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The renormalization-groufRG) functions for the three-dimensionalvector cubic model are calculated in
the five-loop approximation. High-precision numerical estimates for the asymptotic critical exponents of the
three-dimensional impure Ising systems are extracted from the five-loop RG series by means of the Pade
Borel-Leroy resummation under=0. These exponents are found to e 1.325+0.003, »=0.025+0.01,
r=0.671+0.005,a= —0.0125+0.008, and3=0.344+ 0.006. For the correction-to-scaling exponent, the less
accurate estimate =0.32+0.06 is obtained.

[. INTRODUCTION way for estimating the critical exponents and other universal
quantities?> =34 The numerical results thus obtained were
The critical thermodynamics of cubic crystals and weaklyfound to agree, in general, with the most accurate experimen-
disordered systems has remained an area of extensive thég! and simulation data.
retical work during past decades. Considerable progress in In the course of this study, it was revealed, however, that
studying the random critical behavior was achieved 25 year§ven the highest-order available, four-loop 3D RG expan-
ago when Harris and Lubensk§and Khmelnitski attacked ~ Sions, when resummed by means of the generalized-Pade
the problem using the field-theoretical renormalization-groug2Crel-Leroy method do not allow us, in fact, to optimize the
(RG) approach based on the Euclidean scalartheory in resummation progedure, i.e., to choose the best Bppmx-
(4— €) dimensions. As a result, the regular method for Cal_!mant and the optlmal value of the tune parameter since there
culating critical exponents and other universal quantities of> th? only approximant+3/1]—that does not suffer from
the impure Ising model—the famow expansion—was in- positive axis poles. Moreover, an account for four-loop terms

d Th ical ¢ thi hni h in the 3D RG expansions shifts the fixed point coordinates
vented. The numerical power of this technique, NOWeVer, 4 ihe value of the correction-to-scaling exponergppre-

stayed for a long time unclear since only lower-order contri-gjapy with respect to their three-loop analogs, indicating that

butions to crglcal exponents and the equation of state havgy this step the RG-based iterations do not still achieve their

been found:™ Recently, starting from the five-loop RG se- asymptote. This prevents the four-loop RG approximation

ries obtained for the (4 €)-dimensional cubic model by fom being thought of as sufficient, i.e., providing, within the

Kleinert and Schulte-Frohlindethe calculation of theJe  perturbation theory, the accurate theoretical predictions.

expansions for critical exponents was performed up to the In such a situation, a calculation of the higher-order con-
e* and \/e® terms’ As was found, these series possess aributions to the RG functions looks very desirable. In this

rather irregular structure making them unsuitable for subsepaper, the five-loop RG expansions for the three-dimensional

quent resummation and, hence, practically useless for gettingubic model are obtained and the resulting numerical esti-

numerical estimate$. mates for the critical exponents of the weakly disordered

On the other hand, there exists an alternative field{sing systems are found.

theoretical approach that proved to be very efficient when

used for evaluation of universal critical quantities. We mean

the perturbative renormalization group in three dimensions

yielding most accurate numerical estimates for critical expo-

nents, critical amplitude ratios, and universal higher-order The Landau-Wilson Hamiltonian of the three-dimensional

couplings of theO(n)-symmetric system%.?° The impure  n.vector cubic model reads

Ising model at criticality is known to be described by the

n-vector field theory with the quartic self-interaction having 1

a hypercubic symmetry, providea—0 (the replica limi} H= _f d3x

and the coupling constants have proper signs. In the 1980s, 2

the RG expansions for three-dimensiof&iD) cubic and im-

pure Ising models have been calculated in the two-fdop, where ¢ is ann-component real order parametmrg being

three-loop?>23 and four-loo*2° approximations paving the the reduced deviation from the mean-field transition tem-

II. RG EXPANSIONS FOR B FUNCTIONS
AND CRITICAL EXPONENTS
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perature. In the replica limit, this Hamiltonian describes the I'$2(p,a,mu,v)|p-q-0=1,
critical behavior of the impure Ising model provideg<<0
andvy>0. Ug(0Om,u,v)=mu, Vg(0m,u,v)=mo. 2

We calculate the3 functions for the Hamiltonian Eq1)
within a massive theory. The renormalized Green functio
Ggr(p,m), the ¢? insertion, and four-point vertices

The value of the one-loop vertex graph including the factor
"n+8) is absorbed inu andv in order to make the coeffi-
cient for theu? term in 8, equal to unity.

