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Spin and orbital contributions to the magnetic scattering of neutrons
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The current densities in partially filled electron shells of free atoms or ions, when analyzed in terms of
multipole expansions, do not carry signatures that would distinguish orbital and spin currents. The same holds
for the orbital and spin contributions to elastic neutron scattering amplitude, which are related to Fourier
transforms of the respective current densities. The pitfalls of the so-called dipole approximation, which appears
to enable a distinction, are pointed out and errors involved are calculated for some free-ion and crystal-field
states.

. INTRODUCTION o, stands for the neutron’s spih,andS are the orbital and

) ) spin angular momentum operators, gr@q) andj,(q) are
In alloys and intermetallic compounds, rare earth atomsessel transforms of the radial wave funct[see below, Eq.
are mostly in their triply ionized state. Due to the localized(19)] which depend on the magnitude of the scattering vec-
nature of 4 states on the scale of interatomic distances, theor q.
ions occupy their free-ion ground states in the solid. The Under the above assumption and within the approxima-
exchange interaction between ions and external magnetifons specified, what is customarily called the dipole approxi-
fields only influence the relative occupancy of thd+2l  mation can be applied to the measured form factor. Fitting

degenerate levels within the ground-state mantfalthd  the latter with a linear combination g§(q) and](q), the

weak crystal fields lead to significant mixing only within the 445 of the coefficients Of_z)(Q)+j_2(Q) andj_o, and hence

set of the 2+1 states.. _ the ratiou, / us of the orbital and the spin moments can be
In the case of actinides and ambivalent rare-earths, thgeqyced.

situation is not quite so simple, because one has to reckon The purpose of this paper is to comment on the analysis

with the admixture of “divalent” and “tetravalent” states, of form factor data in the customary dipole approximation.

i.e., states involving deviating numbersfotlectrons. In the  |n our considerations we shall relate the form factor to the

formal description of such mixed-valence statiesr s states  current density, rather than the magnetization, as is custom-

also have to be included, because only isoelectronic configuary. The ambiguity of the atomic magnetizatidh(r) and

rations can be superposed in a meaningful way. Asitaed  consequently, of its Fourier transfomd(q), which is related

s electrons are delocalized, the formation of bands and théo the neutron scattering amplitude, has been recoghized

concomitant quenching of orbital moments must be takerearly and extensively discus$eahd illustrated recently. In

into account, irrespective of the direct overlagf sfates, that  these illustrations it appears that the usévifr) to describe

is, the width of a pure, unhybridizefdband. atomic magnetism has no merits over the use of the magnetic
Whereas the description of hybridization of strongly cor-induction B(r), since the longitudinalirrotationa) compo-

relatedf states with Bloch states remains a challenge foment is not accessible to measurement by neutrons and

theorists, the reduction of the orbital momentum with respecM , (r) =,ung(r). Furthermore,M(r) functions obtained

to the Russell-Saunders value is generally considered to befar different definitions of the magnetization as solutions of

measure of such hybridizatiriTherefore, the experimental the differential equation

determination of the orbital and spin momestsparately

is of crucial importance in the study of mixed-valent rare VXM(r)=j(r), (1)

earth materials and some actinide compounds. Although,

strictly speaking, neutrons cannot distinguish between orbitajhich relates the magnetizatidi(r) to the current density
and spin magnetism, various assumptions and approximg¢r), turn out to be qualitatively different. The analysis of
tions have been used to extract such information from magsych functions can easily result in misleading physical inter-
netic form factors measured by elastic neutron scatteringbretations' while they invariably exhibit some unphysical,
Most commonly, it is assumed that the magnetic ion is in itscontraintuitive features. So it is preferable to discuss the cal-
Russell-Saundet.,S,J,M ;) ground state and the dipole ap- cylated or measured magnetic behavior of atoms in terms of
proximation is applicable. If, as a further approximation, thephysically uniquely defined quantities such as the current
contribution accounting for nonspherical distribution of thedensity and the magnetic fieB.

