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Effective and asymptotic critical exponents of a weakly diluted quenched Ising model:
Three-dimensional approach versusA« expansion
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We present a field-theoretical treatment of the critical behavior of a three-dimensional weakly diluted
quenched Ising model. To this end we analyze in the replica limitn→0 the five-loop renormalization-group
functions of thef4 theory withO(n)-symmetric and cubic interactions@H. Kleinert and V. Schulte-Frohlinde,
Phys. Lett. B342, 284~1995!#. The minimal subtraction scheme allows one to develop either theA«-expansion
series or to proceed within the three-dimensional approach, performing expansions in terms of renormalized
couplings. Doing so, we compare both perturbation approaches and discuss their convergence and possible
Borel summability. To study the crossover effect we calculate the effective critical exponents. We report
resummed numerical values for the effective and asymptotic critical exponents. The results obtained within the
three-dimensional approach agree pretty well with recent Monte Carlo simulations.A« expansion does not
allow reliable estimates ford53.
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I. INTRODUCTION

Influence of a weak quenched disorder on magn
second-order phase transition remains the subject of m
interest. One of the central problems here is the answer to
questions:~i! do the critical exponents~of a homogeneous
magnet! change under dilution~by a nonmagnetic compo
nent!? And, if yes,~ii ! how do they change?

Replying to the first question it was argued1 almost 25
years ago that if the heat capacity critical exponenta of the
pure ~undiluted! system is positive, i.e., the heat capac
diverges at the critical point, then a quenched disorder ca
changes in the critical exponents. This statement is know
Harris criterion. Later, for a large class ofd-dimensional dis-
ordered systems it was proven that the correlation len
critical exponentn must satisfy the boundn>2/d.2 Both
statements focus attention towards studies of thed53 Ising
model, where the typical numerical values of the above
ponents, together with the magnetic susceptibility and
order-parameter critical exponents in the pure case reaa
50.10960.004, n50.630460.0013, g51.239660.0013,
b50.325860.0014.3

The reply on the second question concerning the num
cal values of the critical exponents ofd53 weakly diluted
quenched Ising model@random Ising model~RIM!# is more
complicated. Below we briefly review som
experimental,5–21 theoretical,22–37 and numerical38–51 results
for the critical exponents ofd53 magnets described by th
RIM. Although the statements of Refs. 1 and 2 should h
in principle for arbitrary weak disorder, the new critical e
ponents appear only in a region of temperatures contro
by the concentration of the nonmagnetic component. Su
region may not always be reached in practice, where only
PRB 610163-1829/2000/61~22!/15114~16!/$15.00
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effective exponents are observed.52 Theoretical results are
due to the application of the renormalization group approa
These are numerous for the asymptotic values of critical
ponents but quite seldom for the effective ones.37

This paper has been motivated by recent Monte Ca
calculations of the asymptotic51 and effective46,49,50 critical
exponents for the three-dimensional Ising systems w
quenched disorder. Here, we deal with a renormalizat
group study of both asymptotic and effective critical beha
ior. Perturbation theory series, which are known in the fiv
loop approximation for theO(n) model with cubic
anisotropy,53 enable us to perform our studies in the repli
limit n→0. The minimal subtraction scheme54 allows us to
develop either theA« expansion or to proceed in the thre
dimensional~3D! approach, performing expansions in term
of renormalized couplings. Doing so, we compare both p
turbation approaches and discuss their convergence and
sible Borel summability.

The paper is arranged as follows. In Sec. II we give
brief account of some results on critical properties of syste
of interest, Sec. III describes the model and the renormal
tion procedure. In Sec. IV we analyze the series obtain
perform their resummation, and give results for t
asymptotic values of critical exponents. Effective critical b
havior is discussed in Sec. V. Section VI concludes o
study. Details of the resummation procedures exploited
our study are given in the Appendix.

II. REVIEW

Experiments.Crystalline mixtures of two compounds pro
vide a typical experimental realization of a RIM~see Table
15 114 ©2000 The American Physical Society
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TABLE I. The experimentally measured critical exponents of the materials, which correspond to thed53 RIM. The measuremen
procedures as well as materials specifications are given in the following notations: NMR, nuclear magnetic resonance; LB, linear
gence; NS, neutron scattering; MS, Mo¨ssbauer spectroscopy; SMXS, synchrotron magnetic x-ray scattering; XS, x-ray scattering;
dysprosium aluminium garnet;tmin denotes the minimal value of the reduced temperature reached in an experiment.

Ref. Year Material Method tmin b g n a

5 1981 MnxZn12xF2, NMR ? 0.34960.008
x50.864

6 1983 FexZn12xF2, NS; LB 231023 1.4460.06 0.7360.03 20.0960.03
x50.6,0.5

13 1985 DAG NS 431022 0.35060.01 0.73
11% Y powder

12 1986 FexZn12xF2, NS 1.531023 1.3160.03 0.6960.01
x50.46

11 1986 FexZn12xF2, MS 1023 0.3660.01
x50.992520.95

7 1986 MnxZn12xF2, NS 431024 1.36460.076 0.71560.035
x50.75

8 1988 MnxZn12xF2, SMXS 1023 0.3360.02
x50.5

10 1988 FexZn12xF2, MS 331024 0.35060.009
x50.9

14 1988 MnxZn12xF2, LB ,1022 20.0960.03
x50.40,0.55,0.83

15 1991 FexZn12xF2, LB ? 20.09
0.31<x<0.84

16 1995 FexZn12xF2, NS ,1021 0.35
x50.5

17 1996 FexZn12xF2, NS 1022 0.35
x50.52

18 1997 FexZn12xF2, XS 1022 0.3660.02
x50.5

20 1998 FexZn12xF2, LB 2.531023 20.1060.02
x50.93

19 1998 FexZn12xF2, NS 231023 1.3560.01 0.7160.01
x50.93

21 1999 FexZn12xF2, NS 1.1431024 1.3460.06 0.7060.02
x50.93
er

n-
an

e
he
ti
-

d
s
a

nt

-
e

la-

d in
ag-
are

-
n
o-
ion.
nd

m
oss-
ing
iti-
t

f

I!. The first compound is an ‘‘Ising-like’’ anisotropic
uniaxial antiferromagnet with dominating short-range int
action ~e.g., FeF2 , MnF2), the second one (ZnF2) is non-
magnetic. Mixed crystals (FexZn12xF2, MnxZn12xF2) can
be grown with high crystalline quality and very small co
centration gradients providing an excellent realization of r
dom substitutional disorder of magnetic ions (Fe12, Mn12)
by nonmagnetic ones (Zn12). Experimental evidence of th
critical behavior at a weak quenched dilution was t
nuclear-magnetic-resonance measurement of the magne
tion in Mn0.864Zn0.136F2.5 The value of the magnetization ex
ponentb was found to differ strongly from that in undilute
sample~see Table I for details!. In a few years this result wa
corroborated by nuclear scattering measurements of m
netic susceptibility and correlation length critical expone
in FexMn12xF2 ~Refs. 6 and 12! and MnxZn12xF2 ~Ref. 7! at
different dilutions 12x. The linear birefringence measure
ments brought about the cusplike behavior of a specific h
at the transition point witha520.0960.03.6 In particular
-

-

za-

g-
s
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this proved that within the error bars the hyperscaling re
tion dn1a52 is satisfied.

