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We present a field-theoretical treatment of the critical behavior of a three-dimensional weakly diluted
guenched Ising model. To this end we analyze in the replica mi0 the five-loop renormalization-group
functions of theg* theory withO(n)-symmetric and cubic interactiofisl. Kleinert and V. Schulte-Frohlinde,

Phys. Lett. B342 284(1995]. The minimal subtraction scheme allows one to develop eithey/thexpansion

series or to proceed within the three-dimensional approach, performing expansions in terms of renormalized
couplings. Doing so, we compare both perturbation approaches and discuss their convergence and possible
Borel summability. To study the crossover effect we calculate the effective critical exponents. We report
resummed numerical values for the effective and asymptotic critical exponents. The results obtained within the
three-dimensional approach agree pretty well with recent Monte Carlo simulatjensxpansion does not

allow reliable estimates fod=3.

[. INTRODUCTION effective exponents are observ&dTheoretical results are
due to the application of the renormalization group approach.

Influence of a weak quenched disorder on magneticThese are numerous for the asymptotic values of critical ex-
second-order phase transition remains the subject of mugbonents but quite seldom for the effective ofés.
interest. One of the central problems here is the answer to the This paper has been motivated by recent Monte Carlo
questions:(i) do the critical exponent$of a homogeneous calculations of the asymptotitand effectivé®4%*Ccritical
magnet change under dilutiorfbby a nonmagnetic compo- exponents for the three-dimensional Ising systems with
neny? And, if yes,(ii) how do they change? quenched disorder. Here, we deal with a renormalization

Replying to the first question it was argdealmost 25 group study of both asymptotic and effective critical behav-
years ago that if the heat capacity critical exponerdf the  ior. Perturbation theory series, which are known in the five-
pure (undiluted system is positive, i.e., the heat capacityloop approximation for theO(n) model with cubic
diverges at the critical point, then a quenched disorder causesisotropy’® enable us to perform our studies in the replica
changes in the critical exponents. This statement is known agnit n—0. The minimal subtraction schefellows us to
Harris criterion. Later, for a large class a¢fdimensional dis-  gevelop either the/s expansion or to proceed in the three-
ordered systems it was proven that the correlazuon lengthimensional3D) approach, performing expansions in terms
critical exponentr must safisfy the bound=2/d.” Both ¢ renormalized couplings. Doing so, we compare both per-
statements focus attention towards studies oftthe8 Ising  tyrhation approaches and discuss their convergence and pos-
model, where the typical numerical values of the above exsjple Borel summability.
ponents, together with the magnetic susceptibility and the The paper is arranged as follows. In Sec. Il we give a
order-parameter critical exponents in the pure case read: prief account of some results on critical properties of systems
=0.109-0.004, »=0.6304-0.0013, y=1.2396:0.0013,  of interest, Sec. Il describes the model and the renormaliza-
jB=0.3258+0.0014° tion procedure. In Sec. IV we analyze the series obtained,

The reply on the second question concerning the numeriperform their resummation, and give results for the
cal values of the critical exponents df=3 weakly diluted  asymptotic values of critical exponents. Effective critical be-
quenched Ising modé¢tandom Ising mode(RIM)] is more  havior is discussed in Sec. V. Section VI concludes our

complicated. " Below we briefly _revie\S/\{ some study. Details of the resummation procedures exploited in
experimentaf, ** theoreticaf;”~*" and numericaf—>'results  our study are given in the Appendix.

for the critical exponents ofi=3 magnets described by the

RIM. Although the statements of Refs. 1 and 2 should hold

in principle for arbitrary weak disorder, the new critical ex- Il REVIEW

ponents appear only in a region of temperatures controlled

by the concentration of the nonmagnetic component. Such a ExperimentsCrystalline mixtures of two compounds pro-
region may not always be reached in practice, where only theide a typical experimental realization of a Rl{dee Table
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TABLE I. The experimentally measured critical exponents of the materials, which correspond de-=theRIM. The measurement
procedures as well as materials specifications are given in the following notations: NMR, nuclear magnetic resonance; LB, linear birefrin-
gence; NS, neutron scattering; MS, d&bauer spectroscopy; SMXS, synchrotron magnetic x-ray scattering; XS, x-ray scattering; DAG,
dysprosium aluminium garnet,,;, denotes the minimal value of the reduced temperature reached in an experiment.

Ref. Year Material Method Tmin B y v a
5 1981 MRZn, _F>, NMR ? 0.349-0.008
x=0.864
6 1983 FezZn,_F», NS; LB 2x10°3 1.44+0.06 0.73-0.03 —0.09+0.03
x=0.6,0.5
13 1985 DAG NS 4102 0.350+0.01 0.73
+1% Y powder
12 1986 Fezn, _F>, NS 1.5<10°3 1.31+0.03 0.69-0.01
x=0.46
11 1986 FeZn, _F>, MS 10°3 0.36+0.01
x=0.9925-0.95
7 1986 MRZn, _F>, NS 4x10°4 1.364+0.076  0.7150.035
x=0.75
8 1988 MRZn, _F>, SMXS 103 0.33+0.02
x=0.5
10 1988 FezZn, _F>, MS 3x10°4 0.350+0.009
x=0.9
14 1988 MRZn, _F>, LB <102 —0.09+0.03
x=0.40,0.55,0.83
15 1991 FeZn, _F>, LB ? —0.09
0.31=x=<0.84
16 1995 Fezn, _F>, NS <107t 0.35
x=0.5
17 1996 FezZn, _F>, NS 102 0.35
x=0.52
18 1997 FeZn, _,F,, XS 102 0.36+0.02
x=0.5
20 1998 FeZn, _,Fy, LB 2.5x1073 —0.10+0.02
x=0.93
19 1998 FeZn, _F>, NS 2x10°3 1.35+0.01 0.71-0.01
x=0.93
21 1999 FeZn, _F>, NS 1.14<10°* 1.34+0.06 0.76:0.02
x=0.93

[). The first compound is an “Ising-like” anisotropic this proved that within the error bars the hyperscaling rela-
uniaxial antiferromagnet with dominating short-range inter-tion dv+ «=2 is satisfied.

action (e.g., Fek, MnF,), the second one (ZBF is non- Crossover phenomena in diluted systems are governed in
magnetic. Mixed crystals (E&n,_,F,, Mn,.Zn; _,F,) can addition to the temperature by the concentration of the mag-
be grown with high crystalline quality and very small con- netic component. The experimentally obtained exponents are
centration gradients providing an excellent realization of ranoften reported to be effective onése., temperature and di-
dom substitutional disorder of magnetic ions {(EeMn*?) lution dependent However, already in early experiments on
by nonmagnetic ones (Z1). Experimental evidence of the the critical behavior of quenched diluted Ising-like antiferro-
critical behavior at a weak quenched dilution was themagnets it appeared possible to reach the asymptotic region.
nuclear-magnetic-resonance measurement of the magnetiZzBhus studying the critical regime in Ref. 6 the authors found
tion in Mng g6ZNg 134 - The value of the magnetization ex- neither a region in reduced temperaturavhere one finds
ponentB was found to differ strongly from that in undiluted “pure” Ising exponents nor any evidence of crossover from
sample(see Table | for detaijsIn a few years this result was pure to random exponents. This was explained by the cross-
corroborated by nuclear scattering measurements of magwer either taking place outside the critical region or being
netic susceptibility and correlation length critical exponentstoo slow. In Ref. 11 the crossover from pure to diluted criti-
in FeMn, _,F, (Refs. 6 and 1Rand MnZn, _,F, (Ref. § at  cal behavior was studied and a magnetization expogent
different dilutions 1-x. The linear birefringence measure- which does not change under dilution fo=0.05 was found.
ments brought about the cusplike behavior of a specific heakthe crossover occurs within a very narrow rangeroét

at the transition point withe= —0.09+ 0.03° In particular  relatively large values of. In Ref. 7 excellent agreement of



