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First-principles study of native point defects in ZnO
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The characterization of native point defects in ZnO is still a question of debate. For example, experimental
evidence for ZnO with an excess of Zn is inconclusive as to whether the dominant defects are metal interstitials
or oxygen vacancies. This information is essential to understand the behavior of the material and to tailor its
numerous technological applications. We use the first-principles pseudopotential method to determine the
electronic structure, atomic geometry, and formation energy of native point defects in ZnO. Interstitials,
vacancies, and antisites in their relevant charge states are considered and the effects of dopants are also
discussed. The results show that both the Zn and O vacancies are the relevant defects in ZnO. We also propose
a possible transition mechanism and defect center responsible for the experimentally observed green
luminescence.
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I. INTRODUCTION

Zinc oxide has been receiving much attention in rec
years due to its many technological applications, particula
in varistors and in optical devices. A varistor is a pol
crystalline electronic device with pronounced non-Ohm
current-voltage characteristics.1 The green photolumines
cence behavior of ZnO has been of interest for building
panel displays.2 Other applications include gas sensors,3 so-
lar cells,4,5 catalysts,5 UV blocking,5 substrates6 or buffer7

layers for growth of GaN, or as a light-emitting material
its own right.8,9

To optimize the use of ZnO devices it is essential to o
tain a basic physical understanding of its properties. In s
of numerous experimental studies, there is still controve
as to what are the relevant native defects of this oxide. T
issue is critical since most of the properties of ZnO depen
one way or another on the defects that are present in
material.

Single-crystal ZnO has always been observed to con
metal excess~or oxygen deficiency! under experimentally
attainable zinc and oxygen partial pressures.10 The metal ex-
cess can be accommodated in part by the presence of
interstitials or oxygen vacancies. Experiments have been
conclusive as to which of these is the predominant def
Results presented in the literature point towards both di
tions and different interpretations have even been taken
the same set of experimental data~see, for example, Ref. 11!.
Interstitial zinc atoms have been proposed as the domi
defect on the basis of ionic diffusion or size cons
erations.10,12–14Other authors, based on calculation of rea
tion rates,11 diffusion experiments,15 or electrical conductiv-
ity and Hall effect measurements16 concluded that oxygen
vacancies were the predominant defect.

It is the objective of this work to shed light on thes
issues. By using the first principles, plane-wave pseudo
tential approach we determine the electronic structu
atomic geometry, and formation energy of native point d
PRB 610163-1829/2000/61~22!/15019~9!/$15.00
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fects in ZnO. We extensively study all possible interstitia
vacancies, and antisites in their relevant charge states
function of doping and of zinc and oxygen chemical pote
tials.

Perfect crystalline ZnO has been the focus of ma
theoretical analyses. Its crystal and electronic band struc
has been studied by various total-energy metho
Hartree-Fock,17,18 local density approximation ~linear
muffin-tin orbital,19 linear combination of atomic orbitals,20

pseudopotential,21 and full-potential linearized augmen
ted-plane-wave22!, self-interaction-corrected pseudopote
tials,23 and the GW approximation.24

Computational studies of defects in ZnO are more limite
The self-consistent-field X-a scattered wave cluster molecu
lar orbital method has been used to calculate the positio
defects levels.25 However, to our knowledge only pair
potential models have been used to compute the forma
energies of the crystal imperfections in ZnO.26 The complex-
ity of the calculations involved has prevented the use
more reliable techniques.

In recent years, the combination of increased compu
power and improvements on the computational meth
have allowed researchers to address, from first princip
very complex problems. Taking advantage of these new
velopments we study here all the relevant defects that m
be present in ZnO. By using the plane-wave so
pseudopotential technique together with the supercell
proach we have found that the dominant native defects
ZnO are oxygen and zinc vacancies.

Our calculations also provide new insights to the study
the luminescent behavior of ZnO. The green luminescen
in particular, has been widely observed, and its origins h
been the subject of many speculations: oxygen vacan
(VO

11),2,27–30zinc interstitials,31,32 transitions from Zn inter-
stitials to Zn vacancies,33 ZnO antisites,34 and extrinsic
impurities35,36 have all been proposed. Our results indica
that the green emission may be attributed to transitions fr
15 019 ©2000 The American Physical Society
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electrons in the conduction band to a deep acceptor level
to zinc vacancies.

It should be noted that the effects of the association
impurities with intrinsic defects and the interaction betwe
defects have not been considered here. The results shou
interpreted within these limitations and are an indication
what the behavior would be if only noninteracting defe
were present in the material.

