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Melting as a dislocation-mediated phase transition

Leonid Burakovsky,* Dean L. Preston,† and Richard R. Silbar‡

Los Alamos National Laboratory, Los Alamos, New Mexico 87545
~Received 10 November 1999!

We present a theory of the melting of elements as a dislocation-mediated phase transition. We model
dislocations near the melt as noninteracting closed loops on a lattice. In this framework we derive simple
expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt.
We use experimental data for more than half the elements in the periodic table to determine the dislocation
density from both relations. Melting temperatures yield a dislocation density of (0.6160.20)b22, in good
agreement with the density obtained from latent heats, (0.6660.11)b22, whereb is the length of the smallest
perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms
are within a dislocation core.
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I. INTRODUCTION

Nearly 50 years ago Shockley1 successfully accounted fo
the fluidity of a liquid by assuming a certain concentration
line defects in the liquid state. Bragg2 had earlier estimated
an upper bound on the core energy of a dislocation under
assumption that the core atomic configuration was like t
of a liquid. Cotterill and Doyama3 later confirmed the Bragg
estimate. These early results implied that the liquid stat
equivalent to a crystal saturated with dislocation cores
was first suggested by Mott4 that the melting transition could
be described in terms of dislocations.

There are now compelling results from molecu
dynamics5 and Monte Carlo6 simulations that imply that dis
locations play a key role in three-dimensional melting, a
moreover there is experimental evidence that linear def
are in fact generated near the melting transition.7

Mizushima8 and Ookawa9 were the first to formulate a
dislocation theory of melting. They based their theory on
fact that the self-energy of a dislocation decreases with
location density because of screening. In their theory mel
is a first-order transition that occurs when the free energy
the crystal with a sufficiently high concentration of therma
generated dislocations equals the free energy of
dislocation-free crystal. Their predicted melting temperatu
agree with data for reasonable choices of the core ene
Many dislocation theories of melting then followed,10–13

most notably the exhaustive treatment of linear-defe
mediated melting by Kleinert.14 We refer the reader to sev
eral fine reviews of the literature for additional details a
references on dislocation-mediated melting.15,16

Significant progress in our understanding of melting h
been achieved by Kleinert14 who pointed out that the melting
process cannot proceed through the mediation of dislocat
alone. Dislocations are associated with the discrete tran
tional symmetry of the crystal, so only this symmetry is lo
when dislocations condense. But the rotational order of
solid is also lost as the solid converts into liquid, and for t
to occur the defects associated with the rotational symm
of the lattice, namely, disclinations, must come into pla
Kleinert assumes that the free energy of dislocations al
would lead to a second-order phase transition, and in a
PRB 610163-1829/2000/61~22!/15011~8!/$15.00
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tion shows that a second-order proliferation of disclinatio
can occur in a background of dislocations above some c
cal density. The coupled dislocation-disclination syste
could, however, undergo a first-order transition, i.e., melti

Although disclinations must participate in the meltin
process, in this paper we consider only the dislocation
grees of freedom. Ideally, we would derive the precise fo
of the free energy of a dense ensemble of dislocations in
acting via the full Blin potential14 and subject to specific
configurational constraints~Brownian, self-avoiding, etc.!,
but this problem has so far defied solution. Instead we
velop an effective theory of melting based on perfec
screened, noninteracting dislocations. We employ the wid
accepted2r ln r form (r is dislocation density! for the self-
energy density of dislocations,8,17,18 which results in a first-
order phase transition. A dislocation in a dense ensembl
other dislocations is assumed to be a random loop—i.e.,
possible configurations of a dislocation loop are closed r
dom walks—and short-range steric interactions are
glected. Thus the partition function is evaluated in t
independent-loop approximation. We obtain two new re
tions: a simple expression for the melting temperature~the
melting relation! that explicitly takes into account the cryst
structure and another relation between melting temperat
latent heat of fusion, and critical density of dislocations. W
carry out a comprehensive comparison of these relati
with experimental data on over half of the periodic table. T
melting relation is accurate to 17%.19 Dislocation densities
as determined from the melting temperature and latent h
relations arer5(0.6160.20)b22 and (0.6660.11)b22, re-
spectively, whereb is the length of the smallest perfec
dislocation Burgers vector. Both relations should also ap
to alloys and compounds.

