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N-component Ginzburg-Landau Hamiltonian with cubic anisotropy: A six-loop study
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We consider the Ginzburg-Landau Hamiltonian with a cubic-symmetric quartic interaction and compute the
renormalization-group functions to six-loop order ind53. We analyze the stability of the fixed points using a
Borel transformation and a conformal mapping that takes into account the singularities of the Borel transform.
We find that the cubic fixed point is stable forN.Nc , Nc52.89(4). Therefore, the critical properties of cubic
ferromagnets are not described by the Heisenberg isotropic Hamiltonian, but instead by the cubic model at the
cubic fixed point. ForN53, the critical exponents at the cubic and symmetric fixed points differ very little
~less than the precision of our results, which is&1% in the case ofg and n). Moreover, the irrelevant
interaction bringing from the symmetric to the cubic fixed point gives rise to slowly decaying scaling correc-
tions with exponentv250.010(4). For N52, the isotropic fixed point is stable and the cubic interaction
induces scaling corrections with exponentv250.103(8). These conclusions are confirmed by a similar analy-
sis of the five-loope expansion. A constrained analysis, which takes into account thatNc52 in two dimen-
sions, givesNc52.87(5).
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I. INTRODUCTION

According to the universality hypothesis, critical pheno
ena can be described in terms of quantities that do not
pend on the microscopic details of the system, but only
global properties such as the dimensionality and the sym
try of the order parameter, and the range of the interactio
There exist several physical systems that are characterize
short-range interactions and anN-component order param
eter. Because of universality, their critical properties can
studied by using the Ginzburg-Landauf4 Hamiltonian and
by employing standard field-theoretic renormalization-gro
techniques. When the order parameter has only one com
nent, one obtains the Ising universality class that descri
for instance, the liquid-vapor transition in simple fluids a
the transitions of multicomponent fluid systems; in this ca
the density plays the role of the order parameter. The t
component model (XY model! describes the helium supe
fluid transition, the Meissner transition in type-II superco
ductors and some transitions in liquid crystals, while t
limit N→0 gives the infinite-length properties of dilute pol
mers in a good solvent.

The critical properties of many magnetic materials a
also computed using theN-component Ginzburg-Landa
Hamiltonian. Uniaxial ~anti-!ferromagnets should be de
scribed by the Ising universality class (N51), while mag-
nets with easy-plane anisotropy should belong to theXY
universality class. Ferromagnets with cubic symmetry are
ten described in terms of theN53 Hamiltonian. However,
this is correct if the nonrotationally invariant interactions th
have only the reduced symmetry of the lattice are irrelev
in the renormalization-group sense. Standard considerat
based on the canonical dimensions of the operators indi
that there are two terms that one may add to the Hamilton
and that are cubic invariant: a cubic hopping te
PRB 610163-1829/2000/61~22!/15136~16!/$15.00
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(m51,3(]mfm)2 and a cubic interaction term(m51,3fm
4 . The

first interaction was studied in Refs. 1–5. A two-loopO(e2)
calculation indicates that it is irrelevant at the symmet
point, although it induces slowly decaying crossover effec
We will not consider it here — although it would be worth
while to perform a more systematic study — since the s
ond term already introduces significant changes in the c
cal behavior of the system. We will therefore consider
three-dimensionalf4 theory with two quartic couplings:6,5

H5E ddxH 1

2 (
i 51

N

@~]mf i !
21rf i

2#

1
1

4! (
i , j 51

N

~u01v0d i j !f i
2f j

2J . ~1.1!

The added cubic term breaks explicitly the O(N) invariance
of the model, leaving a residual discrete cubic symme
given by the reflections and permutations of the field co
ponents.

The model described by the Hamiltonian~1.1! has been
extensively studied. It has four fixed points:6,5 the trivial
Gaussian one, the Ising one in which theN components of
the field decouple, the O(N)-symmetric and the cubic fixed
points.

The Gaussian fixed point is always unstable, and so is
Ising fixed point.7 Indeed, in the latter case, it is natural
interpret Eq.~1.1! as the Hamiltonian ofN Ising-like systems
coupled by theO(N)-symmetric term. But this interaction i
the sum of the products of the energy operators of the
ferent Ising systems. Therefore, at the Ising fixed point,
crossover exponent associated to the O(N)-symmetric quar-
tic term should be given by the specific-heat critical exp
15 136 ©2000 The American Physical Society
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nenta I of the Ising model, independently ofN. Sincea I is
positive, indeeda I50.1099(7)~see, e.g., Ref. 8 and refe
ences therein!, the Ising fixed point is unstable.

While the Gaussian and the Ising fixed points are unsta
for any number of componentsN, the stability properties of
the O(N)-symmetric and of the cubic fixed points depend
N. For sufficiently small values ofN, N,Nc , the
O(N)-symmetric fixed point is stable and the cubic one
unstable. For N.Nc , the opposite is true: the
renormalization-group flow is driven towards the cubic fix
point, which now describes the generic critical behavior
the system. The O(N)-symmetric point corresponds to a tr
critical transition. Figure 1 sketches the flow diagram in t
two casesN,Nc and N.Nc . At N5Nc , the two fixed
points should coincide, and logarithmic corrections to
O(N)-symmetric critical exponents are expected. Outside
attraction domain of the fixed points, the flow goes aw
towards more negative values ofu and/or v and finally
reaches the region where the quartic interaction no lon
satisfies the stability condition. These trajectories should
related to first-order phase transitions.9,10

If N.Nc , the cubic anisotropy is relevant and therefo
the critical behavior of the system is not described by
Heisenberg isotropic Hamiltonian. If the cubic interacti
favors the alignment of the spins along the diagonals of
cube, i.e., for a positive couplingv0, the critical behavior is
controlled by the cubic fixed point and the cubic symmetry
retained even at the critical point. On the other hand, if
system tends to magnetize along the cubic axes — this
responds to a negative couplingv0 — then the system un
dergoes a first-order phase transition.11,5,12,13Moreover, since
the symmetry is discrete, there are no Goldstone excitat
in the low-temperature phase. The longitudinal and the tra
verse susceptibilities are finite forT,Tc and H→0, and
diverge asutu2g for t}T2Tc→0.14

In the limit N→`, keepingNu andv fixed, one can de-
rive exact expressions for the exponents at the cubic fi
point. Indeed, in this limit the model can be reinterpreted
a constrained Ising model,15 leading to a Fisher renormaliza
tion of the Ising critical exponents.16 One has17,15,5

h5h I1OS 1

ND , n5
n I

12a I
1OS 1

ND , ~1.2!

whereh I , n I , anda I are the critical exponents of the Isin
model ~see, e.g., Ref. 8 and references therein for rec
estimates of the Ising critical exponents!.

FIG. 1. Renormalization-group flow in the coupling plane (u,v)
for N,Nc andN.Nc .
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If N,Nc , the cubic term in the Hamiltonian is irrelevan
and therefore, it generates only scaling correctionsutuDc with
Dc.0. However, their presence leads to important phys
consequences. For instance, the transverse susceptibili
the coexistence curve~i.e., for T,Tc and H→0), which is
divergent in the O(N)-symmetric case, is now finite and d
verges only atTc as utu2g2Dc.11,18,19,5,20In other words, be-
low Tc , the cubic term is a ‘‘dangerous’’ irrelevant operato
Note that for N sufficiently close toNc , irrespective of
which fixed point is the stable one, the irrelevant interact
bringing from the unstable to the stable fixed point gives r
to very slowly decaying corrections to the leading scali
behavior.