In the following pages, we briefly review the formalism
compute defect concentrations and their levels~Sec. II!.
Then in Sec. III, we show the results obtained. An interp
tation of these calculations follows in Sec. IV.

II. FORMALISM

The formalism to compute defect concentrations and
fect levels from first principles is well understood.37–40 In
what follows, we briefly review this procedure. Special
tention is given to the fact that we are dealing with co
pounds~the defect concentration depends on the chem
potentials set by the environment conditions! and to the use
of the supercell technique. A brief description of the tot
energy techniques to be used are also provided.

A. Defect concentration

At equilibrium and in the dilute limit, the concentration o
a defect in a crystal depends upon its free energy of for
tion, DGf in the following way:

Cd5Nsitese
2DGf /kBT. ~1!

Nsites is the number of sites in the crystal where the def
can occur~per unit volume!, kB is the Boltzmann constant,T
the temperature, andDGf corresponds to

DGf5DEf2TDSf1PDVf . ~2!

Here,DEf is the change in total energy~including chemical
potential terms!, DSf is mainly the change in vibrational en
tropy, andDVf is the change in volume when the defect
introduced into the system. Since the contribution of volu
changes is relatively small and the changes in entropy ar
the same order when comparing different defects, we fo
only on computing formation energy terms. In many cas
defect energies are defined as the energy of the system
taining the defect minus the energy of a perfect system w
the same number of atoms. This is not possible in this w
as we will be studying defects that change the composi
of the material. The defect formation energies will therefo
be defined with respect to a set of external chemical po
tials ~for Zn and O! and the Fermi energy~if the defect
carries a charge!.

The formation energy of a charged point defect in Zn
DEf , is computed as

DEf5E~NZn ,NO!2NZnmZn2NOmO1qeF , ~3!

whereE(NZn ,NO) is the total energy of a system containin
NZn andNO zinc and oxygen atoms~arranged so that a defec
is present!, mZn and mO are the external zinc and oxyge
chemical potentials,q is the charge of the defect~including
its sign!, and eF is the Fermi energy. The Fermi level
taken as the energy of the reservoir~chemical potential! from
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~in! which an electron is removed~placed! to form acharged
defect. The Zn and O chemical potentials are not indep
dent but related to the total energy of perfect ZnO,EZnO ~per
ZnO pair!. For ZnO material with only a small concentratio
of defects the energy to add one Zn and one O atom is
sum of the Zn and O chemical potential. But this should a
approximately be equal to the molar energy of ZnO~since
the system is enlarged by one ZnO molecule!. The sum of
the Zn and O chemical potentials therefore has to add to
energy of ZnO. Equation~3! can then be rewritten as

DEf5E~NZn ,NO!2~NZn2NO!mZn2NOEZnO1qeF .
~4!

Clearly, from Eq.~4!, DEf for perfect stoichiometric ZnO
is zero, indicating a proper reference state. In this firstab
initio study of defect energies in ZnO, we focus on dilu
native point defects. Although the existence of complex
cannot be ruled outa priori, a comprehensive treatment from
a first-principles perspective is still difficult. Consequen
we only compute total energies for isolated point defects
an infinite crystal. The infinite limit is approximated here b
placing the defect in a large ZnO cell and periodically r
peating this ‘‘supercell’’ in space~supercell approach!. The
dimensions of the supercell should be such that defect
neighboring supercells do not interact appreciably with e
other. To calculate the energy of the supercell, we use
plane-wave soft pseudopotential method.

The chemical potentials determine the off stoichiome
of the system, and depend on different parameters suc
partial pressures and growth conditions. ZnO can e
within a range of oxygen and zinc chemical potentials an
is our objective to study the defect formation energies wit
this range. The boundaries onmZn in ZnO are determined by
the stability limits of ZnO with respect to metallic Zn an
molecular oxygen. To prevent pure Zn formation,

mZn
ZnO,mZn

o , ~5!

wheremZn
ZnO is the chemical potential of Zn in ZnO andmZn

o

is the energy of Zn in the standard state~pure metal!.
To prevent oxygen loss,

mO
ZnO,mO

o , ~6!

wheremO
ZnO is the chemical potential of O in ZnO andmO

o is
the energy of pure O2 gas~per oxygen atom!. Equation~6!
can be written in terms of a condition on the zinc chemi
potential by using the formation energy of ZnO from met
lic Zn and O2 gas~assuming off-stoichiometry is small!,

DEf
ZnO5mZn

ZnO2mZn
o 1mO

ZnO2mO
o . ~7!