In Sec. II we discuss the statistical mechanics of clos
loops on a lattice. These results are used to derive the m
ing relation in Sec. III, the free energy density in Sec. I
and the formula for the latent heat of fusion in Sec. V. T
values for the critical dislocation density extracted from bo
the melting relation and the formula for the latent heat
fusion are checked in Sec. VI with the formula for volum
change at melt. Our concluding remarks appear in Sec.
15 011 ©2000 The American Physical Society
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II. STATISTICAL MECHANICS OF DISLOCATION
LOOPS ON A LATTICE

The energy per unit length,s, of a dislocation can be very
large. However, this energy can always be compensate
sufficiently high temperatures by the large entropy of linel
structures, as will be seen in what follows.

In a Bravais lattice with coordination numberz we con-
sider the graphG, the edges of which are all nearest-neighb
links. The set ofz links from any lattice site is identical to
the set of shortest perfect-dislocation Burgers vectors
lengthb. We now evaluate the partition function for a sing
Brownian loop onG.

The line tensions is assumed to be independent of
lengthL, as is the case for a dislocation in a dense comp
network. ~In a dilute network, interactions between dista
segments of a dislocation lead to a logarithmic depende
of s on L.! The number of configurations of a string o
lengthL is (z8)L/b, wherez8 is the number of possible direc
tions that a line segment can take from a given lattice site
backtracking is not allowed,z85z21. For a simple cubic
lattice in D dimensions,z52D.

Hence, the partition function for a single closed disloc
tion ~in three dimensions! is

Z15(
L

p~L,V!~z8!L/be2bsL5(
L

p~L,V!e2bseffL,

~1!

seff[sS 12
T ln z8

sb D ,

whereb[1/kBT, p(L,V) is the sum of probabilities over a
lattice sites that a dislocation of lengthL will close, V is the
volume of the system, andseff is theeffectiveenergy cost to
create unit length of a string at temperatureT.

In order to calculatep(L,V), let p(r 8,r ;L/b) be the prob-
ability density for a dislocation ofL/b5n steps to start atr
and end atr 8. In the limit n→`, b→0, and L5const,
p(r 8,r ;L/b) satisfies the diffusion equation20

]p

]n
5

b2

z8
¹2p, ~2!

the solution of which is the heat-kernel expansion

p~r 8,r ;L/b![p~r 82r ;L/b!5(
k

f k~r ! f k* ~r 8!e2EkL/b,

~3!

where thef k(r ) are eigenfunctions of the Laplacian,

2
b2

z8
¹2f k5Ek f k , ~4!

which we take as normalized according to

E d3r u f k~r !u251. ~5!

WhenV→`, we have
at

r

of

x
t
ce

If

-

f k~r !5
1

AV
eik•r, Ek5

b2k2

z8
, ~6!

where 0<k5uku<`. It then follows from Eq.~3!, in which
we replace a sum by an integral,(k→V/(2p)3*d3k, that

p~r 82r ;L/b!5E d3k

~2p!3
eik•(r2r8)2bLk2/z8

5S z8

4pbLD 3/2

e2z8(r82r )2/4bL. ~7!

The normalization~5! of the eigenfunctions thus imparts un
normalization to the probability density:

E d3u p~u;L/b!51. ~8!

The partition function for a dislocation loop (r 85r ) is there-
fore

Z15(
L

b

LE d3r p~0;L/b!e2bseffL

5S z8

4p D 3/2 V

b3 (
L

S L

bD 25/2

e2bseffL[(
L

N~L !e2bsL,

~9!

where the factorb/L removes the overcounting due to th
degeneracy in the number of starting points on the lo
Here, N(L) is the number of configurations of a loop o
length L. The exponent 5/2 becomes 11D/2 in D
dimensions.21

Real dislocations are not necessarily Brownian loops.
fact, they are expected to be self-avoiding and/or neighb
avoiding loops, so they do not penetrate each other’s c
Equation~9! can then be extended to non-Brownian or op
dislocations by means of an effective exponentq11Þ5/2
and normalization constantA(q,z8),22 as follows:

Z15A~q,z8!
V

b3 (
L

S L

bD 2q21

e2bseffL. ~10!

