the eigenstates within the same shell, i.e., within an (n,l )
manifold, vanish, unlessL 85L.

Similarly, the spin density operator can be expanded a

ŝ~r !5
mB

r 2
d~ r̂ 82r ! (

LL 8M 8
~21!L2L81M 8

3@Ŷ(L)
^ ŝ (1)#M 8

(L 8)YL 82M 8
L

~er !, ~4!

where@Ŷ(L)
^ ŝ (1)#M 8

(L 8) is a component of the rankL 8 irre-

ducible product of the tensor operatorsŶ(L) and ŝ(1) and
ŝ(1) is the vector composed of the Pauli spin matrices.

Both ĵo(r ) andŝ(r ) being single-particle operators, the
matrix elements between Russell-Saunders spin-o
coupled eigenstatesuuJM& of n-electron shells can be writ
ten in terms of Racah double tensorsW(k8,k9) and W(k8,k9)k

as9
^uJMJu ĵo(n-electrons)uu8J8MJ8&5A2mB

Rnl
2

r
~21! l 11~2l 11!(LM

~21!MA~2l 1L12!~2l 2L11!

4p S l L l 11

0 0 0 D
3^uJMJuWM

(0,L)Luu8J8MJ8&YL2M
L ~5!

and

^uJMJuŝ(n-electrons)uu8J8MJ8&5~21! l 1M11
mB

A2p
~2l 11!Rnl

2 (L (
L 85L61

S l L 8 l

0 0 0D ^uJMJuWM
(1,L 8)Luu8J8MJ8&YL2M

L 8 ,

~6!

whereRnl(r ) is the radial wave function and the matrix elements^uJMJuWM
(0,L)Luu8J8MJ8& and^uJMJuWM

(1,L 8)Luu8J8MJ8& are
given, respectively, by

^uJMJuŴM
(0,L)Luu8J8MJ8&5~21!J2MJ@J,L,J8#1/2S J L J8

2MJ M MJ8
D H S S8 0

L L8 L
J J8 L

J ^uuuŴ(0,L)uuu8& ~7!

and

^uJMJuŴM
(1,L 8)Luu8J8MJ8&5~21!J2MJ@J,L,J8#1/2S J L J8

2MJ M MJ8
D H S S8 1

L L8 L 8

J J8 L
J ^uuuŴ(1,L 8)uuu8&. ~8!
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Stassis and Deckman10 have tabulated the values of the reduced matrix elements^uuuŴ(0,L)uuu8& as well aŝ uuuŴ(1,L 8)uuu8&
relevant to the ground state of the tripositive rare-earth ions, that is,^uuuŴ(0,L)uuu8& for L51,3, and 5 and̂uuuŴ(1,L8)uuu8& for
L850,2,4, and 6.

The spin current density being related to the spin magnetizationmBs(r ) through Eq.~1!, the matrix elements of the
spin-current density operator are found from Eq.~6! by differentiation

^uJMJu ĵs(n-electrons)uu8J8MJ8&5 i ~21! l 1M11
mB

Ap
~2l 11!(L (

L85L61
S l L 8 l

0 0 0D S L 8 1 L
0 1 21DA2L 811

3H d

dr
1

1

2
@~2L11!~L82L!13#

1

r J Rnl
2 ^uJMJuWM

(1,L8)Luu8J8MJ8&YL2M
L . ~9!
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Here too, the limitation to a single shell eliminates the vec
spherical harmonics withL 85L61 so that the multipole
expansion of the current density operator turns out to
restricted under this condition. Therefore, the orbital, s
and total current density operators can all be cast in the f
of a single sum

ĵ5(L ~21!M ĵ M
(L)YL2M

L , ~10!

containing only theYLM
L vectors~often denoted asXLM and

referred to as the magnetic vectors in the literature!.
The presence of the vector spherical harmonicsYL2M

L in
Eqs. ~5!, ~9!, and ~10! is not unexpected there, becau
div@ f (r )YL2M

L #50 for any differentiable radial function
f (r ), so that the obvious condition divj (r )50 is automati-
cally satisfied. When calculating the expectation value of
current density in eigenstates of thez component of the tota
angular momentum from Eqs.~5!, ~9!, and ~10!, M will
vanish (MJ85MJ;M50) and the vector spherical harmoni
YL0

L will have the polar components

@YL0
L # r5@YL0

L #u50, ~11!