Combining Eqs.~5!, ~6!, and~7! leads to

mZn
o 1DEf

ZnO,mZn
ZnO,mZn

o . ~8!

Equation~8! provides a range ofmZn
ZnO for which the de-

fect energies in Eq.~4! should be evaluated. Forintrinsic
ZnO, the value of the Fermi level is determined by requiri
electroneutrality in the system. Fermi level values differe
from the intrinsic ones are also of importance as they rep
sent conditions inextrinsicallydoped ZnO, the dopants bein
far from the defect we are dealing with~no dopant-defect
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interaction!. We conventionally takeeF to be zero at the top
of the valence band and assume its value can vary from
valence band edge up to the conduction band.

B. Total energies and the pseudopotential approach

The computation of total energies from first principl
requires finding solutions to the Schro¨dinger equation. We
simplify the many-body electronic problem by making use
density-functional theory41 in the local-density approxima
tion42 ~LDA !. A well-known consequence of using the LD
is the fact that the band gap is usually underpredicted.43 This
error can be critical when dealing with defects whose el
tronic levels are close to the conduction band. In the disc
sion section, we will consider a very simple correction co
sisting of a rigid shift of these levels and the conducti
bands so that the bottom of the latter is at the exact s
location as in the experimental results.

On the other hand, the use of the LDA considerably s
plifies the solution of the Schro¨dinger equation by mapping i
into a single-electron equation. Oxides present a comp
tionally challenging case, due to the strongly localized o
gen potential and the size of the unit cells. Many differe
approximations have been tested in these systems.44 The
situation is aggravated in defect calculations because l
supercells have to be used. Here, we apply the plane-w
soft-pseudopotential approach.45–47 For the accuracy re
quired in our calculations, the pseudopotential approac
one of the fastest currently available methods. Efforts
being made to develop faster techniques without sacrific
accuracy.48–51

In the plane-wave soft-pseudopotential method, the e
tronic wave functions are expanded in plane waves. T
number of these basis functions is controlled by an ene
cutoff Ec . Only plane waves with kinetic energies small
thanEc are used in the expansion. Plane waves are not
suited to represent the rapid variations of the electronic w
functions close to the nuclei. These rapid changes are ca
by the orthogonalization to the wave functions of the ion
core. The problem is solved by replacing the potential of
ionic core by apseudopotentialthat not only incorporates th
nuclear but also the electrostatic potential due to the c
electrons. The pseudopotential is determined so that the
lution of the Schro¨dinger equation provides valence electr
wave functions~pseudowave functions! that are smooth
within the atomic core region and that are similar to t
actual function everywhere else. In thesoft pseudopotentia
approach, the pseudo wave function is not normalized,
lowing for a lowerEc .45

The accuracy of the solution is not only controlled byEc
but by other factors such as the number of k points u
during the integrations in reciprocal space. Tests were
formed to find the appropriate values of these parameter
explained in Sec. III B.

C. Supercell size

The strength of the interaction between a defect and
images determines the size of the supercell that needs t
used. The supercell can be determined by placing the de
in supercells with different sizes, the structural parame
relaxed, and the corresponding formation energies plo
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against the number of atoms. The supercell to be used w
be the one for which increasing its size would not change
formation values more than an allowed error. However, t
procedure tends to converge slowly, resulting in compu
tionally unaffordably large cells.

On the other hand, for single isolated defects, the volu
of the supercell can be approximated by the one correspo
ing to the perfect crystal. We can use this information to
the lattice constant of the supercell to the bulk value, a
allow only internal relaxations. Since the magnitude
atomic relaxations is expected to decrease rapidly with
tance from the defect, only atoms that are close to the de
are relaxed. This considerably speeds up the computati
We have performed a study of the effect on convergence
accuracy of relaxing different numbers of atoms close to
defect and of performing full relaxations. From this analys
an appropriate supercell size is deduced. Unfortunately,
use of accurate total energy methods in these tests is o
the question, since the number of atoms in some of the c
is extremely large. We resorted to the use of simpler,
faster, energy models and, when possible, contrast the re
against pseudopotential values.

A fast, commonly used technique in oxides is the p
potential model.52,53 In this approach, the electronic densi
and ionic charges are replaced by point charges centere
ions ~or point charges and non-concentric spherical shells
account for polarization effects!. The energy is computed a
the sum of the electrostatic interaction and a short-range
pulsive pair-potential term representing the overlap of
electronic clouds. Although issues of internal relaxations
dealt with reasonably well within this model, electronic e
fects, such as the dispersion of defect-induced levels in
gap, are unaccounted for. Within this limitation, we study
Sec. III A the effect of supercell size.