Ur(pi,m,u,v,), Vr(pi,mu,v,) are normalized at zero ex-  The four-loop RG expansions for the functions of interest
ternal momenta in a conventional way: have been found earlidf.To extend these series to the five-
loop order, we calculate corresponding tengid) factors
IGR(p,m) generated by theO(n)-symmetric and cubic interactions.
G,;l(O,m)z m?, ———>—— =1, Taking, then, numerical values of the 3D integrals from Ref.
ap p2=0 35, we arrive at the following five-loop expansions:
Bu 6v 2 2 2
—=1-u (41In+190)u“+ 300uv + 6% “]— (1.348942 76°+54.940377 @

“n+8)  27nrel (n+8)3t

+199.640 41Yu®+ (19.940 635 O+ 493.841 548u%y + (1.865 667 6h + 302.867 78Buv 2+ 65.937 285 1.3]

1
+ W[( —0.155 645 89t%+ 35.820 203 8+ 602.521 23m + 1832.206 7Bu’*+ (— 4.058 645 97

+546.221 668+ 6192.512 10uy + (81.751 008 6 + 6331.226 4Pu%?
+(11.619 156 B+ 2777.394 24uv 3+ 495.005 74%*]

1
- W[(O.OSl 236175 6%+ 3.237 876 18°+ 668.554 33@°+ 7819.564 76+ 20 770.176 9yu®

+(1.876 564 2R3+ 65.418 109 82+ 11 485.347 18+ 89 807.669 8¥u“v + (21.050 525 2+ 3858.044 76
+130 340.905 38:%0 2+ (630.460 368+ 90 437.636 4%y
+(79.535 942 h+ 33 088.222 8fuv*+5166.392 02.5], 3)

B, (12u+9v)

= +
v (n+8) 27(n+8)2[(
+41.853 902 h+469.333 970u®+ (2.239 058 86 + 1228.605 91uv + 957.781 66802

1
231+ 370)u?+ 624uv + 231w ?]— (n+—8)3[( —1.251107 3m?

+255.929 7333%] + 0.574 652 520°—0.267 107 20/ + 584.287 678+ 5032.692 26u*

n+g)rll
+(0.172 125 852+ 322.925 038+ 17 967.850 6u°v + ( — 49.482 007 &

1
+21964.393 8Ju?v?+ 11 856.956 86v >+ 2470.392 524] — (n+—8)5[( —0.318104 330*

—3.62982160°%+ 139.264 8882+ 9324.600 54+ 64 749.281 9%u°+ (— 1.144 541 68°

—122.33990m%+ 10 376.558 0A+ 294 450.703 68u%y + (12.614 708 @2

+233.955 446+ 493 917.036 78u%0 2+ (— 1363.287 87+ 407 119.306 71203+

170403.119 06v*+ 29 261.585 18°], (4

“1=1 (n+2)u+3v+ ! +2)u?+ 6up + 3v?2 ! 0.879558 89@2%+ 6.485 476 86
VT omre) et (NT AT OW I gl (0. e

+9.452 718 16u®+(7.916 030 08+ 42.537 231 Ju?y + (1.155 056 08

+49.298 205 Jup2+16.817 753 93] + —0.128 332 1043+ 7.966 740 762+ 51.844 213 @

1
LRI
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+70.794 806 3u*+ (— 1.539 985 262+ 98.680 858 @ + 424.768 838u°y + (30.815 175 &
+752.049 392u%v 2+ (5.642 961 28+ 516.266 750uv >+ 130.477 428%]

- (n+—8)5[(o.049 096 605 B*+4.288 152 48°+ 108.361 828%+ 537.813 610+ 675.699 608u°

+(0.736 449 088°+ 62.849 389 8%+ 1499.728 56+ 5067.747 0u’v + (9.542 864 082+ 1059.534 68
+12193.045 32+ (295.911 058+ 12 966.211 8Mu’v 3+ (43.227 584 B
+6587.833 8Buv*+1326.212 29°], (5)

8
n—+8)2[(n+2)u2+ GUU+302]+

Ky (0.024 684 001 @2+ 100+ 16)u’

(n+8)3

+0.222 156 01@1+ 8)u?v +1.999 404 1Rv2+ 0.666 468 038°] + (—0.004 298 562 6°

(n+8)4[
+0.667 985 92012+ 4.609 221 06+ 6.512 109 9%u*+ ( — 0.051 582 750 A2+ 8.118 996 556
+39.072 659 6uy + (2.044 846 77+ 68.665 263 Ju’v>+47.140 073 4iv®