In three dimensions, a simple argument based on the s
metry of the two-component cubic model21 shows that the
cubic fixed point is unstable forN52, so thatNc.2. Indeed,
for N52, ap/4 internal rotation, i.e.,

~f1 ,f2!→ 1

A2
~f11f2 ,f12f2!, ~1.3!

maps the cubic Hamiltonian~1.1! into a new one of the sam
form but with new couplings (u08 ,v08) given by

u085u01 3
2 v0 , v0852v0 . ~1.4!

This symmetry maps the Ising fixed point onto the cubic o
Therefore, the two fixed points describe the same theory
have the same stability. Since the Ising point is unstable,
cubic point is unstable too, so that the stable point is
isotropic one. In two dimensions, this is no longer true.
deed, one expects the cubic interaction to be truly marg
for N52 ~Refs. 22,23! and relevant forN.2,24 so thatNc
52 in two dimensions.

During the years, the model~1.1! has been the object o
several studies.6,18,25–27,3,4,28–30,23,31–40In the 1970s severa
computations were done using thee expansion;6,18,26,27they
predicted 3,Nc,4, indicating that cubic ferromagnets a
described by theO(N)-invariant Heisenberg model. How
ever, recent studies have questioned these conclusions. F
theoretic studies, based on the analysis of the three-loop31,32

and four-loop series33,40 in fixed dimension, and of the five
loop expansion in powers ofe542d ~Refs. 34–37,40! sug-
gest thatNc&3, although they do not seem to be conclusi
in excluding the valueNc53. On the other hand, the resul
of Ref. 38, obtained from Monte Carlo simulations usi
finite-size scaling techniques, are perfectly consistent w
the valueNc'3. The authors of Ref. 38 even suggest th
Nc53 exactly.

A further study of this issue is therefore of particular re
evance for the ferromagnetic materials characterized by
order parameter withN53. For this purpose we extende
the perturbative expansions of theb functions and of the
exponents to six loops in the framework of the fixe
dimension field-theoretic approach.41 These perturbative ex
pansions are only asymptotic. Nonetheless, accurate re
can be obtained by employing resummation techniques
use their Borel summability42 and the knowledge of the
large-order behavior.43,44 For this reason, we have also com
puted the singularity of the Borel transform that is closest
the origin, extending the calculations of Refs. 43,44.
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TABLE I. Summary of the results in the literature. The values of the exponents refer toN53. The
subscripts ‘‘s’’ and ‘‘ c’’ indicate that the exponent is related to the symmetric and to the cubic fixed p
respectively. H.T. expansion and approximate RG mean, respectively, high-temperature expansion
proximate renormalization-group equations.

Method Results

Ref. 26, 1974 e expansion:O(e3) Nc.3.128
Ref. 28, 1977 approximate RG ns v2,s520.11,Nc.2.3
Ref. 30, 1981 H.T. expansion:O(b10) ns v2,s520.63(10),Nc,3
Ref. 23, 1982 scaling-field Nc.3.38
Ref. 33, 1989 d53 expansion:O(g4) v2,c.0.008,Nc.2.91
Ref. 34, 1995 e expansion:O(e5) Nc.2.958
Ref. 36, 1997 e expansion:O(e5) v2,s520.00214,v2,c50.00213,Nc,3
Ref. 37, 1997 e expansion:O(e5) Nc.2.86
Ref. 38, 1998 Monte Carlo v2,s50.0007(29),Nc'3
Ref. 40, 1999 d53 expansion:O(g4) v2,s520.0081,v2,c50.0077,Nc52.89(2)
This work e expansion:O(e5) v2,s520.003(4), v2,c50.006(4), Nc52.87(5)
This work d53 expansion:O(g6) v2,s520.013(6), v2,c50.010(4), Nc52.89(4)
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The analysis of the perturbative series has been done
lowing closely Ref. 45. We have estimated errors using
algorithmic procedure, trying to be as conservative as p
sible. This can be immediately realized by comparing o
uncertainties with those previously quoted: even though
series are longer, the errors we report are sometimes la
than those of previous studies. Our results confirm previ
field-theoretic studies: theN53 isotropic fixed point is in-
deed unstable and we estimateNc52.89(4) from the six-
loop fixed-dimension expansion andNc52.87(5) from the
reanalysis of the five-loope expansion. For comparison, i
Table I we report our estimates together with previous de
minations ofNc and of the eigenvalues forN53. It should
be noted that the estimates of the critical exponents do
essentially depend on which fixed point is the stable o
Moreover, the tiny difference~smaller than the precision o
our results, which is&1% in the case ofg andn) between
the values at the two fixed points would be very difficult
observe, because of crossover effects decaying astD with
D5v2,cnc50.007(3). Large corrections to scaling appe
also forN52. Indeed, at theXY fixed point~the stable one!,
we find v250.103(8). Thus, even though the cubic intera
tion is irrelevant, it induces strong scaling corrections beh
ing as tD, D5v2n'0.06. Therefore, crossover effects a
expected in this case, depending on the strength of the c
term. Finally, we have checked the theoretical predictions
the model in the large-N limit finding good agreement.

We want to mention that, in the limitN→0, the cubic
model ~1.1! describes the Ising model with site-dilute
disorder.46–48 However, in this case, the perturbative expa
sion is not Borel summable.49–51 Therefore, it is not com-
pletely clear how to obtain meaningful results from the p
turbative series. An investigation of these problems will
presented elsewhere.

The paper is organized as follows. In Sec. II we pres
our calculation of the perturbative expansions to six loops
d53. We give the basic definitions, the six-loop series, a
the singularity of the Borel transform. In Sec. III we prese
the analysis of these expansions: we determine the stab
of the fixed points and compute the exponents for sev
values of N. In Sec. IV we present a reanalysis of th
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e-expansion five-loop series. The new analysis differs fr
the previous ones in the fact that it uses the large-order
havior of the series at the cubic fixed point. Finally, in t
Appendix we report a three-loope-expansion computation o
the zero-momentum four-point couplings at the cubic fix
point in three dimensions.

II. THE FIXED-DIMENSION PERTURBATIVE
EXPANSION IN THREE DIMENSIONS

A. Renormalization of the f4 theory with cubic anisotropy

The fixed-dimensionf4 field-theoretic approach41 pro-
vides an accurate description of the critical properties
O(N)-symmetric models in the high-temperature phase~see,
e.g., Ref. 52!. The method can also be applied to the tw
parameter cubic model.31 The idea is to perform an expan
sion in powers of appropriately defined zero-moment
quartic couplings. In order to obtain estimates of the univ
sal critical quantities, the perturbative series are resumm
exploiting their Borel summability, and then evaluated at t
fixed-point values of the couplings.

The theory is renormalized by introducing a set of ze
momentum conditions for the~one-particle irreducible! two-
point and four-point correlation functions:

Gab
(2)~p!5dabZf

21@m21p21O~p4!#, ~2.1!

Gabcd
(4) ~0!5Zf

22mFu

3
~dabdcd1dacdbd1daddbc!

1v dabdacdadG . ~2.2!

They relate the second-moment massm, and the zero-
momentum quartic couplingsu and v to the corresponding
Hamiltonian parametersr, u0, andv0:

u05muZuZf
22 , v05mvZvZf

22 . ~2.3!

In addition, one introduces the functionZt that is defined by
the relation
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Gab
(1,2)~0!5dabZt

21 , ~2.4!

whereG (1,2) is the ~one-particle irreducible! two-point func-
tion with an insertion of12 f2.

From the pertubative expansion of the correlation fu
tions G (2), G (4), andG (1,2) and the above relations, one d
rives the functionsZf(u,v), Zu(u,v), Zv(u,v), Zt(u,v) as a
double expansion inu andv.

The fixed points of the theory are given by the comm
zeros of theb-functions

bu~u,v !5m
]u

]mU
u0 ,v0

,

bv~u,v !5m
]v
]mU

u0 ,v0

. ~2.5!