Pair potentials allowed us to deal with supercells of t
order of thousands of atoms. Internal relaxations are
pected to be important in oxides, especially when there ex
a large size mismatch between the ions. In this case,
general convergence behavior of the supercell calculat
should be correctly captured.

III. RESULTS

A. Supercell size convergence

In this work, we are concerned with finding the releva
point defects in ZnO. Consequently, we focus ondifferences
in concentrations, that in turn are determined bydifferences
in defect formation energies. It makes sense then for u
study the convergence with supercell size by analyzing
differencein formation energies between two different typ
of defects. There are two open spaces to place an atom
terstitially in the ZnO wurzite structure.54 One is in an octa-
hedral and the other is in a tetrahedral position. We co
puted the formation energy of a neutral Zn interstitial plac
at both sites and analyzed the difference between these
formation energies (dDEf) for different supercells. We ad
dressed both the issue of changes with the number of at
in the supercell as well as the effect of adopting a cons
volume ~corresponding to the theoretical lattice constant
perfect ZnO! and relaxing only those atoms close to the d
fect.
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As already mentioned, we used a pair potential appro
to compute total energies. The parameters of the model w
taken from Ref. 53. The atoms that are allowed to re
during the computations are identified as those within
radius of a sphere centered at the defect~here calledr cut).

The results obtained are summarized in Fig. 1 where
showdDEf for different supercells andr cut. The line labeled
‘‘full relax.’’ corresponds to fully relaxing the volume an
internal coordinates. The other lines correspond to fixing
volume to the one computed for perfect ZnO and relax
the atoms close to the defect. There are four atoms per
cell in ZnO, so that a 23232 supercell contains 32 atom
etc. For the 63636 supercell the defects are separated
19.59 Å.

It is clear from Fig. 1 thatinternal relaxationsplay a
significant role in computing accurate formation energies.
increasingr cut from 3 Å to 5.3 Å,dDEf was reduced from
21.92 eV to 21.29 eV. On the other hand, the effect
volume relaxations is much smaller. If the volume is allow
to relax ~away from the perfect crystal volume! at r cut55.3
Å, dDEf only changes from21.29 eV to21.20 eV. Conse-
quently,using a constant volume supercell with limited i
ternal relaxations constitutes a reliable approach to stu
defects properties in ZnO.

Inspection of Fig. 1 and consideration of our availab
computer resources led us to choose a 33332 supercell
with r cut53.95 Å. In this case, the pair-potential analys
suggests that errors of the order of 0.3–0.4 eV should
expected in the relative formation energies. Note that i
fully relaxed supercell of the same size were used, the e
mated errors would almost triple. In the 33332 supercell
point defects have a minimum separation of 9.6 Å.

We also investigated supercell-size convergence using
first-principles pseudopotential approach. Due to compu
tional constraints this study was limited to smaller ce
namely 23231, 23232, and 33332 supercells.dDEf
changed from23.0 eV to 20.9 eV to 21.19 eV for a 2

FIG. 1. Variation of the difference in formation energy of a zi
interstitial defect placed at an octahedrally and a tetrahedrally
ordinated site (dDEf) as a function of supercell size and number
internal atoms that are allowed to relax. The energies are calcu
with a pair-potential approach. The supercell sizes are specifie
multiples of the primitive wurzite cell along the a-b-c direction
Except for the fully relaxed case,r cut is the radius of a sphere
centered at the defect within which the atoms are relaxed.
h
re
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e

e
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e
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3231, 23232, and 33332 supercell respectively. On
the other hand, in the pseudopotential case the differenc
dDEf between afully relaxedand aconstant volumecalcu-
lation is smaller~0.4 eV and 0.11 eV for a 23231 and a
23232 supercell respectively!. Consequently, the error o
the formation values coming from supercell size effects c
be estimated to be lower than in the pair potential case an
the order of 0.1–0.2 eV. This error is small enough to n
change the conclusions of the remaining sections.~Even if
the more conservative 0.3–0.4 eV error value estimated f
pair potentials were adopted, the main conclusions wo
remain unchanged.!

B. Perfect-crystal ZnO

We computed the properties of the defect-free ZnO wu
ite structure using the pseudopotential method. We u
ultrasoft45 pseudopotentials with 2s22p4 and 3d104s2 as the
valence-electron configuration for the oxygen and zinc ato
respectively. There is a substantial interaction between
zinc d ands electrons which makes it necessary to consi
the d electrons as part of the valence.21 We also included
core corrections for Zn.55 The Perdew-Zunger56 parametriza-
tion of the exchange and correlation potential was alw
used.