15116 R. FOLK, YU. HOLOVATCH, AND T. YAVORSKII PRB 61

the measured exponenisand v with the theoretical values approach in minimal subtraction scheme. In particular the
of the RIM was obtained for the temperature range 4resummed values of the critical exponents obtained there in a
X 10 *<7=<10"1. The value of the critical exponeg was three-loop approximation reag=0.666, y=1.313%'
also the subject of a crossover analysis in Refs. 8 and 10. Griffiths singularities and replica symmetry breakimy-
Reference 8 concludes that the experimental errors are tafiough the RG approach does not allow us to determine the
large in order to distinguish between the pure Ising modetegion of concentration where the scenario with two fixed
and the RIM critical behavior. In Ref. 10 no crossover waspoints, explained above, is applicable, it is generally as-
found after the correction-to-scaling has been taken into acsymed that it holds at least for weak dilutions. The idea of
count, and the RIM critical behavior was found in the whole g5 presumes that one studies the influencétafrma) fluc-
temperature range. . ) ) ) tuations around the spatially homogeneous unique ground
It is _knqwn that the d'IUte_d I_smg_ magnet in a unlfor_m state. This holds for the pure system but does not hold for the
magnetic fieldH along the uniaxial direction exhibits static diluted one. Here, in a disorder dominated region one finds a

critical behavior of the random-field Ising modéf*® The . o
random-field Ising model is the subject of intensive recent ac1OSCOPIC number of spatially inhomogeneous ground

experimental studieee Ref. 57 for a reviewSuch experi- states, co_rrespond_ing to the Iocal_minimum solu;ions (_)f the
ments give additional information about the critical behaviorsa(jldle'loqInt equation for an effective Lagrandiafi Physi-
of the RIM when performed foH =0 14-2¢ cally the inhomogenous ground state corresponds to the so-

Renormalization group resultThe change of the Ising- Called Griffiths phe}fﬁé caused by the existence of ferromag-
type magnets critical exponents under dilution found its thel€tically ordered “islands™ in the region of temperatures
oretical confirmation in the renormalization gro(RG) cal- ~ between the critical temperatures of pure and diluted sys-
culations. There, the change of the universal properties i&ms. This is described by a replica-symmetry breaking
interpreted as a crossover from the “pure” fixed point Lagrangiaf® leading to a behavior at the critical pdift®
present in the undiluted model towards the “random” onedifferent from the pure one. The “traditional” RG
which characterizes the new critical behavior of the RIM.result§?-3">8>963%4gre valid for the replica-symmetric
The corresponding RG equations are degenerated on the ohagrangians? Since the usual RG approach is based on an
loop level, which leads instead of the familiar expansion inintegration over the disorder at the beginning of the calcula-
e=4—d to the expansion in/e.?22* This expansion was tion, it cannot give any information about the region of con-
recently extended from the three-I30p° to the five-loop  centrations where the weak dilution concept hdfds.
leveF"-?8for the critical exponents. Thee-expansion series Monte Carlo simulationsMonte Carlo(MC) studies of
for the amplitude ratio¥ is available with the three-loop the d=3 RIM systems have lasted for almost two
accuracy as wefl® Although the \e-expansion series are decades®>'One of the first studies of critical behavior of a
known with pretty high accuracy they seem to be of no userRIM on a simple cubic lattic® revealed the critical expo-
for the d=3 case?® Alternatively, the scaling field RG ap- nents in a wide dilution region with no deviations within the
proach leadvia the two fixed points scenajido thed=3  numerical error from the corresponding exponents of the
critical exponents values'=0.70, y=1.382 definitively  pure (undiluted system(see Table ). However, these data
different from their “pure” counterparts. were objected by MC simulations on larger latti¢&8’

RG equations of the masside=3 field theory® appeared where critical exponents varying continuously with the mag-
to be the most fruitful tool tackling the problem. The result- netic sites concentratiox were obtained. Indications of
ing expansions, considered as the asymptotic e how- change of the order-parameter critical expongntpon di-
ever, Refs. 29, 61, and 62 and Sec. IV of this papezre lution initiated the extension of studies to determine the other
resummed successively increasing the order of the perturbaritical exponents and to check the scaling in the disordered
tion theory series from the two-log@LA) (Refs. 31 and 32  systems. The application of the Swedsen-Wang algorithm to
through three-loog3LA) (Refs. 33 and 34to the four-loop  thed=3 RIM (Ref. 42 resulted in critical exponents for the
(4LA) approximations>>® Depending on the resummation susceptibility and correlation length independent of concen-
procedure applied, the results for the correlation length anttation over a wide range of dilution.
the magnetic susceptibility critical exponents,y} read Due to Refs. 42 and 43 and especially Refs. 45 and 46 it
2LA: {0.67813, 1.335537*! {0.679, 1.337>3 3LA: {0.670, became clear that the concentration-dependent critical expo-
1.329;*3{0.671, 1.3283* 4LA: {0.6702, 1.326R°{0.6680, nents found in MC simulations are effective ones, character-
1.318, {0.6714, 1.321L% Critical amplitudes universal ratios izing the approach to the asymptotic region. The effective
at d=3 were obtained in three-loBpand five-loo3* ap-  exponentsy, 3 and {=1— g (the last one describes the di-
proximations. vergence of the magnetization-energy correlation fungtion

It is worthwhile to mention here that the renormalization were showf® to be concentration dependent in the concen-
at fixed d=3 dimensions does not necessarily mean artration region 0.5x<1. These data were refined three years
implementation of the massive schéthn which most of  latef*® resulting in more accurate estimates for the above-
the theoretical resufts® were obtained. Indeed, the mini- mentioned exponents and the critical exponermt the cor-
mal subtraction scheritis also suited for thel=3 renor-  relation length yielding continuously varying values. The
malization and can be applied withositexpansior?®> Both  general conclusion of Refs. 45 and 46 was: while a simple
schemes serve as complementary tools to obtain informatiocrossover between the pure and weakly random fixed point
about the critical behavior of the pure Ising mofiel, more  accounts for the behavior of systems abave0.8, in more
generally,0(n)-symmetricé* theory]. However, in the case strongly disordered systems a more refined analysis is
of the RIM there exists only one study relying on the 3D RGneeded. Note that this last statement is supported by the con-
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TABLE Il. The critical exponents of thel=3 RIM as they are obtained in MC simulations for different values of magnetic sites
concentratiorx. Maximal number of lattice sites simulatedNs=L3. (The asterisk at concentrations denotes that disorder was realized in a
grand-canonical manngr.