The stability properties of the fixed points are controlled
the eigenvaluesv i of the matrix

V5S ]bu~u,v !

]u

]bu~u,v !

]v

]bv~u,v !

]u

]bv~u,v !

]v

D , ~2.6!

computed at the given fixed point: a fixed point is stable
both eigenvalues are positive. The eigenvaluesv i are related
to the leading scaling corrections, which vanish asj2v i

;utuD i whereD i5nv i .
One also introduces the functions

hf~u,v !5
] ln Zf

] ln m U
u0 ,v0

5bu

] ln Zf

]u
1bv

] ln Zf

]v
,

~2.7!

h t~u,v !5
] ln Zt

] ln mU
u0 ,v0

5bu

] ln Zt

]u
1bv

] ln Zt

]v
. ~2.8!

Finally, the critical exponents are obtained from

h5hf~u* ,v* !, ~2.9!

n5@22hf~u* ,v* !1h t~u* ,v* !#21, ~2.10!

g5n~22h!. ~2.11!

B. The six-loop perturbative series

We have computed the perturbative expansion of the
relation functions~2.1!, ~2.2!, and ~2.4! to six loops. The
diagrams contributing to the two-point and four-point fun
tions to six-loop order are reported in Ref. 53: they are
proximately 1000, and it is therefore necessary to han
them with a symbolic manipulation program. For this pu
pose, we wrote a package inMATHEMATICA .54 It generates
the diagrams using the algorithm described in Ref. 55,
computes the symmetry and group factors of each of th
We did not calculate the integrals associated to each
gram, but we used the numerical results compiled in Ref.
Summing all contributions we determined the renormali
tion constants and all renormalization-group functions.
-

f

r-

-
le
-

d
.

a-
3.
-

We report our results in terms of the rescaled coupling56

u[
16p

3
RN ū, v[

16p

3
v̄, ~2.12!

whereRN59/(81N), so that theb-functions associated toū
and v̄ have the form b ū(ū,0)52ū1ū21O(ū3) and
b v̄(0,v̄)52 v̄1 v̄21O( v̄3).

The resulting series are

b ū52ū1ū21
2

3
ūv̄2

4~190141N!

27~81N!2 ū32
400

81~81N!
ū2v̄

2
92

729
ūv̄21ū (

i 1 j >3
bi j

(u)ūi v̄ j , ~2.13!

b v̄52 v̄1 v̄21
12

81N
ūv̄2

308

729
v̄32

832

81~81N!
ūv̄2

2
4~370123N!

27~81N!2 ū2v̄1 v̄ (
i 1 j >3

bi j
(v)ūi v̄ j , ~2.14!

hf5
8~21N!

27~81N!2ū21
16

81~81N!
ūv̄1

8

729
v̄21 (

i 1 j >3
ei j

(f)ūi v̄ j ,

~2.15!

h t52
~21N!

~81N!
ū2

1

3
v̄1

2~21N!

~81N!2 ū21
4

3~81N!
ūv̄

1
2

27
v̄21 (

i 1 j >3
ei j

(t)ūi v̄ j . ~2.16!

For 3< i 1 j <6, the coefficientsbi j
(u) , bi j

(v) , ei j
(f) , andei j

(t) are
reported in Tables II, III, IV, and V, respectively.

We have performed several checks of our calculations
~i! b ū(ū,0), hf(ū,0), andh t(ū,0) reproduce the corre

sponding functions of the O(N)-symmetric model.56,57

~ii ! b v̄(0,v̄), hf(0,v̄), and h t(0,v̄) reproduce the corre
sponding functions of the Ising-like (N51) f4 theory.

~iii ! The following relations hold forN51:

b ū~u,x2u!1b v̄~u,x2u!5b v̄~0,x!,

hf~u,x2u!5hf~0,x!, ~2.17!

h t~u,x2u!5h t~0,x!.

~iv! For N52, using the symmetry~1.3! and ~1.4!, and
taking into account the rescalings~2.12!, one can easily ob-
tain the identities

b ū~ ū1 5
3 v̄,2 v̄ !1

5

3
b v̄~ ū1 5

3 v̄,2 v̄ !5b ū~ ū,v̄ !,

b v̄~ ū1 5
3 v̄,2 v̄ !52b v̄~ ū,v̄ !,

~2.18!

hf~ ū1 5
3 v̄,2 v̄ !5hf~ ū,v̄ !,

h t~ ū1 5
3 v̄,2 v̄ !5h t~ ū,v̄ !.
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These relations are exactly satisfied by our six-loop ser
Note that, since the Ising fixed point is (0,gI* ) with gI*
51.402(2) ~Ref. 8!, the above symmetry gives us the loc

tion of the cubic fixed point (53 gI* ,2gI* ).
~v! In the large-N limit the critical exponents of the cubi

fixed point are related to those of the Ising model:h5h I and
n5n I /(12a I). One can easily see that forN→`,
hf(u,v)5h I(v), whereh I(v) is the perturbative series tha
determines the exponenth of the Ising model. Therefore, th
first relation is trivially true. On the other hand, the seco
relationn5n I /(12a I) is not identically satisfied by the se
ries, and is verified only at the critical point.58

~vi! We finally note that our series are in agreement w
the five-loop results that appeared recently in Ref. 59.

C. Singularity of the Borel transform

Since field-theoretic perturbative expansions
asymptotic, the resummation of the series is essential to
tain accurate estimates of the physical quantities. In th
dimensional f4 theories one exploits their Bore
summability42 and the knowledge of the large-order behav
of the expansion~see, e.g., Ref. 52!.

TABLE II. The coefficientsbi j
(u) , cf. Eq. ~2.13!.

i , j RN
2 ibi j

(u)

3,0 0.2738551710.075364029N10.0018504016N2

2,1 0.6774232510.027353409N
1,2 0.415456510.0025592148N
0,3 0.090448951

4,0 20.2792572420.091833749N20.0054595646N2

10.000023722893N3

3,1 20.9438366220.083252807N10.00061860174N2

2,2 20.9649788820.012460145N
1,3 20.4233187420.0017709429N
0,4 20.075446692

5,0 0.3517447710.13242502N10.011322026N2

10.000054833719N318.676893331027 N4

4,1 1.520900810.19450536N10.0011078614N2

10.000031779782N3

3,2 2.207334710.065336326N10.0003564925N2

2,3 1.531569310.010676901N
1,4 0.5603519610.0013469481N
0,5 0.087493302

6,0 20.5104988920.21485252N20.023839375N2

20.00050021682N312.016776331026 N4

14.407673331028 N5

5,1 22.698408320.45068252N20.010821468N2

10.00005796668N312.051545631026 N4

4,2 25.113554920.26769177N20.0006311751N2

10.000019413374N3

3,3 24.931731220.067574712N10.000028278087N2

2,4 22.75468320.0095836704N
1,5 20.8622946320.001856332N
0,6 20.1179508
s.

e
b-
e-

r

In the case of theO(N)-symmetricf4 theory, the expan-
sion is performed in powers of the zero-momentum fo
point coupling g. The large-order behavior of the serie
S(g)5(skg

k of any quantity is related to the singularitygb
of the Borel transform that is closest to the origin. Indeed,
largek,

sk;k! ~2a!kkb@11O~k21!# with a521/gb .
~2.19!

The value ofgb depends only on the Hamiltonian, while th
exponentb depends on which Green’s function is consi
ered. If the perturbative expansion is Borel summable, t
gb is negative. The value ofgb can be obtained from a
steepest-descent calculation in which the relevant sa
point is a finite-energy solution~instanton! of the classical
field equations with negative coupling.43,44If the Borel trans-
form is singular forg5gb , its expansion in powers ofg
converges only forugu,ugbu. An analytic extension can be
obtained by a conformal mapping,45 such as

y~g!5
A12g/gb21

A12g/gb11
. ~2.20!

