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Five-loop renormalization-group expansions for the three-dimensionaln-vector cubic model
and critical exponents for impure Ising systems
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The renormalization-group~RG! functions for the three-dimensionaln-vector cubic model are calculated in
the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the
three-dimensional impure Ising systems are extracted from the five-loop RG series by means of the Pade´-
Borel-Leroy resummation undern50. These exponents are found to beg51.32560.003, h50.02560.01,
n50.67160.005,a520.012560.008, andb50.34460.006. For the correction-to-scaling exponent, the less
accurate estimatev50.3260.06 is obtained.
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I. INTRODUCTION

The critical thermodynamics of cubic crystals and wea
disordered systems has remained an area of extensive
retical work during past decades. Considerable progres
studying the random critical behavior was achieved 25 ye
ago when Harris and Lubensky1,2 and Khmelnitskii3 attacked
the problem using the field-theoretical renormalization-gro
~RG! approach based on the Euclidean scalarw4 theory in
(42e) dimensions. As a result, the regular method for c
culating critical exponents and other universal quantities
the impure Ising model—the famousAe expansion—was in-
vented. The numerical power of this technique, howev
stayed for a long time unclear since only lower-order con
butions to critical exponents and the equation of state h
been found.1–5 Recently, starting from the five-loop RG se
ries obtained for the (42e)-dimensional cubic model by
Kleinert and Schulte-Frohlinde,6 the calculation of theAe
expansions for critical exponents was performed up to
Ae4 and Ae5 terms.7 As was found, these series posses
rather irregular structure making them unsuitable for sub
quent resummation and, hence, practically useless for ge
numerical estimates.8

On the other hand, there exists an alternative fie
theoretical approach that proved to be very efficient wh
used for evaluation of universal critical quantities. We me
the perturbative renormalization group in three dimensi
yielding most accurate numerical estimates for critical ex
nents, critical amplitude ratios, and universal higher-or
couplings of theO(n)-symmetric systems.9–20 The impure
Ising model at criticality is known to be described by t
n-vector field theory with the quartic self-interaction havin
a hypercubic symmetry, providedn→0 ~the replica limit!
and the coupling constants have proper signs. In the 19
the RG expansions for three-dimensional~3D! cubic and im-
pure Ising models have been calculated in the two-loo21

three-loop,22,23 and four-loop24,25 approximations paving the
PRB 610163-1829/2000/61~22!/15130~6!/$15.00
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way for estimating the critical exponents and other univer
quantities.21–34 The numerical results thus obtained we
found to agree, in general, with the most accurate experim
tal and simulation data.

In the course of this study, it was revealed, however, t
even the highest-order available, four-loop 3D RG exp
sions, when resummed by means of the generalized P´-
Borel-Leroy method do not allow us, in fact, to optimize th
resummation procedure, i.e., to choose the best Pade´ approx-
imant and the optimal value of the tune parameter since th
is the only approximant—@3/1#—that does not suffer from
positive axis poles. Moreover, an account for four-loop ter
in the 3D RG expansions shifts the fixed point coordina
and the value of the correction-to-scaling exponentv appre-
ciably with respect to their three-loop analogs, indicating t
at this step the RG-based iterations do not still achieve t
asymptote. This prevents the four-loop RG approximat
from being thought of as sufficient, i.e., providing, within th
perturbation theory, the accurate theoretical predictions.

In such a situation, a calculation of the higher-order co
tributions to the RG functions looks very desirable. In th
paper, the five-loop RG expansions for the three-dimensio
cubic model are obtained and the resulting numerical e
mates for the critical exponents of the weakly disorde
Ising systems are found.

II. RG EXPANSIONS FOR b FUNCTIONS
AND CRITICAL EXPONENTS

The Landau-Wilson Hamiltonian of the three-dimension
n-vector cubic model reads

H5
1

2E d3xFm0
2wa

21~¹wa!21
u0

12
wa

2wb
21

v0

12
wa

4 G , ~1!

wherew is an n-component real order parameter,m0
2 being

the reduced deviation from the mean-field transition te
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PRB 61 15 131FIVE-LOOP RENORMALIZATION-GROUP EXPANSIONS . . .
perature. In the replica limit, this Hamiltonian describes
critical behavior of the impure Ising model providedu0,0
andv0.0.

We calculate theb functions for the Hamiltonian Eq.~1!
within a massive theory. The renormalized Green funct
GR(p,m), the w2 insertion, and four-point vertice
UR(pi ,m,u,v,), VR(pi ,m,u,v,) are normalized at zero ex
ternal momenta in a conventional way:

GR
21~0,m!5m2,

]GR
21~p,m!