@YL0
L #f5 iA 2L11

4pL~L11!
P1

L , ~12!

where P1
L are the associated Legendre functions. Thus,

expectation values of the current density operators have
an azimuthal (f) component and they will be independent
f. This result is in accord with the classical picture of ele
trons orbiting a central nucleus. The vector spherical h
monicsYL2M

L will have in general only two components,f
and u, sinceer•YL2M

L 50, irrespective of the value ofM.
This property is thus common to all linear combinations
such function as for the particular case of linear combi
tions diagonalizing the crystal-field operator. It is importa
to note that the statements made above establish genera
tures of current densities, which apply to orbital and s
currents alike. The implication of this generality is that t
decomposition of the measured total current density into
bital and spin components is not possible without using
ditional information or making assumptions.
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III. MAGNETIC SCATTERING AMPLITUDE, SMALL-Q
AND DIPOLE APPROXIMATIONS

Substituting into the scattering amplitude~2! the matrix
elements presented in the previous section,

f
u8J8MJ8

uJMJ ~q!5 i ugur 0

1

2mBq2

3s•S q3E eiq•r^uJMJu ĵ ~r !uu8J8MJ8&dVD .

~13!

It is not difficult ~see the Appendix! to recover the expres
sions given by Stassis and Deckman7 for the contribution of
the orbital and spin current density to the above express

f o
u8J8MJ8

uJMJ ~eq!5~ ugur 0!s•(L i LS 8p

2L11D 1/2

3@eq3YLM
L * ~eq!#R0~L!

3^uJMJuWM
(0,L)Luu8J8MJ8&; ~14!

f s
u8J8MJ8

uJMJ
~eq!5~ ugur 0!s•(L i LS 8p

2L11D 1/2

3@eq3YLM
L * ~eq!# (

L85L61

R1~L8,L!

3^uJMJuWM
(1,L8)Luu8J8MJ8&, ~15!

where the summations overL run through odd positive inte
gers up to and including 2l 11,

R0~L!5~21!L1 l~2l 11!

3Al ~ l 11!~2l 11!~2L13!

L S l L11 l

0 0 0D
3HL11 1 L

l l l J ~ j̄ L111 j̄ L21! ~16!

and
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R1~L8,L!5~21! l i L2L821~2l 11!

3~@L8,L#/2!1/2S L8 1 L
0 1 21D

3S l L8 l

0 0 0D j̄ L8 . ~17!

We have used here the recursion relation of the sphe
Bessel functions

j l~x!5
x

2l 11
$ j l 21~x!1 j l 11~x!%, ~18!

and adopted the notation

j̄ L5E
0

`

r 2 j L~qr !Rnl
2 ~r !dr. ~19!

A. The small-q approximation

In the analysis of elastic-scattering results, the smaq
approximation is often invoked. The underlying assumpt
is thatqr!1 for all values ofr for which j (r ) is not negli-
gible, so thateiq•r can be replaced by 11 iq•r in Eq. ~13!.
There is some justification for this assumption for the sc
tering of thermal neutrons on rare-earth ions, but not wh
such neutrons are used to study transition metals or actin

To realize this assumption, one should turn to Eq.~A.2!
and note that for small values of their arguments the sph
cal Bessel functions are of the formj l(x);xl /(2l 11)!!.
Therefore, up to second order inq•r only the L51 term
remains in the expressions off o(q) and f s(q) @Eqs.~14! and
~15!#. However, if this approximation is carried through sy
tematically, the integralsj̄ 0 and j̄ 2 appearing in theL51
terms in the sums in Eqs.~16! and~17! should be replaced by
*r 2@12(qr)2/6#Rnl

2 dr and*r 2(qr)2Rnl
2 dr, respectively.

