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Melting as a dislocation-mediated phase transition
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We present a theory of the melting of elements as a dislocation-mediated phase transition. We model
dislocations near the melt as noninteracting closed loops on a lattice. In this framework we derive simple
expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt.
We use experimental data for more than half the elements in the periodic table to determine the dislocation
density from both relations. Melting temperatures yield a dislocation density of {@&D) 2, in good
agreement with the density obtained from latent heats, (60B&1)o~ 2, whereb is the length of the smallest
perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms
are within a dislocation core.

[. INTRODUCTION tion shows that a second-order proliferation of disclinations
can occur in a background of dislocations above some criti-
Nearly 50 years ago Shockfeguccessfully accounted for cal density. The coupled dislocation-disclination system
the fluidity of a liquid by assuming a certain concentration ofcould, however, undergo a first-order transition, i.e., melting.
line defects in the liquid state. Bragbad earlier estimated Although disclinations must participate in the melting
an upper bound on the core energy of a dislocation under therocess, in this paper we consider only the dislocation de-
assumption that the core atomic configuration was like thagrees of freedom. Ideally, we would derive the precise form
of a liquid. Cotterill and Doyantalater confirmed the Bragg of the free energy of a dense ensemble of dislocations inter-
estimate. These early results implied that the liquid state igcting via the full Blin potentidf and subject to specific
equivalent to a crystal saturated with dislocation cores. Itonfigurational constraint$Brownian, self-avoiding, ety
was first suggested by Métthat the melting transition could byt this problem has so far defied solution. Instead we de-
be described in terms of dislocations. velop an effective theory of melting based on perfectly
There are now compelling results from molecular g¢creened, noninteracting dislocations. We employ the widely

dynamics and Monte Carl®simulations that imply that dis- accepted- p In p form (p is dislocation densityfor the self-

locations play a key role in three-dimensional melting, andenergy density of dislocatiofie”2®which results in a first-

zr:rce)r?no¥§£tthg:\eerlzteec)j(%ir;?ter?etarlnz\lgiient(igntshigggnear defeCtSrder phase transition. A dislocation in a dense ensemble of
. -9 9! ' other dislocations is assumed to be a random loop—i.e., the

Mizushim& and Ookawa were the first to formulate a . ) ) . .
epossmle configurations of a dislocation loop are closed ran-

fact that the self-energy of a dislocation decreases with dis(—jom walks—and short-range steric interactions are ne-

location density because of screening. In their theory melting!€ctéd. Thus the partition function is evaluated in the
is a first-order transition that occurs when the free energy offdependent-loop approximation. We obtain two new rela-
the crystal with a sufficiently high concentration of thermally tions: & simple expression for the melting temperat(ine
generated dislocations equals the free energy of th&elting relation that explicitly takes into account the crystal
dislocation-free crystal. Their predicted melting temperaturetructure and another relation between melting temperature,
agree with data for reasonable choices of the core energi@tent heat of fusion, and critical density of dislocations. We
Many dislocation theories of melting then follow&® carry out a comprehensive comparison of these relations
most notably the exhaustive treatment of linear-defectwith experimental data on over half of the periodic table. The
mediated melting by Kleineff We refer the reader to sev- melting relation is accurate to 178 Dislocation densities
eral fine reviews of the literature for additional details andas determined from the melting temperature and latent heat
references on dislocation-mediated melttid® relations arep=(0.61+0.20)0~ 2 and (0.66-0.11)0" 2, re-
Significant progress in our understanding of melting hasspectively, whereb is the length of the smallest perfect-
been achieved by Kleinéftwho pointed out that the melting dislocation Burgers vector. Both relations should also apply
process cannot proceed through the mediation of dislocatiorts alloys and compounds.
alone. Dislocations are associated with the discrete transla- In Sec. Il we discuss the statistical mechanics of closed
tional symmetry of the crystal, so only this symmetry is lostloops on a lattice. These results are used to derive the melt-
when dislocations condense. But the rotational order of théng relation in Sec. Ill, the free energy density in Sec. IV,
solid is also lost as the solid converts into liquid, and for thisand the formula for the latent heat of fusion in Sec. V. The
to occur the defects associated with the rotational symmetryalues for the critical dislocation density extracted from both
of the lattice, namely, disclinations, must come into play.the melting relation and the formula for the latent heat of
Kleinert assumes that the free energy of dislocations alontusion are checked in Sec. VI with the formula for volume
would lead to a second-order phase transition, and in addehange at melt. Our concluding remarks appear in Sec. VII.
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Il. STATISTICAL MECHANICS OF DISLOCATION 1 b2K2

LOOPS ON A LATTICE f(r)=——ek" E=—n, (6)

. . W 2

The energy per unit lengtle;, of a dislocation can be very
large. However, this energy can always be compensated athere O<k=|k|<c. It then follows from Eq.3), in which
sufficiently high temperatures by the large entropy of linelikewe replace a sum by an integral,— V/(2)3fd3k, that
structures, as will be seen in what follows.