Ref. Year L X B b% v
38 1980 30 0.4x<1 0.31 1.25
1 0.30+0.02
0.985 0.310.02
39 1986 40 0.95 0.320.03
0.9 0.355-0.010
0.8 0.385-0.015
1 0.29+0.02
40 1986 90 0.95 0.280.02
0.90 0.31%0.02
0.80 0.37:0.02
41 1988 40 0.80 0.3920.03
42 1989 100 0.4x<0.8 1.52£0.07 0.77£0.04
43 1990 300 0.8 1.360.04
1 0.6294)
44 1990 64 0.9 <2/3
0.8 0.68813)
1 0.305-0.01 1.24-0.01
0.9 0.315-0.01 1.36:0.01
45 1990 60 0.8 0.3360.01 1.35:0.01
0.6 0.3303-0.01 1.48-0.02
0.5 0.335-0.01 1.49-0.02
1 0.33:0.01 1.22:0.02 0.624-0.010
0.95 0.3%0.02 1.28-0.03 0.64:0.02
46 1993 60 0.9 0.3t0.02 1.3%0.03 0.65-0.02
0.8 0.35-0.02 1.35:0.03 0.68-0.02
0.6 0.33£0.02 1.510.03 0.72-0.02
48 1993 907? 0.6 0.420.04 0.78-0.01
49 1998 64 0.8 0.3440.003 1.3570.008 0.682-0.003
50 1998 90 0.6 0.3160.013 1.522:0.031 0.722-0.008
80 0.6° 0.313+0.012 1.5080.028 0.71%0.007
51 1998 128 0.4x=<0.9 0.3546-0.0028 1.3420.010 0.683%0.0053

jecture of a “steplike” universality of the three-dimensional Ill. THE MODEL AND THE RENORMALIZATION-GROUP
diluted magnet§’ PROCEDURE

The critical behavior of theli=3 RIM was reexamined In this section, we define the RG procedure as well as the

recently in Refs. 49-51. In particular, the smulatrﬁhsa— main quantities which we are going to calculate. Making use
vealed that a disorder realized in a canonical maifiéng ot the replica method and taking the average over different
the fraction of magnetic sit¢$eads to a different result from configurations of quenched disorder it is possible to show
those obtained from a disorder realized in a grand-canonicghat the RIM critical behavior in the Euclidean spacedof
manner(see Table ”, where the values for the second CaSE—_4_8 dimensions is governed by an effective Hamiltonian
are denoted by asteriskThe studies of Ref. 51 were based wjith two coupling constant®

on the crucial observation that it is important to take into

account the leading correction-to-scaling term in the infinite il 1 n s 2o

volume extrapolation of the MC data. The simulations con- H(QD):f R 5 21 [[Veal*+moes]

. . . aye a=

firmed the universality of the critical exponents of tthe 3

RIM over a wide region of concentrations. In particular, the vo n 2

- . 2 0 4

value of the correction-to-scaling exponentwas found to +E 21 Pu +E 21 Pals (1)

I 4= I =

be w=0.37+0.06 which is almost half as large as the corre-
sponding value in the puré=3 Ising model w=0.799 in the limit n—0. Here,¢,=¢,(R) is the a’s replica of a
+0.011% The smallness ok in the dilute case explains its scalar fieldup~x>0, vg~x(x—1)<0 is the bare coupling
importance for an analysis of the asymptotic critical behav-constant of the fluctuation’s effective interaction due to the
ior. presence of impuritiean, is a bare mass.
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In order to describe the long-distance properties of the

model (1) in the vicinity of the phase transition point we

shall use the field-theoretical RG approach. The results fof/

the RG functions corresponding to E(.) are obtained on

the basis of the dimensional regularization and the minimal

subtraction schem¥. The renormalized fields, mass, and
couplings¢, m,u,v are introduced by

1/2
QD:Zd) d)!
ma=Z2m?,
Ly
Ug=pu Z—ZU,

¢
Vo= Séﬂv
0o— M 22 .
¢

Here, u is the external momentum scale afg, Zy2, Z4,,
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IR(M,uv, 1) =XMN2CRLY(Hm,u(l),o(1),ul],  (5)

here the characteristics are the solutions of the ordinary
differential equationgflow equationg

d d
LI XD =ygluD)v(D], TgrInY () =ymlulh),vD],

d d

Ig7u=Bu)vD], Tge)=B[u)v(D)] €

with
X(D)=Y(1)=1, u(l)=u, v(l)=v. 7)

For small values of, Eq. (5) maps the large length scales
(the critical region to the noncritical point=1. In this limit
the scale-dependent values of the couplingl), v (1) will
approach the stable fixed point, provided such a fixed point
exists.

The fixed pointsu*, v* of the differential equation$b)
are given by the solutions of the system of equations:

Z,, are the renormalization constants. They are determined

by the condition that all poles at=0 are removed from the
renormalized vertex functions.

The RG equations are written bearing in mind that the

bare vertex function§ ) are calculated with the help of the
bare Hamiltonian(1) as a sum of one-particle irreducible
(1PI) diagrams:

TY{rH=(e(ry)- - @(ry)ip- )

The FB‘ do not depend on the scale, and therefore their
derivatives with respect ta at fixed bare parameters are
equal to zero. So one gets

d

'Y= i
M(M olo=™ M

” €

IBU(U*! U*):O,

B,(u*,v*)=0. (8)
The stable fixed point is defined as the fixed point where the
stability matrix

Py,

1) auj 1
possess eigenvalues;,w, with positive real parts. The
stable fixed point, which is reached starting from the initial
values in the limitl —0, corresponds to the critical point of
the system. In the limit—O0 (corresponding to the limit of
an infinite correlation lengbhthe renormalized couplings
reach their fixed point values and the critical exponents

B 9

ui={u, v}

where the index, means a differentiation at fixed bare pa- and v of the pair correlation function &ak; and of the corre-
rameters. Then the RG equation for the renormalized vertelation length, respectively, are then given by

function '} reads

d

. a+ a+ g N -
S Bugg TR, T ymMoe =57y r(M,U,v, 1)

Oy

and the RG functions are given by

(4)

Ju
_M&,u,

Bu(u,v)

1
0

_ Jv
IBU(U,U)_Mﬂlu, Oi

5 dlinZ,

= u1 = 1

Y¢=272(U,v)=p |,
dinm| 1 dlnz;

')’m(uvv)—ﬂ (9/~L 0_2M 0—,M O'

7]:272(U*1U*)1

v=2[1— y,u(u*,v*)]. (10

In the nonasymptotic region deviations from the power laws
with the fixed-point values of the critical exponents are gov-
erned by the correction-to-scaling exponent min(w;,w,)

in accordance with the Wegner expansfon.

The rest of the critical exponents are obtained by familiar
scaling laws. We note that the expression for correlation
length exponent may be recast in terms of the renormaliza-
tion constantZ 42 of the two-point vertex function withp?
insertion by a substitution 2,=y,+ y42, Which follows

from the relationsZ2=Z 42Z;* and y 2= udIn Z(;zllﬁ,u|0.