Crossover phenomena in diluted systems are governe
addition to the temperature by the concentration of the m
netic component. The experimentally obtained exponents
often reported to be effective ones~i.e., temperature and di
lution dependent!. However, already in early experiments o
the critical behavior of quenched diluted Ising-like antiferr
magnets it appeared possible to reach the asymptotic reg
Thus studying the critical regime in Ref. 6 the authors fou
neither a region in reduced temperaturet where one finds
‘‘pure’’ Ising exponents nor any evidence of crossover fro
pure to random exponents. This was explained by the cr
over either taking place outside the critical region or be
too slow. In Ref. 11 the crossover from pure to diluted cr
cal behavior was studied and a magnetization exponenb
which does not change under dilution forx<0.05 was found.
The crossover occurs within a very narrow range oft at
relatively large values oft. In Ref. 7 excellent agreement o
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15 116 PRB 61R. FOLK, YU. HOLOVATCH, AND T. YAVORS’KII
the measured exponentsg andn with the theoretical values
of the RIM was obtained for the temperature range
31024<t<1021. The value of the critical exponentb was
also the subject of a crossover analysis in Refs. 8 and
Reference 8 concludes that the experimental errors are
large in order to distinguish between the pure Ising mo
and the RIM critical behavior. In Ref. 10 no crossover w
found after the correction-to-scaling has been taken into
count, and the RIM critical behavior was found in the who
temperature range.

It is known that the diluted Ising magnet in a unifor
magnetic fieldH along the uniaxial direction exhibits stat
critical behavior of the random-field Ising model.55,56 The
random-field Ising model is the subject of intensive rec
experimental studies~see Ref. 57 for a review!. Such experi-
ments give additional information about the critical behav
of the RIM when performed forH50.14–21

Renormalization group results.The change of the Ising
type magnets critical exponents under dilution found its t
oretical confirmation in the renormalization group~RG! cal-
culations. There, the change of the universal propertie
interpreted as a crossover from the ‘‘pure’’ fixed poi
present in the undiluted model towards the ‘‘random’’ o
which characterizes the new critical behavior of the RI
The corresponding RG equations are degenerated on the
loop level, which leads instead of the familiar expansion
«542d to the expansion inA«.22–24 This expansion was
recently extended from the three-loop25,26 to the five-loop
level27,28 for the critical exponents. TheA«-expansion series
for the amplitude ratios58 is available with the three-loop
accuracy as well.59 Although theA«-expansion series ar
known with pretty high accuracy they seem to be of no u
for the d53 case.29 Alternatively, the scaling field RG ap
proach lead~via the two fixed points scenario! to the d53
critical exponents valuesn50.70, g51.38,30 definitively
different from their ‘‘pure’’ counterparts.

RG equations of the massived53 field theory60 appeared
to be the most fruitful tool tackling the problem. The resu
ing expansions, considered as the asymptotic ones~see, how-
ever, Refs. 29, 61, and 62 and Sec. IV of this paper! were
resummed successively increasing the order of the pertu
tion theory series from the two-loop~2LA! ~Refs. 31 and 32!
through three-loop~3LA! ~Refs. 33 and 34! to the four-loop
~4LA! approximations.35,36 Depending on the resummatio
procedure applied, the results for the correlation length
the magnetic susceptibility critical exponents$n,g% read
2LA: $0.678 13, 1.335 51%,31 $0.679, 1.337%;33 3LA: $0.670,
1.325%;33 $0.671, 1.328%;34 4LA: $0.6702, 1.3262%;35 $0.6680,
1.318%, $0.6714, 1.321%.36 Critical amplitudes universal ratio
at d53 were obtained in three-loop63 and five-loop64 ap-
proximations.

It is worthwhile to mention here that the renormalizati
at fixed d53 dimensions does not necessarily mean
implementation of the massive scheme60 in which most of
the theoretical results31–36 were obtained. Indeed, the min
mal subtraction scheme54 is also suited for thed53 renor-
malization and can be applied without« expansion.65 Both
schemes serve as complementary tools to obtain informa
about the critical behavior of the pure Ising model@or, more
generally,O(n)-symmetricf4 theory#. However, in the case
of the RIM there exists only one study relying on the 3D R
0.
oo
l

s
c-

t

r

-

is

.
ne

e

a-

d

n

on

approach in minimal subtraction scheme. In particular
resummed values of the critical exponents obtained there
three-loop approximation readn50.666,g51.313.37

Griffiths singularities and replica symmetry breaking.Al-
though the RG approach does not allow us to determine
region of concentration where the scenario with two fix
points, explained above, is applicable, it is generally
sumed that it holds at least for weak dilutions. The idea
RG presumes that one studies the influence of~thermal! fluc-
tuations around the spatially homogeneous unique gro
state. This holds for the pure system but does not hold for
diluted one. Here, in a disorder dominated region one find
macroscopic number of spatially inhomogeneous grou
states, corresponding to the local minimum solutions of
saddle-point equation for an effective Lagrangian.66,67Physi-
cally the inhomogenous ground state corresponds to the
called Griffiths phase68 caused by the existence of ferroma
netically ordered ‘‘islands’’ in the region of temperature
between the critical temperatures of pure and diluted s
tems. This is described by a replica-symmetry break
Lagrangian66 leading to a behavior at the critical point69,70

different from the pure one. The ‘‘traditional’’ RG
results22–37,58,59,63,64 are valid for the replica-symmetric
Lagrangians.71 Since the usual RG approach is based on
integration over the disorder at the beginning of the calcu
tion, it cannot give any information about the region of co
centrations where the weak dilution concept holds.72

Monte Carlo simulations.Monte Carlo~MC! studies of
the d53 RIM systems have lasted for almost tw
decades.38–51One of the first studies of critical behavior of
RIM on a simple cubic lattice38 revealed the critical expo
nents in a wide dilution region with no deviations within th
numerical error from the corresponding exponents of
pure ~undiluted! system~see Table II!. However, these data
were objected by MC simulations on larger lattices,39,40

where critical exponents varying continuously with the ma
netic sites concentrationx were obtained. Indications o
change of the order-parameter critical exponentb upon di-
lution initiated the extension of studies to determine the ot
critical exponents and to check the scaling in the disorde
systems. The application of the Swedsen-Wang algorithm
thed53 RIM ~Ref. 42! resulted in critical exponents for th
susceptibility and correlation length independent of conc
tration over a wide range of dilution.

Due to Refs. 42 and 43 and especially Refs. 45 and 4
became clear that the concentration-dependent critical e
nents found in MC simulations are effective ones, charac
izing the approach to the asymptotic region. The effect
exponentsg,b and z512b ~the last one describes the d
vergence of the magnetization-energy correlation functi!
were shown45 to be concentration dependent in the conce
tration region 0.5<x,1. These data were refined three yea
later46 resulting in more accurate estimates for the abo
mentioned exponents and the critical exponentn of the cor-
relation length yielding continuously varying values. Th
general conclusion of Refs. 45 and 46 was: while a sim
crossover between the pure and weakly random fixed p
accounts for the behavior of systems abovex.0.8, in more
strongly disordered systems a more refined analysis
needed. Note that this last statement is supported by the
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TABLE II. The critical exponents of thed53 RIM as they are obtained in MC simulations for different values of magnetic s
concentrationx. Maximal number of lattice sites simulated isN5L3. ~The asterisk at concentrations denotes that disorder was realized
grand-canonical manner.!