Here, q521 for noninteracting ~Brownian! open
dislocations22 and q'7/4 for self-avoiding dislocations a
low densities in three dimensions.22 In the string literature,
the valueq50 has also been quoted. A general argum
based on modular invariance23 shows that for noninteracting
closed stringsq50 for sufficiently high energy on any com
pact target space. The same value ofq was also obtained in a
discrete model for strings24 and as a static solution to th
string Boltzmann equation.25 In principle, q may even be a
function of temperature. Although we may expect 3/2<q
<7/4,12 our main conclusions do not depend on the prec
value ofq. The normalization constantA(q,z8) can be cal-
culated analytically for Brownian loops in any dimensio
(q5D/2), analogously to the calculation ofA(3/2,z8)
5(z8/4p)3/2 in Eq. ~9! and numerically in other cases.

The average length of a loop is
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^L&5

(
L

LN~L !e2bsL

(
L

N~L !e2bsL

5
j~T!

j̄~T!
b, ~11!

where we define

j~T![A~q,z8!(
L/b

S L

bD 2q

e2bseffL ~12!

and

j̄~T![A~q,z8!(
L/b

S L

bD 2q21

e2bseffL5
b3

V
Z1 . ~13!

The grand canonical partition function for an ensemble
noninteracting indistinguishable loops is given by

Z5Z~T,V,m!5 (
N51

` Z1
N

N!
emN/kBT5expH expS m

kBTDZ1J ,

~14!

where m is the chemical potential. The free energy of t
ensemble is

F52kBT ln Z52kBTem/kBTZ1 . ~15!

The average number of loops in the ensemble is

N̄52S ]F

]m D
T,V

5em/KBTZ1 . ~16!

SinceZ5(Li
N(Li)e

2b(sLi2m), whereN(Li) is the number

of dislocation configurations of total lengthLi , the average
total dislocation length in the ensemble is

L̄5
1

Z (
Li

LiN~Li !e
2b(sLi2m)52

] ln Z

]~bs!
52em/kBT

]Z1

]~bs!

5N̄

(
L

LN~L !e2bsL

(
L

N~L !e2bsL

5N̄^L&. ~17!

i.e., the average total dislocation length is equal to the a
age number of loops times the average loop length.

The dislocation densityr is the average total length pe
unit volume. It then follows from Eqs.~12!, ~13!, and ~17!
that

b2r~T!5
N̄^L&

V
b25

N̄

V

j~T!

j̄~T!
b35em/kBTj~T!. ~18!

III. NEW MELTING RELATION

The effective line tensionseff @see Eq.~1!# vanishes at the
critical temperaturekBTcr[sb/ ln z8. Consequently, disloca
tions proliferate asTcr is approached from below. At tem
peratures aboveTcr , the divergence ofZ1 signals the break-
down of the underlying theory, and the system enters a n
phase. Hence, the temperatureTcr corresponds to a phas
f

r-

w

transition, in which dislocations are copiously produced
the solid. We therefore equate the melting temperatureTm to
Tcr .

The line tension, i.e., the dislocation self-energy per u
length, is assumed to be that of a dislocation in a comp
array, or tangle, of other dislocations. In that case the st
field of a given dislocation beyond.R/2, whereR is the
mean interdislocation separation, is largely canceled ou
the stress fields of the other dislocations in the comp
array.26,27The line tension is then the sum of the core ene
plus the elastic energy inside a cylinder of radiusR/2:26

s5k
Gb2

4p
lnS a

b

R

2 D5k
Gb2

8p
lnS a2

4b2r
D . ~19!

Here,k is 1 for a screw dislocation and (12n)21'3/2 for
an edge dislocation,n being the Poisson ratio. Also,G is the
shear modulus,b is the Burgers vector magnitude, anda is a
constant of order unity. In the second half of this equat
we have taken distanceR to be approximately equal to 1/Ar,
wherer is the dislocation density defined in Eq.~18!. An
expression of the form~19! with R5r21/2 for the dislocation
self-energy was originally proposed by Mizushima,8 later put
on a sound theoretical basis by Yamamoto and Izuyam17

and was recently employed by Kierfeld and Vinokur18 to
model dislocation-mediated phase transitions of vortex-l
lattices in high-Tc superconductors.

