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N-component Ginzburg-Landau Hamiltonian with cubic anisotropy: A six-loop study
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We consider the Ginzburg-Landau Hamiltonian with a cubic-symmetric quartic interaction and compute the
renormalization-group functions to six-loop orderdrs 3. We analyze the stability of the fixed points using a
Borel transformation and a conformal mapping that takes into account the singularities of the Borel transform.
We find that the cubic fixed point is stable fide>N., N.=2.894). Therefore, the critical properties of cubic
ferromagnets are not described by the Heisenberg isotropic Hamiltonian, but instead by the cubic model at the
cubic fixed point. FoiN= 3, the critical exponents at the cubic and symmetric fixed points differ very little
(less than the precision of our results, whichsd% in the case ofy and v). Moreover, the irrelevant
interaction bringing from the symmetric to the cubic fixed point gives rise to slowly decaying scaling correc-
tions with exponeniw,=0.0104). For N=2, the isotropic fixed point is stable and the cubic interaction
induces scaling corrections with exponent=0.1038). These conclusions are confirmed by a similar analy-
sis of the five-loope expansion. A constrained analysis, which takes into accountNfa® in two dimen-
sions, givesN.=2.875).

I. INTRODUCTION S ,-14d,¢,)% and a cubic interaction teri, - 13¢ The

According to the universality hypothesis, critical phenom-first interaction was studied in Refs. 1-5. A two- |0@|Qez)
ena can be described in terms of quantities that do not decalculation indicates that it is irrelevant at the symmetric
pend on the microscopic details of the system, but only orpoint, although it induces slowly decaying crossover effects.
global properties such as the dimensionality and the symmea/e will not consider it here — although it would be worth-
try of the order parameter, and the range of the interactionswhile to perform a more systematic study — since the sec-
There exist several physical systems that are characterized loyd term already introduces significant changes in the criti-
short-range interactions and &kcomponent order param- cal behavior of the system. We will therefore consider a
eter. Because of universality, their critical properties can behree-dimensionaf* theory with two quartic coupling®®
studied by using the Ginzburg-Landaif Hamiltonian and
by employing standard field-theoretic renormalization-group N
techniques. When the order parameter has only one compo- H= J dd% [_ 2 M¢i)2+r¢,i2]
nent, one obtains the Ising universality class that describes, 2
for instance, the liquid-vapor transition in simple fluids and 1
the transitions of multicomponent fluid systems; in this case = N 42 42
the density plays the role of the order parameter. The two- T 2, (Uo+vody) ¢ ] .3
component modelXY mode) describes the helium super-
fluid transition, the Meissner transition in type-Il supercon-The added cubic term breaks explicitly theN)(invariance
ductors and some transitions in liquid crystals, while theof the model, leaving a residual discrete cubic symmetry
limit N— O gives the infinite-length properties of dilute poly- given by the reflections and permutations of the field com-
mers in a good solvent. ponents.

The critical properties of many magnetic materials are The model described by the Hamiltoni&h.1) has been
also computed using thé&-component Ginzburg-Landau extensively studied. It has four fixed poirit:the trivial
Hamiltonian. Uniaxial (anti-ferromagnets should be de- Gaussian one, the Ising one in which tNecomponents of
scribed by the Ising universality clasdl€1), while mag- the field decouple, the ®)-symmetric and the cubic fixed
nets with easy-plane anisotropy should belong to X¥  points.
universality class. Ferromagnets with cubic symmetry are of- The Gaussian fixed point is always unstable, and so is the
ten described in terms of thd=3 Hamiltonian. However, Ising fixed point’ Indeed, in the latter case, it is natural to
this is correct if the nonrotationally invariant interactions thatinterpret Eq(1.1) as the Hamiltonian o Ising-like systems
have only the reduced symmetry of the lattice are irrelevantoupled by theD(N)-symmetric term. But this interaction is
in the renormalization-group sense. Standard consideratioribe sum of the products of the energy operators of the dif-
based on the canonical dimensions of the operators indicaferent Ising systems. Therefore, at the Ising fixed point, the
that there are two terms that one may add to the Hamiltonianrossover exponent associated to the&NP§ymmetric quar-
and that are cubic invariant: a cubic hopping termtic term should be given by the specific-heat critical expo-
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and therefore, it generates only scaling correctiofts with
A.>0. However, their presence leads to important physical
consequences. For instance, the transverse susceptibility at
—W - the coexistence curve.e., for T<T. andH—0), which is
divergent in the O)-symmetric case, is now finite and di-
v Gaussian v verges only aff; as|t|~ 7~ 2c111819520 4 gther words, be-
Gaussian \J O)-symmetric — IO‘N”'}“@““? low T, the cubic term is a “dangerous” irrelevant operator.
Note that for N sufficiently close toN., irrespective of
cubic which fixed point is the stable one, the irrelevant interaction
— bringing from the unstable to the stable fixed point gives rise
to very slowly decaying corrections to the leading scaling
behavior.

In three dimensions, a simple argument based on the sym-
metry of the two-component cubic moéfekhows that the
cubic fixed point is unstable fod= 2, so thatN,>2. Indeed,
for N=2, aw/4 internal rotation, i.e.,

) ' N<N, j | ONsN, If N<N¢, the cubic term in the Hamiltonian is irrelevant,

Ising Tsing

FIG. 1. Renormalization-group flow in the coupling planey)
for N<N; andN>N,.

nenta, of the Ising model, independently &f. Sinceq, is

positive, indeeda;=0.1099(7) (see, e.g., Ref. 8 and refer-
ences therein the Ising fixed point is unstable.

While the Gaussian and the Ising fixed points are unstable 1
for any number of components, the stability properties of . _
the O(N)-symmetric and of the cubic fixed points depend on (61,¢2) \/§(¢l+ b2 41 2. (13
N. For sufficiently small values ofN, N<N., the . o .
O(N)-symmetric fixed point is stable and the cubic one isMaps the cubic Hamllton_laQ’l.l), Into a new one of the same
unstable. For N>N,, the opposite is true: the form butwith new couplingsiy,vo) given by
renormalization-group flow is driven towards the cubic fixed , s ,
point, which now describes the generic critical behavior of Up=Uo* 3200, Vo= ~Vo: 14

the system. The Q{)-symmetric point corresponds to a tri- This symmetry maps the Ising fixed point onto the cubic one.

critical transition. Figure 1 sketches the flow diagram in theTherefore, the two fixed points describe the same theory and

two casesN<Ne .an_d N>Nc. At NzN.C’ the two fixed have the same stability. Since the Ising point is unstable, the
points should coincide, and logarithmic corrections to the

S ) cubic point is unstable too, so that the stable point is the
O(N)-symmetric critical exponents are expected. Outside th?sotropic one. In two dimensions, this is no longer true. In-

attraction domain of .the fixed points, the flow goes awayjeed, one expects the cubic interaction to be truly marginal
towards more negative values of and/orv and finally ¢ \_—» (Refs. 22,23 and relevant folN>2 2* so thatN
. y ’ C

reaches the region where the quartic interaction no IongeL2 in two dimensions.