spin magnetism is neglected in the dipole term, the remain- Trammelf was the first one to formulate the magnetic
ing contributions can be replaced by simple operator equivascattering of neutrons entirely in terms of current densities,
lents. The orbital contribution to the form factor is found using the Dirac Ve'ocity operator at the outset. Stassis and
then to be proportional to the expectations value ofpeckmard followed this approach and showed that the mag-
o,-L(jo+],) and the spin contribution ter,- Sj,, where netic scattering amplitude can be written as
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density itself. Starting with the definition of the orbital cur-
2upq rent density in the nonrelativistic limit of the Dirac equation

wherer is the classical electron radius. The vector productand performmg ? muﬁltlpole expaQS|on in terms O_f vector
qXj(q), wherej(q) is the Fourier transform of(r), sug- spherical harmoqlésY:C,M, the orp|tal current density op-
gests a limitation of neutron scattering, which, apparently@rator can be written in the following forrh:
has no access to the longitudinal componeni(qj. How- A A )
ever, this component is the Fou_rier transform of thg iro-  jo(N=pug 2, (—1)M’(j°)(/ﬁ,)(£)Y§,_M,(er), ©)]
tional component of(r), which vanishes in the case of intra- L' m!
atomic currents, for which diy=0. Atomic current densities | .. @o)sﬁ”)([’) are components of irreducible tensor op-
are thus seen to be fully accessible to experimental observa- , . : L
tion erators of rankC ' and e is the unit vector pointing in the

. . . . . . ~ L'

In Sec. II, we go back to current densities, in search ofdirection ofr. The matrix elements ofjf)'(; )(£) between
characteristics distinguishing spin and orbital currents. In théhe eigenstates within the same shell, i.e., within af)(
expectation values in angular-momentum eigenstates no suchanifold, vanish, unlesg ' = L.
characteristics are found. In Sec. Ill, the kndvexpressions Similarly, the spin density operator can be expanded as
for the neutron scattering amplitude due to orbital and spin
currents are deduced from the corresponding current densi-
ties. Maintaining only the dipole term in the multipole ex-
pansion of the latter gives the proper dipole approximation,
Whigh is Iess_ restrictive than the customary dipole .appro>'<i- X[Q(£)®(}(l)]§é’/)yﬁ_M (&), (4)
mation described above. Section IV contains the discussion A A o
of jo Vs J, analyses with inclusion of various of contribu- Where[ Y9 ¢@®1(% ) is a component of the rank " irre-
tipns .and concludes with cautionary remarks concerning thgucible product of the tensor operatd?éﬁ) and & and
significance of the outcome of such analyses. oV is the vector composed of the Pauli spin matrices.

Both f°(r) and fr(r) being single-particle operators, their
matrix elements between Russell-Saunders spin-orbit
coupled eigenstatd®JM) of n-electron shells can be writ-

Instead of calculating the expectation value of the Fourieten in terms of Racah double tensagk’ ¥ and w(k' K"k
transform appearing in the scattering amplit@gedirectly,  as

f(a)=i|ylro

we shall first calculate the expectation value of the current
50" i>), (2

q><<f‘ f j(redrdv

~ /-LB ~, _ ot ’
o(n=—8"-r) X (-1
r ce'm'

Il. THE NATURE OF THE CURRENT DENSITY
OF ATOMIC BOUND ELECTRONS

2)2l-L+1)(1 £ 1+1
47 lo o o

. R2 20+ L+
<6J|\/|J|j°(n'ele°"°”sf0"]’Mj):\/EMBTnl(—l)'+1(2l+l)2 (_1)./\/1\/(
M
X{(OIM WL 6" I MYE (5

and

I L' |
~ (n- ETAV L B ! IETAV L !
(8IM| gretectons) g MJ>:(—1)I+M+1\/T—7T(2|+1)Rﬁ|; > (O 0 O)<6‘JMJ|WS&I’£ 0" I MYYE_ L,
£'=c+1
(6)

whereR,(r) is the radial wave function and the matrix elemef3M ;W24 6”3' M) and(8IM;|WELE V4] 673" M) are
given, respectively, by