The constanta accounts for the nonlinear elastic effec
in the dislocation core. Hirth and Lothe26 compare disloca-
tion energies in the Peierls-Nabarro~discrete! and Volterra
~continuum! dislocation models and find

1

a
5

d

ebS sin2 b

eg~12n!
1cos2 b D , ~20!

whereg5(122n)/4(12n)'1/8, d is the interplanar spac
ing, andb is the angle between the Burgers and sense v
tors of the dislocation. In a face-centered-cubic~fcc! crystal,
the smallest perfect-dislocation Burgers vectors are1

2 ^110&a
and the primary glide planes are$111% with d5a/A3, where
a is the lattice constant. Experimental evidence~Ref. 26,
Table 9-2, p. 275! suggests that the predominant hig
temperature glide system in body-centered-cubic~bcc! lat-
tices is$110%, which hasd5a/A2. The smallest bcc perfect
dislocation Burgers vectors are1

2 ^111&a. Thus, in both cases
d/b5A2/3. Averaging overb, we find a'2.9 for both fcc
and bcc lattices. Atomistic calculations of core energies
ionic crystals~Ref. 26, p. 232! indicate thata'3. In metals,
no such calculations have been performed. We usea52.9
for all elements.

We have also assumed that no backtracking is allowed
dislocations,z85z21, since each backtracking would resu
in a divergence in the linear elastic interaction energy
tween the overlapping segments. The coordination numb
for the elements considered in our analysis below arez56
for a simple cubic~sc! lattice, z58 for bcc and body-
centered tetragonal~bct! lattices, andz512 for fcc, hexago-
nal close-packed~hcp!, and double hcp~dhcp! lattices. Re-
placing

b3[lvWS,
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15 014 PRB 61BURAKOVSKY, PRESTON, AND SILBAR
where vWS is the volume of the Wigner-Seitz cell of th
crystal lattice andl is a geometric constant, we finally obta
our formula for the melting temperature of the elements:

Tm5
lGvWS

4pd ln~z21!
, d21[k lnS 1.45

bAr~Tm!
D . ~21!

In Ref. 19 we evaluatedGvWS/4pTm ln(z21) for 51 ele-
ments and foundd/l to be 1.0160.17, where the error is th
root-mean-square deviation. Thesed/l are summarized in
Fig. 1.

We now assume that the dislocation ensemble is do
nated by perfect dislocations with the smallest possible B
gers vectors, since the dislocation energy is proporti
al to b2. For a bcc crystalb5aA3/2, vWS5a3/2, and b
5a/A2, vWS5a3/4 for a fcc crystal. Then,b3'1.30vWS
and 1.41vWS, respectively. For a hcp lattice,l
5(4/A3)(c/a)21, so that for an ideal hcp crystal (c/a
5A8/3) one would havel5A2. As estimated for two hcp
metals,13 b3'1.42vWS for Mg and 1.24vWS for Zn. Hence,
we takel51.3360.09'4/3. This embraces all of the value
quoted above.

In an ensemble of loops there are roughly equal amou
of edge and screw dislocation in the crystal, so we h
1/k5(12n/2)6n/2.5/661/6. Therefore, as follows from
Eq. ~21!,

lnS 2.1

b2r~Tm!
D 5

2~5/661/6!

~1.3360.09!~1.0160.17!
51.2460.33.

~22!

Hence,

r~Tm!5~0.6160.20!b22. ~23!

It follows from Eqs.~21!–~23!, with kl51.660.3, that to
;20% accuracy

Tm5
GvWS

4p ln~z21!
. ~24!

We regard Eq.~24! as a new dislocation melting law.

FIG. 1. Values ofd/l5GvWS/4pTm ln(z21) from experimental
data for 51 elements.
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r-
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IV. FREE ENERGY OF THE DISLOCATION ENSEMBLE

To calculate the free energy of a dislocation ensemb
Eq. ~15!, let us rewrite Eqs.~10! and ~12!, using Eq.~19!
with R51/Ar, and replace the sums~which start with L
54b, the smallest loop length! by the corresponding inte
grals:

Z15
V

b3
A~q,z8!E

4

`

dx x2q21F4b2r

a2
~z8!1/cG cx

, ~25!

j~T!5A~q,z8!E
4

`

dx x2qF4b2r

a2
~z8!1/cG cx

, c[
kGb3

8pkBT
.

~26!

Here, (4b2r/a2)(z8)1/c5exp$28pseff /kGb2%<1, since
seff>0. Integrating Eq.~25! by parts we find

Z15
V

qb3 S kGb3

8pkBT
lnF4b2r

a2
~z8!1/cGj~T!

1
A~q,z8!

4q F4b2r

a2
~z8!1/cG 4cD

5
V

qb3 F2
seffb

kBT
j~T!1

A~q,z8!