TABLE III. The coefficientsbi j
(v) , cf. Eq. ~2.14!.

i , j RN
2 ibi j

(v)

3,0 0.6438051710.05741276N20.0017161966N2

2,1 1.685330510.0030714114N
1,2 1.3138294
0,3 0.3510696

4,0 20.7670617720.089054667N
10.000040711369N220.000087586118N3

3,1 22.738584120.049218875N20.00002623469N2

2,2 23.347720410.0075418394N
1,3 21.8071874
0,4 20.37652683

5,0 1.096534810.15791293N10.0023584631N2

20.000061471346N325.387124731026 N4

4,1 4.986548510.17572792N20.0020718369N2

20.000019382912N3

3,2 8.364528410.0039620562N10.00021363122N2

2,3 6.894601220.0230874N
1,4 2.8857918
0,5 0.49554751

6,0 21.774553320.30404316N20.0094338079N2

10.000066993864N326.572489531026 N4

23.75311431027 N5

5,1 29.829829620.53384955N10.0022033252N2

20.00013066822N322.595942931026 N4

4,2 221.07353820.16628697N20.000014827682N2

14.498852431026 N3

3,3 223.56972410.095716867N20.00083903999N2

2,4 214.92799810.0486813N
1,5 25.1298717
0,6 20.74968893
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In this way the Borel transform becomes a series in pow
of y(g) that converges for all positive values ofg provided
that all singularities of the Borel transform are on the r
negative axis.45 For theO(N)-symmetric theory accurate es
timates~see, e.g., Ref. 60! have been obtained resummin
the available series: theb function56 is known up to six
loops, while the functionshf and h t are known to seven
loops.61 A subtle point in this method is the estimate of t
uncertainty of the results. Indeed the nonanalyticity of
Callan-Symanzikb function at the fixed-point valueg*
~Refs. 41,62–64! may cause a slow convergence of the e
mates to the correct fixed-point value. This may lead to
underestimate of the uncertainty that is usually derived fr
stability criteria. The reason is that this resummation meth
approximates theb function in the interval@0,g* # with a
sum of analytic functions. Since, forg5g* , theb function is
not analytic, the convergence at the endpoint of the inte
is slow. However, the comparison of these results with th

TABLE IV. The coefficientsei j
(f) , cf. Eq. ~2.15!.

i , j RN
2 iei j

(f)

3,0 0.0005417613410.00033860084N
10.000033860084N2

2,1 0.00243792610.00030474076N
1,2 0.0027426668
0,3 0.00091422227

4,0 0.0009925483810.00070251807N10.0001018116N2

26.551688631027 N3

3,1 0.005955290310.0012374633N
27.862026431026 N2

2,2 0.0104656710.00031166693N
1,3 0.0071848915
0,4 0.0017962229

5,0 20.0003665973520.0002572117N
20.000032026611N212.243070231026 N3

21.109404531027 N4

4,1 20.002749480120.00055434769N
10.000036974267N221.664106731026 N3

3,2 20.006469606920.000070210701N
12.782388231026 N2

2,3 20.006604628610.00006759333N
1,4 20.0032685176
0,5 20.00065370353

6,0 0.0006956803710.00056585941N
10.00012057302N215.746697931026 N3

23.838518331028 N421.044127331028 N5

5,1 0.006261123410.001962173N10.00010407066N2

23.150474531027 N321.879429231027 N4

4,2 0.01895712910.0018483045N10.000012482494N2

27.553778431027 N3

3,3 0.02715880510.00059570458N
11.704340831026 N2

2,4 0.02077568110.000041479576N
1,5 0.0083268641
0,6 0.0013878107
rs

l

e

-
n

d

al
e

obtained in other approaches shows that the above non
lyticity causes only very small effects, which are negligib
in most cases. See Refs. 64,8 for a discussion of this iss

In order to apply a resummation technique similar to th
used in Ref. 45 to our six-loop series, i.e., in order to us
Borel transformation and a conformal mapping to get a c
vergent sequence of approximations, we extended the la
order analysis to the cubic model. In particular we cons
ered the double expansion inū andv̄ at fixedz[ v̄/ū. Then,
we studied the large-order behavior of the resulting exp
sion in powers ofū. This was done following the standar
approach described, for example, in Refs. 44,52, i.e.,
studying the saddle-point solutions of the cubic model. W
will report the calculation elsewhere;65 here we give only the
results.

For z[ v̄/ū fixed, the singularity of the Borel transform
closest to the origin,ūb , is given by

1

ūb

52a~RN1z!

1

ūb

52aS RN1
1

N
zD

for z.0,

for
22NRN

N11
,z,0,

~2.21!

TABLE V. The coefficientsei j
(t) , cf. Eq. ~2.16!.

i , j RN
2 iei j

(t)

3,0 20.02512049920.016979919N20.0022098349N2

2,1 20.1130422520.019888514N
1,2 20.1303715420.0025592148N
0,3 20.044310253

4,0 0.02146004710.015690833N10.0024059273N2

20.000037238563N3

3,1 0.1287602810.029764853N20.00044686275N2

2,2 0.2277917810.0093256378N
1,3 0.1563073310.0017709429N
0,4 0.039519569

5,0 20.02269428720.017985168N20.0035835384N2

20.00013566164N321.69930931026 N4

4,1 20.1702071520.049785186N20.0019839454N2

20.000025489635N3

3,2 20.4091757320.034538379N20.00028943185N2

2,3 20.4346478520.0093557007N
1,4 20.2206548220.0013469481N
0,5 20.044400355

6,0 0.02945061910.024874579N10.005728397N2

10.00031557863N325.85868931026 N4

21.037350631027 N5

5,1 0.2650555710.091343427N10.0058838593N2

20.00010172194N321.867231231026 N4

4,2 0.8069466210.09798244N10.00053192615N2

20.000012819748N3

3,3 1.163811110.043471034N20.000017867101N2

2,4 0.8948139310.010634231N
1,5 0.3603229310.001856332N
0,6 0.060363211
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where

a50.147 774 22 . . . , RN5
9

N18
. ~2.22!

Note that the series in powers ofū keepingz fixed is not
Borel summable forū.0 andz,2RN . This fact will not be
a real limitation for us, since we will only consider values
z such thatūb,0.

It should be noted that these results do not apply to
caseN50. Indeed, in this case, there are additional sin
larities in the Borel transform.49–51

The exponentb in Eq. ~2.19! is related to the number o
symmetries broken by the classical solution.44 It depends on
the quantity considered. In the cubic model, forvÞ0, we
haveb55/2 for the functionhf , andb57/2 for theb func-
tions and h t . For v50, we recover the results of th
O(N)-symmetric model, that isb521N/2 for hf , and b
531N/2 for theb function andh t .45

III. ANALYSIS OF THE FIXED-DIMENSION SIX-LOOP
SERIES

In this section we present the analysis of the six-lo
series in fixed dimension. The resummation of the series
been done using the method of Ref. 45 and the expres
for the Borel singularity we have given in the previous se
tion. Explicitly, given a series

R~ ū,v̄ !5 (
k50

(
h50

Rhkū
hv̄k, ~3.1!

we have generated a new quantityE(R)p(a,b;ū,v̄) accord-
ing to

E~R!p~a,b;ū,v̄ !5 (
k50

p

Bk~a,b; v̄/ū!

3E
0

`

dt tbe2t
y~ ūt; v̄/ū!k

@12y~ ūt; v̄/ū!#a
,

~3.2!

where

y~x;z!5
A12x/ūb~z!21

A12x/ūb~z!11
, ~3.3!

and ūb(z) is defined in Eq. ~2.21!. The coefficients
Bk(a,b; v̄/ū) are determined by the requirement that the
pansion ofE(R)p(a,b;ū,v̄) in powers of ū and v̄ gives
R(ū,v̄) to order p. For each value ofa, b, and p,
E(R)p(a,b;ū,v̄) provides an estimate ofR(ū,v̄).