IV. RESUMMATION AND THE RESULTS

In this section we analyze series for the Rpvfunctions
and critical exponents. The RG functions of the correspond-
ing effective Hamiltonian(1) in the replica limitn=0 have
been obtained up to five-loop order from the appropriate ex-

Using the method of characteristics the solution of the RGoressions for RG functions of thep* theory with

equation may be written formally as

O(n)-symmetric and cubic interactiotisand read
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Bulu=—e+3u+4v—17/u%— 46/ u— 82/ >+ 32.549 682 84%+ 123.198 731 Bu?+ 158.181 641 82u
+60.325 268 123— 271.605 784 R*— 1318.116 31du®— 2452.429 9942u?— 2003.560 974 3u
—559.714 385 4*+ 2848.568 254°+ 16 789.898 48u*+ 40 367.085 93%u°+ 48 971.127 36°u?
+29091.771 78*u+6377.751 188°, (11)

B, lv=—¢&+8/3v+2u—14/2?— 22/ u—5/3u’+ 25.457 148 9¥°+ 62.254 991 76°u+ 36.366 455 22u’+ 7u®
—200.926 369 0*—667.376 189 53u—650.564 181 6°u®—259.258 689 2u*—39.912 610 1a2*
+2003.976 188°+8469.158 907*u+ 11 721.608 76°u?
+7434.635066°u’+ 2344.277 996u*+ 301.511 097 6°, (12

¥,=1/182+1/6vu+ 1/1212— 11273~ 1/6v%u— 3/160u?— 1/16u3+ 125/648%*+ 125/108 *u+ 145/72 >u®+ 65/48 u®
+65/1921*— 1.005 978 154°— 7.544 836 154*u— 18.048 546 223u— 19.078 389 96°u’
—9.627 924 878u*—1.925 584 976°, (13
Ym=1/3v + 1/2u—5/182—5/6vu—5/12u%+ 37/36 3+ 37/8&2u+ 251/48 u®+ 7/4u— 5.380 801 7*— 32.284 81.%u
—57.177 01%2u%—39.765 732 u®— 9.978 152 58* + 37.850 485 °+ 283.878 638“u+ 686.375 31#°u?
+737.493196%u+376.177 633 9u*+75.377 774 46°. (14)

In order to obtain the qualitative characteristics of theone deals with the expansions of some combinations of the
RIM critical behavior one can proceed in two ways. Thecritical exponents instead of working with them directly on
historically first scheme is known as expansion and con- the basis of expressiori$0). In the present paper the values
sists(i) in expanding the values of the couplings at the stableof critical exponents are calculated from the expansion for
fixed point ing, (ii) inserting these expansions into the field- 1/v—1=1-2vy,, and the inverse exponent for magnetic sus-
theoretic functions for the exponents3d) and (14), and(iii) ceptibility y~ 1= (1— y,)/(1— v,). The numerical values of
expanding again im. Due to the degeneracy of tifunc-  the other exponents are obtained by the familiar scaling laws.

tions (11) and(12) at one-loop level, an expansion iz has It is well known that the perturbation-theory series for the
to be performed®~2*Then in five-loop order on the basis of RG functions in the weak-coupling limit as well as in
Egs.(11)—(14) one obtaing’?® expansion are asymptotic at best. In order to compare the

results obtained on the basis of tkle expansion and of the
v=1/2+0.084 115 82>~ 0.016 632 08+0.047 75352%> 3D approach we have to refer to resummation procedures in
2 the calculation of critical exponents. Adjusting the resumma-
+0.272584 34, tion procedure we discuss first the one-variable case in both
L 32 2 schemes. We start from the expansion of the pure Ising
7=—0.00943396+0.034943567°~0.044864 98 model critical exponents which in the five-loop approxima-

+0.021573 2252 (15)  tion reads’
v=1/2+1/12: +0.043 209 88%— 0.019 043 3%°
+0.07088376%—0.217 017 82>,

y=1+0.168 231 64'>—0.028 547 08+ 0.078 828 8%
+0.564 504 962,

y=1+1/6e+0.077 160 49%—0.048 974 95°
+0.14357422%—0.446 624 83°. (17

w;=2¢+3.704011194°2+11.308 738 37>, (16)

w,=0.672 926 585 8V~ 1.925 509 085
0572525180 632 13.931 259 522. An analy;is of thea—exp'a'nsion case starts by representing
the expressions for the critical exponentandy of the pure
Another method consists if) fixing the value ofe, i.e., the  Ising model (17) in the form of the Padeapproximant:
lattice dimensionality(ii) solving the system of equation for [I\/I/N](X)=Ei'v'=0aix'/EJN=objx' in the variablex=¢. The
the fixed point andiii) substituting the fixed point values of results are shown in the form of a Paadéle (Table Ill). The
the couplings into the series for the critical expon&htthe  number of the rowN and of the columm corresponds to the
so-called 3D approag¢h order of the numerator and the denominator of the Rase
One should note here that often, for the sake of conveproximant[ M/N], respectively. One can see from this table
nience, within the 3D as well as theexpansion approach the expected convergence of the values in the diagonal and
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TABLE IIl. The Padetable for the values of the correlation TABLE IV. The results of the PadBorel resummation of the
length (v) and the susceptibility) critical exponents from the correlation length ¢) and the susceptibility) critical exponents
expansion of the puré=3 Ising model. Here and in Tables IV, VI, from the e expansion of the purd=3 Ising model. Here and in
and VIl the number of the row and of the column corresponds to thélfables VII and VIII the® superscript denotes that the real part of

order of numerator and denominator of a Pag@roximant, ‘0" the corresponding value is given.
means that the corresponding Paajgproximant cannot be con-
structed. v 0 1 2 3 4 5
B 0 1 5 3 4 5 0 0500 0560 0584 0592 0599  0.601
1 0.600 0.699 0.604 0.495 0.62Z% o
0 0.500 0.571 0.609 0.608 0.648 0.514 » 0.645 0.623 063 0.628 o o
1 0.599 0.673 0.608 0.610 0.620 o 3 0597 0.629 0.629 o 0 o
2 0.646 0.621 0.633 0.625 o o 4 0.731 0.629 o 0 0 o
3 0.597 0.631 0.627 0 0 0 5 0.431 0 0 0 0 0
4 0.732 0.625 1) o 0 )
5 0.431 o o o o o y 0 1 2 3 4 5
4 0 1 2 3 4 5 0 1.000 1.147 1.205 1.208 1.232  1.804
1 1.200 1.359 1.208 1.205 1.221 0
0 1.000 1.167 1.244 1.195 1.339 0.892 2 1.276 1.233 1238 1.234 o o
1 1.200 1.310 1.213 1.231 1.230 o 3 1.171 1.238 1.236 o 0 0
2 1.276 1.230 1.243 1.230 o 0 4 1.440 1.234 o o 0 o
3 1.171 1.242 1.235 ] o 0 5 0.845 0 0 0 0 o
4 1.440 1.227 1) o o 1)
5 0.845 0 1) o o o]

lated by analytic continuation taking the principal values of
the integral. For the sake of completeness we include such
first off diagonal. From this we estimate the values of thenymbers in Table IV as well as in the forthcoming Table VII.
critical exponents to ber=0.628,y=1.236. These values However, the final results will be displayed on the basis of
can be compared with the most accurate values0.628  data which did not require such analytic continuation. Except
+0.001;=1.234+0.002/° obtained by means of more so- from the [1/1] case all our final results are obtained from
phisticated resummation proceddlfésm the basis of the approximants with a linear denominat@econd columns
five-loope expansion. We conclude that this good agreemenfyhich reconstitutes the sign-alternating behavior of the ini-
justifies the application of the Padenalysis for the tjal series(17). For the Borel resummed Pa@pproximant
e-expansion serie€l7).”’ [4/1] the estimates for the exponents:0.629;=1.236 are
Possessing the information on the asymptotic divergencg, a good agreement both with the above Paelysis
of the & expansion we apply a more complicated Radeel (Table Ill) as well as with the data of Ref. 75 given above.
resummation technique which takes into account the factorial |n order to complete the study of the pure Ising model we
divergence of the series terms. The resummation procedugserform an analysis based on the 3D approach. We resum the
consists in several steps: corresponding RG functions of the pure mofiiley can be
« starting from the initial sun§of L terms one constructs its CPtained by putting =0 in the diluted model RG functions
Borel-Leroy image, (1_1)—(14_)] by means of thg PaeBorel re_summat|0n tech-
L L i nique with a linear deno_mmatqr appromma(nstae the Ap- _
= axis a(x (19 pendiX. The results obtained with this method are shown in
=) S I(i+p+1)’ Table V. One should compare them with the results obtained
whereT'(x) is the Euler's gamma function and is an recently from the RG functions in the 3D massive field-
arbitrary non-negative number. theoreucgl approach, v=0.6304'1t.0.0013, Y= 1.2396
« the Borel-Leroy image18) is extrapolated by a rational +0.0013; and the results of 3D minimal subtraction scheme
Padeapproximant o )
[M/N](xb). TABLE. V. The results of the appllcatlon of the PanreI
resummation [(L/1]) to the RG functions of the purd=3 Ising
model. Fixed point coordinate and the critical exponents of the pure
d=3 Ising model obtained by Padorel resummation in 3D