Salt'?f'gsi tf}g ?tabéhty Cr?nd't'ton' T?ggrsé trajectories should be During the years, the mod¢l.1) has been the object of
related fo first-order phase transiions. several studie§!82°-27:3428-30.2331-4} the 1970s several

If N>N,., the cubic anisotropy is relevant and thereforecomputations were done using teeexpansiorf182627they

the critical behavior of the system is not described by thepredicted 3-N,<4, indicating that cubic ferromagnets are
Heisenberg isotropic Hamiltonian. If the cubic interactiondescribed by tcheO&N)-invariant Heisenberg model. How-
favbors'the fhgnmenf[.of the s;lj'ms atlr?ng t'?e (?|ggﬁna'ls qf th ver, recent studies have questioned these conclusions. Field-
CUDE, 1.€., Tor a positive couplingo, the critical BENAVIOT IS 04 retic studies, based on the analysis of the three4ddp
controlled by the cubic fixed point and the cubic symmetry IS3nd four-loop serié&“°in fixed dimension, and of the five-

retained even at the critical point. On the other hand, if th L 4 . B
system tends to magnetize along the cubic axes — this coqrg)Op expansion in powers af=4—d (Refs. 34-37,40sug

_ .
responds to a negative coupling — then the system un- gest thatN.= 3, although they do not seem to be conclusive

o ) 4151213 . in excluding the valué&N.=3. On the other hand, the results
dergoes a first-order phase transitfoi."*"*Moreover, SINCE " of Ref. 38, obtained from Monte Carlo simulations using

Mnite-size scaling techniques, are perfectly consistent with
Yhe valueN,~3. The authors of Ref. 38 even suggest that
N.=3 exactly.

A further study of this issue is therefore of particular rel-
vance for the ferromagnetic materials characterized by an

in the low-temperature phase. The longitudinal and the tran
verse susceptibilities are finite for<T. and H—0, and
diverge adt|~” for t«T—T,—0.

In the limit N—, keepingNu andv fixed, one can de-
riV? exact express!on_s for the exponents at the cubic fixe rder parameter wittN=3. For this purpose we extended
point. Indeed, in this limit the model can be reinterpreted ag

a constrained Ising modé&t leading to a Fisher renormaliza- he perturbative expansions of ti functions and of the
. X 9 ’ 9 7155 exponents to six loops in the framework of the fixed-
tion of the Ising critical exponent$.One ha$"!*

dimension field-theoretic approathThese perturbative ex-

v, 1 pansions are only asymptotic. Nonetheless, accurate results
N)’ V=T +0 N)’ (1.2 can be obtained by employing resummation techniques that
@ use their Borel summabilify and the knowledge of the
where 7, , v, andea, are the critical exponents of the Ising large-order behavid>*** For this reason, we have also com-
model (see, e.g., Ref. 8 and references therein for recentuted the singularity of the Borel transform that is closest to
estimates of the Ising critical exponents the origin, extending the calculations of Refs. 43,44.

n=m+0
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TABLE |. Summary of the results in the literature. The values of the exponents refdr=t8. The
subscripts ‘6" and “ c¢” indicate that the exponent is related to the symmetric and to the cubic fixed point,
respectively. H.T. expansion and approximate RG mean, respectively, high-temperature expansion and ap-

proximate renormalization-group equations.

Results

Method

Ref. 26, 1974 € expansionO(e®)
Ref. 28, 1977 approximate RG
Ref. 30, 1981 H.T. expansio®(3)
Ref. 23, 1982 scaling-field

Ref. 33, 1989 d=3 expansionO(g*)
Ref. 34, 1995 € expansionO( e°)
Ref. 36, 1997 € expansionO(e®)
Ref. 37, 1997 € expansionO(e®)
Ref. 38, 1998 Monte Carlo

Ref. 40, 1999 d=3 expansionO(g*)
This work € expansionO(e°)
This work d=3 expansionO(g®)

N.=3.128
vgwys=—0.11,N;=2.3

s wps=—0.63(10),N.<3

N.=3.38

w,,=0.008,N.=2.91

N.=2.958
wps=—0.00214,w,.=0.00213,N,<3
N.=2.86

w55=0.0007(29) ,N.~3
w;s=—0.0081,w,,=0.0077,N.=2.89(2)
wys=—0.0034), w,,=0.00§4), N.=2.87(5)
wps=—0.0136), w,=0.01Q4), N.=2.89(4)
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The analysis of the perturbative series has been done fok-expansion five-loop series. The new analysis differs from
lowing closely Ref. 45. We have estimated errors using arthe previous ones in the fact that it uses the large-order be-
algorithmic procedure, trying to be as conservative as poshavior of the series at the cubic fixed point. Finally, in the
sible. This can be immediately realized by comparing ourAppendix we report a three-loapexpansion computation of
uncertainties with those previously quoted: even though outhe zero-momentum four-point couplings at the cubic fixed
series are longer, the errors we report are sometimes largeoint in three dimensions.
than those of previous studies. Our results confirm previous
field-theoretic studies: thBl=3 isotropic fixed point is in-
deed unstable and we estimate=2.89(4) from the six-
loop fixed-dimension expansion amd,=2.87(5) from the
reanalysis of the five-loog expansion. For comparison, in A Renormalization of the ¢* theory with cubic anisotropy

Table | we report our estimates together with previous deter- The fixed-dimensiong* field-theoretic approaéh pro-
minations ofN. and of the eigenvalues fo=3. It should  vides an accurate description of the critical properties of
be noted that the estimates of the critical exponents do nab(N)-symmetric models in the high-temperature phase,
essentially depend on which fixed point is the stable onee g. Ref. 52 The method can also be applied to the two-
Moreover, the tlny differencésmaller than the precision of parameter cubic modél. The idea is to perform an expan-
our results, which iss1% in the case of andv) between  sjon in powers of appropriately defined zero-momentum
the values at the two fixed points would be very difficult to quartic couplings. In order to obtain estimates of the univer-
observe, because of crossover effects decayint® asith  sal critical quantities, the perturbative series are resummed
A=w,.v.=0.0013). Large corrections to scaling appear exploiting their Borel summability, and then evaluated at the
also forN=2. Indeed, at th&Y fixed point(the stable one  fixed-point values of the couplings.

we find w,=0.1038). Thus, even though the cubic interac-  The theory is renormalized by introducing a set of zero-
tion is irrelevant, it induces strong scaling corrections behavmomentum conditions for th@ne-particle irreducibletwo-

ing ast?, A=w,v~0.06. Therefore, crossover effects are point and four-point correlation functions:

expected in this case, depending on the strength of the cubic
term. Finally, we have checked the theoretical predictions for
the model in the larg®& limit finding good agreement.

We want to mention that, in the limiN—0, the cubic
model (1.1) describes the Ising model with site-diluted
disorder’®~*® However, in this case, the perturbative expan-
sion is not Borel summabl€->! Therefore, it is not com-
pletely clear how to obtain meaningful results from the per-
turbative series. An investigation of these problems will be
presented elsewhere. They relate the second-moment mass and the zero-

The paper is organized as follows. In Sec. Il we preseninomentum quartic couplings andv to the corresponding
our calculation of the perturbative expansions to six loops irHamiltonian parametens u,, anduv:

d=3. We give the basic definitions, the six-loop series, and
the singularity of the Borel transform. In Sec. Ill we present

the analysis of these expansions: we determine the stability
of the fixed points and compute the exponents for severdh addition, one introduces the functi@ that is defined by
values of N. In Sec. IV we present a reanalysis of the the relation

II. THE FIXED-DIMENSION PERTURBATIVE
EXPANSION IN THREE DIMENSIONS

T 8(p)= 8262, ' [M?+p?+0(pY)], 2.0
@ 0y =7 2m| °
Fabcd(o)_zd; m g(éab50d+ OacObdt 5ad5bc)