B. The proper dipole approximation

When the terms withL.1 are neglected on the basis
the above argumentation, but the integralsj̄ 0 and j̄ 2 are
maintained, the proper dipole approximation results.
some reason, the term ‘‘dipole approximation’’ is custom
ily used to denote a truncated dipole term not including
L51, L852 contribution to Eq.~15!. Lander and Brun11

have compared the scattering amplitude in this custom
dipole approximation, which they denoted byf d , to the re-
sult of the proper dipole approximationf p for the tripositive
rare-earth ions and found the differences minor, if not ne
gible.

The definition of the proper dipole approximation is cle
cut, as only the dipole component of the current density
maintained. Also, if one insists on defining a magnetizat
function satisfying Eq.~1!, it is clear that the dipole compo
nent ofM is related to only the dipole component ofj , since
“3$ f (r )YLM

L % is a linear combination of terms proportion
to YLM

L21 andYLM
L11 and the transformation properties~i.e., the

multipole nature! of the vector spherical harmonics are d
termined by the lower indices.
al

n

t-
n
es.

ri-

r
-
e

ry

i-

r
is
n

An important feature of the dipole approximation can
deduced from the observation that only theL51 term con-
tributes to the total magnetic moment, which is given by

E
V
M ~r !dV5

1

2E r3 j ~r !dV5m. ~20!

This can be verified using the identity

er3YLM
L ~er !5 i @L#21/2$~L11!1/2YLM

L21~er !1L1/2YLM
L11~er !%

~21!

and the fact that the only vector spherical harmonics wh
integral over the entire solid angle does not vanish are
threeY1M

0 functions. The implication is that the dipole ap
proximation is exact, when it comes to the determination
the total magnetic moment. In practice, however, the de
mination ofm involves an extrapolation off (q) to zero. The
reliability of this extrapolation depends on the wayf (q) is
fitted. As it will be shown in the following section, fitting
with a linear combination ofj̄ 0(q) and j̄ 2(q) is not equiva-
lent with the dipole approximation, be it in the customary
proper sense.

IV. THE j̄ 0 VERSUS j̄ 2 ANALYSIS

Whenever a sufficient number of low-q values off (q) is
experimentally accessible, an analysis of the scattering
plitude in terms ofj̄ 0 and j̄ 2 is a reliable way of determining
f (0) and hencem. Apart from correctly giving the total
magnetic moment, such an analysis is often claimed to
able a distinction of spin and orbital moments.12 This claim
is based on the relation between, on the one hand, som
the Racah double tensors appearing in the dipole compo
in the scattering amplitude and, on the other hand, the op
tors of the spin and orbital angular momentum

Wm
(1,0)15S 2

2l 11D 1/2

Sm , ~22!

Wm
(0,1)15S 3

2l ~ l 11!~2l 11! D
1/2

Lm . ~23!

Equations~16! and ~17! show thatW0
(1,0)1 appears in con-

junction with j̄ 0 in the contribution of the spin current den
sity, whereasW0

(0,1)1 is multiplied by j̄ 01 j̄ 2 in that of the
orbital current density. However, decomposing the measu
scattering amplitude into components proportional toj̄ 0 and
j̄ 01 j̄ 2 does not distinguish between the spin and orbital c
tributions. This is because as pointed out in Sec. III B, sp
current contribution of the former also contains a term p
portional to j̄ 2W0

(1,2)1 andW0
(1,2)1 is not related toS0 or L0 in

any simple way. Furthermore, if the analysis does not
volve an identification of the dipole contribution to the sca
tering amplitude on the basis of its angular dependence,
has to reckon with contributions proportional withj̄ 2 from
the octupole term. To be more specific, in a systematicj̄ 0 vs
j̄ 2 analysis one should collect from Eqs.~14! and ~15! all

coefficients ofj̄ 0 and j̄ 2.
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We shall formulate the above criticism of the customa
j̄ 0 vs j̄ 2 analysis in terms of the expressions for the scatter
amplitude, which are limited toj̄ 0 vs j̄ 2 but otherwise are
exact. We choose for this calculation the most common
perimental configuration, in which the scattering vector
constrained in the plane perpendicular to the magnetic fi
We assume that the atomic magnetic moments and the
tron spin are fully aligned by this field. The vector spheric
harmonicsY1 0

1 andY3 0
3 are then only needed in the ‘‘equa

torial plane,’’ i.e., foruq5p/2, in which case they only hav
a f component and are independent off. Their vector prod-
uct with eq is then pointing in theeu direction, which, in the
equatorial plane, coincides with2ez , making the scalar
product withs, occurring in Eqs.~15! and ~16!, trivial and
leading to

s•eq3Y1 0
1 ~eq!52 i

1

2
A 3

2p
~24!

and

s•eq3Y3 0
3 ~eq!5 i

1

8
A21

p
. ~25!