« the resummed functioB®® is obtained in the form

ges= f dtexp(—t)tP[M/N](xt). (19 ~ Scheme.
0
Loop u* y v a 7 )

The values of the critical exponentsandy obtained with 2 0.6573 1.269 0.644 0.068 0.031 0.566
the PadeBorel resummation for differeri! andN are given 3 0.4641 1231 0.623 0.131 0.024 0.853
in Table IV. As far as the Pad&pproximant enters the inte- 4 0.4958 1.239 0.632 0.104 0.040 0.756
gral, it might happen that the integrand contains poles. If this g5 0.4877 1.246 0634 0.097 0.036 0.792

is the case, the corresponding number in Table IV is calcu
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TABLE VI. The Padetable for the values of the correlation Comparing with the corresponding data for the pure Ising
length (v) and the susceptibility) critical exponents from thes  model we conclude that the nature of tkfe-expansion se-
expansion of thel=3 RIM. ries does not allow to obtain reliable informationdat 3 by
means of the methods mentioned for the case of pure Ising
model. This can be considered as an indirect evidence of the

v 0 1 2 3 4

0 0.500 0.572 0.570 0.601 0.727 nonasymptotic nature of th¢e expansion. Thus a different

1 0.601 0.570 0.572 0.564 o kind of analysis for the/s expansion has to be developed.

2 0.560 0.586 0.565 0 o The fact that expansion will not be able to give information

3 0.640 0.541 0 0 0 on critical exponents in system with quenched disorder was

4 1.828 0 0 0 o predicted already in Refs. 61 and 62. There, studying the
randomly diluted model in zero dimensions, it was shown

Y 0 1 2 3 4 that the non-Borel summable properties of the perturbation-
theory series are the direct consequence of the existence of

0 1. 1.168 1.140 1.219 1.783  Griffiths-like singularitie§® caused by the zeroes of the par-

1 1.202 1.144 1.161 1.127 0 tition function of the pure system.

2 1.125 1.172 1.137 o o In order to treat the theory directly a=3 we need a

3 1.257 1.101 0 o o generalization of the Pae®orel resummation technique to

4 3.824 0 0 0 0 the case of two variables since the RG functions of the

weakly diluted Ising model depend on two couplings. The
corresponding Chisholm-Borel resummation technique can

in the five-loop approximatiorw=0.629+0.005;y=1.235 be defined as followa:

+0.005% Comparing all the results for the pure Ising model
we conclude thati) the application of PadBorel resumma- « constructing the Borel-Leroy image of the initiath-order

tion technique yields accurate results did both thes ex- polynomial Sin the variabless andv,
pansion and 3D approach lead to reliable values for the ex- Cubi (o)
o g j(ut)'(vt)
ponens. , , S o2 A 2 Fivrpr @
We now turn to the results of the Paded the Pad@orel O<itj=L O<itj=L

resummation techniques applied to tkle expansiong15) whereI'(x) is the Euler's gamma function anglis an

and(16) and the 3D approach RG functioffsl)—(14) of the arbitrary non-negative number.

weakly diluted Ising model. We construct Padpproxi- °* extrapolating the Borel-Leroy imag@0) by a rational Ch-

mants and perform the Pad@iorel resummation introducing  isholm approximarff [M/N](ut,vt) which can be defined

an auxiliary variable in the expressiongl5) and(16) by the as a ratio of two polynomials both in variablesandv, of

substitutions — et? and puttingt=1 in the final results. degreeM andN so that the first terms of its expansion are
The appropriate values for thé& expansions are listed in ~ equal to those of the function which is approximated.

Tables VI and VIl in the same notations as in the Tables Ill* the resummed functioB8™®® then reads

and IV. One can see from the tables that neither the experi- o

mental nor the reliable theoretical values listed in Sec. Il are S*= fo dtexp(—t)tIM/N](utpt). (21)

obtained. Moreover, considering the expansions for the sta-

bility matrix eigenvalueg16) it turns out that no stable fixed

. o ) . . . Here, similarly to the pure case, we restrict the approximants
point exists in a StI’ICl/g expansion, even with resummation. y P P

to linear denominators and choose the value of the fitting
TABLE VII. The results of the PadBorel resummation of the Parameterp=0. The motivation of such a choice is dis-
correlation length %) and the susceptibility¥) critical exponents ~ cussed in detail in the Appendix.

from the & expansion of thel=3 RIM. Treating theB functions by means of this resummation
technique leads to a random fixed poimt,>0u* <0, of the
v 0 1 2 3 4 model already in the two-loop approximation. The stability
analysis shows that this fixed point is stable proving the
0 0.500 0.560 0.569 0.577 0.592  crossover to a new critical regime under dilution. In Figs. 1
1 0.601 0573 0.560  0.565° 0 and 2 we show the curve8,(u,v)=0, B,(u,v)=0 in the
2 0.560  0.584 0.568 0 0 u-v plane. The intersections of these curves., simulta-
3 0.639 0.529 0 0 0 neous zeros of bottB functiong correspond to the fixed
4 1.828 o o o o points, the stable and unstable points are marked by open
circles and filled boxes, respectively. The “naive” analysis
Y 0 1 2 3 4 of the B functions, without applying any resummation pro-
cedure leads to the curves, which are shown on the left-hand
1.000 1.149 1.148 1.176 .252  side of Figs. 1 and 2. Without resummation only in the three-

1
1.202 1.148 1.149 1.141 0 loop approximation one gets stable a random fixed point
1.125 1.168 1.141 0 o u*#0p* #0. However, the fixed point disappears in the
1.257 1.086 0 0 0 four-loop approximation. A completely different picture is
3.825 0 0 o ) observed when the resummation procedure is apptigtt-
hand columns of the figurdn the region of interest for the

A W NPFO




15122 R. FOLK, YU. HOLOVATCH, AND T. YAVORS'KII PRB 61
0.8y v 087 v
\\\0'6 1 Loop, non-resummed o 1 Loop, resummed FIG. 1. The lines of zeros of
WL\ 04 nonresummedleft-hand columi
02 \\ 02 and resummed by the Chisholm-
N u u Borel methodright-hand colump
02 02 e 08 -02 02 04 06 08 B functions in different orders of
02 \\ 02 the perturbation theory: one- and
04 0.4 two-loop approximations. Thick
line corresponds tg3,=0, thin
line depictsB,=0. One can see
08y v 08 v the appearance of the random
0.6} 2 Loops, non-resummed ' T fixed point u*>0p* <0 in the
04 P \zj ZLomi?iumed two-loop approximation for the
) - N resummed B functions. Stable
02 0.2 N fixed point is shown by an open
u \u circle, unstable ones are shown by
02 02 04 06 08 03 02 04 0.6\%.8\ filed boxes.
02 S -0.2
04 ( 04 /