First of all, we have analyzed the stability properties
theO(N)-symmetric fixed point. Since]b v̄ /]ū(ū,0)50, the
eigenvalues are simply

v15
]b ū

]ū
~ ū* ,0!, v25

]b v̄

] v̄
~ ū* ,0!, ~3.4!
e
-

p
as
on
-

-

f

whereū* is the fixed-point value ofū. The exponentv1 is
the usual exponent that is considered in theO(N)-symmetric
theory, whilev2 is the eigenvalue that determines the stab
ity of the fixed point.

In order to computev2, for many choices of the four
parametersa1 , b1 , a2, andb2, we have determined an es
timate of ū* andv2 from the equations

E~b ū /ū!p„a1 ,b1 ;ūp* ~a1 ,b1!,0…50, ~3.5!

v̂2~a1 ,b1 ,a2 ,b2 ;p!5E~]b v̄ /] v̄ !p„a2 ,b2 ;ūp* ~a1 ,b1!,0….
~3.6!

Note thatūp* (a1 ,b1) is determined implicitly by Eq.~3.5!,
which has been solved numerically for each value ofa1 and
b1.

Then, we have considered sets of approximants such
a1,2P@ā2Da,ā1Da# and b1,2P@ b̄2Db,b̄1Db#. The fi-
nal estimate was obtained averaging over all integer va
of a1 , a2 , b1, and b2 belonging to these intervals. Th
results forN53 and several choices of the parameters
reported in Table VI. In order to obtain a final estimate, w
should devise a procedure to determine ‘‘optimal’’ values
the parametersā, b̄, Da, andDb. Reasonable values ofā

and b̄ can be obtained by requiring that the estimates
approximately independent of the number of terms one
considering. It is less clear how to determine the width of
intervalsDa and Db. Indeed, the results are stable, with
the quoted errors, for many different choices of these t
parameters, while the standard deviation of the estim
which we use as an indication of the error, strongly depe
on the choice one is making. In order to have reasona
error estimates, we have compared our results forū* with
the estimates obtained from the analysis of the same se
by different authors. ForN53, Guida and Zinn-Justin quot
1.390(4).60 We have therefore chosen our parameters so
we reproduce their errors. More precisely, we chooseDa
52 andDb53, and quote the error in the final results as tw
standard deviations. With this choice, we obtainū*
51.393(4), which agrees with the previous estimate and h
the same error. Results for other values ofN are reported in
Table VII. Again, one can verify the good agreement of o
estimates ofū* with the results of Ref. 60.

In Table VII we also report our results forv2. The
O(2)-symmetric point is stable, sincev250.103(8).0. On
the other hand, the symmetric point is clearly unstable
N>4. For N53, the analysis givesv2520.013(6),0, so
that the fixed point is unstable andNc,3. To better under-
stand the reliability of the results, in Fig. 2 we show t
distribution of the estimates ofv2 when we varya1 , b1 , a2,
and b2 in the chosen interval. It is evident that the quot
error onv2 is quite conservative and that the results beco
increasingly stable as the number of loops increases.

We have then determinedNc , defined as the value ofN
for which v250 at theO(N)-symmetric fixed point.66 The
computation was done as before. For each value of the
parametersa1 , b1 , a2, andb2, we computed an estimate o
Nc , by requiring
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TABLE VI. Estimates of the fixed-point valueū* and of the critical exponentv2 at theO(N)-symmetric
fixed point for N53. The numberp indicates the number of loops included in the analysis, the colu
labeled bya andb indicate the intervals ofa andb used, ‘‘Final’’ reports our final estimate for the give
analysis.

a b p54 p55 p56 Final

ū* @0.5,2.5# @5,11# 1.400~6! 1.392~4! 1.392~1! 1.392~2!

@0.5,2.5# @5,13# 1.400~6! 1.392~4! 1.392~1! 1.392~2!

@0.5,2.5# @3,13# 1.406~17! 1.389~7! 1.394~4! 1.394~8!

@20.5,3.5# @5,11# 1.404~13! 1.392~6! 1.393~2! 1.393~4!

v2 @0.5,2.5# @5,11# 20.014(10) 20.009(5) 20.013(2) 20.013(4)
@0.5,2.5# @5,13# 20.012(9) 20.009(4) 20.012(2) 20.012(4)
@0.5,2.5# @3,13# 20.017(22) 20.007(12) 20.014(7) 20.014(14)

@20.5,3.5# @5,11# 20.015(16) 20.008(7) 20.013(3) 20.013(6)
n
he
s

es

ie

th
v̂2~a1 ,b1 ,a2 ,b2 ;p!50. ~3.7!

The distribution of the results is shown in Fig. 3. It is evide
that Nc,3, as of course it should be expected from t
analysis ofv2 at N53. The result is increasingly stable a
the number of orders that are included increases. We
mate

Nc52.91~9! ~4 loops!, 2.91~3! ~5 loops!,

2.89~2! ~6 loops!. ~3.8!

We can thus safely conclude thatNc52.89(4).
We have then considered the cubic fixed point and stud

its stability. Again we used four parametersa1 , b1 , a2, and
b2. For each choice we first computed an estimate of
critical point ūp* (a1 ,b1 ,a2 ,b2), v̄p* (a1 ,b1 ,a2 ,b2) solving
the equations

E~b ū /ū!p„a1 ,b1 ;ūp* ~a1 ,b1 ,a2 ,b2!,

v̄p* ~a1 ,b1 ,a2 ,b2!…50, ~3.9!
t

ti-

d

e

E~b v̄ / v̄ !p„a2 ,b2 ;ūp* ~a1 ,b1 ,a2 ,b2!,

v̄p* ~a1 ,b1 ,a2 ,b2!…50. ~3.10!

Then we determined the elements of the stability matrixV
from

V115E~]b ū /]ū!p„a1 ,b1 ;ūp* ~a1 ,b1 ,a2 ,b2!,

v̄p* ~a1 ,b1 ,a2 ,b2!…, ~3.11!

V225E~]b v̄ /] v̄ !p„a2 ,b2 ;ūp* ~a1 ,b1 ,a2 ,b2!,

v̄p* ~a1 ,b1 ,a2 ,b2!…, ~3.12!

V125ūp* ~a1 ,b1 ,a2 ,b2!E~1/ū•]b ū /] v̄ !p21

3„a1 ,b1 ;ūp* ~a1 ,b1 ,a2 ,b2!,v̄p* ~a1 ,b1 ,a2 ,b2!…,

~3.13!
TABLE VII. Estimates ofū* and of the eigenvaluev2 at theO(N)-fixed point for several values ofN
and for different ordersp of the perturbative series. The last column reports the final estimate.

N a b p54 p55 p56 Final

ū*

2 @20.5,3.5# @5,11# 1.422~15! 1.409~7! 1.408~2! 1.408~4!

3 @20.5,3.5# @5,11# 1.404~13! 1.392~6! 1.393~2! 1.393~4!

4 @0.5,4.5# @9,15# 1.372~12! 1.375~2! 1.375~1! 1.375~2!

8 @0.5,4.5# @9,15# 1.303~6! 1.304~1! 1.305~1! 1.305~2!

` 1

v2

2 @20.5,3.5# @5,11# 0.099~20! 0.107~11! 0.103~4! 0.103~8!