Substituting these values into Eq.~14! and rearranging the
terms as described above, we find

f o
uJJ
uJJ~eq!5~a1 0! j̄ 01~a1 21a3 2! j̄ 2 , ~26!

with

a1 05a1 25~ ugur 0!~21! l 11A5$@ l #3l ~ l 11!%1/2S l 2 l

0 0 0D
3H 2 1 1

l l l J ^uJJuW0
(0,1)1uuJJ& ~27!

and

a3 25~ ugur 0!~21! l 11
3

A8
$@ l #3l ~ l 11!%1/2S l 4 l

0 0 0D
3H 4 1 3

l l l J ^uJJuW0
(0,3)3uuJJ&. ~28!

A similar rearrangement of terms in Eq.~15! gives

f s
uJJ
uJJ~eq!5~b1 0! j̄ 01~b1 21b3 2! j̄ 2 , ~29!

with

b1 05~ ugur 0!~21! lA3

2
@ l #S 0 1 1

0 1 21D S l 0 l

0 0 0D
3^uJJuW0

(1,0)1uuJJ&, ~30!

b1 25~ ugur 0!~21! l 11A15

2
@ l #S 2 1 1

0 1 21D S l 2 l

0 0 0D
3^uJJuW0

(1,2)1uuJJ&, ~31!

and
g

x-
s
d.
u-

l

b3 25~ ugur 0!~21! l 11
A105

2
@ l #S 2 1 3

0 1 21D S l 2 l

0 0 0D
3^uJJuW0

(1,2)3uuJJ&. ~32!

It is seen that the first label of the coefficientsai j and bi j
refers to the order of the multipole component (i 51 dipole,
i 53 octupole! while the second label gives the order of th
spherical Bessel function involved.

In terms of the coefficients defined in Eqs.~26! and~29!,
the customary dipole approximation is based on the assu
tions a3 25b1 25b3 250. On the other hand, in a prope
dipole approximation onlya3 2 andb3 2 are set equal to zero
as these originate from the octupole component of the c
rent density. In the analysis of form factors, one decompo
the measured scattering amplitude as

f o1 f s5 f ~ j̄ 01C2 j̄ 2! ~33!

and uses the resulting value ofC2 to determinemL /mS , the
ratio of orbital and spin moments. The moments being fu
determined by the extrapolated values off o and f s at q50,12

the ratio we are looking for isa1 0 /b1 0 @note that j̄ 2(0)
50#. However, this does not justify the application of th
dipole approximation in thej̄ 0 vs j̄ 2 analysis, because it is
not possible to isolate the dipole contributions to Eq.~33!. In
fact, adding upf o and f s as given by Eqs.~26! and ~29!,
normalizing the results as in Eq.~33! we find

C25
~a1 21a3 21b1 21b3 2!

~a1 01b1 0!
, ~34!

whence

mL

mS
5

22g

2~g21!
5

a1 0

b1 0
5

C22~b1 21b3 2!/b1 0

~a1 21a3 2!/a1 02C2
, ~35!

which, in its final form, contains the experimentally acce
sible parameterC2, and evidently involves coefficients re
lated to the octupole components of both current densit
Hereg is the Lande´ g factor. If we omit from Eq.~35! a3 2,
b1 2, andb3 2 and take into account thata1 25a1 0 @cf. Eq.
~27!#, we get the formula used in the customary dipo
approximation:2

S mL

mS
D

d

5
C2

12C2
. ~36!