Ref. Year L x b g n

38 1980 30 0.4,x<1 0.31 1.25
1 0.3060.02

0.985 0.3160.02
39 1986 40 0.95 0.3260.03

0.9 0.35560.010
0.8 0.38560.015
1 0.2960.02

40 1986 90 0.95 0.2860.02
0.90 0.3160.02
0.80 0.3760.02

41 1988 40 0.80 0.39260.03
42 1989 100 0.4<x<0.8 1.5260.07 0.7760.04
43 1990 300 0.8 1.3660.04

1 0.629~4!

44 1990 64 0.9 ,2/3
0.8 0.688~13!

1 0.30560.01 1.2460.01
0.9 0.31560.01 1.3060.01

45 1990 60 0.8 0.33060.01 1.3560.01
0.6 0.33060.01 1.4860.02
0.5 0.33560.01 1.4960.02
1 0.3360.01 1.2260.02 0.62460.010

0.95 0.3160.02 1.2860.03 0.6460.02
46 1993 60 0.9 0.3160.02 1.3160.03 0.6560.02

0.8 0.3560.02 1.3560.03 0.6860.02
0.6 0.3360.02 1.5160.03 0.7260.02

48 1993 90? 0.6 0.4260.04 0.7860.01
49 1998 64 0.8 0.34460.003 1.35760.008 0.68260.003
50 1998 90 0.6 0.31660.013 1.52260.031 0.72260.008

80 0.6* 0.31360.012 1.50860.028 0.71760.007
51 1998 128 0.4<x<0.9 0.354660.0028 1.34260.010 0.683760.0053
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jecture of a ‘‘steplike’’ universality of the three-dimension
diluted magnets.47

The critical behavior of thed53 RIM was reexamined
recently in Refs. 49–51. In particular, the simulations50 re-
vealed that a disorder realized in a canonical manner~fixing
the fraction of magnetic sites! leads to a different result from
those obtained from a disorder realized in a grand-canon
manner~see Table II, where the values for the second c
are denoted by asterisk!. The studies of Ref. 51 were base
on the crucial observation that it is important to take in
account the leading correction-to-scaling term in the infin
volume extrapolation of the MC data. The simulations co
firmed the universality of the critical exponents of thed53
RIM over a wide region of concentrations. In particular, t
value of the correction-to-scaling exponentv was found to
bev50.3760.06 which is almost half as large as the cor
sponding value in the pured53 Ising model v50.799
60.011.3 The smallness ofv in the dilute case explains it
importance for an analysis of the asymptotic critical beh
ior.
al
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III. THE MODEL AND THE RENORMALIZATION-GROUP
PROCEDURE

In this section, we define the RG procedure as well as
main quantities which we are going to calculate. Making u
of the replica method71 and taking the average over differe
configurations of quenched disorder it is possible to sh
that the RIM critical behavior in the Euclidean space ofd
542« dimensions is governed by an effective Hamiltoni
with two coupling constants:22

H~w!5E ddRF1

2 (
a51

n

@ u¹wau21m0
2wa

2 #

1
v0

4! S (
a51

n

wa
2 D 2

1
u0

4! (
a51

n

wa
4 G , ~1!

in the limit n→0. Here,wa[wa(R) is thea ’s replica of a
scalar field;u0;x.0, v0;x(x21),0 is the bare coupling
constant of the fluctuation’s effective interaction due to t
presence of impurities;m0 is a bare mass.
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15 118 PRB 61R. FOLK, YU. HOLOVATCH, AND T. YAVORS’KII
In order to describe the long-distance properties of
model ~1! in the vicinity of the phase transition point w
shall use the field-theoretical RG approach. The results
the RG functions corresponding to Eq.~1! are obtained on
the basis of the dimensional regularization and the minim
subtraction scheme.54 The renormalized fields, mass, an
couplingsf,m,u,v are introduced by

w5Zf
1/2f,

m0
25Zm2m2,

u05m«
Z4,u

Zf
2

u,

v05m«
Z4,v

Zf
2 v.

Here,m is the external momentum scale andZf , Zm2, Z4,u ,
Z4,v are the renormalization constants. They are determi
by the condition that all poles at«50 are removed from the
renormalized vertex functions.

The RG equations are written bearing in mind that
bare vertex functionsG0

N are calculated with the help of th
bare Hamiltonian~1! as a sum of one-particle irreducib
~1PI! diagrams:

G0
N~$r %!5^w~r 1!•••w~r N!&1PI. ~2!

The G0
N do not depend on the scalem, and therefore their

derivatives with respect tom at fixed bare parameters a
equal to zero. So one gets

m
]

]m
G0

Nu05m
]

]m
Zf

2N/2GR
Nu050, ~3!

where the indexu0 means a differentiation at fixed bare p
rameters. Then the RG equation for the renormalized ve
function GR

N reads

S m
]

]m
1bu

]

]u
1bv

]

]v
1gmm

]

]m
2

N

2
gfDGR

N~m,u,v,m!

50, ~4!

and the RG functions are given by

bu~u,v !5m
]u

]m U
0

,

bv~u,v !5m
]v
]m U

0

,

gf52g2~u,v !5m
] ln Zf

]m U
0

,

gm~u,v !5m
] ln m

]m U
0

5
1

2
m

] ln Zm2
21

]m
U

0

.

Using the method of characteristics the solution of the
equation may be written formally as
e

or

l

d

e

x

GR
N~m,u,v,m!5X~ l !N/2GR

N@Y~ l !m,u~ l !,v~ l !,m l #, ~5!

where the characteristics are the solutions of the ordin
differential equations~flow equations!:

l
d

dl
ln X~ l !5gf@u~ l !,v~ l !#, l

d

dl
ln Y~ l !5gm@u~ l !,v~ l !#,

l
d

dl
u~ l !5bu@u~ l !,v~ l !#, l

d

dl
v~ l !5bv@u~ l !,v~ l !# ~6!

with

X~1!5Y~1!51, u~1!5u, v~1!5v. ~7!

For small values ofl, Eq. ~5! maps the large length scale
~the critical region! to the noncritical pointl 51. In this limit
the scale-dependent values of the couplingsu( l ), v( l ) will
approach the stable fixed point, provided such a fixed po
exists.

The fixed pointsu* , v* of the differential equations~6!
are given by the solutions of the system of equations:

bu~u* , v* !50,

bv~u* , v* !50. ~8!

The stable fixed point is defined as the fixed point where
stability matrix

Bi j 5
]bui

]uj
, ui5$u, v% ~9!

possess eigenvaluesv1 ,v2 with positive real parts. The
stable fixed point, which is reached starting from the init
values in the limitl→0, corresponds to the critical point o
the system. In the limitl→0 ~corresponding to the limit of
an infinite correlation length! the renormalized couplings
reach their fixed point values and the critical exponentsh
andn of the pair correlation function atTc and of the corre-
lation length, respectively, are then given by

h52g2~u* ,v* !,

1/n52@12gm~u* ,v* !#. ~10!

In the nonasymptotic region deviations from the power la
with the fixed-point values of the critical exponents are go
erned by the correction-to-scaling exponentv5min(v1,v2)
in accordance with the Wegner expansion.73

The rest of the critical exponents are obtained by fami
scaling laws. We note that the expression for correlat
length exponent may be recast in terms of the renormal
tion constantZf2 of the two-point vertex function withf2

insertion by a substitution 2gm5gf1gf2, which follows
from the relationsZm25Zf2Zf

21 andgf25m] ln Zf2
21/]mu0.