Convergence with respect tok points and energy cutof
was carefully checked. All calculations in this paper we
done with Ec5400 eV. A 63636 uniform mesh for
k-space integrations~28 independentk points! provided total
energies converged within 1 meV/atom.

The computed lattice parameters are shown in Tabl
These lattice parameters were then used to build the Z
supercells.

As already mentioned, LDA tends to underpredict t
band gap energy. This is certainly the case here. Figur
shows the computed band structure. The predicted band
energy is 0.91 eV, well bellow the experimental57 3.4 eV
value. This difference could affect the defect formation e
ergies, as discussed in Sec. IV.

In a compound solid, the defect properties depend on
chemical potential of the species involved as shown in
~3!. To find the limiting value for the chemical potentials w
need the energy of metallic Zn and molecular oxygen@see
Eq. ~8!#. Consequently, we compute the total energies
these two systems.

Zinc orders in a hexagonal closed packed structure. In
case, we used a 20320320 uniformk-space mesh~equiva-
lent to 484 irreduciblek points! with a s50.1 eV tempera-
ture smearing. The computed lattice parameters area52.57
Å ~2.66 Å! and c54.81 Å ~4.947 Å!; the values between
parenthesis are the experimental data from Ref. 58.

For oxygen, we considered the energy of an isolated m
ecule. For computational purposes, the oxygen molecule

o-

ed
as

TABLE I. Computed and experimentally measured lattice p
rameters for a defect-free ZnO wurzite structure.

Calculations Experiments~Ref. 57!

a 3.19 Å 3.25 Å
c 5.15 Å 5.21 Å

u ~internal! 0.379 0.382
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placed within a 15 Å cubic cell~supercell approach!. Only
theG point was used. The computed bond length was 1.2
compared with an experimental value59 of 1.21 Å.

The resulting formation energy for ZnO is24.01 eV/
ZnO. This value is comparable to the experimental23.61
eV/ZnO enthalpy of formation;60 the slight overbinding is
typical of LDA calculations.

C. Defect formation energies

Using the formalism explained in Sec. II we computed t
formation energies of all the native point defects in ZnO

FIG. 2. Calculated pseudopotential band structure for a def
free wurzite crystal. The band gap is 0.91 eV.
Å

e

their relevant charge states. These defects include oxy
and zinc vacancies, interstitials, and antisites. There are
possible interstitial sites in the wurzite structure: one is t
rahedrally coordinated~tet! while the other is octahedrally
coordinated~oct!. A list of all the defects, and their charg
states, considered in the present study is shown in Table

Based on the analysis in Sec. III A, we used a 33332
wurzite supercell in all defect calculations. Only those ato
that are present within a distancer cut53.95 Å from the de-
fect were relaxed. The volume of the cell was kept const
and corresponded to the computed lattice parameters sh
in Table I.

The same pseudopotentials and cutoff energy employe
Sec. III B are used here. Because of the large size of
supercell, only onek point is necessary fork-space integra-
tions. Selecting theG point, we find that the total energy i
converged within 5 meV/ZnO for all defects. A differen
choice of specialk point changes the energies, on average,
5 meV/ZnO and the internal relaxations by less than 2.
~relative to the amount of relaxation!.

The formation energy of a charged defect is a function
the Fermi level@q is different from zero in Eq.~4!#. It is
customary to assume this level to be zero at the top of
valence band. In this case, we assign the zero to the to
the perfect-crystalvalence band in thedefect cell~since we
assume the electrons are placed or removed far away f
the defect!. Unfortunately, there is no absolute reference
the eigenvalues of different calculations.61 The Fermi levels

t-
i-
e

e or the
TABLE II. Native-point defect formation energies (Ef) in ZnO. Values are given for the limiting chem
cal potentials indicated in Eq.~8! and for Fermi energies (eF) corresponding to the top and bottom of th
valence and conduction bands, respectively. The different defects are identified by either their charg
Kröger-Vink notation.