Comparing Eqs.~35! and~36!, we see that the validity of
the latter is doubtful, ifb1 21b3 2 is not negligible compared
to b1 0 or a3 2 is not negligible compared toa1 0. These
coefficients are tabulated in Table I for the Russell-Saund
ground states of tripositive rare-earth ions, except Eu31 (J
50) and Gd31 (L50). The general impression of thes
tabulated numbers is not very reassuring concerning the
tomary procedure: there does not seem to be an orde
magnitude difference between the neglected and retained
efficients. We have also listed the coefficients obtained in
customary dipole approximation

~C2!d5
a12

a101b10
~37!
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and in the proper dipole approximation

~C2!p5
a121b12

a101b10
. ~38!

These data are tabulated by Lander and Brun11 under ‘‘di-
pole approx.’’ andc2 /c1, respectively. Comparison of th
last three columns of Table I shows that the terms origina
from the octupole component, which are included inC2 @Eq.
~34!#, are by no means negligible. In fact,uC22(C2)pu
mostly exceedsu(C2)p2(C2)du and sometimes the sign o
the two corrections are opposite. Table II enables a m
explicit assessment of the approximate method. Here,
tabulated the actual values ofmL /mS and (mL /mS)d in which
the coefficientsC2 of the last column of Table I are used a
input parameters into Eq.~36!. In other words, the forth col-
umn contains themL /mS values one would find by applying
the customary dipole approximation toC2 measured on iso
lated ions with moments given bymL /mS values of the sec-
ond column. The difference between the approximate
actual ratios is given in percents of the latter in the last c
umn. It is difficult to find any systematic trend in these e
rors, but, except for Pm31 and Sm31, they all fall outside the
likely experimental inaccuracy.

Admittedly, the test of Eq.~36! described above is no
very realistic, since it is based on a situation, where onl
single J manifold is involved. Within such a manifold, th
Winger-Eckart theorem ensures that the vectorsJ, L , andS
are proportional and therefore onlymL /mS ratios listed in the
third column of Table II can occur. Quenching of the orbi
moment, leading to a smaller value ofmL /mS , is only pos-
sible, if other states are involved. If these belong to the sa
L, Smanifold, Eqs.~22! and~23! remain valid. A systematic
analysis within the proper dipole approximation can be c
ried out, using the appropriate operator equivalent to ca
late the matrix elements appearing inb12.

TABLE I. The coefficientsa1 0,a1 2, . . . ,b3 2 of Eqs. ~27!,
~28!, and ~30!–~32!. The common factor (ugur 0) is omitted. The
ratios (C2)d , (C2)p , and C2 are defined by Eqs.~37!, ~38!, and
~34!, respectively.

Ion a1 0 a1 2 a3 2 b1 0 b1 2 b3 2 (C2)d (C2)p C2

Ce31 10
7

10
7 2

5
28 2

5
14

2
7

1
14

4
3

8
5

3
2

Pr31 12
5

12
5 0 2

4
5

52
225

91
825

3
2

74
45

1357
792

Nd31 63
22

63
22

294
1573 2

27
22

21
242

147
3146

7
4

119
66

1113
572

Pm31 14
5

14
5

98
605 2

8
5 2

14
165 2

49
1210

7
3

224
99

10297
4356

Sm31 15
7

15
7 0 2

25
14 2

13
63 2

13
252 6 244

45
95
18

Tb31 3
2

3
2 2

1
4 3 1

6
1
4

1
3

10
27

10
27

Dy31 5
2

5
2 0 5

2
1
6

1
4

1
2

8
15

7
12

Ho31 3 3 1
4 2 1

15
1

10
3
5

46
75

41
60

Er31 3 3 1
4

3
2 2

1
15 2

1
10

2
3

88
135

37
54

Tm31 5
2

5
2 0 1 2

1
6 2

1
4

5
7

2
3

25
42

Yb31 3
2

3
2 2

1
4

1
2 2

1
6 2

1
4

3
4

2
3

5
12
g

re
e

d
l-
-

a

l

e

r-
u-

The operator involved inb12 is W(1,2)1, the irreducible
vector product of a vector operator acting on the spin co
dinates and a rank 2 tensor acting on the orbital coordina
The operator equivalent constructed from the spin and p
tion vectors

T(1)5A15†S(1)
^ @er

(1)
^ er

(1)# (2)
‡

(1) ~39!

is known as the dipolar vector, owing to its form reminisce
of a dipole field

T5S23er~er•S!. ~40!