1
+11.785018 44]— W[(o.ooes 550922 1d*—0.132 451 068°+ 1.891 139 272+ 15.188 093 4

+21.647 206 4u®+ (0.098 263 832 1°— 2.183 293 6m>+ 32.733 676 A+ 162.354 048u*v
+(—0.164 297 296%+ 4.145 870 78+ 382.023 815u°v?+ (— 3.991 318 84
+389.996 707uv3+193.002 694v*+ 38.600 538 9°]. (6)

These expansions will be used to evaluate the critical expads constructed, which is a series in powers\ofith coeffi-

nents of the impure Ising model. cients being uniform polynomials ir, y and then Padap-
proximants[L/M] in N at =1 are used.
. RESUMMATION AND NUMERICAL ESTIMATES For the resummation of the five-loop RG expansions, we

) . employ three different Padapproximants{4/1], [3/2], and
Numerical values of critical exponents are known to b(la{)

q ined by th di : | fixed point. | 2/3]. The first of them, being pole-free, is known to give
etermined by the coordinates of a relevant fixed point. ood numerical results for 3D0D(n)-symmetric models

our case, i.e., fon=0, a point of interest is the random fixed e e others are near-diagonal and should re\aegt;i-
point. To find its location and, more generally, to extract the . S . .
hysical information from divergent RG series, a proper re2r: the bgst approxmatm.g properties. Th.e coordinates of the
P ! ndom fixed point resulting from the series E@.and(4)

summation procedure should be applied. Here, we use tH& d usi h . ngter0 andb= 1
PadeBorel-Leroy resummation technique, which demon-'€Summed using these approximants unier0 andb=

strates high numerical effectiveness both for the@r® presented in Table I, which also contains analogous esti-
O(n)-symmetric modefs'1'® and for anisotropic systems maFes given by the four-loop RG expansiqns. The _four-loop
preserving their internal symmetriésee, e.g., Ref. 36 for Series were processed on the base of the Rageoximant
details. Since the expansions of quantities depending on th&3/1], since use of the diagonal approxima@t2] leads to
two variablesu andv are dealt with, the Borel-Leroy trans- the integrand in Eq(7) that has a dangerous pole in the
formation is taken in a generalized form: vicinity of the random fixed point both fg8, and3, .*" The
fixed-point location given by the approximai/3] is pre-
sented forb=0 only, because fob=1 this approximation
predicts no random fixed point.
As seen from Table |, Padepproximantg§4/1] and[3/2]
yield numerical values of the random fixed-point coordi-
(7)  nates, which are remarkably close to each other. Moreover,
for b=0, they are also close to those given by the approxi-
mant[3/1]: the largest difference between the five-loop and
four-loop estimates does not exceed 0.026. With increasing
n lnel b, corresponding numbers diverge, indicating that0 is an
F(x,y.\)= ?\”2 Cn-Xy (8) optimal value of the tune parameter. On the contrary,” Pade
o <o (n+b)! approximant[2/3] gives the random fixed-point location,

f(u,v)=> ci,-uivi:f e tPF(ut,vt)dt,
ij 0
P =3 Y
Y= GEspyr
To perform an analytical continuation, the resolvent series

0

n=
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TABLE I. Numerical estimates for the random fixed-point loca- tively. Another way to estimate an apparent accuracy is to
tion and correction-to-scaling exponeatobtained from the five-  trace how the averaged values of the random fixed-point co-
loop RG expansiont3,4) resummed by the Padgorel-Leroy tech-  grdinates vary with the variation df. We calculateu, and

nigue using approximan{st/1], [ 3/2], and[2/3]. The last column v, using the pole-free approximanké/1] and [3/1] for 0
contains results given by the four-loop RG series processed on the',. _ ., | _ .
base of the approximap8/1]. The superscript £” denotes that the =b<15; b=15 is chosen as a largest reasonable value of

exponentw is complex and its real part is presented. The super-the tune parametgr, since fo'r. grealethe saturgt!on of de-
script “p” stands to mark that the Padepproximant has a “non- pgndences of various guantities brbecomes V|§|ble. Run-
dangerous” positive axis pole, i.e., a pole well remoted from thening through this interval, the averaged coordinates change
origin (t>40) that affects neither the procedure of numerical evalu-their values by about 0.02 indicating that an accuracy of the