Defect Charge on Kro¨ger-Vink Ef(mZn5mZn
o ) @eV# Ef(mZn5mZn

o 1DEf
ZnO) ~eV!

defect notation eF50 eV eF53.4 eV eF50 eV eF53.4 eV

Zni~oct! 0 Zni
x 1.73 1.73 5.74 5.74

Zni~oct! 11 Zni
• 1.28 4.68 5.29 8.69

Zni~oct! 12 Zni
•• 0.87 7.67 4.88 11.68

Zni~tet! 0 Zni
x 2.92 2.92 6.93 6.93

Zni~tet! 11 Zni
• 2.61 6.01 6.62 10.02

Zni~tet! 12 Zni
•• 2.40 9.20 6.41 13.20

Oi~oct! 22 Oi9 7.76 0.96 3.75 23.046
Oi~oct! 21 Oi8 6.81 3.41 2.80 20.59
Oi~oct! 0 Oi

x 6.43 6.43 2.42 2.42
Oi~oct! 11 Oi

• 6.40 9.80 2.39 5.79
Oi~tet! 21 Oi8 7.49 4.09 3.48 0.08
Oi~tet! 0 Oi

x 6.50 6.50 2.49 2.49
Oi~tet! 11 Oi

• 6.50 9.90 2.49 5.89
VZn 22 VZn9 6.60 20.20 2.59 24.21
VZn 21 VZn8 5.82 2.42 1.80 21.59
VZn 0 VZn

x 5.47 5.47 1.46 1.46
VO 0 VO

x 0.02 0.02 4.02 4.02
VO 11 VO

• 0.15 3.55 4.16 7.56
VO 12 VO

•• 20.32 6.47 3.69 10.49
ZnO 0 ZnO

x 2.41 2.41 10.43 10.43
ZnO 12 ZnO

•• 0.55 7.35 8.56 15.63
OZn 22 OZn9 11.98 5.18 3.97 22.83
OZn 0 OZn

x 9.74 9.74 1.72 1.72
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between different calculations cannot easily be compa
An additional procedure needs to be implemented in orde
‘‘line up’’ the bands of a perfect-crystal calculation wit
those of the defect supercells. To calculate this shift,
assumed that the potential in a perfect crystal is similar to
potential of the defect supercellfar from the defect. We av-
eraged these potentials along planes and plot their differe
along the normal direction. Far from the defect, the diff
ence between the potential in the perfect crystal and in
defect supercell is constant, and equal to the required sh

In Table II, we show the defect formation energies at
limits of the zinc chemical potential and for Fermi leve
corresponding to the top of the valence band and the bot
of the experimentalconduction band. For the dominant d
fects, the formation energies are shown in Fig. 3 and Fig
as a function of Fermi level~for the two limiting zinc chemi-
cal potential values!. The slope of the lines in these figure
corresponds to the charge state of the defect@see Eq.~4!#; for
each defect, the line for a particular charge state has o
been drawn over the range where this charge state ha
lowest energy of all possible charge states. The kinks in
curves thus correspond to transitions between charge s
~and hence to thermodynamic defect levels!.

As will be discussed below in Sec. IV, the calculatio
suggest that the two most common defects are likely to
oxygen and zinc vacancies. We have therefore include

FIG. 3. Calculated defect formation energy for selected defe
shown in Table II as a function of the Fermi level and formZn

5mZn
0 ~high zinc partial pressure!. Only the lowest formation-

energy values are shown. The zero of the Fermi level is set to
top of the valence band.
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summary of the relaxed local bond lengths for the neu
states of these defect types in Table III~the corresponding
bond lengths in the bulk ZnO are also included for compa
son!. The changes in bond lengths associated with the de
can be understood in terms of size and charge effects. A
defect involves removing an ion which is both fairly sma
and positively charged. It is therefore to be expected t
other positively charged zinc will move closer to the vaca
site, as there is more open space and reduced electros
repulsion. On the other hand, the oxygen neighbors are
longer electrostatically attracted to the vacancy and con
quently move farther away. In general it is found that bo
zinc and oxygen move closer to an oxygen site when
oxygen is removed~except for a slight increase in the thir
nearest-neighbor zinc!. This suggests that the size of the ox
gen ion dominates in keeping the other ions away, and
whole region contracts when the oxygen vacany is crea
For all the relaxations it can be seen that they are very sm
at distances nearr cut53.95 Å, which further suggests tha
relaxations outside this cutoff are inessential.

IV. DISCUSSION

From Figs. 3 and 4 we deduce that, depending on
partial pressure of Zn, the most abundant native defect
ZnO are the oxygen and zinc vacancies. As we mentione

FIG. 4. Calculated defect formation energy for selected defe
shown in Table II as a function of the Fermi level and formZn

5mZn
0 1DEf

ZnO ~low zinc partial pressure!. Only the lowest
formation-energy values are shown. The zero of the Fermi leve
set to the top of the valence band.

ts

e

distance.