IV. RESUMMATION AND THE RESULTS

In this section we analyze series for the RIMb functions
and critical exponents. The RG functions of the correspo
ing effective Hamiltonian~1! in the replica limitn50 have
been obtained up to five-loop order from the appropriate
pressions for RG functions of thef4 theory with
O(n)-symmetric and cubic interactions53 and read
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bu /u52«13u14v217/3u2246/3vu282/9v2132.549 682 84u31123.198 731 3vu21158.181 641 8v2u

160.325 268 11v32271.605 784 2u421318.116 311vu322452.429 994v2u222003.560 971v3u

2559.714 385 4v412848.568 254u5116 789.898 43vu4140 367.085 93v2u3148 971.127 30v3u2

129 091.771 79v4u16377.751 189v5, ~11!

bv /v52«18/3v12u214/3v2222/3vu25/3u2125.457 148 97v3162.254 991 70v2u136.366 455 22vu217u3

2200.926 369 0v42667.376 189 5v3u2650.564 181 6v2u22259.258 689 1vu3239.912 610 12u4

12003.976 188v518469.158 907v4u111 721.608 76v3u2

17434.635 066v2u312344.277 996vu41301.511 097 6u5, ~12!

g251/18v211/6vu11/12u221/27v321/6v2u23/16vu221/16u31125/648v41125/108v3u1145/72v2u2165/48vu3

165/192u421.005 978 154v527.544 836 154v4u218.048 546 21v3u2219.078 389 90v2u3

29.627 924 878vu421.925 584 976u5, ~13!

gm51/3v11/2u25/18v225/6vu25/12u2137/36v3137/8v2u1251/48vu217/4u325.380 801 7v4232.284 81v3u

257.177 011v2u2239.765 731vu329.978 152 53u4137.850 485v51283.878 638v4u1686.375 317v3u2

1737.493 196v2u31376.177 633 9vu4175.377 774 45u5. ~14!
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In order to obtain the qualitative characteristics of t
RIM critical behavior one can proceed in two ways. T
historically first scheme is known as« expansion and con
sists~i! in expanding the values of the couplings at the sta
fixed point in«, ~ii ! inserting these expansions into the fiel
theoretic functions for the exponents~13! and ~14!, and~iii !
expanding again in«. Due to the degeneracy of theb func-
tions ~11! and~12! at one-loop level, an expansion inA« has
to be performed.22–24Then in five-loop order on the basis o
Eqs.~11!–~14! one obtains:27,28

n51/210.084 115 82«1/220.016 632 03«10.047 753 51«3/2

10.272 584 31«2,

h520.009 433 96«10.034 943 50«3/220.044 864 98«2

10.021 573 21«5/2, ~15!

g5110.168 231 64«1/220.028 547 08«10.078 828 81«3/2

10.564 504 90«2,

v152 «13.704 011 194«3/2111.308 738 37«2, ~16!

v250.672 926 585 0«1/221.925 509 085«

20.572 525 180 6«3/2213.931 259 52«2.

Another method consists in~i! fixing the value of«, i.e., the
lattice dimensionality,~ii ! solving the system of equation fo
the fixed point and~iii ! substituting the fixed point values o
the couplings into the series for the critical exponents65 ~the
so-called 3D approach!.

One should note here that often, for the sake of con
nience, within the 3D as well as the«-expansion approach
e

-

one deals with the expansions of some combinations of
critical exponents instead of working with them directly o
the basis of expressions~10!. In the present paper the value
of critical exponents are calculated from the expansion
1/n215122gm and the inverse exponent for magnetic su
ceptibility g215(12gm)/(12g2). The numerical values o
the other exponents are obtained by the familiar scaling la

It is well known that the perturbation-theory series for t
RG functions in the weak-coupling limit as well as in«
expansion are asymptotic at best. In order to compare
results obtained on the basis of theA« expansion and of the
3D approach we have to refer to resummation procedure
the calculation of critical exponents. Adjusting the resumm
tion procedure we discuss first the one-variable case in b
schemes. We start from the« expansion of the pure Ising
model critical exponents which in the five-loop approxim
tion reads:74

n51/211/12«10.043 209 88«220.019 043 37«3

10.070 883 76«420.217 017 87«5,

g5111/6«10.077 160 49«220.048 974 95«3

10.143 574 22«420.446 624 83«5. ~17!

An analysis of the«-expansion case starts by represent
the expressions for the critical exponentsn andg of the pure
Ising model ~17! in the form of the Pade´ approximant:
@M /N#(x)5( i 50

M aix
i /( j 50

N bjx
j in the variablex5«. The

results are shown in the form of a Pade´ table~Table III!. The
number of the rowN and of the columnM corresponds to the
order of the numerator and the denominator of the Pade´ ap-
proximant@M /N#, respectively. One can see from this tab
the expected convergence of the values in the diagonal
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first off diagonal. From this we estimate the values of t
critical exponents to ben50.628,g51.236. These value
can be compared with the most accurate valuesn50.628
60.001,g51.23460.002,75 obtained by means of more so
phisticated resummation procedures76 on the basis of the
five-loop« expansion. We conclude that this good agreem
justifies the application of the Pade´ analysis for the
«-expansion series~17!.77

Possessing the information on the asymptotic diverge
of the« expansion we apply a more complicated Pade´-Borel
resummation technique which takes into account the facto
divergence of the series terms. The resummation proce
consists in several steps:

• starting from the initial sumSof L terms one constructs it
Borel-Leroy image,

S5(
i50

L

aix
i⇒(

i50

L
ai~xt!i

G~i1p11!
, ~18!

where G(x) is the Euler’s gamma function andp is an
arbitrary non-negative number.

• the Borel-Leroy image~18! is extrapolated by a rationa
Padéapproximant

@M/N#~xt!.
• the resummed functionSres is obtained in the form

Sres5E
0

`

dt exp~2t !tp@M /N#~xt!. ~19!

The values of the critical exponentsn andg obtained with
the Pade´-Borel resummation for differentM andN are given
in Table IV. As far as the Pade´ approximant enters the inte
gral, it might happen that the integrand contains poles. If
is the case, the corresponding number in Table IV is ca

TABLE III. The Padétable for the values of the correlatio
length (n) and the susceptibility (g) critical exponents from the«
expansion of the pured53 Ising model. Here and in Tables IV, VI
and VII the number of the row and of the column corresponds to
order of numerator and denominator of a Pade´ approximant, ‘‘o’’
means that the corresponding Pade´ approximant cannot be con
structed.

n 0 1 2 3 4 5

0 0.500 0.571 0.609 0.608 0.648 0.514
1 0.599 0.673 0.608 0.610 0.620 o
2 0.646 0.621 0.633 0.625 o o
3 0.597 0.631 0.627 o o o
4 0.732 0.625 o o o o
5 0.431 o o o o o

g 0 1 2 3 4 5

0 1.000 1.167 1.244 1.195 1.339 0.892
1 1.200 1.310 1.213 1.231 1.230 o
2 1.276 1.230 1.243 1.230 o o
3 1.171 1.242 1.235 o o o
4 1.440 1.227 o o o o
5 0.845 o o o o o
e

nt

e

al
re

is
-

lated by analytic continuation taking the principal values
the integral. For the sake of completeness we include s
numbers in Table IV as well as in the forthcoming Table V
However, the final results will be displayed on the basis
data which did not require such analytic continuation. Exc
from the @1/1# case all our final results are obtained fro
approximants with a linear denominator~second columns!,
which reconstitutes the sign-alternating behavior of the
tial series~17!. For the Borel resummed Pade´ approximant
@4/1# the estimates for the exponentsn50.629,g51.236 are
in a good agreement both with the above Pade´ analysis
~Table III! as well as with the data of Ref. 75 given abov