]p2 U
p250

51,
e

n

GR
(1,2)~p,q,m,u,v !up5q5051,

UR~0,m,u,v !5mu, VR~0,m,u,v !5mv. ~2!

The value of the one-loop vertex graph including the fac
(n18) is absorbed inu and v in order to make the coeffi-
cient for theu2 term in bu equal to unity.

The four-loop RG expansions for the functions of intere
have been found earlier.24 To extend these series to the fiv
loop order, we calculate corresponding tensor~field! factors
generated by theO(n)-symmetric and cubic interactions
Taking, then, numerical values of the 3D integrals from R
35, we arrive at the following five-loop expansions:
bu

u
512u2

6v
~n18!

1
4

27~n18!2 @~41n1190!u21300uv169v2#2
1

~n18!3 @~1.348 942 76n2154.940 377 0n

1199.640 417!u31~19.940 635 0n1493.841 548!u2v1~1.865 667 61n1302.867 786!uv2165.937 285 1v3#

1
1

~n18!4 @~20.155 645 891n3135.820 203 8n21602.521 231n11832.206 73!u41~24.058 645 97n2

1546.221 669n16192.512 10!u3v1~81.751 008 6n16331.226 42!u2v2

1~11.619 156 5n12777.394 24!uv31495.005 747v4#

2
1

~n18!5 @~0.051 236 175 5n413.237 876 19n31668.554 337n217819.564 76n120 770.176 97!u5

1~1.876 564 22n3165.418 109 9n2111 485.347 19n189 807.669 84!u4v1~21.050 525 8n213858.044 76n

1130 340.905 33!u3v21~630.460 362n190 437.636 44!u2v3

1~79.535 942 1n133 088.222 88!uv415166.392 01v5#, ~3!

bv

v
512

~12u19v !

~n18!
1

4

27~n18!2 @~23n1370!u21624uv1231v2#2
1

~n18!3 @~21.251 107 31n2

141.853 902 1n1469.333 970!u31~2.239 058 86n11228.605 91!u2v1957.781 662uv2

1255.929 737v3#1
1

~n18!4 @~0.574 652 520n320.267 107 207n21584.287 672n15032.692 26!u4

1~0.172 125 857n21322.925 039n117 967.850 60!u3v1~249.482 007 8n

121 964.393 81!u2v2111 856.956 86uv312470.392 52v4#2
1

~n18!5 @~20.318 104 330n4

23.629 821 62n31139.264 889n219324.600 54n164 749.281 95!u51~21.144 541 68n3

2122.339 901n2110 376.558 04n1294 450.703 68!u4v1~12.614 708 9n2

1233.955 446n1493 917.036 78!u3v21~21363.287 87n1407 119.306 75!u2v31

170 403.119 05uv4129 261.585 18v5#, ~4!

g21512
~n12!u13v

2~n18!
1

1

~n18!2 @~n12!u216uv13v2#2
1

~n18!3 @~0.879 558 892n216.485 476 86n

19.452 718 16!u31~7.916 030 03n142.537 231 7!u2v1~1.155 056 03n

149.298 205 7!uv2116.817 753 9v3#1
1

~n18!4 @~20.128 332 104n317.966 740 70n2151.844 213 0n
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170.794 806 3!u41~21.539 985 25n2198.680 858 9n1424.768 838!u3v1~30.815 175 5n

1752.049 392!u2v21~5.642 961 22n1516.266 750!uv31130.477 428v4#

2
1

~n18!5 @~0.049 096 605 5n414.288 152 49n31108.361 822n21537.813 610n1675.699 608!u5

1~0.736 449 089n3162.849 389 3n211499.728 55n15067.747 06!u4v1~9.542 864 09n211059.534 69n

112 193.045 34!u3v21~295.911 053n112 966.211 84!u2v31~43.227 584 5n

16587.833 86!uv411326.212 29v5#, ~5!

h5
8

27~n18!2 @~n12!u216uv13v2#1
1

~n18!3 F ~0.024 684 001 4~n2110n116!u3

10.222 156 013~n18!u2v11.999 404 12uv210.666 468 039v3#1
1

~n18!4 @~20.004 298 562 6n3

10.667 985 921n214.609 221 06n16.512 109 94!u41~20.051 582 750 7n218.118 996 555n

139.072 659 6!u3v1~2.044 846 77n168.665 263 4!u2v2147.140 073 4uv3

111.785 018 4v4#2
1

~n18!5 @~0.006 550 922 14n420.132 451 063n311.891 139 27n2115.188 093 4n

121.647 206 4!u51~0.098 263 832 1n322.183 293 61n2132.733 676 2n1162.354 048!u4v

1~20.164 297 296n214.145 870 79n1382.023 815!u3v21~23.991 318 84n

1389.996 707!u2v31193.002 694uv4138.600 538 9v5#. ~6!
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These expansions will be used to evaluate the critical ex
nents of the impure Ising model.