+v 5ab5ac5ad} . (2.2

Up=MmuzZ,%, vo=muZ,Z,”. (2.3
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r420)=5,,7 1, (2.4) We report our results in terms of the rescaled coupfihgs
whereI'?) js the (one-particle irreducibletwo-point func- 160 — 16m—
tion with an insertion of; ¢2. U=—-Ryu, v=—7v, (212

From the pertubative expansion of the correlation func-
tions '@, T™, andI"*? and the above relations, one de- whereRy=9/(8+N), so that the3-functions associated 1o
rives the function& ,(u,v), Z,(u,v), Z,(u,v), Z(u,v) @asa znd 3 have the form BJU,O):_UJFUZJFO(Us) and
double expansion i andv. 00) = — 0402+ O(03

The fixed points of the theory are given by the commonm v) vro (7).

zeros of theg-functions The resulting series are

__du e 2u_— 4(190+ 41N): 400 e
Buuw)=m-—| Bu= 30T 278+N)2 Y susrN) Y
UO,UO
92 —
(9U [E— 2+ b(U) ! ]' 2.1
Bu(uv)=m—— (2.5 729" “,HE% i uv (2.13
Uo,vo
The stability properties of the fixed points are controlled by 8= — 04024 —— 12 — 308, 832 U2
the eigenvalues; of the matrix ’ 8+N" 729U 818+N)
IBu(uv)  IBy(UV) _AEIOR2ZN) o — 5 ]
u(s'u uav 27(8+N)2 u U+UI+JE>3 bll uv’, (214)
O= , (2.6
9B, (u,v)  9B,(u,v) " 82+ N) — 16 JJF 85, ROOmm
au a0 += 278+ N2 T 81BN 72¢ T ALs T ’
. , . i L . (2.15
computed at the given fixed point: a fixed point is stable if
both eigenvalues are positive. The eigenvalueare related (2+N)— 1_ 2(2+ N)_ 4
i i i i i i =— u— —v uv
E)|tt|rlievbiae(:|en§3. :S(;?J)I-ng corrections, which vanish &s” UL (8+N) (8+N)2 3(8+N)
| [
One also introduces the functions 2 —
ot > euiul, (2.16
alnz, ‘7'”Z¢+ alnzZ, i+]=3
u1 = v ’ . . . .
76(U0)= i ST ) For 3<i+j =6, the coefficient®|” , b}, e{”’, ande{) are
e (2.77  reported in Tables I, Ill, IV, and Vv, respectwely
We have performed several checks of our calculations
alnz, __dInz, alnz, (i) Bg(u,0), 17¢,(u 0), and 7,(u,0) reproduce the corre-
7(U,0) = —r BT the (2.8 sponding functions of the @) -symmetric mode?>®’
Yot (i) By(00), 74(0p), and 7,(0v) reproduce the corre-
Finally, the critical exponents are obtained from sponding functions of the Ising-likeN(=1) ¢* theory.
7= 14(U% o) 2.9 (iii ) The following relations hold foN=1:
— ¢ 1l I .
V:[2_77¢(U* v*)+77t(u* U*)]fl (21() BF(U,X_U)+,3?(U,X_U):,BUTO=X),
y=v(2— 7). (2.11) 74(U,X=U)= 74(0X), (2.1

B. The six-loop perturbative series (UX=U) = 7:(0).
We have computed the perturbative expansion of the cor- (iv) For N=2, using the symmetry1.3) and (1.4), and
relation functions(2.1), (2.2), and (2.4) to six loops. The taking into account the rescaling®.12), one can easily ob-

diagrams contributing to the two-point and four-point func-tain the identities

tions to six-loop order are reported in Ref. 53: they are ap-

proximately 1000, and it is therefore necessary to handle ,BTUﬂL gU__U_H?mUJF ‘50_—1)_):,81?1;_)
them with a symbolic manipulation program. For this pur- we e grvim sm weme
pose, we wrote a package ImATHEMATICA .>* It generates

the diagrams using the algorithm described in Ref. 55, and B,(u+3v,—v)=—pB,(U),

computes the symmetry and group factors of each of them. (2.18
We did not calculate the integrals associated to each dia- — — — -

gram, but we used the numerical results compiled in Ref. 53. ng(U+30,—0)=n4(U,0),

Summing all contributions we determined the renormaliza- L L
tion constants and all renormalization-group functions. 7(u+3v,—v)=n(u,v).
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TABLE . The coefficientsb{\”, cf. Eq.(2.13. TABLE IIl. The coefficientsb{”, cf. Eq.(2.14).

i Ry'bff" i Ry'b{y

3,0 0.2738551% 0.07536402N + 0.00185040161° 3,0 0.64380517% 0.05741276 — 0.0017161966°

2,1 0.67742325% 0.02735340N 2,1 1.6853305 0.003071411

1,2 0.4154565 0.0025592148| 1,2 1.3138294

0,3 0.090448951 0,3 0.3510696

4,0 —0.27925724 0.09183374N — 0.0054595646(> 4,0 —0.76706177 0.08905466 N
+0.000023722898I° +0.000040711368I1°— 0.000087586118!°

3,1 —0.94383662 0.08325280 N+ 0.00061860174% 3,1 —2.7385841 0.04921887H — 0.0000262346°

2,2 —0.96497888 0.01246014M 2,2 —3.3477204 0.0075418394M

1,3 —0.42331874 0.001770942 1,3 —1.8071874

0,4 —0.075446692 0,4 —0.37652683

5,0 0.35174477% 0.1324250N + 0.011322026\2 5,0 1.0965348 0.15791293N + 0.002358463N?
+0.0000548337181°+8.676893% 10" " N* —0.0000614713481°—5.387124K 10" ® N*

4,1 1.5209008 0.19450536N -+ 0.0011078614> 41 4.9865485 0.1757279N — 0.002071836N°
+0.00003177978RI° —0.00001938291R®

3,2 2.2073347 0.06533632f + 0.0003564925> 3,2 8.3645284 0.003962056M + 0.000213631 2RI

2,3 1.5315693 0.01067690N 2,3 6.8946012 0.023087MN

1,4 0.56035196 0.001346948N 1,4 2.8857918

0,5 0.087493302 0,5 0.49554751

6,0 —0.51049889-0.2148525N — 0.02383937H> 6,0 —1.7745533-0.30404316\ — 0.009433807N>
—0.0005002168R(°+2.016776% 10 ® N* +0.00006699386HI°— 6.5724895 10 & N*
+4.407673%10 & N° —3.753114<10 " N°®

51 —2.6984083- 0.4506825N — 0.010821468!° 5,1 —0.8298296- 0.53384955 + 0.002203325 N2
+0.00005796668I°+2.0515456< 10 ° N* —0.0001306682RI°—2.595942% 10 % N*

4,2 —5.1135549-0.2676917N—0.000631175N? 4.2 —21.073538-0.1662869MN — 0.00001482768RI2
+0.00001941337K° +4.498852410 & N°®