3 @20.5,3.5# @5,11# 20.015(16) 20.008(7) 20.013(3) 20.013(6)
4 @0.5,4.5# @9,15# 20.105(10) 20.109(3) 20.111(2) 20.111(4)
8 @0.5,4.5# @9,15# 20.371(8) 20.379(4) 20.385(4) 20.385(8)
` 21



f

m
he
at
d
h

-
e
w

a-
he
-
ses.

us-
n
c
o-

i-

15 144 PRB 61CARMONA, PELISSETTO, AND VICARI
V215 v̄p* ~a1 ,b1 ,a2 ,b2!E~1/v̄•]b v̄ /]ū!p21

3„a2 ,b2 ;ūp* ~a1 ,b1 ,a2 ,b2!,v̄p* ~a1 ,b1 ,a2 ,b2!….

~3.14!

We computed the eigenvalues ofV, obtaining estimates o
the exponentsv1 andv2. As before, we determinedā andb̄

by requiring the stability of the estimates ofū* , v̄* , v1, and
v2, when varying the order of the series. Errors were co
puted as before. The results are reported in Table VIII. T
show that forN>3 the cubic fixed point is stable. Note th
for N53 we findv̄* .0, which agrees with what is expecte
in the case of a stable cubic fixed point, see Fig. 1. T
distribution of the estimates ofv̄* , obtained varying the pa
rametersa1 ,b1 ,a2 ,b2, and reported in Fig. 4, shows that th
result is quite stable. In accordance with this scenario,

FIG. 2. Distribution of the estimates ofv2 at the
O(3)-symmetric fixed point.

FIG. 3. Distribution of the estimates ofNc . It is determined by
requiringv250 at theO(N)-symmetric fixed point.
-
y

e

e

find v250.010(4).0. The quoted error is quite conserv
tive, as it can be seen from Fig. 5 in which we report t
distribution of the estimates ofv2. Note that the results be
come increasingly stable as the number of loops increa
One may compare our estimate ofv2 at the cubic fixed point
with the four-loop result of Ref. 40,v250.0081, which is
fully consistent with ours.67

We computed the exponents at the cubic fixed point,
ing Eqs.~2.9!, ~2.10!, and~2.11!. The results are reported i
Table IX. Note that forN53, the exponents at the cubi
fixed point do not differ appreciably from those of the is
tropic model. A recent reanalysis60 of the fixed-dimension
expansion of the three-dimensionalO(N)-symmetric models

TABLE VIII. Estimates of the cubic fixed point and of the e
genvalues of the stability matrix for various values ofN and orders
p of the perturbative series. Our final results correspond top5f.

N p ū* v̄* v1 v2

3 4 1.36~11! 0.04~13! 0.780~11! 0.011~31!

5 1.328~26! 0.089~28! 0.777~5! 0.009~6!

6 1.321~9! 0.096~10! 0.781~2! 0.010~2!

f 1.321~18! 0.096~20! 0.781~4! 0.010~4!

4 4 0.907~72! 0.606~82! 0.711~77! 0.144~78!

5 0.883~17! 0.639~17! 0.804~48! 0.049~40!

6 0.881~7! 0.639~7! 0.781~22! 0.076~20!

f 0.881~14! 0.639~14! 0.781~44! 0.076~40!

8 4 0.448~49! 1.138~65! 0.695~85! 0.211~93!

5 0.440~14! 1.140~16! 0.831~77! 0.098~47!

6 0.440~6! 1.136~5! 0.775~44! 0.149~33!

f 0.440~12! 1.136~10! 0.775~88! 0.149~66!

` 4 0.182~15! 1.422~24! 0.744~95! 0.185~15!

5 0.173~6! 1.424~7! 0.783~31! 0.177~6!

6 0.174~3! 1.417~3! 0.790~9! 0.178~3!

f 0.174~6! 1.417~6! 0.790~18! 0.178~6!

FIG. 4. Distribution ofv̄* of the cubic fixed point forN53.
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obtained the following estimates forN53: g51.3895(50),
n50.7073(35), andh50.0355(25). These results should
compared with the critical exponents at the cubic fixed po
g51.390(12),n50.706(6), andh50.0333(26). The differ-
ence is smaller than the precision of our results, which
about 1% in the case ofg andn.

We also checked the exact predictions for the expone
in the large-N limit. For N→` with v̄ and ū fixed, we have
b v̄(ū,v̄)5b( v̄)u Ising, so thatv̄* 5 v̄ I* . Indeed, our estimate

of v̄* is in agreement with the estimate obtained with t
same method of analysis in Ref. 44:v̄ I* 51.416(5). Wehave
then compared our estimatesh50.0304(20),n50.708(8),
andg51.396(14) with the predictions

FIG. 5. Distribution of the estimates ofv2 at the cubic fixed
point for N53.

TABLE IX. Estimates of the critical exponents at the cub
fixed point for various values ofN and orderp of the perturbative
series. The column ‘‘Final’’ reports our final results. The results
Ref. 40, obtained by a Pade´-Borel analysis of the four-loop series
are reported in the last column.

N p54 p55 p56 Final Ref. 40

3 g 1.399~46! 1.390~11! 1.390~6! 1.390~12! 1.3775
n 0.710~26! 0.706~7! 0.706~3! 0.706~6! 0.6996
h 0.0338~90! 0.0325~20! 0.0333~13! 0.0333~26! 0.0332

4 g 1.415~41! 1.403~12! 1.405~5! 1.405~10! 1.4028
n 0.718~23! 0.714~7! 0.714~4! 0.714~8! 0.7131
h 0.0323~73! 0.0305~18! 0.0316~11! 0.0316~22! 0.0327

8 g 1.401~38! 1.402~12! 1.404~5! 1.404~10! 1.4074
n 0.709~21! 0.711~7! 0.712~3! 0.712~6! 0.7153
h 0.0292~61! 0.0296~18! 0.0306~10! 0.0306~20! 0.0324

` g 1.400~21! 1.395~9! 1.396~7! 1.396~14!

n 0.709~12! 0.707~5! 0.708~4! 0.708~8!

h 0.0287~35! 0.0294~11! 0.0304~10! 0.0304~20!
t:

is

ts

h5h I50.0364~4!,

n5
n I

~12a I !
50.7078~3!, ~3.15!

g5
g I

~12a I !
51.3899~7!.

The Ising model results have been taken from Ref. 8. Th
is a substantial agreement, although we note a small disc
ancy forh. This small difference is not unexpected. Indee
the estimate ofh for the Ising model obtained from th
fixed-dimension expansion shows a systematic discrepa
with respect to high-temperature and Monte Carlo results

Finally, we checked the predictionv252a I /n I at the
Ising fixed point. It is immediate to verify that

v25
]b ū

]ū
~0,v̄ ! ~3.16!

is independent ofN. Numerically we find

v2520.174~31! ~4 loop!, v2520.178~7! ~5 loop!,

v2520.177~3! ~6 loop!. ~3.17!

Our final estimate is thereforev2520.177(6), which
should be compared with the predictionv252a I /n I
520.1745(12).

IV. ANALYSIS OF THE e-EXPANSION FIVE-LOOP
SERIES

In this section we consider the alternative field-theore
approach based on thee expansion. Theb function and the
exponents in the cubic model are known toO(e5).34 These
series have already been the object of several analyses u
different resummation methods.34–37,40Reference 36 studie
the stability of theO(N)-symmetric and of the cubic fixed
points forN53. They rewrite the double expansion inu and
v in terms ofg[u1v and of the parameterd[v/(u1v).
Then, each coefficient in the expansion in terms ofd, which
is a series ing, is resummed using the known large-ord
behavior. Sincev* , and henced* , is small, one expects th
resulting series to be rapidly convergent near the fixed po
and therefore no additional resummation is applied.35 For the
cubic fixed point, Ref. 36 quotesv2.0.0049, 0.0085,
0.0021, obtained, respectively, from the analysis of
three-, four-, and five-loop series. Similar results~with the
opposite sign! are found for theO(N)-symmetric fixed point.
These estimates are compatible with a stable cubic fi
point, but the observed trend towards smaller values ofuv2u
leaves open the possibility that the estimate ofv2 will even-
tually change sign, modifying the conclusions about the s
bility of the fixed points. The same expansion has been a
lyzed in Ref. 37 using a Pade´-Borel resummation technique
The authors report the estimateNc'2.86, but again the un
certainty on this result is not clear. We will present here
new analysis of the five-loop series using the method p
sented in Sec. III and the value of the singularity of the Bo
transform given below.