S 8 0
R J L J R
(BIM W63 M) = (= 1) M3, L3 JyL L L elwea e (7)
M; M M)
J J L
and
] oy S 8 1
(BIM,| WG DE 0" 3" My = (— 1)~ Mo 3, £,3" 12 S L LT L (e[ WEED gy, 8
_MJ M MJ

J J
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Stassis and Deckmé&hhave tabulated the values of the reduced matrix elem@hfgv(®2)]|¢’) as well as(6||W(L£ || 6")

relevant to the ground state of the tripositive rare-earth ions, thag|igy(®2)||6') for £=1,3, and 5 and6||W*£")||6') for
L£'=0,2,4, and 6.

The spin current density being related to the spin magnetizatiga(r) through Eq.(1), the matrix elements of the
spin-current density operator are found from E&). by differentiation

I £" 1\ 1 L
“s(n-electrons — I+M+1/‘LB + "+
(6IM,]] 16'3'M5)=i(-1) @ n2 yzm(o 0 0)(0 ) _JW 1

d 1 ,
PR [(2£+1)(c' £)+3]- R2(OIM| WAL 0 M YE . 9)

d

Here too, the limitation to a single shell eliminates the vector ll. MAGNETIC SCATTERING AMPLITUDE, SMALL-Q
spherical harmonics withC'=L=*1 so that the multipole AND DIPOLE APPROXIMATIONS
expansion of the current density operator turns out to be
restricted under this condition. Therefore, the orbital, spin
and total current density operators can all be cast in the form
of a single sum

Substituting into the scattering amplitud®) the matrix
elements presented in the previous section,

1
mMJ _

=3 COMEYE L, (10) 2ue

a-(qxj e 9T (9IM,[j(r)|6'I’'M;)dV]|.
containing only ther %, , vectors(often denoted aX . ,, and
referred to as the magnetic vectors in the litergture 13
The presence of the vector spherical harmoMQsM in
Egs. (5), (9), and (10) is not unexpected there, because
div[f(r)Yﬁ_M]=0 for any differentiable radial function
f(r), so that the obvious condition djir)=0 is automati-
cally satisfied. When calculating the expectation value of the

It is not difficult (see the Appendixto recover the expres-
sions given by Stassis and Deckmdor the contribution of
the orbital and spin current density to the above expression

1/2

current density in eigenstates of theomponent of the total Fo0IM; y=(|ylro) e 2
angular momentum from Eqg5), (9), and (10), M will 6'3'M, (&) =(7Iro) ' 2L+1
vanish M ;=M ;; M=0) and the vector spherical harmonics .
Y%, will have the polar components X[ €X Y e (&) IRo(L)
i i X(OIMIWEPL1 673" M 1), (14)
[Yzoli=[Y0l6=0, (11
8 1/2
2L+1

Lo [ e+, tam, (eq):(|7|r0)0";i£
[Yiolg=i mpl, (12)

i , , X[eXYiu* (6] 2 Ry(L',L)
where Py are the associated Legendre functions. Thus, the L'=L*1
expectation values of the current density operators have only LLYL g 7
an azimuthal ¢) component and they will be independent of X(BIM| WY 0" M ), (15
¢. This result is in accord with the classical picture of elec-
trons orbmng a central nucleus. The vector spherical har?
monlchE_M will have in general only two components,
and 6, sinceer-Yﬁ_M=0, irrespective of the value oi1. ol
This property is thus common to all linear combinations of Ro(£)=(—1)""(21+1)
such function as for the particular case of linear combina- \/I(I 12 +1)(2£+3)/ I 1|

where the summations ové&rrun through odd positive inte-
gers up to and includingl2-1,

tions diagonalizing the crystal-field operator. It is important

to note that the statements made above establish general fea- L lo o o
tures of current densities, which apply to orbital and spin