3,3 —4.9317312-0.06757471N+0.00002827808R> 3,3 —23.569724 0.09571686 N — 0.000839039982

2,4 —2.754683-0.0095836704M 2,4 —14.927998 0.048681N

15 —0.86229463 0.00185633N 1,5 —5.1298717

0,6 —0.1179508 0,6 —0.74968893

These relations are exactly satisfied by our six-loop series. In the case of th©(N)-symmetric¢ theory, the expan-
Note that, since the Ising fixed point is ¢, with g} sion is performed in powers of the zero-momentum four-
=1.402(2) (Ref. 8, the above symmetry gives us the loca- point couplingg. The large-order behavior of the series

tion of the cubic fixed point¥g¥ ,—g). S(g)=23s,g* of any quantity is related to the singularidy,
(v) In the largeN limit the critical exponents of the cubic of the Borel transform that is closest to the origin. Indeed, for

fixed point are related to those of the Ising modg#: 7, and largek,

v=v/(1—«)). One can easily see that foN—o, k1 — kb 1 . _
74(U,v)=n7,(v), wheren,(v) is the perturbative series that Sk kI 1+Ok D] with - a= 1/gb'(2 19
determines the exponentof the Ising model. Therefore, the '

first relation is trivially true. On the other hand, the secondThe value ofg,, depends only on the Hamiltonian, while the
relationv=v,/(1— «,) is not identically satisfied by the se- exponentb depends on which Green’s function is consid-

ries, and is verified only at the critical poitft. ered. If the perturbative expansion is Borel summable, then
(vi) We finally note that our series are in agreement withg, is negative. The value of), can be obtained from a
the five-loop results that appeared recently in Ref. 59. steepest-descent calculation in which the relevant saddle
point is a finite-energy solutiofinstanton of the classical
C. Singularity of the Borel transform field equations with negative couplifg**If the Borel trans-

. , . ) . form is singular forg=gy, its expansion in powers
Since field-theoretic perturbative expansions are g g=go P P o

. . . ) converges only fotg|<|gp|. An analytic extension can be
asymptotic, the resummation of the series is essential to Okb'btained by a conformal mappifigsuch as

tain accurate estimates of the physical quantities. In three-
dimensional ¢* theories one exploits their Borel —
summability? and the knowledge of the large-order behavior (g)= 1-9/gy—1

= 2.2
of the expansiorisee, e.g., Ref. 52 Yo Vvi-g/gp+1 (220
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TABLE IV. The coefficientse” , cf. Eq.(2.15. TABLE V. The coefficientse{?, cf. Eq.(2.16).
i Ry'el” i Ry'ef}
3,0 0.000541761340.00033860084! 3,0 —0.025120499- 0.01697991%N — 0.0022098349\2
+0.00003386008M4I2 2,1 —0.11304225 0.019888514M
2,1 0.002437926 0.00030474076! 1,2 —0.13037154 0.0025592148\
1,2 0.0027426668 0,3 —0.044310253
0,3 0.00091422227
4,0 0.02146004F 0.01569083HN + 0.002405927 812
4,0 0.000992548380.0007025180R + 0.00010181162 —0.00003723856BI°
—6.5516886¢10 7 N3 3,1 0.12876028 0.029764853 — 0.00044686275!°
31 0.00595529080.0012374638! 2,2 0.22779178 0.0093256378|
—7.862026410 °N? 1,3 0.15630733 0.0017709428
2,2 0.0104656% 0.00031166698I 0,4 0.039519569
1,3 0.0071848915
0,4 0.0017962229 5,0 —0.022694287 0.017985168 — 0.0035835384M7
—0.00013566168°—1.69930% 10 © N*
5,0 —0.00036659735 0.000257211 N 4,1 —0.17020715-0.049785186! — 0.001983945M2
—0.00003202661 M2+ 2.243070X 10 & N3 —0.000025489636I°
—1.109404510 ' N* 3,2 —0.40917573 0.03453837N— 0.00028943185/2
41 —0.002749480% 0.00055434 768 23 —0.43464785- 0.009355700R
+0.00003697426K2—1.664106%K 10 ® N3 1.4 —0.22065482 0.001346948N
3,2 —0.0064696069 0.00007021070MN 0.5 — 0.044400355
+2.782388%10 6 N? ’
2,3 —0.0066046286 0.00006759338 6,0 0.029450619 0.02487457N + 0.00572839 N>
14 —0.0032685176 +0.000315578681%—5.85868% 10~ ° N*
0,5 —0.00065370353 —1.0373506<10" 7 N°®
5,1 0.2650555% 0.09134342 N+ 0.0058838598(2
6,0 0.000695680370.0005658594 N —0.000101721941°—1.867231X 10 ° N*
+0.0001205730R1*+5.746697% 10 ° N° 42 0.80694662 0.0979824MN + 0.00053192618(
—3.838518%10 8 N*—1.044127% 10 8 N® —0.0000128197483
51 0.00626112340.001962173 + 0.00010407066(2 3,3 1.163811% 0.043471034N — 0.00001786710M2
—3.1504745%10" " N°~1.879429%10™ ' N* 2.4 0.89481393 0.01063423N
4,2 0.018957129 0.0018483045!+ 0.00001248249HI2 15 0.36032293 0.00185633N
— 7553778410 ' N° 0,6 0.060363211
3,3 0.027158805 0.00059570458!
+1.704340%10 ® N?
2.4 0.02077568% 0.00004147957H obtained in other approaches shows that the above nonana-
15 0.0083268641 !yticity causes only very small effects,_ which_ are negligible
06 0.0013878107 in most cases. See Refs. 64,8 for a discussion of this issue.

In order to apply a resummation technique similar to that
used in Ref. 45 to our six-loop series, i.e., in order to use a
_ o Borel transformation and a conformal mapping to get a con-
In this way the Borel transform becomes a series in powergergent sequence of approximations, we extended the large-
of y(g) that converges for all positive values gfprovided  order analysis to the cubic model. In particular we consid-
that all singularities of the Borel transform are on the realgred the double expansioninandv at fixedz=v/u. Then

. - 45 . A ) ) 1
negative axig® For theO(N)-symmetric theory accurate es- we studied the large-order behavior of the resulting expan-
timates(see, e.g., Ref. §0have been obtained resumming sion in powers ofu. This was done following the standard

}he avallr?_llale hser]ies. t.hﬂ funcﬂgrf’ IS kr|1(own up to six approach described, for example, in Refs. 44,52, i.e., by
oops, while the functionsy, and 7, are known to seven studying the saddle-point solutions of the cubic model. We

loops. .A subtle point in this method is the estimate of theWiII report the calculation elsewheféhere we give only the
uncertainty of the results. Indeed the nonanalyticity of theresults

Callan-Symanzikg function at the fixed-point valug* = . .

(Refs. 41,62—6pmay cause a slow convergence of the esti- For z=v/u flxed,_the singularity of the Borel transform
mates to the correct fixed-point value. This may lead to arflosest to the originuy, is given by

underestimate of the uncertainty that is usually derived from

stability criteria. The reason is that this resummation method _i: —a(Ry+2) for z>0,

approximates the3 function in the interval 0,g* ] with a Up

sum of analytic functions. Since, fgr=g*, the 8 function is 1 _2NR (2.21
not analytic, the convergence at the endpoint of the interval —=—a|Ry+ =z for —— N7« 0,

is slow. However, the comparison of these results with those Up N N+1
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where

a=0.1477742 . .., (2.22

"R+
Note that the series in powers Efkeepingz fixed is not

Borel summable fou>0 andz< — Ry . This fact will not be
a real limitation for us, since we will only consider values of

z such thau7b< 0.

It should be noted that these results do not apply to the
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whereu* is the fixed-point value ofi. The exponenty; is
the usual exponent that is considered in @@)-symmetric
theory, whilew, is the eigenvalue that determines the stabil-
ity of the fixed point.