Noting that in Cartesian coordinates the quadrupole ten
has the formQab5dab23r ar b /r 2, we can write a compo-
nent of T in the transparent formTa5(bQabSb . The op-
eratorW(1,2)1 is thus seen to represent the coupling of t
quadrupole moment of the charge distribution to the s
moment. The emergence of the spin-orbit coupling is clea
reflected in another operator equivalent13 of W(1,2)1,

@S(1)
^ @L (1)

^ L (1)# (2)# (1)5
1

A15
H L~L11!S2

3

2
@L ~S•L !

1~S•L !L #J . ~41!

In general,W(1,L8)L involves the rankL 8 pole of the charge
distribution, which immediately explains why the form fa
tor of Gd31 ~an S-state ion with a spherical charge distrib
tion! is strictly proportional to j̄ 0.14 The very successfu
analysis of the Gd data15 in these terms may have give
some credence to the customary dipole approximat
which implies that the spin contribution tof (q) is always

proportional toj̄ 0. However, this is not the case, not even
the orbital moment is fully quenched. To realize this, co
sider a strong crystal field, which breaks up the spin-or

TABLE II. The actual and approximate valuesmL /mS which are
calculated using Eqs.~35! and ~36!, respectively.

Ion g mL

mS
5

22g

2(g21) SmL

mS
D
d

Error

Ce31 6
7 24 23 225%

Pr31 4
5 23 2

1357
565 220%

Nd31 8
11 2

7
3 2

1113
541 211.8%

Pm31 3
5 2

7
4 2

10297
5941 21%

Sm31 2
7 2

6
5 2

95
77 2.8%

Tb31 3
2

1
2

10
17 17.6%

Dy31 4
3 1 7

5 40%

Ho31 5
4

3
2

41
19 43.9%

Er31 6
5 2 37

17 8.8%

Tm31 7
6

5
2

25
17 241.2%

Yb31 8
7 3 5

7 276.2%



te
f

d-
e

-
O
ta

on

d
tte

n

he
re

ef
om
x

ee
re
n

h
o

s
a
th

st
de
u-
ea
ha
p
to
se
h

In

ity
la

ee
c

ds
ork

he

ith

PRB 61 15 219SPIN AND ORBITAL CONTRIBUTIONS TO THE . . .
coupling, but does not lead to significant admixture of sta
outside a givenL,S manifold. Clearly, all superpositions o
states within this manifold will be eigenstates ofL2, with the
same eigenvalue\2L(L11), whereas in some states, inclu
ing perhaps the crystal-field ground state, the orbital mom
may be completely quenched, i.e.,^L &50. The charge den
sity in such a state is of course not spherically symmetric.
the contrary, it is well adjusted to the symmetry of the crys
field, so that the crystal-field energy is minimized.

To illustrate this point, we have carried out a calculati
for a hypothetical crystal-field state of anf 2 shell ~appropri-
ate to Pr31 or U41). Assuming that a cubic crystal fiel
dominates the spin-orbit coupling, we neglected the la
entirely and considered one of theG3 states of theL55
multiplet,16 uG3,1&5(u14&2u24&)/A2. The G3 state is a
nonmagnetic doublet, in which the orbital angular mome
tum is fully quenched;uG3,2&5(u12&2u22&)/A2, so that
^L &50 and mL50 for any linear combination ofuG3,1&
and uG3,2&. It is also evident that f G3,1

oG3,150, because

^14uW0
(0,L)Lu14&52^24uW(0,L)Lu24& (L is odd! and

^14uWM
(0,L)Lu24&50, asM cannot exceed 5@L<2l 21, cf.