In order to complete the study of the pure Ising model
perform an analysis based on the 3D approach. We resum
corresponding RG functions of the pure model@they can be
obtained by puttingv50 in the diluted model RG functions
~11!–~14!# by means of the Pade´-Borel resummation tech
nique with a linear denominator approximant~see the Ap-
pendix!. The results obtained with this method are shown
Table V. One should compare them with the results obtai
recently from the RG functions in the 3D massive fiel
theoretical approach, n50.630460.0013, g51.2396
60.0013,3 and the results of 3D minimal subtraction schem

e

TABLE IV. The results of the Pade´-Borel resummation of the
correlation length (n) and the susceptibility (g) critical exponents
from the « expansion of the pured53 Ising model. Here and in
Tables VII and VIII the c superscript denotes that the real part
the corresponding value is given.

n 0 1 2 3 4 5

0 0.500 0.560 0.584 0.592 0.599 0.601
1 0.600 0.699c 0.604 0.495c 0.622c o
2 0.645 0.623 0.631c 0.628 o o
3 0.597 0.629 0.629 o o o
4 0.731 0.629 o o o o
5 0.431 o o o o o

g 0 1 2 3 4 5

0 1.000 1.147 1.205 1.208 1.232 1.204c

1 1.200 1.359c 1.208 1.205c 1.221 o
2 1.276 1.233 1.238c 1.234 o o
3 1.171 1.238 1.236 o o o
4 1.440 1.234 o o o o
5 0.845 o o o o o

TABLE V. The results of the application of the Pade´-Borel
resummation (@L/1#) to the RG functions of the pured53 Ising
model. Fixed point coordinate and the critical exponents of the p
d53 Ising model obtained by Pade´-Borel resummation in 3D
scheme.

Loop u* g n a h v

2 0.6573 1.269 0.644 0.068 0.031 0.566
3 0.4641 1.231 0.623 0.131 0.024 0.853
4 0.4958 1.239 0.632 0.104 0.040 0.756
5 0.4877 1.246 0.634 0.097 0.036 0.792
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in the five-loop approximationn50.62960.005,g51.235
60.005.65 Comparing all the results for the pure Ising mod
we conclude that~i! the application of Pade´-Borel resumma-
tion technique yields accurate results and~ii ! both the« ex-
pansion and 3D approach lead to reliable values for the
ponents.

We now turn to the results of the Pade´ and the Pade´-Borel
resummation techniques applied to theA« expansions~15!
and~16! and the 3D approach RG functions~11!–~14! of the
weakly diluted Ising model. We construct Pade´ approxi-
mants and perform the Pade´-Borel resummation introducing
an auxiliary variablet in the expressions~15! and~16! by the
substitution«→«t2 and puttingt51 in the final results.

The appropriate values for theA« expansions are listed in
Tables VI and VII in the same notations as in the Tables
and IV. One can see from the tables that neither the exp
mental nor the reliable theoretical values listed in Sec. II
obtained. Moreover, considering the expansions for the
bility matrix eigenvalues~16! it turns out that no stable fixed
point exists in a strictA« expansion, even with resummatio

TABLE VI. The Pade´ table for the values of the correlatio
length (n) and the susceptibility (g) critical exponents from theA«
expansion of thed53 RIM.

n 0 1 2 3 4

0 0.500 0.572 0.570 0.601 0.727
1 0.601 0.570 0.572 0.564 o
2 0.560 0.586 0.565 o o
3 0.640 0.541 o o o
4 1.828 o o o o

g 0 1 2 3 4

0 1. 1.168 1.140 1.219 1.783
1 1.202 1.144 1.161 1.127 o
2 1.125 1.172 1.137 o o
3 1.257 1.101 o o o
4 3.824 o o o o

TABLE VII. The results of the Pade´-Borel resummation of the
correlation length (n) and the susceptibility (g) critical exponents
from theA« expansion of thed53 RIM.

n 0 1 2 3 4

0 0.500 0.560 0.569 0.577 0.592
1 0.601 0.573 0.560c 0.565c o
2 0.560 0.584 0.568c o o
3 0.639 0.529c o o o
4 1.828 o o o o

g 0 1 2 3 4

0 1.000 1.149 1.148 1.176 1.252
1 1.202 1.148 1.149 1.141c o
2 1.125 1.168 1.141c o o
3 1.257 1.086c o o o
4 3.825 o o o o
l
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Comparing with the corresponding data for the pure Is
model we conclude that the nature of theA«-expansion se-
ries does not allow to obtain reliable information atd53 by
means of the methods mentioned for the case of pure I
model. This can be considered as an indirect evidence of
nonasymptotic nature of theA« expansion. Thus a differen
kind of analysis for theA« expansion has to be develope
The fact that« expansion will not be able to give informatio
on critical exponents in system with quenched disorder w
predicted already in Refs. 61 and 62. There, studying
randomly diluted model in zero dimensions, it was sho
that the non-Borel summable properties of the perturbati
theory series are the direct consequence of the existenc
Griffiths-like singularities68 caused by the zeroes of the pa
tition function of the pure system.

In order to treat the theory directly atd53 we need a
generalization of the Pade´-Borel resummation technique t
the case of two variables since the RG functions of
weakly diluted Ising model depend on two couplings. T
corresponding Chisholm-Borel resummation technique
be defined as follows:31

• constructing the Borel-Leroy image of the initialLth-order
polynomialS in the variablesu andv,

S5 (
0<i1j<L

ai,ju
ivj⇒ (

0<i1j<L

ai,j~ut!i~vt!j

G~i1j1p11!
, ~20!

where G(x) is the Euler’s gamma function andp is an
arbitrary non-negative number.

• extrapolating the Borel-Leroy image~20! by a rational Ch-
isholm approximant78 @M /N#(ut,vt) which can be defined
as a ratio of two polynomials both in variablesu andv, of
degreeM andN so that the first terms of its expansion a
equal to those of the function which is approximated.

• the resummed functionSres then reads

Sres5E
0

`

dtexp~2t!tp@M/N#~ut,vt!. ~21!

Here, similarly to the pure case, we restrict the approxima
to linear denominators and choose the value of the fitt
parameterp50. The motivation of such a choice is dis
cussed in detail in the Appendix.

Treating theb functions by means of this resummatio
technique leads to a random fixed point,u* .0,v* ,0, of the
model already in the two-loop approximation. The stabil
analysis shows that this fixed point is stable proving
crossover to a new critical regime under dilution. In Figs
and 2 we show the curvesbu(u,v)50, bv(u,v)50 in the
u-v plane. The intersections of these curves~i.e., simulta-
neous zeros of bothb functions! correspond to the fixed
points, the stable and unstable points are marked by o
circles and filled boxes, respectively. The ‘‘naive’’ analys
of the b functions, without applying any resummation pr
cedure leads to the curves, which are shown on the left-h
side of Figs. 1 and 2. Without resummation only in the thre
loop approximation one gets stable a random fixed po
u* Þ0,v* Þ0. However, the fixed point disappears in th
four-loop approximation. A completely different picture
observed when the resummation procedure is applied~right-
hand columns of the figures!. In the region of interest for the
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FIG. 1. The lines of zeros of
nonresummed~left-hand column!
and resummed by the Chisholm
Borel method~right-hand column!
b functions in different orders of
the perturbation theory: one- an
two-loop approximations. Thick
line corresponds tobu50, thin
line depictsbv50. One can see
the appearance of the rando
fixed point u* .0,v* ,0 in the
two-loop approximation for the
resummed b functions. Stable
fixed point is shown by an open
circle, unstable ones are shown b
filled boxes.
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values of the couplings the topology of the fixed point p
ture remains stable increasing the order of approxima
from the two-loop to the four-loop level; the same behav
has been observed34 for theb functions obtained in the mas
sive 3D scheme.35

The corresponding values of the random fixed point co
dinates, critical exponents, and eigenvalues of the stab
matrix are listed in Table VIII. One can see that increas
the order of approximation one reaches convergent res
compatible with experimental and theoretical data~see Sec.
II !.