values of the couplings the topology of the fixed point pic-within parts of a percent. This can be considered as an upper
ture remains stable increasing the order of approximatiomound for the accuracy of RIM results. Here the comparison
from the two-loop to the four-loop level; the same behaviorof our data with the results of four-loop massive scheme
has been observé&tfor the 8 functions obtained in the mas- result$>® yields an accuracy of several percent. Since the
sive 3D schemé&® series forB and vy functions(11)—(14) are sign alternating,
The corresponding values of the random fixed point coorthe unknown exact stable point coordinates and critical ex-
dinates, critical exponents, and eigenvalues of the stabilitponents must lie between the three- and four-loop values
matrix are listed in Table VIIl. One can see that increasinggiving the same estimatsee the Appendix about adjusting a
the order of approximation one reaches convergent resultfree parameter for the fastest convergence of reésultsus
compatible with experimental and theoretical detee Sec. we conclude the accuracy of the RIM critical exponents ob-
). tained in our study to be of order of several percent.
Considering the estimation of the accuracy of the results A peculiarity of the Table VIl is that in five-loop order
we note that setting=0 in the RG functiong11)—(14) they  the applied resummation technique does not lead to a real
are transformed into the appropriate functions of the pureoot for the random fixed point. It is expected that the appli-
Ising model. In this case the deviation of our four-loop resultcations of more sophisticated resummation procedures incor-
(see Table Y from the most accurate one obtained within porating the higher-order behavior, still unavailable, will per-
massive field RG scheme on the basis of six-loop expansiomit an improvement of the estimates for the critical
for 8 functions and seven-loop expansion fofunctiond is  exponents in the two-, three-, and four-loop level as well as

08t v \ 0.81 v
- 06 3 Loops, non-resummed \\0@. 3 Loops, resummed
\\QA \8»4, \\ .
RN S FIG. 2. The lines of zeros of
0 \\\ 02 \\\ nonresummedleft-hand colump
02 02<Q%~_ 06 o8 02 002 0405, 53 and resummed by the Chisholm-
02 b 02 \ Borel methodright-hand colump
) B functions in three- and four-
-04 04 - loop approximations. The nota-
tions are the same as in Fig. 1.
08t v 08t v - Close to the random fixed point
the behavior of the resummed
\ 06| 4Loops,non-resummed ———06; 4 Loops, resummed functions remains alike with the
>) 04 ey \ increase of the order of approxi-
02 02 AN mation. This is not the case for
u Y u nonresummed functions.
02 02 04 06 08 02 02 04 08
0.2 02
04 A 04 —
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TABLE VIIl. Fixed-point coordinates, critical exponents, and stability matrix eigenvalues ofl th@
RIM obtained by Chisholm-Borel resummation in 3D scheme.

Loop u* v* y v a 7 o w,
2 0.7886 -0.1208 1.308 0.665 0.006 0.032 0.162 0.542
3 0.6968 -0.2484 1.293 0.654 0.039 0.022 0.430 0.974
4 0.7188 -0.1697 1.318 0.675 -0.026 0.049 0890 0.39C¢
to obtain them in the five-loop level. However, it is not ex- dinx(7)
cluded that the absence of a fixed point solution on the five- Yer (D= it~ yull(n) Lo[I(D]}+---, (22

loop level might be connected with (@ossible Borel non-

summability of the series under consideration. In this casghere the second part is proportional to fhéunctions and

the four-loop approximation will be an “optimal truncation” comes from the change of the amplitude part of the suscep-
for the resummed perturbation theory series, similar to theibility. In order to proceed we have to neglect this part since
nonresummed asymptotic series, e.g., in éhexpansion of  we do not know the amplitude function in the same orders as
O(n)-symmetric* model, where “naive” interpretation of the field-theoretical functions for the exponents. Moreover,
the series truncated by” term leads to the begpptima)  the contribution of the amplitude function to the crossover
result. On the other hand, numerical and analytic studies of geems to be small, at least in other c#S&8This approxi-

toy model of a disordered systéhf?revealed two possible mation has also been used in the earlier work on diluted
regimes of the high-order behavior: the first one correspondsodels’’

to a Borel-summable series whereas the second one does notThe flow parametel(7) may be related to the tempera-
correspond to a Borel-summable series. Numerical studies afire via the matching conditiom(l)= (&, *1)? and m3~ .

up to 200 terms of the expansfmesulted in the conclusion, However, we discuss the effective exponents as functions of
that the convergence of the Borel-resummed results depengise flow parameter. Then the effective exponents are simply
on the strength of disorddrelation of the couplingsi/v). given by the expressions for the asymptotic exponéh®s

The convergence of the numerical data of Table VIl is evi-put with replacing the fixed-point values of the couplings
dence of the fact that the fixed point valugs,v* in d=3  andoy* by the solutions of the flow equatiort6):

lie in a region, where the resummed series gives reliable

information. In any case, on the basis of the above analysis Uveti=2{1—y[u(l),v ()]},

one can definitely say: while for the pure Ising model the

expansion and the 3D approach analysis of the RG functions Nett=2voLU(1), (D], Yett=Vet(2— Mes). (23

are of equal usefulness, an interpretation of these functions in

the diluted model can be done only within the framework of ~ These solutions are shown in Fig. 3 for several initial

the 3D approach. The application of the expansion re- conditions. Shown are the two unstable fixed points: G

mains to be valid only near the upper critical dimenstbn (Gaussian fixed poihtand P(pure Ising fixed pointand the

=4. This conclusion holds at least within the discussed restable random fixed point R, with both couplings nonzero. In

summation schemes. the background region the couplings are expected to be small
thus all the flows shown start near the Gaussian fixed point

V. EFFECTIVE CRITICAL BEHAVIOR

If one is not within the asymptotic region of the stable
fixed-point power laws for the physical quantities may only -¢.05
apply with effective exponents. The critical behavior is then
to be understood as a crossover behavior between the uncriti _; , |
cal background behavior and the true asymptotic behavior.
As it has been noted in Ref. 37 this has, in principle, nothing
to do with crossovers between special fixed poietg., the
pure one and the random gnélowever, depending on the
nonuniversal parameters entering the nonasymptotic behav -2 |
ior, the crossover may be more or less influenced by the
unstable pure fixed point. -0.25

The effective exponents are defined by logarithmic de-
rivatives of corresponding thermodynamical quantities with -¢.3 L
respect to reduced temperaturé In the RG scheme they v
are calculated in the region where couplings have not yet
reached their asymptotidixed poind values and depend on
the flow parametef. For instance, the magnetic susceptibil-  FIG. 3. Flow lines for thed=3 RIM. Fixed points G and P are
ity effective exponentyq¢; is defined by unstable, fixed point R is the stable one.