ation nor the value itself of the Borel integral. estimateg9) is of the order of 0.01-0.02, in accord with that
found above.
b [4/1] [3/2] [2/3] [3/1] With the numberg9) in hand, we can evaluate the critical
U 0 _07200 —07148 —06871 —0.6991 exponents for the Sp impure Ising model. The exponeig
_ _ _ estimated by the Paeorel-Leroy resummation of the RG
1 0.7445 0.738% 0.6839 . 1 . . .
series(5) for y~ - and of the inverse series, i.e., the RG
Ve 0 2.0182 2.0125 2.0571 1.9922  expansion fory. The Fisher exponent is also evaluated in
1 2.0296 2.0236 1.9877 two different ways: via the estimation of the critical expo-
—(o_ -1_ i ; i
o 0 0266 0.303 0462  0.376 ne;]l_tbrgtz—(Z Z)W t).l.:‘av'n?j g‘e dRG ?ngnf.;o?’ Wh:cct?]
1 0.963 0.395 0.361 exhibits a good summability, and by direct substitution of the

fixed point coordinates into the seri@® with rapidly dimin-

ishing coefficients. The estimates fgroriginating from »,

which deviates appreciably from those predicted by approxiwere obtained under the central valuesof y=1.325. The

mants[4/1], [3/2], and[3/1]. This approximant, however, is numerical results thus found are collected in Table II.

found to lead to poor numerical results even for simpler sys- As is seen from this table, two methods of evaluating the

tems, e.g., for the Ising model. Indeed, when used to evaluatsusceptibility exponeny lead to remarkably close numerical

the coordinate of the Ising fixed point, it results in.  results, which very weakly depend on the tune parameter.

=1.475(underb=0) while the best estimate today is known |ndeed, with increasingy from 0 to 15, the estimates foy

to bevc= 1.4111 This forces us to reject the data obtained obtained by the resummation of the RG Series»)f(a‘nd 7_1

on the base of the approximai#/3]. on the base of the pole-free approximatl] vary by less
So, to determine the random fixed-point coordinates, Wghan 0.0036, while the difference between them never ex-

have to average the numeric_al data given _by three workingeeds 0.0013. Under the same variatiorbofhe value ofy
Padeapproximants ab=0. This procedure yields the values ,yeraged over these two most reliable approximations re-

Ug= —0.711, v =2.008, 9) mains within the segmer{ﬂ.3)_24q, 1.3266 On the other
hand, the accuracy of determination of the critical exponents
which are claimed to be the final results of our search of thelepends not only on a quality of the resummation procedure
random fixed-point location. Let us estimate their accuracybut also on the accuracy achieved in the course of locating of
It seems unlikely that the deviations of these numbers fronthe relevant fixed point. That is why we investigated to what
the exact ones would exceed the differences between thesxtent the numerical estimates fgrvary when coordinates
and the four-loop estimates since, among all proper estief the random fixed point run through their error bars. It was
mates, the four-loop ones most strongly differ from the av-found that the susceptibility exponent calculated at the opti-
eraged value§9). Hence, the error bounds fog andv, are  mal value of tune parametdr=2 (see Table | does not
believed to be not greater than0.012 and*+0.016, respec- leave the segmeif.3228, 1.3268 This enables us to con-

TABLE Il. Numerical estimates for the critical exponenysand » obtained from the five-loop RG
expansions(5,6) resummed by the Padgorel-Leroy technique using approximarjté/1] and[3/2]. DS
stands for “direct summation,” the symbol( 1) ! means that the RG series for * was resummed. The
superscript ‘p” denotes, as in Table |, that the Padpproximant has a “nondangerous” pole, while empty
cells are due to the dangerous ones spoiling corresponding approximations. The estimatstafating in
the fifth and sixth lines were obtained unde# 1.325 by the resummation of the RG series fgr

b 0 1 2 3 4 5 10 15

(yH'  [4/1] 13236 1.3244 13250 1.3254 1.3257 1.3260 1.3268 1.3272
[3/2] 13253 1.3257 1.3260 1.3265 1.3267