. S ; . L+1 1 L
currents alike. The implication of this generality is that the % (JL+1+J£ ) (16)
decomposition of the measured total current density into or- I |

bital and spin components is not possible without using ad-
ditional information or making assumptions. and
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Ry(L' E):(_l)liﬁ—ﬁ'—l(m +1) An important feature of the dipole approximation can be
v deduced from the observation that only the=1 term con-
L1 L tributes to the total magnetic moment, which is given by
X([L', L))"
0 1 -1 1
| £ 1\ f M(r)dV= Ef er(r)dem. (20)
<0 o o) o (17) v
This can be verified using the identity
We have used here the recursion relation of the spherical o _
Bessel functions exXYiy(e)=i[L] Y4 (L+ 1)1/2Y5M1(Q)+51/2Y2L1(?)}3
21

(18) _and the fact that the_only vector spherical harmonics whose
integral over the entire solid angle does not vanish are the
) threngj\,1 functions. The implication is that the dipole ap-
and adopted the notation proximation is exact, when it comes to the determination of
the total magnetic moment. In practice, however, the deter-
mination ofm involves an extrapolation df(q) to zero. The
reliability of this extrapolation depends on the w{q) is
fitted. As it will be shown in the following section, fitting

with a linear combination of5(q) andj,(q) is not equiva-
lent with the dipole approximation, be it in the customary or

In the analysis of elastic-scattering results, the small- proper sense.
approximation is often invoked. The underlying assumption
is thatqr<1 for all values ofr for which j(r) is not negli-
gible, so thate'" can be replaced by-tiqg-r in Eq. (13).
There is some justification for this assumption for the scat- Whenever a sufficient number of lowvalues off(q) is
tering of thermal neutrons on rare-earth ions, but not whemxperimentally accessible, an analysis of the scattering am-
such neutrons are used to study transition metals or actinidegjityde in terms ofj , andj, is a reliable way of determining

To realize this assumption, one should turn to B82) () and hencem. Apart from correctly giving the total
and note that for small values of their arguments the spherimagnetic moment, such an analysis is often claimed to en-
cal Bessel functions are of the fori(x)~x'/(21+1)!!.  apje a distinction of spin and orbital momeMsThis claim
Therefore, up to second order @r only the L=1 term s hased on the relation between, on the one hand, some of
remains in the expressions tf(q) andf*(q) [Egs.(14) and  the Racah double tensors appearing in the dipole component
(15)]. However, if this approximation is carried through sys-in the scattering amplitude and, on the other hand, the opera-
tematically, the integral§, and j, appearing in theC=1  tors of the spin and orbital angular momentum
terms in the sums in Eq&l6) and(17) should be replaced by
Sr[1—(qr)?6]R%,dr and fr?(qr)?R3dr, respectively.

X
Ji(x)= m{ju_l(X)Jrjm(X)},

Te= | ridanrimar (19

A. The small-q approximation

IV. THE j, VERSUS |, ANALYSIS

1/2
weono| 2 S (22)
m 21+1 ’

B. The proper dipole approximation

When the terms withC>1 are neglected on the basis of W(n?vl)lz(;
the above argumentation, but the integrajsand j, are A0+ 1)2I+1)
maintained, the proper d_ipole appro_xima_1tion_resu|ts. ForEquations(16) and (17) show thatwgl’o)l appears in con-
some reason, the term “dipole approximation” is customar-. . L _— .
ily used to denote a truncated dipole term not including théL_mCtIon W'thlo(:)nl)tlh_e contr.lbl_Jtlon 0Lthe__spm current den-
£=1, £'=2 contribution to Eq.15). Lander and Brulf ~ Sity, whereasig " is multiplied by jo+j2 in that of the
have compared the scattering amplitude in this customar9rb'ta| current density. However, decomposing the_measured
dipole approximation, which they denoted by, to the re-  scattering amplitude into components proportionaj gand
sult of the proper dipole approximatidn for the tripositive  j,+ j, does not distinguish between the spin and orbital con-
rare-earth ions and found the differences minor, if not neglitributions. This is because as pointed out in Sec. Ill B, spin-
gible. o . - current contribution of the former also contains a term pro-