4q
e24seff b/kBTG . ~27!

Hence,

F52kBTem/kBTZ1

5
V

qb3 S seffrb32
A~q,z8!em/kBT

4q
kBTe24seff b/kBTD ,

~28!

where we have replaced (kGb3/8p)ln(a2/4b2r)2kBT ln z8
by bseff , in view of Eqs.~1! and ~19!, and used Eq.~18!.

The second term on the right-hand side of Eq.~28! takes
its largest value atT5Tm , whereseff50. To estimate its
contribution to the free energy, consider the case of Cu
cussed in more detail below. In this case, to estim
A(q,z8)exp$m(Tm)/kBTm%/4q, we use Eqs.~12! and ~18!, and
replace the sum by an integral:

A~q,z8!em(Tm)/kBTm

4q
5

A~q,z8!

4q

b2r~Tm!

j~Tm!
5

b2r~Tm!

4qE
4

`

dx x2q

5
b2r~Tm!~q21!

4
.

As discussed in Sec. II, the value ofq may be expected to be
between 3/2 ~Brownian loops! and '7/4 ~self-avoiding
loops!. With b2r(Tm) given in Eq.~23!, we therefore obtain
A(q,z8)exp$m(Tm)/kBTm%/4q50.09560.037'0.1.

Hence, the contribution of the second term toqF/V
would be.20.7 meV Å23. As seen in Fig. 2, this contri-
bution is negligibly small. In fact, the second zero ofF for
T5Tm and A(q,z8)exp$m(Tm)/kBTm%/4q50.1 occurs atb2r
50.61, which is within;5% of the value of 0.64@the sec-
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ond zero ofF at T5Tm with F/V given in Eq.~29!#, and
within uncertainties in the values ofb2r(Tm) in Eq. ~23!.

Thus, we have derived the dislocation free energy dens
and it is given approximately by

qF~r!

V
.seffr52FkG

8p
lnS 4b2r

a2 D 1
kBT

b3
ln~z21!Gb2r.

~29!

This form for the free energy density was previously su
gested but not derived by Cotterill.15 It was later put on a
firm theoretical basis by Yamamoto and Izuyama.17 It also is
a fundamental ingredient in the recently developed theor
dislocation-mediated phase transitions of vortex-line latti
in high-Tc superconductors.18

In Fig. 2 we plotqF(r)/V from Eq. ~29! for Cu for three
different temperatures:T,Tm , T5Tm , and T.Tm . We
take k56/5, a52.9, G547.7 GPa,28 Tm51356 K, andb
52.55 Å.19 A first-order phase transition, that is, meltin
takes place when the second zero ofF(r) occurs at the criti-
cal dislocation densityr(Tm). This is a transition from a
perfect crystalline solid to a highly dislocatedsolid, not a
liquid. In fact, our theory describes dislocations, which
not exist in liquids. If a dislocation is viewed as a disclin
tion dipole,29 the dislocated solid may in turn undergo
Kosterlitz-Thouless-like transition30 to a phase of free discli
nations, i.e., a liquid. This dislocated solid may then
viewed as the three-dimensional analog of an intermed
hexatic phase, between a solid and a liquid, in the Halpe
Nelson theory of two-dimensional melting.31 The clarifica-
tion of this point needs further investigation, to be und
taken elsewhere. Patashinskiiet al.11 also identified melting
as a transition from a perfect crystalline solid to a high
dislocated solid, and Nelson and Toner32 found residual
bond-orientational order in a three-dimensional solid with
equilibrium concentration of unbound dislocation loop
which is analogous to that in the two-dimensional hexa
phase.

Note that it is not possible to increase the dislocation d
sity progressively from zero tor(Tm) at a temperature lowe
than Tm ~e.g., by deformation! because of the high energ
barrier at the maximum ofqF(r)/V. Hence, the dislocation
density, as a function of temperature, is

FIG. 2. qF(r)/V for Cu at three different temperatures, in un
of meV Å23. The vertical line denotes the critical dislocation de
sity value of 0.64b22.
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r~T!5H 0, T,Tm ,

r~Tm!, T5Tm .
~30!

In fact, it can be shown that Eq.~30! is the only physical
solution of Eq.~12! written as a ‘‘gap’’ equation:

e2m/kBTb2r~T!5A~q,z8! (
n54

`
~z8!n

nq S 4b2r~T!

a2 D kGb3n/8pkBT

.