0.15

1 1 1 £ 1 1 1 ¢

0 6.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
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0.68 [R 6 R 6
5 5
1.3
0.66 2 4 5 4
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1.2
0.6
0.58 | - 1.15
0.56 |
1.1
3
0.54 |
1.05 F
0.52 F
G
0.5 ) . s . s s ) . . 1l ] . . . s ‘ !
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FIG. 4. Effective exponenigs; versus logarithm of the flow FIG. 5. Effective exponenty.¢; versus logarithm of the flow
parametet for the flows shown in Fig. 3. parametet for the flows shown in Fig. 3.

with different ratiosv (1)/u(l,) (curves 1 to 6 except curve Our study is based on the five-loop minimal subtraction
2) Curve 1 is the Separatrix Connecting the fixed point Gﬁeld'theoretical renormalization-group functiéﬁsf the ¢4
with P, and curve 2 is the separatrix connecting P with R. Alitheory withO(n)-symmetric and cubic interactions which in
curves Starting with a negative Coup"mgremain negative the replica limith—0 Correspond to the diluted |Sing model
but the dependence might be nonmonotones curve b case. As the minimal subtraction scheme allows to develop
Thus several scenarios for the values of the effective criticagither the\s expansion or the 3D approach, we adopted the
exponents are possibisee Figs. 4 and)5 both schemes and compared the results obtained on their
Both in experiment as well as in computer simulationsbasis.
(see Tables | and Jlexponents reported differ and even ex- The perturbation theory RG functions series are
ceed the known asymptotic theoretical values. This nonuniasymptotic at best. In order to calculate the critical exponents
versal behavior might be related to the possible nonasympwve adopt different resummation procedures within the both
totic behavior found in our different flows as has beenschemes, testing them on the well established case afthe
suggested in Refs. 37 and 46. The difference might be due t@odel with one couplingpure Ising model While after the
(i) the different temperature regions of the experiment and/ofesummation botks expansion and 3D approach give reli-
(i) the different concentrations. The initial values for the able results for the numerical values of the pure model criti-
couplings in the flow equations depend on the value of the&al exponents, in the case of the diluted Ising model the bad
concentration, especially for small dilution one expects theconvergence properties of the expansion do not allow to
couplingv to be proportional to the concentration. If this is obtain reliable values at=3. Using the direct resummation
the case we expect a monotonous increase of the values of the RG functions atd=3 in the minimal subtraction
the effective exponent to the asymptotic value. A typicalscheme we obtained numerical values for the asymptotic
scenario is seen in curve 3 of Figs. 3—5. In this case effectiveritical exponents of the diluted Ising model and estimated
exponents equal to the pure model critical exponents mighteir accuracy to be of order of several percent. The results
be found in relatively wide region of temperature. Then asobtained in the 3D approach agree well with other theoretical
the attraction region of the fixed point P becomes weaker andnd recent Monte Carlo simulations. Studying the crossover
weaker, an overshooting is possible and effective exponeneffect we calculated the effective critical exponents and their
larger its asymptotic values might be found. This scenario iglows in the nonasymptotic region. We observed several sce-
predicted for larger dilutions and represented by the curve @arios of crossover in the RIM including: monotonous cross-
of Figs. 3—5. Curves 5 and 6 correspond to situation whermver from the mean-field values of critical exponents to the
crossover from the mean-field behavior towards the randomandom ones; existence of a wide temperature region where
one is not influenced by the presence of a pure fixed pointthe RIM effective exponents coincide with the asymptotic
exponents of the pure Ising model; possible values of effec-
VI. CONCLUSIONS tive exponents exceeding those of asymptotic ones.
Though the 3D approach of calculation encountered dif-
We studied the critical behavior of the three-dimensionalficulties in the five-loop level we guess that the fixgdyp-
weakly diluted Ising model asymptotically close to the criti- proach, both within the massi®e and minimal
cal point, in the intermediate region, and far from it. To this subtraction*®® schemes, remains the only reliable way to
end we calculated the values of the asymptotical critical exstudy critical behavior of the model by means of the RG
ponents, analyzed the behavior of the effective critical expotechnique.
nents and obtained the value of the correction-to-scaling ex- Note added in proofDuring processing of the article sev-
ponent entering the Wegner expression which describes theral new results appeared in the field. The massive scheme
approach of singular quantities to the critical temperaturefour-loop RG functions of the RIMRefs. 35,36 were ex-
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0.93 F

6.92 FIG. 6. The estimate of the toy-model parti-

o.91 | tion functionZ atu=1/10 andv = —1/100 in de-
0.9 k pendence of the order of perturbation thearin

o so | couplingsu andv. The application of PadBorel

resummation with linear denominator approxi-

°-88r "\ mants of type N/1] (solid line) provides conver-

0.87 gence to the exact valu@otted ling only for

0.86 F some first orders of approximation.

0.85

. x L L :
2 4 [ 8 10
Order of approximation

tended to the five-looP and six-loop level§? While the  proximation, provides the maximal stability. That means the
traditional analysis of the first via PB resummation allowedfastest convergence of the results as well as the maximal
to obtain numerical values for the RIM asymptotic critical similarity of the topological structure of the lines defined by
exponents® the method failed for the higher-order the zeros of the8 functions.
functions®® However, an application to the functions of a
refined resummation procedure which treats renormalized 1. Ad=0 theor

. . . - . Yy
couplings of the RG functions asymmetricdftyeconstituted

and improve® earlier data for the RIM asymptotic critical ~ Let us start tuning the resummation technique by consid-
exponents. ering the expressions for a toy model. It is defined by the

partition function
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APPENDIX: THE CHOICE OF THE RESUMMATION

PROCEDURE which corresponds to the cubic model described by the

Hamiltonian(1) in dimensiond=0. One can easily calculate
In order to obtain reliable quantitative description of thethe sufficient number of terms representign the form of
problem under consideration one should adjust precisely rea series iruandv for arbitraryn. However, the simplest case
summation procedures necessary for analysis of RG funavhich reproduces the series in two couplingsis2 since
tions. Since no information is available about the high-ordethe casen=0 is trivial andn=1 corresponds to a series in a
behavior of the series fg8 andy functions(11)—(14) (com-  single variableu+uv.
pare with thed=2 andd=23 scalar$* model where the We write the series foZ in the two variablesi andv as
Borel summability of the RG functions is provri’and the  a series in one auxiliary variabteintroduced by the substi-
large order behavior is calculafédd, we reject all powerful  tution u—ur, v—uv 7 (the so-called resolvent serfdsand
methods implementing such an informati@ng., resumma- apply the Pad@orel (PB) method(18) and(19) to the series
tion refined by a conformal mapping, widely used in thein 7. Here we choose two possibilities of the approximants,
models of critical phenomena with one coupfifij and re-  one with linear denominator and the other one of diagonal
strict ourselves to the simplest resummation techniquet/pe. Moreover, we fix the parameter(18) to p=0 but
which are the generalization of the PaBerel technique discuss other choices for the parameter later on. The results
(18) and (19) to the two variable case. Among them we of this procedure are shown in Figs. 6 and 7 for the specific
choose that procedure, which, for the different orders of apvaluesu=0.1 andv=—0.01. One notes that a stable con-

— . . . .
0.874 [\ T
FIG. 7. The estimate of the toy-model parti-
e-872r i tion functionZ atu=1/10 andv = — 1/100 in de-
pendence of the order of perturbation thearin
©.87 7 couplingsu andv. The application of PadBorel
resummation with diagonal approximants of type
o.s68 | s [N/N] or [(N+1)/N] (solid line) provides per-
fect convergence of the estimate to the exact
0.866 I _ value (dotted ling.
L
2 2 s 5 1o 12

Order of approximation
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vergence to the exact value takes place only for resumman the particular cases=2 andn= 3.8 Thus for the further
tions with diagonal approximants, while the approximantsdiscussions we proceed with approximants of linear-
with linear denominator converge only for certain, “opti- denominator type.

mally truncated,” orders of approximation. The larger the Applying the PB method with linear-type approximants
value of the variables andv the less is the order of “opti- we find that the random fixed point for tlle=3 RIM cannot
mal truncation.” We believe that processing the divergentbe reconstituted already in the three-loop approximation,
series(11)—(14) in the same manner one may encounter avhile the random fixed point exists even for nonresumrfied
similar difficulty. functions in this approximation. The picture does not change