The definition o_f the proper dipole approximation is c_Iea_r portional toj_zwgl'z)l andW(()l’Z)l is not related t@S, or L in
cut, as only the dipole component of the current density iy simple way. Furthermore, if the analysis does not in-
maintained. Also, if one insists on defining a magnetization,o|ye an identification of the dipole contribution to the scat-
function satisfying Eq(1), it is clear that the dipole compo-  tering amplitude on the basis of its angular dependence, one
nent ofM is related to only the dipole componentjofince . - . —

o N . has to reckon with contributions proportional with from
V x{f(r)Y;,,} is alinear combination of terms proportional I —
to Y41 andY%4} ! and the transformation propertié., the € octupole term. To be more specific, in a systerigfies
multipole naturg of the vector spherical harmonics are de-j2 analysis one should collect from Eqd4) and (15 all
termined by the lower indices. coefficients ofjy andj,.

1/2
L. 23




PRB 61 SPIN AND ORBITAL CONTRIBUTIONS TO THE ... 15217
We shall formulate the above criticism of the customary - 105 /2 1 3\/l 2 1

- - - . . — +

i VS ], analysis in terms of the expressions for the scattering P3 2= ([7[ro) (= 1) 5 [|]( o1 -1/lo o o

amplitude, which are limited tg, vs j, but otherwise are 12)3

exact. We choose for this calculation the most common ex- x( 03 WG4 63J). (32

perimental configuration, in which the scattering vector is
constrained in the plane perpendicular to the magnetic fiel
We assume that the atomic magnetic moments and the ne
tron spin are fully aligned by this field. The vector spherlcalspherical Bessel function involved.

harmonicsY;  and Y3, are then only needed in the “equa- |} ey of the coefficients defined in Eq&6) and(29),
torial plane,” i.e., for6,= /2, in which case they only have e cystomary dipole approximation is based on the assump-

t is seen that the first label of the coefficieratg and by;
efers to the order of the multipole component=( dipole,
H=3 octupole while the second label gives the order of the

a ¢ component and are independentgofTheir vector prod-
uct with e, is then pointing in thee, direction, which, in the
equatorial plane, coincides with-e,, making the scalar
product with o, occurring in Eqs(15) and (16), trivial and

leading to
1 1 /3
o X Yio(&)="15\ 5 (29
and
3 1 /21
06X Y3 (€)= sV (25

Substituting these values into E(l4) and rearranging the
terms as described above, we find

fOij(eq) =(a;0)jot(a12+2a32)]2, (26)
with
|
alO:al2:(|7|r0)(_1)|+1\/€{[|]3|(|+1)}l/2(0 0 0)
2 1 1
X |]<033|Wg°’1)1|033> (27)

and

3 4 1
as2:(|7’|ro)(—1)|+1ﬁ{[|]3|(|+1)}1/2<0 0 O)

4 1 3
x[l D ’(03J|W§,°~3>3| 60J). (28)
A similar rearrangement of terms in E@.5) gives
fS933(eq) = (by 0ot (b1a+b35)js, (29

with

blo=(|7|fo)(—1)'\[§[']<o 1 —1)(0 0 0>

X(03IWE-9Y 937),

b12:<|ylro><—1>'”\@['](o 1 —1><0 0 0)

X(03IIWE-2Y 633),

(30

(31)

and

tions az ,=b; ,=b3,=0. On the other hand, in a proper
dipole approximation onlgas , andbg , are set equal to zero,

as these originate from the octupole component of the cur-
rent density. In the analysis of form factors, one decomposes
the measured scattering amplitude as

fO+5=f(jo+ Cyj») (33
and uses the resulting value 6% to determinew, /s, the
ratio of orbital and spin moments. The moments being fully
determined by the extrapolated valueg®andfS atq=0,'?
the ratio we are looking for i®; o/b; o [note thatj,(0)
=0]. However, this does not justify the application of the
dipole approximation in the, vs j, analysis, because it is
not possible to isolate the dipole contributions to E28). In
fact, adding upf® and f° as given by Eqs(26) and (29),
normalizing the results as in E83) we find

:(al ptaztby,tbg))
2 (a10tb1o) '

(34)
whence

mL_ 2-9 a9 Co(biptbsp)/bso
Ms 2(9_1) b]_o (al 2+a3 2)/a1 O_CZ'