Considering the estimation of the accuracy of the res
we note that settingv50 in the RG functions~11!–~14! they
are transformed into the appropriate functions of the p
Ising model. In this case the deviation of our four-loop res
~see Table V! from the most accurate one obtained with
massive field RG scheme on the basis of six-loop expan
for b functions and seven-loop expansion forg functions4 is
-
n
r

r-
ty
g
ts,

ts

e
lt

n

within parts of a percent. This can be considered as an up
bound for the accuracy of RIM results. Here the comparis
of our data with the results of four-loop massive sche
results35,36 yields an accuracy of several percent. Since
series forb and g functions~11!–~14! are sign alternating,
the unknown exact stable point coordinates and critical
ponents must lie between the three- and four-loop val
giving the same estimate~see the Appendix about adjusting
free parameter for the fastest convergence of results!. Thus
we conclude the accuracy of the RIM critical exponents o
tained in our study to be of order of several percent.

A peculiarity of the Table VIII is that in five-loop orde
the applied resummation technique does not lead to a
root for the random fixed point. It is expected that the app
cations of more sophisticated resummation procedures in
porating the higher-order behavior, still unavailable, will pe
mit an improvement of the estimates for the critic
exponents in the two-, three-, and four-loop level as well
-

-
.
t
d

-
r

FIG. 2. The lines of zeros of
nonresummed~left-hand column!
and resummed by the Chisholm
Borel method~right-hand column!
b functions in three- and four-
loop approximations. The nota
tions are the same as in Fig. 1
Close to the random fixed poin
the behavior of the resumme
functions remains alike with the
increase of the order of approxi
mation. This is not the case fo
nonresummed functions.
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TABLE VIII. Fixed-point coordinates, critical exponents, and stability matrix eigenvalues of thed53
RIM obtained by Chisholm-Borel resummation in 3D scheme.

Loop u* v* g n a h v1 v2

2 0.7886 -0.1208 1.308 0.665 0.006 0.032 0.162 0.542
3 0.6968 -0.2484 1.293 0.654 0.039 0.022 0.430 0.974
4 0.7188 -0.1697 1.318 0.675 -0.026 0.049 0.390c 0.390c
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to obtain them in the five-loop level. However, it is not e
cluded that the absence of a fixed point solution on the fi
loop level might be connected with a~possible! Borel non-
summability of the series under consideration. In this c
the four-loop approximation will be an ‘‘optimal truncation
for the resummed perturbation theory series, similar to
nonresummed asymptotic series, e.g., in the« expansion of
O(n)-symmetricf4 model, where ‘‘naive’’ interpretation of
the series truncated by«2 term leads to the best~optimal!
result. On the other hand, numerical and analytic studies
toy model of a disordered system61,62 revealed two possible
regimes of the high-order behavior: the first one correspo
to a Borel-summable series whereas the second one doe
correspond to a Borel-summable series. Numerical studie
up to 200 terms of the expansion61 resulted in the conclusion
that the convergence of the Borel-resummed results dep
on the strength of disorder~relation of the couplingsu/v).
The convergence of the numerical data of Table VIII is e
dence of the fact that the fixed point valuesu* ,v* in d53
lie in a region, where the resummed series gives relia
information. In any case, on the basis of the above anal
one can definitely say: while for the pure Ising model the«
expansion and the 3D approach analysis of the RG funct
are of equal usefulness, an interpretation of these function
the diluted model can be done only within the framework
the 3D approach. The application of theA« expansion re-
mains to be valid only near the upper critical dimensiond
54. This conclusion holds at least within the discussed
summation schemes.

V. EFFECTIVE CRITICAL BEHAVIOR

If one is not within the asymptotic region of the stab
fixed-point power laws for the physical quantities may on
apply with effective exponents. The critical behavior is th
to be understood as a crossover behavior between the un
cal background behavior and the true asymptotic behav
As it has been noted in Ref. 37 this has, in principle, noth
to do with crossovers between special fixed points~e.g., the
pure one and the random one!. However, depending on th
nonuniversal parameters entering the nonasymptotic be
ior, the crossover may be more or less influenced by
unstable pure fixed point.

The effective exponents are defined by logarithmic
rivatives of corresponding thermodynamical quantities w
respect to reduced temperaturet.52 In the RG scheme they
are calculated in the region where couplings have not
reached their asymptotic~fixed point! values and depend o
the flow parameterl. For instance, the magnetic susceptib
ity effective exponentge f f is defined by
-
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ge f f~t!5
d ln x~t!

d ln t
5g$u@ l ~t!#,v@ l ~t!#%1•••, ~22!

where the second part is proportional to theb functions and
comes from the change of the amplitude part of the susc
tibility. In order to proceed we have to neglect this part sin
we do not know the amplitude function in the same orders
the field-theoretical functions for the exponents. Moreov
the contribution of the amplitude function to the crossov
seems to be small, at least in other cases.79,80 This approxi-
mation has also been used in the earlier work on dilu
models.37

The flow parameterl (t) may be related to the tempera
ture via the matching conditionm( l )5(j0

21l )2 and m0
2;t.

However, we discuss the effective exponents as function
the flow parameter. Then the effective exponents are sim
given by the expressions for the asymptotic exponents~10!
but with replacing the fixed-point values of the couplingsu*
andv* by the solutions of the flow equations~6!:

1/ne f f52$12gm@u~ l !,v~ l !#%,

he f f52g2@u~ l !,v~ l !#, ge f f5ne f f~22he f f!. ~23!

These solutions are shown in Fig. 3 for several init
conditions. Shown are the two unstable fixed points:
~Gaussian fixed point! and P~pure Ising fixed point! and the
stable random fixed point R, with both couplings nonzero.
the background region the couplings are expected to be s
thus all the flows shown start near the Gaussian fixed p

FIG. 3. Flow lines for thed53 RIM. Fixed points G and P are
unstable, fixed point R is the stable one.
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with different ratiosv( l 0)/u( l 0) ~curves 1 to 6 except curv
2!. Curve 1 is the separatrix connecting the fixed point
with P, and curve 2 is the separatrix connecting P with R.
curves starting with a negative couplingv remain negative
but the dependence might be nonmonotonous~see curve 6!.
Thus several scenarios for the values of the effective crit
exponents are possible~see Figs. 4 and 5!.