As before, we will consider expansions inu with z

f
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TABLE X. e-expansion estimates of the critical exponentsv1 and v2 at the cubic and at the
O(N)-symmetric fixed points forN53. The numberp indicates the number of loops included in the analys
the columns labeled bya andb indicate the intervals ofa andb used, ‘‘Final’’ indicates our final estimate
from the given analysis.

a b p53 p54 p55 Final

O(N)-symmetric fixed point

v1 @20.5,1.5# @11,17# 0.799~20! 0.790~8! 0.795~4! 0.795~8!

@20.5,1.5# @8,20# 0.804~36! 0.784~20! 0.801~14! 0.801~28!

@21.5,2.5# @11,17# 0.830~98! 0.784~19! 0.795~10! 0.795~20!

v2 @0.0,2.0# @12,18# 0.004~6! 0.000~3! 20.003(2) 20.003(4)
@0.0,2.0# @9,21# 0.005~9! 20.002(5) 20.003(2) 20.003(4)

@21.0,3.0# @12,18# 0.022~32! 0.000~7! 20.003(4) 20.003(8)

cubic fixed point

v1 @20.5,1.5# @12,18# 0.789~16! 0.797~6! 0.796~2! 0.796~4!

@20.5,1.5# @9,21# 0.793~31! 0.793~13! 0.799~7! 0.799~14!

@21.5,2.5# @12,18# 0.82~10! 0.794~20! 0.793~6! 0.793~12!

v2 @20.5,1.5# @11,17# 0.005~12! 0.006~4! 0.007~2! 0.007~4!

@20.5,1.5# @8,20# 0.004~13! 0.006~4! 0.006~2! 0.006~4!

@21.5,2.5# @11,17# 20.004(17) 0.002~7! 0.006~3! 0.006~6!
el

ec

r

III
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m-
-

,

ns.
f
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es-
e

t
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loop

t
ric
5v/u fixed. The singularity closest to the origin of the Bor
transform is given by

1

ub
52~11z! for z.0,

1

ub
52S 11

1

N
zD for z,0. ~4.1!

The fixed-point values ofu and z associated to the
O(N)-symmetric and to the cubic fixed points are, resp
tively,

u* 5
3

81N
e1O~e2!, z* 50, ~4.2!

and

u* 5
1

N
e1O~e2!, z* 5

N24

3
1O~e!. ~4.3!

Since only the leading term in thee expansion is relevant fo
the determination of the singularityeb ,43,44 using Eqs.~4.2!,
~4.3!, and~4.1!, we find

eb52
N18

3
~4.4!

for the O(N)-invariant fixed point,43,44 and

eb52
3N2

4~N21!
for N,4,

eb52
3N

N21
for N.4, ~4.5!

for the cubic fixed point.
-

The method of analysis is the one explained in Sec.
with two simplifications: first, we consider expansions in o
variable only; moreover, the value at which we should co
pute the expansion is known (e51). Each series is re
summed using several different values ofa andb belonging
to the intervals aP@ā2Da,ā1Da# and bP@ b̄2Db,b̄
1Db#. The parametersā and b̄ were chosen as before
while after several trials, we fixedDa51 andDb56. The
error in the final results is always two standard deviatio
The dependence of the results on the different choices oa
andb is shown in Table X. The final results are reported
Tables XI and XII.

The final results are in reasonable agreement with the
timates of Sec. III. However, the instability of th
O(N)-symmetric fixed point is less clear in thee expansion:
indeed we findv2520.003(4) at the symmetric fixed poin
and v250.006(4) at the cubic fixed point. This is not su
prising: for theO(N)-symmetric model the five-loope ex-
pansion gives results that are less precise than the six-
expansion in fixed dimension. We also mention that forN
5` we obtain an estimate ofh, h50.0349(22), that is in
perfect agreement with the theoretical predictionh
50.0364(4).

Finally we computeNc . We will determine it following
two different strategies. A first possibility is to considerv2
and determine the value ofN for which the three--
dimensional estimate ofv2 vanishes, which is exactly wha
we did in the fixed-dimension expansion. At the symmet
fixed point we find

Nc53.07~9! ~3 loops!, 2.99~6! ~4 loops!,

2.98~2! ~5 loops!, ~4.6!

while at the cubic fixed point
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TABLE XI. Estimates of the critical exponentv2 at theO(N)-symmetric fixed point for several values o
N. The numberp indicates the number of loops included in the analysis, the columns labeled bya and b
indicate the interval ofa andb used, ‘‘final’’ reports our final estimate.

N a b p53 p54 p55 Final

2 @0.0,2.0# @9,21# 0.116~12! 0.113~5! 0.114~2! 0.114~4!

3 @0.0,2.0# @9,21# 0.005~9! 20.002(5) 20.003(2) 20.003(4)
4 @0.5,2.5# @8,20# 20.088(11) 20.103(7) 20.105(3) 20.105(6)
8 @1.5,3.5# @7,19# 20.374(24) 20.395(12) 20.395(4) 20.395(8)
w

3
ly

t,

ed.
t
,

o-
of
Nc53.04~10! ~3 loops!, 2.95~6! ~4 loops!,

2.96~3! ~5 loops!. ~4.7!

Averaging the two results and reporting the error as t
standard deviations, we obtainNc52.97(6), which is in
agreement with the analysis of the same series of Ref.
Nc'2.958. It is also consistent with the results of the ana
sis of the eigenvaluesv2 for N53: indeed we foundv2
.0 and v2,0 at the cubic and at the symmetric poin
o

4,
-

respectively, implyingNc,3. However, the error bars onv2
are such that the opposite inequalities are not exclud
Analogously here, althoughNc,3, the error is such that i
does not excludeN53. In practice, from this analysis alone
it is impossible to conclude safely thatNc,3.

A second possibility consists in solving the equationv2
50 perturbatively, obtaining forNc an expansion in powers
of e. The result is independent of which fixed point is ch
sen. Unfortunately, the singularity of the Borel transform
Nc(e) is not known and therefore, we used the Pade´-Borel
TABLE XII. Estimates of the critical exponents at the cubic fixed point for several values ofN. The
numberp indicates the number of loops included in the analysis, the columns labeled bya andb indicate the
intervals ofa andb used, ‘‘final’’ reports our final estimate.

N a b p53 p54 p55 Final

v1

3 @20.5,1.5# @9,21# 0.793~31! 0.793~13! 0.799~7! 0.799~14!

4 @21.0,1.0# @10,22# 0.790~20! 0.787~8! 0.790~4! 0.790~8!

8 @21.0,1.0# @8,20# 0.779~16! 0.782~5! 0.786~3! 0.786~6!

` @21.0,1.0# @10,22# 0.772~22! 0.789~11! 0.802~9! 0.802~18!

v2

3 @20.5,1.5# @8,20# 0.004~13! 0.006~4! 0.006~2! 0.006~4!

4 @21.5,0.5# @11,23# 0.073~15! 0.078~5! 0.078~2! 0.078~4!

8 @21.5,0.5# @11,23# 0.154~9! 0.155~4! 0.155~1! 0.155~2!