(39

which, in its final form, contains the experimentally acces-
sible parameteC,, and evidently involves coefficients re-
lated to the octupole components of both current densities.
Hereg is the Landeg factor. If we omit from Eq(35) a3 »,

b, ,, andb;, and take into account that; ,=a; ¢ [cf. Eq.
(27)], we get the formula used in the customary dipole

approximatiorf
E
Ms/ 4 1-Cy’

Comparing Egs(35) and(36), we see that the validity of
the latter is doubtful, ib; ,+ b3, is not negligible compared
to by or az, is not negligible compared ta; . These
coefficients are tabulated in Table | for the Russell-Saunders
ground states of tripositive rare-earth ions, except'E(W
=0) and Gd* (L=0). The general impression of these
tabulated numbers is not very reassuring concerning the cus-
tomary procedure: there does not seem to be an order of
magnitude difference between the neglected and retained co-
efficients. We have also listed the coefficients obtained in the
customary dipole approximation

(36)

a2
Coly=——2—
( 2) d a10+ blO

(37)
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TABLE I. The coefficientsa; 9,a; 2, ... b3, of Egs. (27), TABLE Il. The actual and approximate valugs / us which are
(28), and (30)—(32). The common factor|¢/|ro) is omitted. The calculated using Eq$35) and(36), respectively.
ratios (C,)q, (Cy),, andC, are defined by Eqs37), (38), and

(34), respectively. lon g ML 279 m Error
Ms 2(97 1) Ms d
lon a9 a1, ag, big b1z bzy (Cg (Cr))p Co
+ 10 10 5 5 2 1 4 8 3 cet s —4 -3 — 25%
cer P P -%-n 0 5§ 3 7 °
12 12 4 52 91 3 74 1357 PRt 3 -3 _ 857 —20%
Pt 2 2 0 -f % & 3 B O 5 565 °
3+ 63 63 294 27 21 147 7 119 1113 Nd3+ k3 _I _ iils —11.8%
Nd 22 22 1573 22 242 3146 7 66 512 1 3 541 0
+ 14 14 98 8 14 49 7 224 10297 + ] _z — 10297 —19
Pt 2 ¥ & - -1 b 5§ B he PP 5 4 5941 1%
4 15 15 25 13 13 244 95 St 2 _s — 2% 2.8%
smt 2 2 0 - -8 -5 6 & RN 7 5 77 °
3. 3 3 1 1 1 1 10 10 Tbh3* 3 1 10 17.6%
™" 2 2z -7z 3 % i i @ om 2 2 v ’
3+ 4 7
3 5 5 5 1 1 1 8 7 3 = 9
Dy 3 3 0 3 § 3 : & £ D 3 1 5 40%
3+ 5 3 41
Wt 3 3 b 2 A & % # Ho : : 5
1 3 1 1 2 88 37 ERt s 2 37 8.8%
EF* 3 3 2 3 -% -i% 5 1w & 5 7 ’
3+ 5 5 1 1 5 2 25 ™Tmd* z 3 25 —41.2%
m> 2 2z 0 1 -5 -3 3 ER 6 2 v ’
3+ 3 3 11 1 1 3 2 5 Y3+ g 3 2 —76.2%
Yo't 5 3 -3 3 —& —i % 5 1 7 7 °
. . X ) . - . (1’2)1 - .
and in the proper dipole approximation The operator involved irbq, is W o the wreduqble
vector product of a vector operator acting on the spin coor-
aj+ b, dinates and a rank 2 tensor acting on the orbital coordinates.
(CZ)p:m' (38)  The operator equivalent constructed from the spin and posi-
10 10