In order to computew,, for many choices of the four
parametersy,, b;, @,, andb,, we have determined an es-

timate ofu* and w, from the equations

E(By/u)p(es,by;uf (ay,by),0=0, (3.5

caseN=0. Indeed, in this case, there are additional singu-

larities in the Borel transforrf~5?

The exponenb in Eqg. (2.19 is related to the number of
symmetries broken by the classical solutf8it depends on
the quantity considered. In the cubic model, fo¥ 0, we
haveb=5/2 for the functiony,, andb=7/2 for theg func-
tions and n,. For v=0, we recover the results of the
O(N)-symmetric model, that i®=2+N/2 for »,, andb
=3+ N/2 for the B function andz, .*®

Ill. ANALYSIS OF THE FIXED-DIMENSION SIX-LOOP
SERIES

wz(@y,by,a,b;p) =E(9B;1dv)plaz b, ;?;<a1,b1>(,0).)
3.6

Note that?,;(al,bl) is determined implicitly by Eq(3.5),
which has been solved numerically for each valuexpfand
b,.

Then, we have considered sets of approximants such that
Cl’]_’zE [CY_AC(,CY+ACY] and blvze [b_Ab,b+Ab] The f|'
nal estimate was obtained averaging over all integer values
of a1, ay, by, and b, belonging to these intervals. The
results forN=3 and several choices of the parameters are

In this section we present the analysis of the six-l00penqrted in Table VI. In order to obtain a final estimate, we

series in fixed dimension. The resummation of the series hag,,uid devise
been done using the method of Ref. 45 and the expressio
for the Borel singularity we have given in the previous sec-

tion. Explicitly, given a series

R(u,v)=> > Rpauk,

k=0 h=0

(3.2

we have generated a new quan@yR) ,(a,b;u,v) accord-
ing to

p
E(R)p(oz,b;U,v_)=k2O By(a,b;u/u)

y(ut;v/u)*

[1-y(ut;p/u)]®’
(3.2

xf dt tPet
0

where

V1-x/up(z)—1
\/l—X/Ub(Z)-l-l,

and Ub(i) is defined in Eq.(2.21). The coefficients

y(x;2)= (3.3

Bk(a,b;v/U) are determin_ed by the requirgmentiwat the ex+p

pansion ofE(R)p(a,b;U,v) in powers ofu and v gives
R(u,v) to order p. For each value ofa, b, and p,
E(R),(a,b;u,v) provides an estimate &¥(u,v).

First of all, we have analyzed the stability properties of
the O(N)-symmetric fixed point. SinceB;/Ju(u,0)=0, the
eigenvalues are simply

By

au

By
Jv

w=——(U*,0), w,=—=(u*,0), (3.9

a procedure to determine “optimal” values for
tﬂe parameters, b, Aa, andAb. Reasonable values af

and b can be obtained by requiring that the estimates are
approximately independent of the number of terms one is
considering. It is less clear how to determine the width of the
intervalsAa and Ab. Indeed, the results are stable, within

the quoted errors, for many different choices of these two
parameters, while the standard deviation of the estimate,
which we use as an indication of the error, strongly depends
on the choice one is making. In order to have reasonable

error estimates, we have compared our resultsufowith

the estimates obtained from the analysis of the same series
by different authors. FoN =3, Guida and Zinn-Justin quote
1.39q4) % We have therefore chosen our parameters so that
we reproduce their errors. More precisely, we chodse

=2 andAb=3, and quote the error in the final results as two

standard deviations. With this choice, we obtairf
=1.3934), which agrees with the previous estimate and has
the same error. Results for other valued\bére reported in
Table VII. Again, one can verify the good agreement of our

estimates ofi* with the results of Ref. 60.

In Table VII we also report our results fo®,. The
O(2)-symmetric point is stable, sineg,=0.103(8)>0. On
the other hand, the symmetric point is clearly unstable for
N=4. ForN=3, the analysis give®,= —0.013(6)0, so
at the fixed point is unstable amL.<3. To better under-
stand the reliability of the results, in Fig. 2 we show the
distribution of the estimates @f, when we varyaq, by, a5,
andb, in the chosen interval. It is evident that the quoted
error onw, is quite conservative and that the results become
increasingly stable as the number of loops increases.

We have then determined;, defined as the value of
for which w,=0 at theO(N)-symmetric fixed point® The
computation was done as before. For each value of the four
parametersy;, b;, a,, andb,, we computed an estimate of
N, by requiring
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TABLE VI. Estimates of the fixed-point valug* and of the critical exponend, at theO(N)-symmetric
fixed point forN=3. The numbelp indicates the number of loops included in the analysis, the columns
labeled bya andb indicate the intervals o& andb used, “Final” reports our final estimate for the given

analysis.
a b p=4 p=5 p=6 Final
u* [0.5,2.5 [5,11] 1.4006) 1.3924) 1.3921) 1.3922)
[0.5,2.5 (5,13 1.4006) 1.3924) 1.3921) 1.3922)
[0.5,2.5 [3,13 1.40617) 1.3897) 1.3944) 1.3948)
[-05,3.5 [5,11] 1.40413) 1.3926) 1.3932) 1.3934)
ws [0.5,2.5 [5,11] —-0.014(10)  —0.009(5) —-0.013(2)  —0.013(4)
[0.5,2.5 (5,13 ~0.012(9) —0.009(4) -0.012(2)  —0.012(4)
[0.5,2.9 [3,13 —-0.017(22)  —0.007(12)  —0.014(7)  —0.014(14)
[-05,3.5 [5,11] —-0.015(16)  —0.008(7) -0.013(3)  —0.013(6)
wa(ay,by,az,by;p)=0. (3.7) E(B,1v)plaz,by;uf (ay,by,a5,b)),
The distribution of the results is shown in Fig. 3. It is evident U_;(al,blyaz,bz))zo_ (3.10

that N.<3, as of course it should be expected from the
analysis ofw, at N=3. The result is increasingly stable as
the number of orders that are included increases. We es
mate

t'il:hen we determined the elements of the stability maix
rom

N.=2.919) (4 loops, 2.913) (5 loops, Q11=E(9B19u) ey b1 ;U3 (a1 ,b1,,by),
2.892) (6 loops. (3.9 vi(ay,by,az,b,)), (3.1

We can thus safely conclude thdt=2.894).

We have then considered the cubic fixed point and studied _ — %
its stability. Again we used four parameters, b, a5, and Q22=E(9B,1dv)plaz,bz;Up (1,01, 2,b2),
bz...For egch_fhome we first cg*mputed an estlmatg of the v_Z,‘(al,bl,az,bz)), (3.12
critical pointuy (ay,by,@3,b,), vy (as,by,az,bz) solving
the equations o o o

Qpo=up(@y,by,ap,b)E(I-dB1dv) 4

- T . .
E(,BU/U)p(alybl,Up(alybl,a’z,bz), ><(al,bl;u;(al,bl,az,bz),v;(al,bl,az,bz)),

vh(ag,by,az,b2))=0, (3.9 (3.13

TABLE VII. Estimates ofu* and of the eigenvalue, at theO(N)-fixed point for several values d&i
and for different orderg of the perturbative series. The last column reports the final estimate.