Analyzing the toy-model series by the Chisholm-Borel
(CB) schemg20) and(21), one notes that the coefficients in
the Chisholm approximant are underdetermined. For ex-
ample, for thelL-loop sum an approximant of the linear-
denominator typéL/1] being uniquely defined requires two
additional equations. This is the minimal number of addi-
tional conditions, necessary to determine any approximant
forL=2--.5 except forL =4, where thd 3/2] approximant
is determined uniquely without additional conditions. Since,
generally speaking, a near-diagonal Chisholm approximant
requires additional conditions the number of which depends
on the order of approximation, we reject this type of approxi-
mants and consider in the following only the/1]-type ap-
proximants. The two additional equations have to be sym-
metric in the variablesi andv, otherwise the properties of
the symmetry related to these variables would depend on the
method of calculation. By the substitutior=0 all the equa-
tions describing the critical behavior of the diluted model are
converted into the appropriate equations of the pure model
However, if a pure model is solved independently, the re-
summation technique uses the Pagmroximant. Thus the
Chisholm approximant has to be chosen in such a way that
for eitheru=0 orv =0 one obtains the Padgproximant of
the one-variable case. This also needs a special choice of th
additional conditions. This is achieved by choosing the Ch-
isholm approximanfL/1] with the numerator coefficients at
ut andv' equal to zero.

The analysis of the toy-model series by means of this type
of CB technique leads to the existence of an “optimally
truncated” order of approximation similar to the one shown
in Fig. 7.

2. A d=3 theory
FIG. 9. The lines of zeros of the cubic modelfunctions re-

~ Let us turn back now to the expressions for the RG funcsymmed by the Chisholm-Borel method in four-loop approximation
tions (11)—(14) at d=3. Starting from the PB analysis one for different n. Thick lines correspond t@,=0, thin lines depict
finds that diagonal-type approximants lead to poles on thg =0. The filled boxes and open circles show the positions of
real axis. This may be due to the fact that approximants danstable and stable fixed points, respectively. One can see that the
not reconstitute the sign-alternating high-order behavior otrossover to a new behavior appears for valuaswry close to 3.

the general term of the RG functions, which was confirmedOur estimate yields,=2.950(see the text
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qualitatively when we try to increase effectively the order oftonian(1), we will use it for another test of the resummation
polynomial representation for the functions by resumming procedure. In the case of nonzero valuesnathe critical
expression$1+r (u+v)]By,[1+r,(utv)]B, with ry,r, behavior of this system is governed either by the
taken as fit parameteftsompare with Ref. ¥ The modified  O(n)-symmetric fixed point for values af small enough or
construction of Ref. 37 for the Pa@@proximant with a lin- by the cubic fixed point fon>n., wheren, is the marginal
ear denominator reconstituting the known large order behawgajue of the order-parameter component. The identification
ior of the one coupling3 functions, 8,(u,v=0) andB,(u  of the marginal dimension, as well as of the critical expo-
=0p), does not lead to the appearance of the random fixeflents governing the phase transition of the model was re-
point either. We conclude, although the PB scheme works IRently performed within the expansior?® The same model
two- and four-loop approximations, it appears to be unstablg,, s died by means of the massive RG appréadine

in the three-loop approximation and therefore we eliminate ”numerical value oh, was found to be only slightly less than

from our consideration. n=23 leading to values of the critical exponents of the cubic
The CB method reconstitutes the random fixed point inmodel ragt'call indistinauishable fﬁnm those of the

two-, three-, and four-loop approximation, however, it fails practically indistingut ) .
O(3)-symmetric model. Recent MC simulations strongly

in the five-loop approximation. In order to reestablish the - )
random fixed point we have varied the valuepafs well as ~ SU99estn.=3 althoughn.<3 cannot be excluded. We

of r,,r,, but even then we find no region foy>0,,>0 so present estimations af. obtained from the conditions that
that the random fixed point exists in all orders of perturbathe O(n) symmetric and the cubic fixed point of the re-
tion theory. We also predicted the values of the sixth-ordesummedg functions coincide. This calculation has two ad-
contribution for 8 functions (see Refs. 87 and 88but the vantagesii) one tests once more the resummation methods
resummation of such pseudo-six-loop functions did not allowand, (i) a new estimate ofi; is obtained from the 3D ap-
to find the random fixed point either. Again a modified con-Proach within minimal subtraction scheme. Up to naw
struction of the Chisholm approximant with the known linearhas been calculated in the framessoéxpansion in the five-
denominatd¥ failed. Comparing the behavior of the toy- |00p approximatior™’ as well as in the massive scheme in
model seriegsee Fig. 6 and the convergence of the results four-loop approximatior” We perform estimates within
of the RIM (Table VIIl) we considerL=4 as the “optimal the 3D minimal subtraction appro&ttin two-, three-, and
truncation” order within the CB scheme of linear- four-loop approximation. The corresponding values on the
denominator approximant. basis of B8 functions resummed by the Chisholm-Borel
Once we have chosen the CB method based on Chisholfiiethod read:nc(2Loops)=2.7730, n.(3Loops)=3.1078,
approximants of L/1] type as the tool for analyzing the RIM Nc(4Loops)=2.9500. This should be compared with the re-
RG functions we look now for the fastest convergence of thesult of the five-loop ¢ expansion n.=2.958 (Pade
results with increase of the order of approximation in numbegnalysig,>® n.=2.855 (PadeBorel resummatio)f’ and the
of loops L. To this end we fit the parameteps entering  four-loop massive 3D RG schemg=2.90(Chisholm-Borel
Borel-Leroy imageg20) of RG functions. For the RIM we resummation>® In Fig. 9 we show the lines of zeros for the
introduce a measure of total deviation betweken and resummed3 functions as well as the fixed points for differ-
L'-loop results by a functiomzz(u*,L_u*,L’)2+(v*,L enf[ n. One can see that the change of stability of thg fixed
—v*'L')2+(y*'L—y*'L')2+(v*’L—v*~L')2, where the su- points appears fon very close ton=3. As our numerical

perscriptsl (L) indicate a value obtained in(L')-loop ap- result yieldsn.<<3 the cubic model at=3 is governed by a

roximation. For the pure Ising model an appropriate mea™<"". setof critical ‘exponents which ready=1.387y
proximation. Pu g moade! an appropriate =0.7090= —0.1277=0.044. The coordinates of the stable
sure is given by a similar function with*=0. We adjust

now the parametep to minimizeA. The behavior oA (p) is cubic fixed pointu* =0.0064y* =0.3950 and stability ma-

> parametgrio r : FOBR)IS  tix eigenvaluesw; =0.0440w,=0.0055 should be com-
shown in Fig. 8. A minimum oA for the pure Ising model is d with th di | for th by si d
achieved forp=0 (curves pointed by boxes and triangles in pared with the corresponding values for the neilr y sinuate
Fig. 8 in both cased =4 '=3 andL=5L"=4. Similar unstable O(n)-symmetric _fixed point: u*=0p

LT . =0.4009¢,= —0.0056¢,=0.0751. Of course no experi-
behavior inp |s_0bserved for_the RiMcurve pointed by ment can distinguish between the critical exponents of these
crossep suggesting the choice=0 as well.

almost coinciding fixed points. Note however thatnat n,

the stable fixed point can be reached only or0. Then

n.<3 means that all systems described by the phenomeno-
Since originally the RG functions under considerationlogical Landau-Ginsburg Hamiltonian with cubic anisotropy

(11)—(14) were obtained in order to study the critical behav- of negative coupling should undergo a weak first-order phase

ior of the cubic model introduced by the effective Hamil- transition atn=3.%°
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