V. LATENT HEAT OF FUSION

For the ensemble of strings on a lattice considered in S
II, the internal energy and pressure are

U52S ] ln Z

]b D
em/kBT,V

52
N̄

Z1

]Z1

]b
5em/kBT

Vs

b2
j~T!,

~31!

P5kBTS ] ln Z

]V D
T,m

5kBT
N̄

Z1

]Z1

]V
5em/kBT

kBT

b3
j̄~T!.

~32!

Hence, the enthalpy is

H5U1PV5
V

b3
em/kBT@sbj~T!1kBTj̄~T!#. ~33!

The latent heat of fusion is the enthalpy difference

Lm[H~Tm!2H~0!. ~34!

In our case,H(0)50, which follows directly from Eqs.
~30!–~33! and Eq.~18!. Using seff(Tm)50 and the melting
conditionkBTm5sb/ ln(z21), we obtain

Lm5
V

b3
em(Tm)/kBTmkBTm@ ln~z21!j~Tm!1 j̄~Tm!#.

~35!

To obtain the latent heat per mole, the quantity tabulated
the literature, one has to multiply the expression~35! by the
ratio of the number of atoms per mole,NA , to the total
number of atoms in the volumeV, which is equal toV/vWS.
Replacing NAkB by the gas constantR and using b3

5lvWS, we obtain

Lm5
em(Tm)/kBTm

l
j~Tm!RTm ln~z21!F11

1

ln~z21!

j̄~Tm!

j~Tm!
G .

~36!

To estimate the ratioj̄(Tm)/j(Tm), we replace the sums
in Eqs.~12! and ~13! by the corresponding integrals:

j̄~Tm!

j~Tm!
5

E
L/b54

`

d~L/b!~L/b!2q21

E
L/b54

`

d~L/b!~L/b!2q

5
q21

4q
. ~37!

With 3/2<q<7/4, as discussed in Sec. II, 0.083<(q
21)/4q<0.107, i.e.,
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j̄~Tm!

j~Tm!
50.09560.012. ~38!

Therefore, the contribution of the second bracketed term
the right-hand side of Eq.~36! ~corresponding to the work
contribution to enthalpy! is 0.04–0.06 (6<z<12). We ex-
pect, therefore, that neglecting the second bracketed term
the right-hand side of Eq.~36! will introduce an error not
larger than;6%. Hence, with accuracy of;94% we have
the following formula for the latent heats of the elements

Lm5
1

l
b2r~Tm!RTm ln~z21!, ~39!

where we have replacedem(Tm)/kBTmj(Tm) by b2r(Tm), in
view of Eq.~18!. The proportionality of latent heat of fusio
to the critical concentration of defects~multiplied by the core
energy! has been noted previously by Cotterill.15

In Fig. 3 we plot the values ofb2r(Tm) extracted from
the experimental data on latent heats for 75 elements.
this analysis, the values of bothTm andLm are mostly taken
from Ref. 32. For Be, Hf, Sc, Sr, and Y, the lanthanides D
Ce, Er, Gd, Ho, La, Nd, Sm, Tb, and Yb, and the actinid
Am, Cm, and Th, we disregard their high-T bcc phases
which exist only in the very vicinity of melting.~The inter-
mediate hcp→fcc phase transitions for Yb, dhcp→fcc for
Am, Ce, and La and fcc→hcp for Sr, as well as hcp→fcc for
Co, do not change the coordination number.! The crystal
structure chosen for the evaluation of Ca, Co, Mn, N, Np,
Sm, Ti, Tl, U, and Zr corresponds to the phase from wh
melting occurs. The data on bothTm andLm for H, N, O, Pa,
and Rn are taken from Ref. 33. The data on bothTm andLm
for Am and Cm and onLm for Ar, Kr, Ne, and Xe are taken
from Ref. 34. The data onLm for the lanthanides are take
from Ref. 35. The following values ofl are used: 1 for sc
1.3 for bcc, 1.41 for fcc, 1.24 for Zn, 1.42 for Mg, and 1.3
for all other elements.

For all these elements we find

r~Tm!5~0.6660.11!b22, ~40!

where the error is the root-mean-square deviation. This va
is in good agreement with that obtained from the melt
temperatures alone, Eq.~23!.