N a b p=4 p=5 p=6 Final

u*
2 [-0.5,39 [5,11] 1.42215) 1.4097) 1.4082) 1.4084)
3 [-0.5,359 [5,1]] 1.40413 1.3926) 1.3932) 1.3934)
4 [0.5,45 [9,15] 1.37212) 1.3752) 1.3781) 1.3752)
8 [0.5,45 [9,15] 1.3036) 1.3041) 1.3051) 1.3052)
© 1

w2
2 [-0.5,39 [5,11] 0.09920) 0.107111 0.1034) 0.1038)
3 [-0.5,39 [5,11] —0.015(16) —0.008(7) —0.013(3) —0.013(6)
4 [0.5,49 [9,15] —0.105(10) —0.109(3) —0.111(2) —0.111(4)
8 [0.5,49 [9,15] —0.371(8) —0.379(4) —0.385(4) —0.385(8)
e -1
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' ' ' ' TABLE VIII. Estimates of the cubic fixed point and of the ei-
'''''''''''''' 4 loops genvalues of the stability matrix for various valueshbind orders
03 2}°°PS 1 p of the perturbative series. Our final results corresponpl=td.
—— 6loops
N p u* v* 3] )
3 4 1.3611) 0.0413) 0.78011) 0.01%31)
02 5 1.32826) 0.089298) 0.7715) 0.0096)
6 1.3219) 0.09610) 0.7812) 0.0142)
f 1.321(18) 0.09620) 0.7814) 0.0104)
o1 L | 4 4 0.90772) 0.60682) 0.71177) 0.14478)
5 0.88317) 0.63917) 0.80448) 0.04940)
6 0.8817) 0.6397) 0.78122) 0.07620)
f 0.881(14) 0.63914) 0.781(44) 0.07640)
09 b YR 8 4 044849 113865 0.69585  0.21193)
5 0.44014) 1.14Q116) 0.83177) 0.09847)
6 0.44a6) 1.1365) 0.77544) 0.14933)
FIG. 2. Distribution of the estimates ofw, at the f 044012 1.13610 0.77588  0.14966)
0O(3)-symmetric fixed point.
- - - w 4 018215 1.42324) 0.74495)  0.18515)
Q1=vj(ay,by,az,b)E(1- 3B, 1du),_q 5 0.1736) 1.4247) 0.78331)  0.1776)
— — 6 0.1743) 1.4173) 0.79Q9) 0.1783)
X (az,bosus (ag,by,@,b,),05 (@1,b1,a7,b7)). f  0.1746) 1.4176)  0.79018)  0.1786)

(3.19

We computed the eigenvalues f, obtaining estimates of find w,=0.010(4)>0. The quoted error is quite conserva-
the exponents, andw,. As before, we determined andp  live, as it can be seen from Fig. 5 in which we report the

- . : — distribution of the estimates ab,. Note that the results be-
by requiring the stability of the estimateswf, v*, w4, and

w,, when varying the order of the series. Errors were comSome increasingly stable as the number of loops increases.
puted as before. The results are reported in Table VIII. The (Ine may compare our estimatewf at the cubic fixed point

show that forN=3 the cubic fixed point is stable. Note that Vith the f_our-loop_ result 7Of Ref. 40p,=0.0081, which is
fully consistent with our§!

for N=3 we findv* >0, which agrees with what is expected  \ye computed the exponents at the cubic fixed point, us-
in the case of a stable cubic fixed point, see Fig. 1. Theng Eqs.(2.9), (2.10, and(2.11). The results are reported in
distribution of the estimates af*, obtained varying the pa- Table IX. Note that forN=3, the exponents at the cubic
rametersyy,by, a,,b,, and reported in Fig. 4, shows that the fixed point do not differ appreciably from those of the iso-
result is quite stable. In accordance with this scenario, weropic model. A recent reanaly&of the fixed-dimension
expansion of the three-dimensior@(N)-symmetric models

0.3 T
- 4 loops

----- 5 loops

—— 6 loops
02
0.1
270 275 280 285 3.10 T ‘ ‘ e

0.05 0.00 0.05 0.10 0.15 0.20
,l—}*

FIG. 3. Distribution of the estimates of; . It is determined by .
requiring w,=0 at theO(N)-symmetric fixed point. FIG. 4. Distribution ofv* of the cubic fixed point foN=3.
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03 ' 7= n,=0.03644),
- 4 loops
————— 5 loops v
—— 6loops v= =0.70783), 3.1
ey §3) (3.1
“ | N _138097)
ey '
The Ising model results have been taken from Ref. 8. There
is a substantial agreement, although we note a small discrep-

ancy for . This small difference is not unexpected. Indeed,
the estimate ofy for the Ising model obtained from the
fixed-dimension expansion shows a systematic discrepancy
with respect to high-temperature and Monte Carlo results.

Finally, we checked the predictiom,= —«,/v, at the
Ising fixed point. It is immediate to verify that

0.1

0.02 0.04

By —
w=—=(0p) (3.19
FIG. 5. Distribution of the estimates @, at the cubic fixed u
point for N=3. is independent oN. Numerically we find

obtained the following estimates fdt=3: y=1.3895(50), wp=—0.17431) (4loop, w,=-0.1787) (5 loop),

v=0.7073(35), andy=0.0355(25). These results should be _
compared with the critical exponents at the cubic fixed point: wz=—0.1743) (6 loop). (3.179
y=1.390(12),»=0.7066), andn=0.0333(26). The differ- OQur final estimate is therefores,=—0.1796), which
ence is smaller than the precision of our results, which ishould be compared with the prediction,=—a,/v,

about 1% in the case of and v. =—0.1745(12).

We also checked the exact predictions for the exponents
in the largeN limit. For N—c with v andu fixed, we have IV. ANALYSIS OF THE e-EXPANSION FIVE-LOOP
ﬁ;(?,u_)=,8(v_)|,smg, so thatv* =v?* . Indeed, our estimate SERIES

of v* is in agreement with the estimate obtained with the | this section we consider the alternative field-theoretic
same method of analysis in Ref. 44:=1.4165). Wehave approach based on theexpansion. The8 function and the
then compared our estimates=0.0304(20),»=0.70§8),  exponents in the cubic model are known@¢e®).>* These
and y=1.396(14) with the predictions series have already been the object of several analyses using
different resummation method$:>"*°Reference 36 studies
TABLE IX. Estimates of the critical exponents at the cubic th? stability of theO(N)-symmetric and of the C_UbiF: fixed
fixed point for various values dfl and ordemp of the perturbative  POINts forN=3. They rewrite the double expansionurand

series. The column “Final” reports our final results. The results o’ i terms ofg=u-+wv and of the parametes=v/(u+v).
Ref. 40, obtained by a Padorel analysis of the four-loop series, Then, each coefficient in the expansion in termssoivhich

are reported in the last column. is a series ing, is resummed using the known large-order
behavior. Since*, and hences*, is small, one expects the
N p=4 p=5 p=6 Final Ref. 40  resulting series to be rapidly convergent near the fixed point,

and therefore no additional resummation is appfreor the
3 y 139946 139011 1.3906) 139012 13775 o hic fixed point, Ref. 36 quotes),=0.0049, 0.0085,
0.71426) 0.7067) ~ 0.7083)  0.7086) ~ 0.6996  (p21, obtained, respectively, from the analysis of the
7 0.033890 0.032320) 0.033313 0.033326) 0.0332  three-, four-, and five-loop series. Similar resufigth the
opposite sighare found for theD(N)-symmetric fixed point.
4 y 141541 140312 14095 140910 14028 These estimates are compatible with a stable cubic fixed
0.71823 0.7147)  0.7144)  0.7148)  0.7131  point, but the observed trend towards smaller valuelsogf
n 0.032373) 0.030%18) 0.031611) 0.031622) 0.0327  |eaves open the possibility that the estimatesgfwill even-
tually change sign, modifying the conclusions about the sta-
8 1y 1.40138 1.40312) 1.4045  1.40410) 1.4074 bility of the fixed points. The same expansion has been ana-
0.70921) 0.7117) 0.7123)  0.7126) 0.7153 lyzed in Ref. 37 using a Pad@orel resummation technique.