¥ [4/1] 1.3245 1.3248 1.3250 1.3252 1.3253 1.3254 1.3257 1.3259

[3/2) 1.324@ 1325 13254 13257 13259 1326P 13267 1.327C

7 (via ) [4/1] 0.03122 0.02765 0.02506 0.02311 0.02158 0.02036 0.01665 0.01478
[3/2] 0.02876¢ 0.02419 0.02168 0.01666 0.01487
7 (DY) 0.027 2
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clude that the error bounds for the theoretical valueyof tive RG analysis® but their central values lie within the
obtained in this work would be abott0.003 or smaller. declared error bound41). Hence, an agreement between the
Less stable numerical results, with respect to a variatiomesults discussed exists. On the other hand, because of its

of b, are found for the Fisher exponent As one can see low accuracy, the estimatgd1) would not be thought of as
from Table Il, the values of given by the resummation of satisfactory. It certainly needs to be improved, along with the
the RG series for, with use of the pole-free Padgprox-  estimates for the small exponenisand « also exhibiting
imant[4/1] spread from 0.0148 to 0.0312. The average ovegppreciable uncertainties. The only way to do this is the
this intervall is equal to 0.023. The; direct-summation of thestydying of the critical behavior of the 3D impure Ising
RG expansion fo; at the random fixed point gives 0.027. It el in the next perturbative order that includes calcula-

is natural to suppose that 0.025 should play a role of the mogjons of the six-loop terms in the relevant RG expansions.
likely value of exponent;. Since the estimates foj found  g|,ch calculations are now in progress.

via the evaluation ofy, are sensitive to the accepted value of
v, the apparent accuracy achieved in this case is not believed
to be better than-0.01.

Having estimatedy and », we can evaluate other critical
exponents using well-known scaling relations. So, the final To summarize, we have calculated the five-loop RG ex-
results of our five-loop RG analysis are as follows: pansions for thgg functions and critical exponents of the 3D
n-vector cubic model. The resummation of the RG series by
the PadeBorel-Leroy technique in the replica limin&0)
has enabled us to obtain high-precision numerical estimates
for the random fixed-point coordinates and the critical expo-
nentsy, », «, v, andg of the 3D impure Ising model. For
the correstion-to-scaling exponeat, the resummed five-
loop RG expansions turned out to give much less accurate
numerical results. The values of the critical exponents ob-
These _numbers are thou_g_ht to be the most accurate_theoreggined earlier from the lower-order RG expansions in three
cal estimates for the critical exponents of the 3D impuregimensions are shown to be centered by our five-loop esti-
Ising model known today. It is interesting to compare theMmaies. This indicates that the five-loop RG approximation
with those obtained earlier within the lower-order RG ap-iroyides numerical data very close to the asymptotic ones,
proximations. For the exponent previous RG calculations e  to those representing the point of convergence of the
in three d'me”5'0”233 gave the values 1-2%3%"00@' ' RG-based iterations. At the same time, an accuracy achieved
1.328 (thrze;e—lolop, 1.326 (four-loop,™ and 1.321 \yhen evaluating the exponeatwould not be referred to as
(four-loop).” Being found by means of the different resum- gficient making the next-order, six-loop RG calculations,
mation procedures, they are, nevertheless, centered arouogIy desirable.
our estimate, which is thus grgued to be very close to the Note addedAfter this paper had been submitted for pub-
exact value ofy or, more precisely, to the true asymptote of ication, Ref. 39 appeared where the six-loop RG expansions
the RG iterations. _ for the 3D cubic model are calculated. The five-loop terms

At the end of this work, we employ our technique to gptained in this remarkable work are found to agree with
evaluate the correction-to-scaling exponentThe exponent  oyrs. Among other quantities, in Ref. 39 the marginal value
 is known to be equal to the stability matrix eigenvalue thatof n n_, separating different regimes of critical behavior of
has a minimal modulus. The derivativeg,/du, dBu/dv,  the cubic model, is estimated. To clear up how sensitive to
dB,1ou, anddp, /v entering this matrix are evaluated nu- the method of resummation the five-loop RG results are, we
merically at the random fixed point on the base of the reeyaluaten, using the Pad®orel-Leroy technique. Exploit-
summed RG expansions f@, and3,, and then the matrix jng the near-diagonal Padeproximan{3/2] underb vary-
eigenvalues are found. Such a procedure leads to the espiTg from O to 20, the values ofi, are obtained which lie
mates forw presented in Table(lower lines. They are seen  petween 2.89 and 2.92. They agree quite well with the esti-
to be considerably scattered and sensitive to the tune pararaten,=2.91(3) extracted from the five-loop RG series by

eter. The average over three working Pafiproximants, means of the conformal-mapping-based resummation
however, being equal to 0.315 b=0 and to 0.316 ab  machinery*®

=1 turns out to be stable under the variationbofinlessb
becomes large. It is natural therefore to accept that

IV. CONCLUSION

v=1.325-0.003, »=0.025-0.01,
vr=0.671+0.005,

a=—0.0125-0.008, 5=0.344+0.006. (10
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