` @22.5,20.5# @11,23# 0.210~17! 0.208~6! 0.202~4! 0.202~8!

g

3 @1.5,3.5# @3,15# 1.370~29! 1.375~8! 1.377~3! 1.377~6!

4 @1.5,3.5# @3,15# 1.414~20! 1.421~7! 1.419~3! 1.419~6!

8 @0.5,2.5# @3,15# 1.420~22! 1.424~8! 1.422~3! 1.422~6!

` @0.0,2.0# @3,15# 1.394~27! 1.399~11! 1.399~4! 1.399~8!

n

3 @1.5,3.5# @3,15# 0.695~16! 0.699~5! 0.701~2! 0.701~4!

4 @1.5,3.5# @3,15# 0.717~11! 0.723~5! 0.723~2! 0.723~4!

8 @1.0,3.0# @3,15# 0.723~7! 0.724~3! 0.723~1! 0.723~2!

` @1.0,3.0# @3,15# 0.713~4! 0.711~2! 0.711~1! 0.711~2!

h

3 @1.0,3.0# @3,15# 0.0319~61! 0.0359~16! 0.0374~11! 0.0374~22!

4 @0.5,2.5# @4,16# 0.0319~23! 0.0339~10! 0.0357~9! 0.0357~18!

8 @0.5,2.5# @3,15# 0.0301~31! 0.0336~11! 0.0349~8! 0.0349~16!

` @0.5,2.5# @3,15# 0.0296~36! 0.0332~14! 0.0349~11! 0.0349~22!
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method. The analysis of the series already appears in Ref
and will not be repeated here. Instead, we will try to ma
use of the fact thatNc52 for d52, performing a constrained
analysis. The method has already been applied in m
instances,68,69,64,70,71providing more precise estimates of th
critical quantities. The method consists in rewriting

Nc~e!521~22e!D~e!, ~4.8!

where

D~e!5
Nc~e!22

~22e!
. ~4.9!

The quantityD(e) is expanded in powers ofe and then
resummed. One can verify that the coefficients of the exp
sion of D(e) are uniformly smaller than the coefficients
the original series, by a factor of 2 approximately. Therefo
one expects a corresponding improvement in the error e
mates. We considered Pade´’s @2/1#, @1/2#, @2/2#, and @3/1#
and several different values of the parameterb between the
‘‘reasonable’’ values 0 and 20. Pade´’s @1/2# and@2/2# have a
singularity on the real positive axis forb&7: these cases ar
of course excluded from consideration. At four loops,
find that the approximant@2/1# gives estimates varying be
tween 2.82 and 2.87, while the approximant@1/2# is stable
giving Nc'2.82. At five loops, the approximant@3/1# varies
0,
e

ny

n-

,
ti-

between 2.85 and 2.92, while the approximant@2/2# is more
stable and givesNc'2.83. To appreciate the improvement
the results due to the constrained analysis, we report
corresponding variation of the estimates for the original
ries: for 0<b<20 the approximants@2/1#, @1/2#, @2/2#, and
@3/1# give estimates varying in the intervals 2.80<Nc
<2.92, 2.90<Nc<2.96, 2.90<Nc<2.95, 2.86<Nc<3.03.
A conservative final estimate isNc52.87(5). This result is
lower than that of the previous analysis, but still compatib
with it. The constrained analysis is in much better agreem
with the results obtained in the fixed-dimension expansi
and clearly supports the claim thatNc,3.
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APPENDIX: CUBIC FIXED POINT IN THE e EXPANSION

We report here thee-expansion computation of the four
point renormalized couplingsū* andv̄* defined in Sec. II at
the cubic fixed point, following Refs. 64,71. We have calc
lated the three-loop expansion of these two quantities.
final result can be written as
ū* ~e!5
~N18!

3N (
n50

ūnen, v̄* ~e!5 (
n50

v̄nen, ~A1!

where

ū051, ~A2!

ū152
~N21!~19N2106!

27N2 , ~A3!

ū252
2~211236122540N214181N212446N31107N4!

729N4
2

l~N21!~8617 N!

81N2
1

4~1427 N26 N212 N3!z~3!

9 N3
,

~A4!

ū35
8 H~1025 N22 N2!

27N3
1

l~29116116328N27863N21209N3137N4!

729N4

2
1

157464N6
~476406402134959200N1141439956N2264950380N3111140557N42136770N5111821N6!

1
~1628 N28 N213 N3!p4

405N3
2

~N21!~8617 N!~gE l1Q1!

162N2
2

4~268154N24 N213 N3!Q2

27N3

2
40~1825 N22 N226 N312 N4!z~5!

27N4
1

~259360193392N227220N2214140N315083N41346N5!z~3!

486N5
,

~A5!
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and

v̄05
N24

N
, ~A6!

v̄15
~N21!~24241110N117N2!

27N3 , ~A7!

v̄252
25l~N24!~N21!~21N!

81N3
2

4~21N!~28232N16 N21N3!z~3!

9 N4

1
2~244944193764N261408N2110951N31565N41100N5!

729N5
, ~A8!

v̄35
8 H~N24!~824 N2N3!

27N4
2

l~221200131540N26536N225953N31581N41353N5!

729N5

1
1

157464N7 ~1905625602555117760N1598171440N22281214884N3147944832N4

1267603N5277234N6123315N7!2
~68242N232N2114N31N4!p4

405N4

2
25~N24!~N21!~21N!~gE l1Q1!

162N3
2

4~N24!~224122N25 N212 N3!Q2

9 N4

1
40~72230N211N2218N317 N41N5!z~5!

27N5

2
~22374401401536N2151152N2236648N3115662N412277N5168N6!z~3!

486N6
. ~A9!
h he
s it

orter

an-
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hen
-
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ree
op
sti-
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of
n

Here gE is Euler’s constant. We have also introduced t
following numerical constants:71

l51.171 953 619 344 729 445 . . . ,

Q1522.695 258 053 506 736 953 . . . ,

~A10!

Q250.400 685 634 386 531 428 . . . ,

H522.155 952 487 340 794 361 . . . .

A standard analysis64 gives

N53: ū* 51.416~10!, v̄* 520.03~14!; ~A11!

N54: ū* 50.971~19!, v̄* 50.58~9!; ~A12!

N58: ū* 50.455~73!, v̄* 51.14~9!. ~A13!
eThe estimates ofv̄* are in reasonable agreement with t
results of Sec. III, although they are much less precise, a
should be expected since here we are analyzing a sh
series. On the other hand, the estimates ofū* strongly dis-
agree with the quoted error bars. The estimate forN53 is
the worst one: indeed, the six-loop fixed-dimension exp
sion predictsū* 51.321(18). However, the quoted erro
~based, as usual, on the stability of the estimates w
changing the parametersb anda) seem to be largely under
estimated. For instance, the three-loop series forū* at the
O(N)-symmetric fixed point givesū* 51.39(7) ~Ref. 71!:
the error is in this case seven times larger. There is no rea
to believe the error on the estimate ofū* at the cubic point to
be much smaller than that at the isotropic one. Moreove
is difficult to accept that an expansion truncated at th
loops might give a more precise result than the six-lo
fixed-dimension expansion. Thus, the previous error e
mates should not be trusted and the observed stabilit
probably accidental. If we assume that the correct error is
order '0.07 as in theO(3) case, then all results are i
agreement. Note that the errors onv̄* are instead of the
expected order of magnitude.
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of ū* derived from thee expansion were affected by a nume
cal error; the correct results that are only slightly different fro
the older ones appear in Ref. 71.

65A. Pelissetto and E. Vicari~unpublished!.
66Of course, it is possible to defineNc by requiringv250 at the

cubicfixed point. The result, however, should not depend on t
choice.

67We can also compare the results forū* and v̄* , noting thatū*
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