<

<

14
7 0.029261) 0.029618) 0.030610) 0.030620) 0.0324 The authors report the estimatg~2.86, but again the un-
certainty on this result is not clear. We will present here a
© vy 1.40021) 1.3959) 1.3967) 1.39614) new analysis of the five-loop series using the method pre-
y 0.70912) 0.7075) 0.7084) 0.7088) sented in Sec. Il and the value of the singularity of the Borel
7 0.028735 0.029411) 0.030410) 0.030420) transform given below.

As before, we will consider expansions im with z
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TABLE X. e-expansion estimates of the critical exponenis and w, at the cubic and at the
O(N)-symmetric fixed points fol=3. The numbep indicates the number of loops included in the analysis,
the columns labeled by andb indicate the intervals oft andb used, “Final” indicates our final estimate
from the given analysis.

a b p=3 p=4 p=>5 Final

O(N)-symmetric fixed point

Wy [-0515  [11,17 0.79920) 0.7908) 0.7954) 0.7958)
[-0.5,1.5 [8,20] 0.80436) 0.78420) 0.80114) 0.80128)
[—1.5298  [11,17 0.83099) 0.78419) 0.79510) 0.79520)

Wy [002.0 [12,18 0.0046) 0.0003) —0.003(2) —0.003(4)

[0.0,2.0 [9,21] 0.0059) —0.002(5) —0.003(2) —0.003(4)
[-1.03.0 [12,18 0.02232) 0.00Q7) —0.003(4) —0.003(8)

cubic fixed point

w, [-0515  [12,1§ 0.78916) 0.7976) 0.7962) 0.7964)
[-05,1.5 [9,21] 0.79331) 0.79313) 0.7997) 0.79914)
[-1.52.5  [12,1§ 0.8210) 0.79420) 0.7936) 0.79312)

W, [-0515  [11,17 0.00512) 0.0064) 0.0072) 0.0074)
[—0.5,15 [8,20] 0.00413) 0.0064) 0.0062) 0.0064)
[-1.525  [11,17 —0.004(17) 0.00Q) 0.0063) 0.0066)

=vlu fixed. The singularity closest to the origin of the Borel = The method of analysis is the one explained in Sec. lll
transform is given by with two simplifications: first, we consider expansions in one
variable only; moreover, the value at which we should com-

iz—(l+z) for z>0 pute the expansion is knowne€1). Each series is re-

Up summed using several different valuesaofindb belonging
to the intervalsae[a—Aa,a+Aa] and be[b—Ab,b

2102 o 2<0l (4.  +Ab]. The parameterst and b were chosen as before,
Up N while after several trials, we fixedaw=1 andAb=6. The

The fixed-point values ofu and z associated to the €rTor in the final results is always two standard deviations.
O(N)-symmetric and to the cubic fixed points are, respec-1he dependence of the results on the different choices of
tively, andb is shown in Table X. The final results are reported in
Tables XI and XII.

The final results are in reasonable agreement with the es-

* 2 *
u “8+N etO(e), 72°=0, (4.2 timates of Sec. Ill. However, the instability of the
and O(N)-symmetric fixed point is less clear in tlezeexpansion:
indeed we findw,= —0.003(4) at the symmetric fixed point
. ) , N—-4 and w,=0.006(4) at the cubic fixed point. This is not sur-
Ut =g et Ole), zZ8=—7—+0(e). (4.3 prising: for theO(N)-symmetric model the five-loop ex-

) ) ) o pansion gives results that are less precise than the six-loop
Since only the leading term in theexpansion is relevant for - expansion in fixed dimension. We also mention that Nor

the determination of the singularigg,****using Eqs(4.2, = we obtain an estimate of, »=0.0349(22), that is in
(4.3, and(4.1), we find perfect agreement with the theoretical prediction
N+8 =0.03644).
€@©=—""3 (4.9 Finally we computeN.. We will determine it following
two different strategies. A first possibility is to consides
for the O(N)-invariant fixed poinf>#4and and determine the value oN for which the three--
5 dimensional estimate ab, vanishes, which is exactly what
o 3N for N<4 we did in the fixed-dimension expansion. At the symmetric
b7 4(N-1) ’ fixed point we find
3N N.=3.019) (3 loopsy, 2.996) (4 loops,
ep=———> for N>4, (4.5

N-1 2.992) (5 loops, (4.6)
for the cubic fixed point. while at the cubic fixed point
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TABLE XI. Estimates of the critical exponeat, at theO(N)-symmetric fixed point for several values of
N. The numbep indicates the number of loops included in the analysis, the columns labeledamng b
indicate the interval ofxr andb used, “final” reports our final estimate.

N a b p=3 p=4 p=5 Final

2 [0.0,2. [9,21] 0.11612) 0.1135) 0.1142) 0.1144)
3 [0.0,2.0 [9,21] 0.0059) —0.002(5) —0.003(2) —0.003(4)
4 [0.5,2.5 [8,20] —0.088(11) —0.103(7) —0.105(3) —0.105(6)
8 [1.5,3.5 [7,19 —0.374(24) —0.395(12) —0.395(4) —0.395(8)

N.=3.0410) (3 loopy, 2.956) (4 loops, respectively, implyingN.<3. However, the error bars an,
are such that the opposite inequalities are not excluded.
2.96.3) (5 loops. (4.7 Analogously here, althougN.<3, the error is such that it

) ) does not exclud®&l=3. In practice, from this analysis alone,
Averaging the two results and reporting the error as twoy js jmpossible to conclude safely thii,<3.
standard deviations, we obtaiN;=2.976), which is in A second possibility consists in solving the equation
agreement with the analysis of the same series of Ref. 34; ¢ perturbatively, obtaining foN, an expansion in powers
N.~2.958. It is also consistent with the results of the analy-of . The result is independent of which fixed point is cho-
sis of the eigenvalues, for N=3: indeed we foundw,  sen. Unfortunately, the singularity of the Borel transform of
>0 and w,<0 at the cubic and at the symmetric point, N.(¢) is not known and therefore, we used the RBdeel

TABLE XII. Estimates of the critical exponents at the cubic fixed point for several valuéé dhe
numberp indicates the number of loops included in the analysis, the columns labeledbsib indicate the
intervals ofa andb used, “final” reports our final estimate.