tion vectors
These data are tabulated by Lander and Brumder “di-
pole approx.” andc,/c,, respectively. Comparison of the T(l):\/1—5’[5(1)@9[951)@9&1)](2)](1) (39
|aSt thl’ee CO|umnS Of Table | ShOWS that the terms Originatings known as the dipo'ar Vector, Owing to its form reminiscent
from the octupole component, which are includeCin[Eq.  of a dipole field
(34)], are by no means negligible. In factC,—(C,),|
mostly exceeds(C,),—(C,)q| and sometimes the sign of T=S-3e(g"9). (40)
the two corrections are opposite. Table Il enables a mor
explicit assessment of the approximate method. Here,
tabulated the actual values af /s and (u /us)q in which
the coefficientsC, of the last column of Table | are used as
input parameters into E@36). In other words, the forth col-
umn contains thew, /ug values one would find by applying
the customary dipole approximation @, measured on iso-
lated ions with moments given by, /ug values of the sec-
ond column. The difference between the approximate and 1
actual ratios is given in percents of the latter in the last col- [Sg[L(Ng (D)0 =—
umn. It is difficult to find any systematic trend in these er- V15
rors, but, except for P and Sni*, they all fall outside the
likely experimental inaccuracy. +(S-L)L]
Admittedly, the test of Eq(36) described above is not
very realistic, since it is based on a situation, where only
single J manifold is involved. Within such a manifold, the

W?\Ioting that in Cartesian coordinates the quadrupole tensor

Ras the formQ,z= 5aﬁ—3rarﬁ/r2, we can write a compo-
nent of T in the transparent fornT ,=2;Q,;S;. The op-
erator W21 js thus seen to represent the coupling of the
quadrupole moment of the charge distribution to the spin
moment. The emergence of the spin-orbit coupling is clearly
reflected in another operator equivaf€raf W12,

3
L(L+1)S— 5[L(S'L)

. 41

I general W) involves the rankZ ' pole of the charge

: distribution, which immediately explains why the form fac-
Winger-Eckart theorem ensures that the vecthrk, andS . ) . I
g o tor of GAF* (an S-state ion with a spherical charge distribu-

are proportional and therefore only /u g ratios listed in the =

third column of Table Il can occur. Quenching of the orbital tion) is strictly proportional tojo.** The very successful
moment, |eading to a smaller value p'[ //“L51 is On|y pos- analySiS of the Gd da{aln these terms may have given
sible, if other states are involved. If these belong to the sam&ome credence to the customary dipole approximation,
L, Smanifold, Egs(22) and(23) remain valid. A systematic Which implies that the spin contribution t(q) is always
analysis within the proper dipole approximation can be carproportional toj,. However, this is not the case, not even if
ried out, using the appropriate operator equivalent to calcuthe orbital moment is fully quenched. To realize this, con-
late the matrix elements appearinghipy,. sider a strong crystal field, which breaks up the spin-orbit
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coupling, but does not lead to significant admixture of state&nowledges the full financial support of the “Steunfonds

outside a giverL,S manifold. Clearly, all superpositions of Soedanese Studenten,” Leiden, which enabled him to work

states within this manifold will be eigenstateslof, with the  at the Van der Waal—Zeeman Institute.

same eigenvalu&?L (L + 1), whereas in some states, includ-

ing perhaps the crystal-field ground state, the orbital moment APPENDIX

may be completely quenched, i.éL,)=0. The charge den-

sity in such a state is of course not spherically symmetric. On The contribution of the orbital current density) to the

the contrary, it is well adjusted to the symmetry of the crystalscattering amplitudg14) can be found by rewriting the

field, so that the crystal-field energy is minimized. spherical harmonicifz’ﬁ,M of Eq. (5) in terms of their com-
To illustrate this point, we have carried out a calculationplex conjugates with the aid of the identity

for a hypothetical crystal-field state of &R shell (appropri- L L

ate to Pf* or U*"). Assuming that a cubic crystal field Yo = (=1 MY (A1)

dor_ninates the sp_in—orbit coupling, we neglected the Iatteéubstituting the matrix elements) in Eq. (14), expanding

entirely and considered one of tH&; states of theL=5 el " with the identity

multiplet® T3 )=(|+4)—|—4))/\2. The T; state is a

nonmagnetic doublet, in which the orbital angular momen- o0 L Lo L

tum is fully quenched]l's )= (|+2)—|—2))/12, so that le :47TJ§(A FjuanY;u* ()@ Yju(e), (A2)

(L)=0 and u =0 for any linear combination ofI'; 1) _ _ _ _ _

and |T3,. It is also evident thatf?gi’l=0, because Wherej_(qr) is a spherical Bessel function, and using the

3 orthogonality of the vector spherical harmonics
(+4|WPOE) +8y=—(—4|WODL—4) (£ is odd and gonaty P

(+4|WEO% —4)=0, asM cannot exceed BL<2l—1, cf. L .