FIG. 3. Critical dislocation density as extracted from the expe
mental data on latent heat of fusion for 75 elements.
n
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Note that the possible inaccuracy in the value ofl for the
hcp, dhcp, and bct elements used in this analysis, on
order of;7%, may slightly increase uncertainty in the valu
of r(Tm) in Eqs.~23! and ~40!.

We do not have a reasonable explanation for the ano
lously high values ofr(Tm) for the noble gases. If the nobl
gases are excluded from the analysis, thenr(Tm) turns out to
be (0.6360.06)b22 for the remaining 70 elements. Not
also that for deuterium~D!, which is not included in Fig. 3,
with the data onTm and Lm from Ref. 34, we obtain
b2r(Tm)50.70.

The uncertainty-weighted average of the values ofr(Tm)
given in Eqs.~23! and ~40! is

r~Tm!5~0.6460.14!b22, ~41!

which we take as our result for the critical dislocation de
sity at melt.

VI. VOLUME CHANGE AT MELT

As an independent consistency check on the relations~23!
and ~40!, we determine the critical dislocation density usin
the formula13,36

«[
DV

V
5

l

2p

G

B S gG2
1

3Db2r~Tm!, ~42!

whereDV is the difference between the liquid and solid sp
cific volumes at melt,G andB are the shear and bulk modul
respectively, andgG is the Grüneisen constant. Here,« is
identified with the dilation of the lattice as the reaction of t
crystal to the sudden proliferation of dislocations. In Tabl
we show the values ofb2r(Tm) calculated for 32 element
for which we could find zero-pressure data ongG and«. The
experimental values of« are mostly taken from Ref. 34, an
those ofG, B, andgG from Ref. 28. For Ar, Kr, Ne, and Xe
the values ofG andB are taken from Ref. 37 and those ofgG
from Ref. 38.

For all 32 elements in Table I we find

r~Tm!5~0.5160.11!b22, ~43!

where the error is the root-mean-square deviation. This
somewhat lower than but still in agreement with both E
~23! and ~40! taking into account uncertainties associat
with the three values.

For comparison, we show in the last column of Table I t
values ofb2r(Tm) extracted for the same elements from t
data onLm . It is seen that the agreement between two set
the values ofb2r(Tm) is reasonably good, except for Ag, A
Cs, Cu, Ni, Pb, and Xe, for which the difference in bo
values ofb2r(Tm) is on the order of;50–60 %, Lu, Ne,
and Nd, for which the difference is;45%, and Ar, Kr, Pd,
and Tm, for which it is;35%. For all other elements, th
difference does not exceed;30%.

Note that the contribution of the volume change at me
«, to the latent heat of fusion is proportional to«2!1,13,36

and is therefore negligibly small compared to the right-ha
side of Eq.~39!.

-
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TABLE I. Values of b2r(Tm) from experimental data on volume change at melt for 32 elements.
comparison, we also show values ofb2r(Tm) extracted for the same elements from the data on latent h

Element B ~GPa! G ~GPa! gG «
b2r(Tm)

from Eq. ~42!
b2r(Tm)

from Eq. ~39!

Ag 103 29.8 2.40 0.052 0.39 0.67
Al 76.0 26.1 2.19 0.064 0.44 0.81
Ar 1.83 0.75 2.59 0.144 0.69 1.00
Au 173 28.0 2.99 0.055 0.57 0.65
Be 111 151 1.11 0.115 0.51 0.63
Ca 16.7 7.4 1.15 0.048 0.64 0.63
Cs 2.01 0.65 1.41 0.026 0.36 0.56
Cu 137 47.7 2.02 0.046 0.35 0.68
Eu 17.0 7.53 1.39 0.048 0.50 0.67
Gd 37.8 21.6 0.63 0.021 0.59 0.65
Ho 40.8 26.3 1.18 0.075 0.65 0.66
In 42.0 4.78 2.43 0.025 0.49 0.62
K 3.3 0.9 1.29 0.025 0.46 0.56
Kr 2.04 0.85 2.64 0.151 0.70 1.00
Li 12.1 3.85 0.92 0.016 0.41 0.53
Lu 47.6 27.2 1.06 0.036 0.41 0.67
Na 6.74 1.98 1.19 0.027 0.52 0.56
Nb 171 37.6 1.77 0.029 0.44 0.59
Nd 32.9 17.4 0.57 0.009 0.34 0.56
Ne 0.88 0.40 2.79 0.156 0.62 0.98
Ni 183 85.8 1.93 0.063 0.37 0.72
Pb 44.7 8.6 2.74 0.037 0.36 0.56
Pd 193 48.0 2.56 0.059 0.47 0.66
Pt 283 63.7 2.87 0.066 0.51 0.68
Rb 2.3 0.63 0.99 0.026 0.70 0.60
Ta 193 69.0 1.74 0.052 0.50 0.59
Tb 38.7 22.1 0.74 0.032 0.65 0.67
Tl 35.7 5.4 2.10 0.033 0.60 0.60
Tm 46.2 29.1 1.43 0.069 0.47 0.68
W 310 160 1.67 0.090 0.63 0.77
Xe 2.1 1.0 2.56 0.130 0.54 1.01
Yb 14.9 8.06 1.04 0.036 0.44 0.56
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VII. CONCLUDING REMARKS