N a b p=3 p=4 p=5 Final
w7
3 [-05,15 [9,21] 0.79331 0.79313) 0.7997) 0.79914)
4 [-1.0,10 [10,22 0.79020) 0.7878) 0.7904) 0.7908)
8 [-1.0,10 [8,20] 0.77916) 0.7825) 0.7863) 0.7846)
0 [-1.0,10 [10,22 0.77222) 0.78911) 0.8029) 0.80218)
w2
3 [-05,19 [8,20] 0.00413) 0.0064) 0.0062) 0.0064)
4 [-1.5,08 [11,23 0.07315) 0.0785) 0.0782) 0.0784)
8 [-1.5,08 [11,23 0.1549) 0.1554) 0.1551) 0.1552)
% [—2.5-0.5] [11,23 0.21Q17) 0.2086) 0.2024) 0.2028)
Y
3 [1.5,3.9 [3,15 1.37Q29 1.3758) 1.37713) 1.3716)
4 [1.5,3.9 [3,15 1.41420) 1.4217) 1.41993) 1.4196)
8 [0.5,2.9 [3,15 1.42022) 1.4248) 1.4223) 1.4226)
o [0.0,2.9 [3,15 1.39427) 1.39911) 1.3994) 1.3998)
14
3 [1.53.9 [3,15] 0.69516) 0.6995) 0.7012) 0.7014)
4 [1.53.9 [3,15 0.717111 0.7235) 0.7232) 0.7234)
8 [1.0,3.9 [3,15 0.7237) 0.7243) 0.7231) 0.7232)
0 [1.0,3.9 [3,15 0.7134) 0.7112) 0.7111) 0.7112)
n
3 [1.0,3.9 [3,15 0.031961) 0.035916) 0.037411) 0.037422)
4 [0.5,2.5 [4,16] 0.031923) 0.033910) 0.03579) 0.035718)
8 [0.5,2.9 [3,15 0.030131) 0.033611) 0.03498) 0.034916)
% [0.5,2.9 [3,15] 0.029636) 0.033214) 0.034911) 0.034922)
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method. The analysis of the series already appears in Ref. 4between 2.85 and 2.92, while the approximigi2] is more

and will not be repeated here. Instead, we will try to makestable and givebl,~2.83. To appreciate the improvement of
use of the fact thall,=2 ford=2, performing a constrained the results due to the constrained analysis, we report the
analysis. The method has already been applied in mangorresponding variation of the estimates for the original se-
instance$®:696470."yroviding more precise estimates of the ries: for O<b=<20 the approximantf2/1], [1/2], [2/2], and

critical quantities. The method consists in rewriting [3/1] give estimates varying in the intervals 280l
<2.92, 296N <2.96, 2.96sN.=<2.95, 2.86sN.=<3.03.
Nc(e)=2+(2—¢€)A(e), (4.8 A conservative final estimate N.=2.875). This result is

lower than that of the previous analysis, but still compatible

with it. The constrained analysis is in much better agreement

with the results obtained in the fixed-dimension expansion,
(4.9 and clearly supports the claim thigt<3.

where

Ng(€)—2
(2—¢€)
The quantityA(e) is expanded in powers of and then ACKNOWLEDGMENTS

resummed. One can verify that the coefficients of the expan- \we thank Michele Caselle, Martin Hasenbusch, Victor
sion of A(e) are uniformly smaller than the coefficients of Martin-Mayor, Giorgio Parisi, and Paolo Rossi for useful
the original series, by a factor of 2 approximately. Therefore yiscyssions. One of ug.M.C) acknowledges support from
one expects a corresponpling improvement in the error estine EC TMR ProgranERBFMRX-CT97-0122

mates. We considered Pasl¢2/1], [1/2], [2/2], and [3/1]

and several different values of the paramdidretween the  AppENDIX: CUBIC FIXED POINT IN THE e EXPANSION
“reasonable” values 0 and 20. Pad¢1/2] and[2/2] have a

singularity on the real positive axis ftr<7: these cases are ~ We report here the-expansion computation of the four-
of course excluded from consideration. At four loops, wepoint renormalized couplings* andv* defined in Sec. Il at
find that the approximarf2/1] gives estimates varying be- the cubic fixed point, following Refs. 64,71. We have calcu-
tween 2.82 and 2.87, while the approximahi2] is stable lated the three-loop expansion of these two quantities. The
giving N.~2.82. At five loops, the approximaf/1] varies  final result can be written as

A(e)=

_ (N+8) « — _ _
u*(e)= Une", v*(€)= 2 vne", (A1)
3N n=0 n=0
where
Up=1, (A2)
—  (N=1)(19N-106)
Up=— >7N?2 , (A3)
_ 2(—11236+ 22540N — 14181IN%+ 2446N3+107N%) N(N—1)(86+7N) 4(14—7N—6N?+2N3)¢(3)
Up=— + ,
2 729N* 81N2 9N3
(A4)
— 8H(10-5N-2N?) +>\(— 9116+ 16328N— 7863N2+ 209N+ 37N%)
U3:

27N3 729N*

- —157464N6 (47640640- 134959200N + 141439950N%— 64950383+ 1114055MN*— 136770N°+ 11821N°®)

. (16-8N—8N?+3N37* (N—1)(86+7N)(yeA+Q;) 4(—68+54N—4N?+3N%Q,
405N3 162N? 27N3

40(18-5N—2N?—6N3+2 N4)§(5)L (—59360+ 93392N — 27220N?— 14140N3+ 5083N*+ 346N°) £(3)
27N* ' 486N5

(A5)
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and

— (N—1)(—424+ 110N+ 17N?)

(AB)

U1

27N° :

(A7)

—  25M(N=4)(N-1)(2+N) 4(2+N)(28—32N+6 N?+N3%){(3)

o
2 81N3

. 2(— 44944+ 93764N — 61408N2+ 10951N3+ 565N*+ 100N°)

9N*

: (A8)

729N°

— B8H(N—4)(8—=4N—N° \(—21200+31540N—6536N°—5953N>+581N*+353N°)

v
s 27N*

729N5°

1
N7 (190562560- 55511776N +598171440N°— 281214883+ 4794483 N*

* 15746

(68—42N—32N?+ 14N3+ N*) 74

+267603N°— 77234N6+23315N7) —

405N*

B 25N—4)(N=1)(2+N)(ye A+ Q1) 4(N—4)(—24+22N-5N?+2N3%Q,

162N3

9N*

_+4&72—30N—11N2—18N3+7N4+N5M(&

27N°

(— 237440+ 401536N — 151152N%— 36648N3+ 15662N*+2277N°+ 68N®) /(3)

(A9)

486N°

Here y¢ is Euler's constant. We have also introduced theThe estimates ob* are in reasonable agreement with the

following numerical constants:

AN=1.17195361934472984 . .,

Q,=—2.695258 053506 736 85 . . ,
(A10)

Q,=0.400685634 38653182 . .,
H=—-2.15595248734079436 . . .

A standard analysté gives

N=3: u*=1.41610), v*=-0.0314); (All)

0.97419), v*=0.589); (A12)

N=4: u*

N=8: u*=0.45573), v*

1.149). (A13)

results of Sec. lll, although they are much less precise, as it
should be expected since here we are analyzing a shorter
series. On the other hand, the estimates’fstrongly dis-
agree with the quoted error bars. The estimateNetr3 is

the worst one: indeed, the six-loop fixed-dimension expan-
sion predictsu* =1.321(18). However, the quoted errors
(based, as usual, on the stability of the estimates when
changing the parametebsand «) seem to be largely under-
estimated. For instance, the three-loop seriesuforat the
O(N)-symmetric fixed point givesi* =1.39(7) (Ref. 71):

the error is in this case seven times larger. There is no reason
to believe the error on the estimatewf at the cubic point to

be much smaller than that at the isotropic one. Moreover, it
is difficult to accept that an expansion truncated at three
loops might give a more precise result than the six-loop
fixed-dimension expansion. Thus, the previous error esti-
mates should not be trusted and the observed stability is
probably accidental. If we assume that the correct error is of
order ~0.07 as in theO(3) case, then all results are in
agreement. Note that the errors ofi are instead of the
expected order of magnitude.
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