Both in experiment as well as in computer simulatio
~see Tables I and II! exponents reported differ and even e
ceed the known asymptotic theoretical values. This nonu
versal behavior might be related to the possible nonasy
totic behavior found in our different flows as has be
suggested in Refs. 37 and 46. The difference might be du
~i! the different temperature regions of the experiment and
~ii ! the different concentrations. The initial values for t
couplings in the flow equations depend on the value of
concentration, especially for small dilution one expects
couplingv to be proportional to the concentration. If this
the case we expect a monotonous increase of the value
the effective exponent to the asymptotic value. A typic
scenario is seen in curve 3 of Figs. 3–5. In this case effec
exponents equal to the pure model critical exponents m
be found in relatively wide region of temperature. Then
the attraction region of the fixed point P becomes weaker
weaker, an overshooting is possible and effective expon
larger its asymptotic values might be found. This scenari
predicted for larger dilutions and represented by the curv
of Figs. 3–5. Curves 5 and 6 correspond to situation w
crossover from the mean-field behavior towards the rand
one is not influenced by the presence of a pure fixed po

VI. CONCLUSIONS

We studied the critical behavior of the three-dimensio
weakly diluted Ising model asymptotically close to the cri
cal point, in the intermediate region, and far from it. To th
end we calculated the values of the asymptotical critical
ponents, analyzed the behavior of the effective critical ex
nents and obtained the value of the correction-to-scaling
ponent entering the Wegner expression which describes
approach of singular quantities to the critical temperatu

FIG. 4. Effective exponentne f f versus logarithm of the flow
parameterl for the flows shown in Fig. 3.
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Our study is based on the five-loop minimal subtracti
field-theoretical renormalization-group functions53 of the f4

theory withO(n)-symmetric and cubic interactions which i
the replica limitn→0 correspond to the diluted Ising mod
case. As the minimal subtraction scheme allows to deve
either theA« expansion or the 3D approach, we adopted
both schemes and compared the results obtained on
basis.

The perturbation theory RG functions series a
asymptotic at best. In order to calculate the critical expone
we adopt different resummation procedures within the b
schemes, testing them on the well established case of thf4

model with one coupling~pure Ising model!. While after the
resummation both« expansion and 3D approach give re
able results for the numerical values of the pure model c
cal exponents, in the case of the diluted Ising model the
convergence properties of theA« expansion do not allow to
obtain reliable values atd53. Using the direct resummatio
of the RG functions atd53 in the minimal subtraction
scheme we obtained numerical values for the asympt
critical exponents of the diluted Ising model and estima
their accuracy to be of order of several percent. The res
obtained in the 3D approach agree well with other theoret
and recent Monte Carlo simulations. Studying the crosso
effect we calculated the effective critical exponents and th
flows in the nonasymptotic region. We observed several s
narios of crossover in the RIM including: monotonous cro
over from the mean-field values of critical exponents to
random ones; existence of a wide temperature region wh
the RIM effective exponents coincide with the asympto
exponents of the pure Ising model; possible values of eff
tive exponents exceeding those of asymptotic ones.

Though the 3D approach of calculation encountered
ficulties in the five-loop level we guess that the fixedd ap-
proach, both within the massive60 and minimal
subtraction54,65 schemes, remains the only reliable way
study critical behavior of the model by means of the R
technique.

Note added in proof. During processing of the article sev
eral new results appeared in the field. The massive sch
four-loop RG functions of the RIM~Refs. 35,36! were ex-

FIG. 5. Effective exponentge f f versus logarithm of the flow
parameterl for the flows shown in Fig. 3.
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FIG. 6. The estimate of the toy-model part
tion functionZ at u51/10 andv521/100 in de-
pendence of the order of perturbation theoryL in
couplingsu andv. The application of Pade´-Borel
resummation with linear denominator approx
mants of type@N/1# ~solid line! provides conver-
gence to the exact value~dotted line! only for
some first orders of approximation.
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tended to the five-loop91 and six-loop levels.92 While the
traditional analysis of the first via PB resummation allow
to obtain numerical values for the RIM asymptotic critic
exponents,91 the method failed for the higher-orde
functions.93 However, an application to the functions of
refined resummation procedure which treats renormali
couplings of the RG functions asymmetrically94 reconstituted
and improved95 earlier data for the RIM asymptotic critica
exponents.
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APPENDIX: THE CHOICE OF THE RESUMMATION
PROCEDURE

In order to obtain reliable quantitative description of t
problem under consideration one should adjust precisely
summation procedures necessary for analysis of RG fu
tions. Since no information is available about the high-or
behavior of the series forb andg functions~11!–~14! ~com-
pare with thed52 and d53 scalarf4 model where the
Borel summability of the RG functions is proven81,77and the
large order behavior is calculated82,83!, we reject all powerful
methods implementing such an information~e.g., resumma-
tion refined by a conformal mapping, widely used in t
models of critical phenomena with one coupling84,4! and re-
strict ourselves to the simplest resummation techniq
which are the generalization of the Pade´-Borel technique
~18! and ~19! to the two variable case. Among them w
choose that procedure, which, for the different orders of
d

-
s

e-
c-
r

s

-

proximation, provides the maximal stability. That means
fastest convergence of the results as well as the max
similarity of the topological structure of the lines defined
the zeros of theb functions.

1. A dÄ0 theory

Let us start tuning the resummation technique by cons
ering the expressions for a toy model. It is defined by
partition function

Z5
1

pn/2E2`

1`

df1•••dfn

3expF2(
i 51

n

f i
22uS (

i 51

n

f i
2D 2

2v(
i 51

n

f i
4G ,

which corresponds to the cubic model described by
Hamiltonian~1! in dimensiond50. One can easily calculat
the sufficient number of terms representingZ in the form of
a series inu andv for arbitraryn. However, the simplest cas
which reproduces the series in two couplings isn52 since
the casen50 is trivial andn51 corresponds to a series in
single variableu1v.

We write the series forZ in the two variablesu andv as
a series in one auxiliary variablet introduced by the substi
tution u→ut, v→vt ~the so-called resolvent series85! and
apply the Pade´-Borel ~PB! method~18! and~19! to the series
in t. Here we choose two possibilities of the approximan
one with linear denominator and the other one of diago
type. Moreover, we fix the parameterp ~18! to p50 but
discuss other choices for the parameter later on. The res
of this procedure are shown in Figs. 6 and 7 for the spec
valuesu50.1 andv520.01. One notes that a stable co
i-

e

ct
FIG. 7. The estimate of the toy-model part
tion functionZ at u51/10 andv521/100 in de-
pendence of the order of perturbation theoryL in
couplingsu andv. The application of Pade´-Borel
resummation with diagonal approximants of typ
@N/N# or @(N11)/N# ~solid line! provides per-
fect convergence of the estimate to the exa
value ~dotted line!.
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FIG. 8. The dependence of a measureD of
total deviation between three- and four-loop pu
Ising model results~triangles! as well as of three-
and four-loop RIM results~crosses! on fitting pa-
rameterp. One can see the minimum forp50.
The deviation between five- and four-loop resu
~boxes! for pure Ising model confirmsp50, too.
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vergence to the exact value takes place only for resum
tions with diagonal approximants, while the approxima
with linear denominator converge only for certain, ‘‘opt
mally truncated,’’ orders of approximation. The larger t
value of the variablesu andv the less is the order of ‘‘opti-
mal truncation.’’ We believe that processing the diverge
series~11!–~14! in the same manner one may encounte
similar difficulty.