III. RESUMMATION AND NUMERICAL ESTIMATES

Numerical values of critical exponents are known to
determined by the coordinates of a relevant fixed point.
our case, i.e., forn50, a point of interest is the random fixe
point. To find its location and, more generally, to extract t
physical information from divergent RG series, a proper
summation procedure should be applied. Here, we use
Padé-Borel-Leroy resummation technique, which demo
strates high numerical effectiveness both for t
O(n)-symmetric models9,11,15 and for anisotropic system
preserving their internal symmetries~see, e.g., Ref. 36 fo
details!. Since the expansions of quantities depending on
two variablesu andv are dealt with, the Borel-Leroy trans
formation is taken in a generalized form:

f ~u,v !5(
i j

ci j u
iv j5E

0

`

e2ttbF~ut,vt !dt,

F~x,y!5(
i j

ci j x
iy j

~ i 1 j 1b!!
. ~7!

To perform an analytical continuation, the resolvent serie

F̃~x,y,l!5 (
n50

`

ln(
l 50

n
cl ,n2 lx

lyn2 l

~n1b!!
~8!
o-

n

e
-
he
-

e

is constructed, which is a series in powers ofl with coeffi-
cients being uniform polynomials inx, y and then Pade´ ap-
proximants@L/M # in l at l51 are used.

For the resummation of the five-loop RG expansions,
employ three different Pade´ approximants:@4/1#, @3/2#, and
@2/3#. The first of them, being pole-free, is known to giv
good numerical results for 3DO(n)-symmetric models
while the others are near-diagonal and should reveal,a pri-
ori, the best approximating properties. The coordinates of
random fixed point resulting from the series Eqs.~3! and~4!
resummed using these approximants underb50 andb51
are presented in Table I, which also contains analogous
mates given by the four-loop RG expansions. The four-lo
series were processed on the base of the Pade´ approximant
@3/1#, since use of the diagonal approximant@2/2# leads to
the integrand in Eq.~7! that has a dangerous pole in th
vicinity of the random fixed point both forbu andbv .37 The
fixed-point location given by the approximant@2/3# is pre-
sented forb50 only, because forb51 this approximation
predicts no random fixed point.

As seen from Table I, Pade´ approximants@4/1# and @3/2#
yield numerical values of the random fixed-point coord
nates, which are remarkably close to each other. Moreo
for b50, they are also close to those given by the appro
mant @3/1#: the largest difference between the five-loop a
four-loop estimates does not exceed 0.026. With increas
b, corresponding numbers diverge, indicating thatb50 is an
optimal value of the tune parameter. On the contrary, P´
approximant @2/3# gives the random fixed-point location
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which deviates appreciably from those predicted by appro
mants@4/1#, @3/2#, and@3/1#. This approximant, however, i
found to lead to poor numerical results even for simpler s
tems, e.g., for the Ising model. Indeed, when used to eval
the coordinate of the Ising fixed point, it results invc
51.475~underb50) while the best estimate today is know
to bevc51.411.14 This forces us to reject the data obtain
on the base of the approximant@2/3#.

So, to determine the random fixed-point coordinates,
have to average the numerical data given by three work
Padéapproximants atb50. This procedure yields the value

uc520.711, vc52.008, ~9!

which are claimed to be the final results of our search of
random fixed-point location. Let us estimate their accura
It seems unlikely that the deviations of these numbers fr
the exact ones would exceed the differences between t
and the four-loop estimates since, among all proper e
mates, the four-loop ones most strongly differ from the a
eraged values~9!. Hence, the error bounds foruc andvc are
believed to be not greater than60.012 and60.016, respec-

TABLE I. Numerical estimates for the random fixed-point loc
tion and correction-to-scaling exponentv obtained from the five-
loop RG expansions~3,4! resummed by the Pade´-Borel-Leroy tech-
nique using approximants@4/1#, @3/2#, and@2/3#. The last column
contains results given by the four-loop RG series processed on
base of the approximant@3/1#. The superscript ‘‘c’’ denotes that the
exponentv is complex and its real part is presented. The sup
script ‘‘p’’ stands to mark that the Pade´ approximant has a ‘‘non-
dangerous’’ positive axis pole, i.e., a pole well remoted from
origin (t.40) that affects neither the procedure of numerical eva
ation nor the value itself of the Borel integral.