Eq. ~16!#. We have calculated the scattering amplitudef s(q)
for q in the plane perpendicular to the direction in which t
S51 spin moment and a fourfold axis of the crystal a
aligned. The outcome is that thej̄ 2 term is not negligible,
C250.112. Applying Eq.~36! to this result givesmL /mS
50.126, meaning that if such an ion existed and a car
form-factor measurement would be analyzed in the cust
ary way, one would conclude that the orbital moment e
ceeds 10% of the spin moment and the coupling betw
them is contrary to Hund’s third rule, which would requi
mL /mS,0 for f 2. In view of what was said in connectio
with Eqs.~40! and ~41!, it may seem odd that we foundC2
Þ0, even though the spin-orbit coupling was neglected. T
correlation between the orientation of the spin magnetic m
ment and the electric quadrupole moment is not a con
quence of a direct coupling in this case. Instead, both
oriented by external agents: the magnetic moment by
magnetic field and the quadrupole moment by the cry
lattice, which is supposed to be clamped in a sample hol

A strong crystal field, which breaks the spin-orbit co
pling and totally quenches the orbital moment can thus l
to a scattering amplitude with the signature taken to be c
acteristic of orbital scattering in the customary dipole a
proximation. This mechanism of quenching offers itself
the description in terms of localized states used in the pre
paper, but it is not likely to be of importance in rare eart
~except samarium17! or in actinides.

The orbital moment of the 5f shell in the latter case is
reduced by hybridization, that is, a superposition of 5f n and
5 f n216d configurations. However, as mentioned in the
troduction, the delocalized nature of the 6d states makes the
relevance of free-atom models doubtful. An approach18 that
treats the delocalized states properly within the dens
functional formalism and introduces intra-atomic corre
tions separately seems the only way out.
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APPENDIX

The contribution of the orbital current density~5! to the
scattering amplitude~14! can be found by rewriting the
spherical harmonicsYL2M

L of Eq. ~5! in terms of their com-
plex conjugates with the aid of the identity

YJM
L * 5~21!J1L1M11YJ2M

L ~A1!

substituting the matrix elements~5! in Eq. ~14!, expanding
eiq•r with the identity

1eiq•r54p (
JLM

i L j L~qr !YJM
L * ~eq! ^ YJM

L ~er !, ~A2!

where j L(qr) is a spherical Bessel function, and using t
orthogonality of the vector spherical harmonics

E YJ8M8
L8 * ~er !•YJM

L ~er !dV5dJ8JdL8LdM8M . ~A3!

We find

f o
u8J8MJ8

uJMJ ~q!52A2ugur 0s•(L i LH ~21! l 1L~2l 11!

3A~2l 1L12!~2l 2L11!

4p

3S l L l 11

0 0 0 D J ^uJMJuWM
(0,L)Luu8J8MJ8&

3@eq3YLM
L * ~eq!#E S 1

qr D j L~qr !Rnl
2 r 2dr.

~A4!

The quantity in the curly bracket has to be transformed w
the aid of

S l L l 11

0 0 0 D 5~21!L11S l L11 l

0 0 0D
3A~L11!~2l 2L!

L~2l 2L11!
~A5!

and

HL11 1 L
l l l J 5~21!L

3
1

2
A ~2l 1L12!~2l 2L!~L11!

l ~2l 11!~ l 11!~2L11!~2L13!

~A6!

to recover the expression given by Stassis and Deckman@cf.
Eq. ~59! of Ref. 7#.

To find the contribution of the spin current density~9! to
the scattering amplitude~13!, it is convenient to deal directly
with the spin density~6!, using
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E eiq•r^uJMJu ĵ s~r !uu8J8MJ8&dV

5E eiq•r
“3^uJMJuŝ~r !uu8J8MJ8&dV

52 iq3E eiq•r^uJMJuŝ~r !uu8J8MJ8&dV, ~A7!

which relates the Fourier transform of the spin current d
sity with that of the spin density. The Fourier transfor
*eiq•r^uJMJuŝ(r )uu8J8MJ8&dV of the spin density~6! can
re
r,

i,

,

-

be easily evaluated, if one makes use of Eqs.~A2! and~A3!.

Equation~A7! then requires the vector productseq3YL 80
L 861,

for which we use

eq3YL8M
L

~eq!5 i ~21!L~2@L# !1/2S L 1 L8

0 1 21DYL8M
L8 ,

which can be easily verified forLÞL8. Collecting terms and
substituting into Eq.~13! we again recover the result of Sta
sis and Deckman.7
e
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