TABLE III. Distances to nearest-neighbor atoms for bulk and defected ZnO.di gives the distance to the

i th nearest neighbor in angstroms. The values in parentheses are the number of neighbors at that
Distances outsider cut are not included as they are identical in the bulk and defected structures.

Defect Neighbor type d1 d2 d3 d4 d5

Zn ~in bulk ZnO! Zn 3.17~6! 3.19~6!

VZn Zn 3.12~3!,3.13~3! 3.17~6!

Zn ~in bulk ZnO! O 1.94~3! 1.95~1! 3.20~1! 3.74~3! 3.74~6!

VZn O 2.11~3! 2.12~1! 3.21~1! 3.74~3! 3.75~6!

O ~in bulk ZnO! Zn 1.94~3! 1.95~1! 3.20~1! 3.74~3! 3.74~6!

VO Zn 1.79~3! 1.79~1! 3.21~1! 3.73~3! 3.74~6!

O ~in bulk ZnO! O 3.17~6! 3.19~6!

VO O 3.12~3!,3.13~3! 3.15~6!
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Sec. I, most of the literature agrees on the presence o
vacancies. On the other hand, there is no consensu
whether the other majority defect that is detected experim
tally corresponds to oxygen vacancies or zinc interstitia
Our work indicates that oxygen vacancies have a lower
mation energy than the zinc interstitial defects and he
should be more abundant. Mahan’s11 interpretation of
Hagemarks12 experimental measurements agrees well w
our results. When there is zinc excess the native donors
the oxygen vacancies~see Fig. 3!, and when there is Zn
depletion Zn vacancies are present~see Fig. 4!.

Experiments to distinguish between Zn interstitials and
vacancies are usually difficult to perform and interpr
These difficulties are due, in part, to the use of indirect e
dence and to the sensitivity of the results to critical variab
such as dopant concentration, processing, atmosphere
temperature. Some of these effects can be analyzed usin
results.

By changing the Fermi level we can simulate the effect
changes in dopant concentration. It is clear from Fig. 3~Zn-
rich conditions! that oxygen vacancies are lower in ener
than Zn interstitials for all Fermi-level positions~the Zni
formation energy value being at least 1.2 eV higher than
of VO). Similarly, Fig. 4~for oxygen-rich conditions! shows
that zinc vacancies dominate over the whole range of Fe
level values.

Changes in the environmental conditions should
change the conclusions either. In Fig. 5, we show theintrin-
sic defect concentration as a function of the Zn partial pr
sure. In this case the Fermi level is determined by requir
charge neutrality. Oxygen and zinc vacancies remain as
predominant defects in the chemical potential range spec
by Eq. 8. Note that we are not considering the presenc
defect complexes that can considerably change the pre
analysis. These complexes can be formed by the associ
between defects or dopants and defects.

Now we examine the sensitivity of our results to corre
tions of the LDA band gap. The LDAunderpredictsthe ZnO
band gap by 2.5 eV. Consequently, we can expect the ca
lated defect levels in the gap to be lower than they would

FIG. 5. Intrinsic defect concentration at 1000 K. The concen
tion was computed using Eq.~1! with the formation energy value
from Figs 3 and 4, but using thetheoreticalband gap. The Ferm
level was obtained by requiring overall charge neutrality. Cond
tion electrons are identified as ‘‘e’’ and holes in the valence band
‘‘h.’’
n
on
n-
.

r-
e

h
re

.
i-
s
nd

our

f

at

i-

t

-
g
he
d

of
ent
ion

-

u-
e

with a correct band gap. Any correction we introduce w
consistently shift the formation values upwards. A crude w
to account for this problem consists in increasing the form
tion values by 2.5nelec, wherenelec corresponds to the occu
pation of the defect level. However, one expects levels t
exhibit more valence-band character to be less affected
those that exhibit more conduction-band character. The
of the valence band is mainly formed by oxygen 2p levels
while the bottom of the conduction band is mainly Zn 4s in
character.18,21 In Fig. 6, we show a contour plot, in a (121̄0)
plane in the wurzite structure, of the electronic density c
responding to the wave function of the highest occupied
fect state for a VZn

22 defect. This wave function is dominate
by oxygenp orbitals. This means that the defect wave fun
tion is largely made up out of orbitals that have valence-ba
character; the defect state is therefore unlikely to shift
wards when the band gap is ‘‘opened up.’’ Consequently
vacancies will continue to have the lowest formation ener
since the formation energies of other defects will either s
the same or shift upwards in Fig. 4. Our conclusions rega
ing the dominance of Zn vacancies in oxygen-rich mate
are therefore robust.