b @4/1# @3/2# @2/3# @3/1#

uc 0 20.7200 20.7148 20.6871 20.6991
1 20.7445 20.7385p 20.6839

vc 0 2.0182 2.0125 2.0571 1.9922
1 2.0296 2.0236p 1.9877

v 0 0.266 0.303 0.462c 0.376
1 0.263 0.325p 0.361
i-

-
te

e
g

e
.
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tively. Another way to estimate an apparent accuracy is
trace how the averaged values of the random fixed-point
ordinates vary with the variation ofb. We calculateuc and
vc using the pole-free approximants@4/1# and @3/1# for 0
<b<15; b515 is chosen as a largest reasonable value
the tune parameter, since for greaterb the saturation of de-
pendences of various quantities onb becomes visible. Run-
ning through this interval, the averaged coordinates cha
their values by about 0.02 indicating that an accuracy of
estimates~9! is of the order of 0.01–0.02, in accord with th
found above.

With the numbers~9! in hand, we can evaluate the critica
exponents for the 3D impure Ising model. The exponentg is
estimated by the Pade´-Borel-Leroy resummation of the RG
series~5! for g21 and of the inverse series, i.e., the R
expansion forg. The Fisher exponent is also evaluated
two different ways: via the estimation of the critical exp
nenth25(22h)(g2121) having the RG expansion, whic
exhibits a good summability, and by direct substitution of t
fixed point coordinates into the series~6! with rapidly dimin-
ishing coefficients. The estimates forh originating fromh2

were obtained under the central value ofg: g51.325. The
numerical results thus found are collected in Table II.

As is seen from this table, two methods of evaluating
susceptibility exponentg lead to remarkably close numerica
results, which very weakly depend on the tune parame
Indeed, with increasingb from 0 to 15, the estimates forg
obtained by the resummation of the RG series forg andg21

on the base of the pole-free approximant@4/1# vary by less
than 0.0036, while the difference between them never
ceeds 0.0013. Under the same variation ofb, the value ofg
averaged over these two most reliable approximations
mains within the segment@1.3240, 1.3266#. On the other
hand, the accuracy of determination of the critical expone
depends not only on a quality of the resummation proced
but also on the accuracy achieved in the course of locatin
the relevant fixed point. That is why we investigated to wh
extent the numerical estimates forg vary when coordinates
of the random fixed point run through their error bars. It w
found that the susceptibility exponent calculated at the o
mal value of tune parameterb52 ~see Table II! does not
leave the segment@1.3228, 1.3263#. This enables us to con

he

r-

e
-

ty

7 2

5 9

4 78
TABLE II. Numerical estimates for the critical exponentsg and h obtained from the five-loop RG
expansions~5,6! resummed by the Pade´-Borel-Leroy technique using approximants@4/1# and @3/2#. DS
stands for ‘‘direct summation,’’ the symbol (g21)21 means that the RG series forg21 was resummed. The
superscript ‘‘p’’ denotes, as in Table I, that the Pade´ approximant has a ‘‘nondangerous’’ pole, while emp
cells are due to the dangerous ones spoiling corresponding approximations. The estimates forh standing in
the fifth and sixth lines were obtained underg51.325 by the resummation of the RG series forh2.

b 0 1 2 3 4 5 10 15

(g21)21 @4/1# 1.323 6 1.324 4 1.325 0 1.325 4 1.325 7 1.326 0 1.326 8 1.32
@3/2# 1.325 3p 1.325 7p 1.326 0 1.326 5 1.326 7

g @4/1# 1.324 5 1.324 8 1.325 0 1.325 2 1.325 3 1.325 4 1.325 7 1.32
@3/2# 1.324 6p 1.325 1p 1.325 4p 1.325 7p 1.325 9p 1.326 1p 1.326 7p 1.327 0p

h ~via h2) @4/1# 0.031 22 0.027 65 0.025 06 0.023 11 0.021 58 0.020 36 0.016 65 0.01
@3/2# 0.028 70p 0.024 19p 0.021 68p 0.016 66p 0.014 87

h ~DS! 0.027 2
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clude that the error bounds for the theoretical value og
obtained in this work would be about60.003 or smaller.

Less stable numerical results, with respect to a varia
of b, are found for the Fisher exponenth. As one can see
from Table II, the values ofh given by the resummation o
the RG series forh2 with use of the pole-free Pade´ approx-
imant @4/1# spread from 0.0148 to 0.0312. The average o
this interval is equal to 0.023. The direct summation of
RG expansion forh at the random fixed point gives 0.027.
is natural to suppose that 0.025 should play a role of the m
likely value of exponenth. Since the estimates forh found
via the evaluation ofh2 are sensitive to the accepted value
g, the apparent accuracy achieved in this case is not belie
to be better than60.01.