Eq. (16)]. We have calculated the scattering amplitdidia) J Yom (&) Yiu(€)dQ =365 360 6w (A3)
for g in the plane perpendicular to the direction in which the
S=1 spin moment and a fourfold axis of the crystal are

aligned. The outcome is that thjg term is not negligible,
C,=0.112. Applying EQ.(36) to this result givesu /ug f
=0.126, meaning that if such an ion existed and a careful
form-factor measurement would be analyzed in the custom- 21+ L+2)(21—L+1)
ary way, one would conclude that the orbital moment ex- \/

ceeds 10% of the spin moment and the coupling between 4m
them is contrary to Hund’s third rule, which would require

il us<0 for 2. In view of what was said in connection X
with Egs.(40) and (41), it may seem odd that we four@,

#0, even though the spin-orbit coupling was neglected. The 1
correlation between the orientation of the spin magnetic mo- x[equfM*(eq)]f (—)jﬁ(qr)Rﬁrzdr.
ment and the electric quadrupole moment is not a conse- ar

guence of a direct coupling in this case. Instead, both are (A4)
oriented by external agents: the magnetic moment by th - .
magnetic field and the quadrupole moment by the cryst%}lea?gi?t'ty in the curly bracket has to be transformed with
lattice, which is supposed to be clamped in a sample holder.

We find
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A strong crystal field, which breaks the spin-orbit cou- | £ 1+1 | £+1 |
pling and totally quenches the orbital moment can thus lead ( =(—1)**1 )
to a scattering amplitude with the signature taken to be char- 00 0 0 0 0

acteristic of orbital scattering in the customary dipole ap- ZrD(2-0)
proximation. This mechanism of quenching offers itself to XA = (A5)
the description in terms of localized states used in the present L(21-L+1)
paper, but it is not likely to be of importance in rare earthsgq
(except samariut) or in actinides.

The orbital moment of the Bshell in the latter case is (£+1 1 L
reduced by hybridization, that is, a superposition 6f &nd | Lo ] =(—1)F
5f"~16d configurations. However, as mentioned in the In-
troduction, the delocalized nature of thd 6tates mgges the 1 \/ 2l+L+2)(21-L)(L+1)
relevance of free-atom models doubtful. An approachat X5
treats the delocalized states properly within the density- 2 VI@I+D(+1)(2L+1)(2L+3)
functional formalism and introduces intra-atomic correla- (AB)
tions separately seems the only way out.

to recover the expression given by Stassis and DecKicfan
Eq. (59) of Ref. 7].
To find the contribution of the spin current dens(8) to
We are thankful to J. E. Hansen, B. R. Judd, E. Frikkeethe scattering amplitude.3), it is convenient to deal directly
and T. J. Hicks for valuable discussions. K.A. gratefully ac-with the spin density(6), using
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be easily evaluated, if one makes use of E§2) and(A3).

iq-r ¥s rr [
f eT(6IMI[I(r)[ 6" M, )dV Equation(A7) then requires the vector produ@gx Yﬁ,gl,
for which we use

=f eIV X (0IM4|a(r)|6'I'M})dV

L1 L ,
equﬁ,M(eq):i(—1)£(2[£])1/2(0 1 _1)Y§’M’

:—iqxfeiq'f<aJMJ|&(r)|a'J'MJ,>dv, (A7)

which relates the Fourier transform of the spin current denwhich can be easily verified fof# £'. Collecting terms and
sity with that of the spin density. The Fourier transform supstituting into Eq(13) we again recover the result of Stas-
J€9T(9IM;|a(r)| 6’3’ M, )dV of the spin density6) can  sis and Deckmah.
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