The situation is more complex for Zn-rich material,
which the LDA results show oxygen vacancies to have
lowest energies. The oxygen vacancy defect level is a c
bination of Zns and Op orbitals, as shown in Fig. 7. Be
cause the defect state exhibits some conduction-band ch
ter, its level may be shifted up when the band-gap correc
is applied. The formation energy of VO

12 will remain un-
changed since no electrons occupy the level in this case
p-type Zn-rich material, oxygen vacancies will therefore r
main the dominant defect. The formation energy of VO

0 ,
however, may be affected, and shift to higher values. Wh
it is in principle possible that the formation energy of VO

0

would become larger than that of Zni , this seems unlikely
since the Zni

0 formation energy will also be pushed to high
values.~An analysis of the defect electronic density for Zi
reveals conduction-band character and consequently
level is likely to shift upwards.! However, as can be see
from Fig. 3, for extremen-type conditions Zn vacancies ma
actually become dominant.

Irrespective of the LDA errors, we conclude from o
calculations that the oxygen vacancy is a so-cal

-

-
s

FIG. 6. Contour plot, in the (121̄0) plane, of the electronic
density corresponding to the VZn

22 level at the ZnO band gap. Th
‘‘x’’ indicates the position of the vacancy. Contour lines are sep
rated by 0.07e/Å3.
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‘‘negative-U ’’ defect; indeed, with increasing Fermi level
transition occurs directly from the12 to the neutral charge
state, with the11 charge state always being higher in ener
than the other two.

Because of limited computational resources, we did
sample all the relevant charge states for all defects. Only
zinc interstitials and zinc and oxygen vacancies were
charge states taken into account. For oxygen interstitials
found that the more positive the defect charge is the
stable the defect is. Consequently, only the lowest cha
were sampled. Also in the same way as with the zinc in
stitials, oxygen interstitials were always more stable in
octahedral site~we computed a few tetrahedrally positione
defects to check that this was actually the case!. Finally, for
zinc and oxygen antisites, we tested a few cases and ver
their formation energies were always higher than the ones
Zn and O vacancy defects. Based on these calculations w
not expect our conclusions to change if all possible char
states are considered.

As mentioned in the introduction, ZnO often exhibi
green luminescence, centered between 2.4 and 2.5 eV34,62

Our results for defect levels suggest a possible mechan
for this emission. Defect levels correspond to transitions
tween charge states; these transitions in turn correspon
the kinks in the curves shown in Figs. 3 and 4. The transit
level between the21 and 22 charge states ofVZn occurs
around 0.8 eV above the valence band. We argued above

FIG. 7. Contour plot, in the (121̄0) plane, of the electronic
density corresponding to the VO

11 level at the ZnO band gap. Th
‘‘x’’ indicates the position of the vacancy. Contour lines are sep
rated by 0.01e/Å3.
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this level would be largely unaffected by the LDA band-g
error. A transition between the conduction band and theVZn
acceptor level would thus give rise to luminescence aro
2.6 eV, in reasonable agreement with the observed trans
energy. In addition to the agreement with the observed tr
sition energy, the Zn vacancy is also a likely candidate
cause it is an acceptor-type defect: acceptor defects are m
likely to occur in n-type material, and most ZnO materia
exhibits highn-type conductivity. This proposed explanatio
for the green luminescence is similar to the proposal t
gallium vacancies are the source of the yellow luminesce
in GaN.63

Our calculations indicate that oxygen vacancies hav
12/0 transition at an energy within the gap. As discuss
above, the position of this level is rather uncertain due to
LDA band gap error; the fact that the level occurs within t
band gap does indicate, however, that oxygen vacancies
also give rise to luminescence in ZnO.

V. CONCLUSIONS

The characterization of native point defects in ZnO h
important technological implications. In this work, we a
plied a first principles pseudopotential approach to this pr
lem.

We found the most abundant native defects to be Zn
O vacancies depending on the Zn partial pressure. The
lidity of our conclusions was carefully checked with rega
to the LDA band-gap error, effects of the supercell appro
mation, and convergence of pseudopotential method par
eters. Our results also suggest that the green luminesc
observed in ZnO may originate from transitions betwe
electrons in the conduction band and zinc vacancy levels

We did not analyze here the effects of the associat
between different defects. They certainly play an import
role in other systems and we cannot discarda priori their
influence on the ZnO properties. Estimating this effect w
be the objective of future work.
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