Having estimatedg andh, we can evaluate other critica
exponents using well-known scaling relations. So, the fi
results of our five-loop RG analysis are as follows:

g51.32560.003, h50.02560.01,

n50.67160.005,

a520.012560.008, b50.34460.006. ~10!

These numbers are thought to be the most accurate theo
cal estimates for the critical exponents of the 3D impu
Ising model known today. It is interesting to compare the
with those obtained earlier within the lower-order RG a
proximations. For the exponentg, previous RG calculations
in three dimensions gave the values 1.337~two-loop!,21,27

1.328 ~three-loop!,23 1.326 ~four-loop!,24 and 1.321
~four-loop!.25 Being found by means of the different resum
mation procedures, they are, nevertheless, centered ar
our estimate, which is thus argued to be very close to
exact value ofg or, more precisely, to the true asymptote
the RG iterations.

At the end of this work, we employ our technique
evaluate the correction-to-scaling exponentv. The exponent
v is known to be equal to the stability matrix eigenvalue th
has a minimal modulus. The derivatives]bu /]u, ]bu /]v,
]bv /]u, and]bv /]v entering this matrix are evaluated n
merically at the random fixed point on the base of the
summed RG expansions forbu andbv , and then the matrix
eigenvalues are found. Such a procedure leads to the
mates forv presented in Table I~lower lines!. They are seen
to be considerably scattered and sensitive to the tune pa
eter. The average over three working Pade´ approximants,
however, being equal to 0.315 atb50 and to 0.316 atb
51 turns out to be stable under the variation ofb unlessb
becomes large. It is natural therefore to accept that

v50.3260.06. ~11!

This number is smaller by 0.05–0.07 than its counterp
given by recent Monte Carlo simulations38 and the alterna-
n
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tive RG analysis,33 but their central values lie within the
declared error bounds~11!. Hence, an agreement between t
results discussed exists. On the other hand, because o
low accuracy, the estimate~11! would not be thought of as
satisfactory. It certainly needs to be improved, along with
estimates for the small exponentsh and a also exhibiting
appreciable uncertainties. The only way to do this is
studying of the critical behavior of the 3D impure Isin
model in the next perturbative order that includes calcu
tions of the six-loop terms in the relevant RG expansio
Such calculations are now in progress.

IV. CONCLUSION

To summarize, we have calculated the five-loop RG
pansions for theb functions and critical exponents of the 3
n-vector cubic model. The resummation of the RG series
the Pade´-Borel-Leroy technique in the replica limit (n50)
has enabled us to obtain high-precision numerical estim
for the random fixed-point coordinates and the critical exp
nentsg, h, a, n, andb of the 3D impure Ising model. Fo
the correstion-to-scaling exponentv, the resummed five-
loop RG expansions turned out to give much less accu
numerical results. The values of the critical exponents
tained earlier from the lower-order RG expansions in th
dimensions are shown to be centered by our five-loop e
mates. This indicates that the five-loop RG approximat
provides numerical data very close to the asymptotic on
i.e., to those representing the point of convergence of
RG-based iterations. At the same time, an accuracy achie
when evaluating the exponentv would not be referred to as
sufficient making the next-order, six-loop RG calculation
very desirable.

Note added. After this paper had been submitted for pu
lication, Ref. 39 appeared where the six-loop RG expansi
for the 3D cubic model are calculated. The five-loop ter
obtained in this remarkable work are found to agree w
ours. Among other quantities, in Ref. 39 the marginal va
of n, nc , separating different regimes of critical behavior
the cubic model, is estimated. To clear up how sensitive
the method of resummation the five-loop RG results are,
evaluatenc using the Pade´-Borel-Leroy technique. Exploit-
ing the near-diagonal Pade´ approximant@3/2# underb vary-
ing from 0 to 20, the values ofnc are obtained which lie
between 2.89 and 2.92. They agree quite well with the e
matenc52.91(3) extracted from the five-loop RG series
means of the conformal-mapping-based resumma
machinery.39

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education
Russian Federation under Grant No. 97-14.2-16. One of
authors~A.I.S.! gratefully acknowledges also the support
the International Science Foundation via Grant No. p99-9



A

T

n
m
t
a

p

,

B

f

-
he
e-
-
of

ev.

PRB 61 15 135FIVE-LOOP RENORMALIZATION-GROUP EXPANSIONS . . .
1A.B. Harris and T.C. Lubensky, Phys. Rev. Lett.33, 1540~1974!.
2T.C. Lubensky, Phys. Rev. B9, 3573~1975!.
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