Our theory of dislocation-mediated melting was dev
oped in the approximation that dislocations are noninter
ing. This approximation is good only in the vicinity of me
where the dislocation density is very high and the otherw
long-range interactions are sufficiently screened.27 The sta-
tistical mechanics of noninteracting dislocations on a latt
yields simple, accurate relations between the dislocation d
sity at melt and both the melting temperature and latent h
of fusion, despite the indeterminacy of the parameterq that
takes into account the possible non-Brownian nature of
dislocation network. The values ofr(Tm), as determined
from an extensive analysis ofTm and Lm data, are remark-
ably consistent: (0.6160.20)b22 and (0.6660.11)b22, re-
spectively. The uncertainty-weighted average of these va
is r(Tm)5(0.6460.14)b22, which we take as our result fo
the dislocation density at melt. Poirier and Price13 analyzed
14 elements and foundr(Tm)vWS/b50.4860.12. Using
vWS5b3/l with l'4/3, their result corresponds tor(Tm)
5(0.6460.16)b22, which is in excellent agreement wit
-
t-

e

e
n-
at

e

es

ours. Kierfeld and Vinokur18 modeled dislocation-mediate
phase transitions of a vortex-line lattice and foundr(Tm)
'0.6b22. Vachaspati’s39 study of topological defect forma
tion gave a2r(Tm)'0.88 for a simple cubic lattice. This
translates intor(Tm)'0.66b22 for bcc lattices (a52/A3b)
and r(Tm)'0.44b22 for fcc lattices (a5A2b), which are
consistent with our result. In agreement with Vachasp
Kibble40 found a2r(Tm)'0.89 for a simple cubic lattice.

Although our main results do not depend on the prec
value ofq, there is a particular value ofq at which the rela-
tions ~29! and~39! become exact:q51. In this limit, as seen
in Eq. ~12!, j(Tm)→`, so that Eq.~39! becomes exact in
view of Eq.~36!. Requiring finite internal energy in this limi
leads, via Eq.~31!, to exp$m(Tm)/kBTm%→0 (m(Tm)→2`),
and therefore, Eq.~29! becomes exact, since the second te
on the right-hand side of Eq.~28! disappears. In fact, the
study of cosmological networks of string loops in three
mensions by Magueijo, Sandvik, and Steer41 results in a
scale-invariant loop distribution of the form of Eqs.~9! and
~10! with q11,5/2: Ref. 42 1.9,q11,2.1 or Ref. 43
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q1152.03 ~plus error bars!, and so in this studyq'1.
Thus, it is quite possible that linear defects which corresp
to two apparently distinct physical phenomena, namely, c
mic strings and crystal dislocations, are of a very simi
statistical-mechanical nature.

The average total dislocation length per Wigner-Seitz c
at melt isr(Tm)vWS5b3r(Tm)/l'b/2, sincel'4/3. Since
a Wigner-Seitz cell containsz links, each of lengthb/2, it
follows that, on average, one ofz links in each Wigner-Seitz
cell is covered by a dislocation. Since each such a link
shared between two atoms, on average, half of the atom
within a dislocation core at melt.

If we user(Tm)50.64b22, then to;20% accuracy the
melting temperatures and latent heats are given by
i

a

.

s

7

d
s-
r

ll

is
are

kBTm5
GvWS

4p ln~z21!
, ~44!

Lm5
ln~z21!

2
RTm . ~45!

The accuracy of these relations depends critically on the
tor of ln(z21), which is characteristic of a theory based
linelike degrees of freedom.
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