Analyzing the toy-model series by the Chisholm-Bo
~CB! scheme~20! and~21!, one notes that the coefficients
the Chisholm approximant are underdetermined. For
ample, for theL-loop sum an approximant of the linea
denominator type@L/1# being uniquely defined requires tw
additional equations. This is the minimal number of ad
tional conditions, necessary to determine any approxim
for L52•••5 except forL54, where the@3/2# approximant
is determined uniquely without additional conditions. Sin
generally speaking, a near-diagonal Chisholm approxim
requires additional conditions the number of which depe
on the order of approximation, we reject this type of appro
mants and consider in the following only the@L/1#-type ap-
proximants. The two additional equations have to be sy
metric in the variablesu and v, otherwise the properties o
the symmetry related to these variables would depend on
method of calculation. By the substitutionv50 all the equa-
tions describing the critical behavior of the diluted model a
converted into the appropriate equations of the pure mo
However, if a pure model is solved independently, the
summation technique uses the Pade´ approximant. Thus the
Chisholm approximant has to be chosen in such a way t
for eitheru50 or v50 one obtains the Pade´ approximant of
the one-variable case. This also needs a special choice o
additional conditions. This is achieved by choosing the C
isholm approximant@L/1# with the numerator coefficients a
uL andvL equal to zero.

The analysis of the toy-model series by means of this t
of CB technique leads to the existence of an ‘‘optima
truncated’’ order of approximation similar to the one show
in Fig. 7.

2. A dÄ3 theory

Let us turn back now to the expressions for the RG fu
tions ~11!–~14! at d53. Starting from the PB analysis on
finds that diagonal-type approximants lead to poles on
real axis. This may be due to the fact that approximants
not reconstitute the sign-alternating high-order behavior
the general term of the RG functions, which was confirm
a-
s

t
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l
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-
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in the particular casesn52 andn53.86 Thus for the further
discussions we proceed with approximants of line
denominator type.

Applying the PB method with linear-type approximan
we find that the random fixed point for thed53 RIM cannot
be reconstituted already in the three-loop approximati
while the random fixed point exists even for nonresummeb
functions in this approximation. The picture does not chan

FIG. 9. The lines of zeros of the cubic modelb functions re-
summed by the Chisholm-Borel method in four-loop approximat
for different n. Thick lines correspond tobu50, thin lines depict
bv50. The filled boxes and open circles show the positions
unstable and stable fixed points, respectively. One can see tha
crossover to a new behavior appears for values ofn very close to 3.
Our estimate yieldsnc52.950~see the text!.
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qualitatively when we try to increase effectively the order
polynomial representation for theb functions by resumming
expressions@11r u(u1v)#bu ,@11r v(u1v)#bv with r u ,r v
taken as fit parameters~compare with Ref. 4!. The modified
construction of Ref. 37 for the Pade´ approximant with a lin-
ear denominator reconstituting the known large order beh
ior of the one couplingb functions,bu(u,v50) andbv(u
50,v), does not lead to the appearance of the random fi
point either. We conclude, although the PB scheme work
two- and four-loop approximations, it appears to be unsta
in the three-loop approximation and therefore we eliminat
from our consideration.

The CB method reconstitutes the random fixed point
two-, three-, and four-loop approximation, however, it fa
in the five-loop approximation. In order to reestablish t
random fixed point we have varied the values ofp as well as
of r u ,r v , but even then we find no region forr u.0,r v.0 so
that the random fixed point exists in all orders of perturb
tion theory. We also predicted the values of the sixth-or
contribution forb functions ~see Refs. 87 and 88!, but the
resummation of such pseudo-six-loop functions did not all
to find the random fixed point either. Again a modified co
struction of the Chisholm approximant with the known line
denominator37 failed. Comparing the behavior of the toy
model series~see Fig. 6! and the convergence of the resu
of the RIM ~Table VIII! we considerL54 as the ‘‘optimal
truncation’’ order within the CB scheme of linea
denominator approximant.

Once we have chosen the CB method based on Chish
approximants of@L/1# type as the tool for analyzing the RIM
RG functions we look now for the fastest convergence of
results with increase of the order of approximation in num
of loops L. To this end we fit the parametersp entering
Borel-Leroy images~20! of RG functions. For the RIM we
introduce a measure of total deviation betweenL- and
L8-loop results by a functionD25(u* ,L2u* ,L8)21(v* ,L

2v* ,L8)21(g* ,L2g* ,L8)21(n* ,L2n* ,L8)2, where the su-
perscriptsL(L8) indicate a value obtained inL(L8)-loop ap-
proximation. For the pure Ising model an appropriate m
sure is given by a similar function withv* 50. We adjust
now the parameterp to minimizeD. The behavior ofD(p) is
shown in Fig. 8. A minimum ofD for the pure Ising model is
achieved forp50 ~curves pointed by boxes and triangles
Fig. 8! in both casesL54,L853 andL55,L854. Similar
behavior inp is observed for the RIM~curve pointed by
crosses! suggesting the choicep50 as well.

3. A cubic model

Since originally the RG functions under considerati
~11!–~14! were obtained in order to study the critical beha
ior of the cubic model introduced by the effective Ham
R

rit
ob
f

v-

d
in
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-
r

-
r

lm

e
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tonian~1!, we will use it for another test of the resummatio
procedure. In the case of nonzero values ofn the critical
behavior of this system is governed either by t
O(n)-symmetric fixed point for values ofn small enough or
by the cubic fixed point forn.nc , wherenc is the marginal
value of the order-parameter component. The identificat
of the marginal dimensionnc as well as of the critical expo
nents governing the phase transition of the model was
cently performed within the« expansion.53 The same mode
was studied by means of the massive RG approach.35 The
numerical value ofnc was found to be only slightly less tha
n53 leading to values of the critical exponents of the cu
model practically indistinguishable from those of th
O(3)-symmetric model. Recent MC simulations strong
suggestnc53 althoughnc,3 cannot be excluded.89 We
present estimations ofnc obtained from the conditions tha
the O(n) symmetric and the cubic fixed point of the re
summedb functions coincide. This calculation has two a
vantages:~i! one tests once more the resummation meth
and, ~ii ! a new estimate ofnc is obtained from the 3D ap
proach within minimal subtraction scheme. Up to nownc
has been calculated in the frames of« expansion in the five-
loop approximation53,27 as well as in the massive scheme
four-loop approximation.35 We perform estimates within
the 3D minimal subtraction approach65 in two-, three-, and
four-loop approximation. The corresponding values on
basis of b functions resummed by the Chisholm-Bor
method read:nc(2Loops)52.7730, nc(3Loops)53.1078,
nc(4Loops)52.9500. This should be compared with the r
sult of the five-loop « expansion nc52.958 ~Padé
analysis!,53 nc52.855 ~Padé-Borel resummation!,27 and the
four-loop massive 3D RG schemenc52.90~Chisholm-Borel
resummation!.35 In Fig. 9 we show the lines of zeros for th
resummedb functions as well as the fixed points for diffe
ent n. One can see that the change of stability of the fix
points appears forn very close ton53. As our numerical
result yieldsnc,3 the cubic model atn53 is governed by a
new set of critical exponents which readg51.387,n
50.709,a520.127,h50.044. The coordinates of the stab
cubic fixed pointu* 50.0064,v* 50.3950 and stability ma-
trix eigenvaluesv150.0440,v250.0055 should be com
pared with the corresponding values for the nearby situa
unstable O(n)-symmetric fixed point: u* 50,v*
50.4009,v1520.0056,v250.0751. Of course no experi
ment can distinguish between the critical exponents of th
almost coinciding fixed points. Note however that atn.nc
the stable fixed point can be reached only foru.0. Then
nc,3 means that all systems described by the phenome
logical Landau-Ginsburg Hamiltonian with cubic anisotro
of negative coupling should undergo a weak first-order ph
transition atn53.90
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82L. Lipatov, Zh. Éksp. Teor. Fiz.72, 411~1977! @Sov. Phys. JETP
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