In a Bravais lattice with coordination humbemwe con-
sider the grapih’, the edges of which are all nearest-neighbor

3
|O(r'—r;|_/b)=f—OI kseik-U*f’)*bL'@’Z’

links. The set ofz links from any lattice site is identical to (2m)

the set of shortest perfect-dislocation Burgers vectors, of 21\ 302 ,

lengthb. We now evaluate the partition function for a single = ( y bL) g 2 (' =nlabL (7
o

Brownian loop onl".
The line Fensmna IS assum'ed to .be !ndependent of its The normalization(5) of the eigenfunctions thus imparts unit
lengthL, as is the case for a dislocation in a dense Comple)ﬁormalization to the probability density:
network. (In a dilute network, interactions between distant
segments of a dislocation lead to a logarithmic dependence
of o on L.) The number of configurations of a string of
lengthL is (z')“'®, wherez' is the number of possible direc-
tions that a line segment can take from a given lattice site. Iffpeo partition function for a dislocation loop'(=r) is there-
backtracking is not allowedz’ =z—1. For a simple cubic fge
lattice inD dimensionsz=2D.
Hence, the partition function for a single closed disloca-

f d®up(u;L/b)=1. 8

tion (in three dimensionsis

2,= 2 p(LV)(Z) e Pt =3 p(L,V)er Foett,
(1)

Tinz'
ab

Teff= cr( 1-

whereB=1/kgT, p(L,V) is the sum of probabilities over all

lattice sites that a dislocation of lengthwill close, V is the
volume of the system, andl.; is the effectiveenergy cost to
create unit length of a string at temperatiie

In order to calculate(L,V), letp(r’,r;L/b) be the prob-
ability density for a dislocation of /b=n steps to start at
and end atr’. In the limit n—«, b—0, and L =const,
p(r’,r;L/b) satisfies the diffusion equatith

= _V2p1 (2)
z
the solution of which is the heat-kernel expansion

p(r'.r;L/b)=p(r' —r;L/b)= 2> fi(n)fi(r)e BP,
k

()
where thef,(r) are eigenfunctions of the Laplacian,
b2
- — Vi =Efy, (4)
z
which we take as normalized according to
f d3r|f(r)]?=1. (5)

WhenV—=, we have

b
ng EJ d®r p(0;L/b)e Aoeit-

7/ 3/2\/ L—5/2
= — — _ —Boesil = —BolL
il 2[5 B e

(€)

where the factob/L removes the overcounting due to the
degeneracy in the number of starting points on the loop.
Here, N(L) is the number of configurations of a loop of
length L. The exponent 5/2 becomes+D/2 in D
dimensiong?

Real dislocations are not necessarily Brownian loops. In
fact, they are expected to be self-avoiding and/or neighbor-
avoiding loops, so they do not penetrate each other’s core.
Equation(9) can then be extended to non-Brownian or open
dislocations by means of an effective expongnt1+5/2
and normalization constart(q,z’),?? as follows:

v L\-a-1t Sl
= ry — - T POeff
Z A(q,z>b3§(b e Poeit, (10
Here, q=-—1 for noninteracting (Brownian open

dislocationé? and q~7/4 for self-avoiding dislocations at
low densities in three dimensiof%In the string literature,
the valueq=0 has also been quoted. A general argument
based on modular invariarfeshows that for noninteracting
closed stringg)=0 for sufficiently high energy on any com-
pact target space. The same value @fas also obtained in a
discrete model for string$ and as a static solution to the
string Boltzmann equatiof. In principle, ¢ may even be a
function of temperature. Although we may expect 3/
<7/4 our main conclusions do not depend on the precise
value ofg. The normalization consta(q,z’) can be cal-
culated analytically for Brownian loops in any dimension
(g=D/2), analogously to the calculation ofA(3/2z")
=(z'/4m)%? in Eq. (9) and numerically in other cases.

The average length of a loop is
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LN(L)e Pt
3 N(Le T

L
(L)= ==—0D, (11
2 N(L)efﬁa'L f(T)
L
where we define
L\~
§M=A@,2) 2 (5 e~ Areit (12)

and

ET=AQ,2) X,

L)ql p . b3
Z|  ePoat=_z,. (13
“ b vV 1 ( )
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transition, in which dislocations are copiously produced in
the solid. We therefore equate the melting temperatyyéo
Ter-

The line tension, i.e., the dislocation self-energy per unit
length, is assumed to be that of a dislocation in a complex
array, or tangle, of other dislocations. In that case the stress
field of a given dislocation beyone-R/2, whereR is the
mean interdislocation separation, is largely canceled out by
the stress fields of the other dislocations in the complex
array?®?’ The line tension is then the sum of the core energy
plus the elastic energy inside a cylinder of radRi@:2°

GbZ 2

=x—1In
8w

o=

Gb? [aR
“ar M\b2

. . . _lN
The grand canonical partition function for an ensemble of1€re, « is 1 for a screw dislocation and €1v) " “~3/2 for

noninteracting indistinguishable loops is given by

an edge dislocation; being the Poisson ratio. Als is the
shear modulug is the Burgers vector magnitude, ands a
constant of order unity. In the second half of this equation
we have taken distandeto be approximately equal to{p,
where p is the dislocation density defined in EGL8). An
expression of the forrfil9) with R=p~ 2 for the dislocation

where u is the chemical potential. The free energy of theself-energy was originally proposed by Mizushifrlater put

S 2 w
— — = auN/kgT — =
Z=7(T,V,n) N; e exp{ exp( kBT)Zl]’
(14
ensemble is

F=—kgTInZ=—kgTe*s7Z,. (15)

The average number of loops in the ensemble is

— JF

= - (% =er/KeTz,. (16)

TV
SinceZ=3 N(L;)e #"5~#), whereN(L;) is the number
of dislocation configurations of total length), the average
total dislocation length in the ensemble is

dlnz
d(Bo)

9z,
I Bo)

_ amlkgT

— 1
L:_z LiN(L)e Aloti=m) = —
Z T

> LN(L)e Aot
—N— ~N(L).

2 N(L)e—ﬁ(rL

L

17)

i.e., the average total dislocation length is equal to the ave

age number of loops times the average loop length.

The dislocation density is the average total length per

unit volume. It then follows from Eq912), (13), and(17)
that
N(L) o N &M

b2p(T)= v —VE(T)b:":e“’kBTg(T).

(18

[ll. NEW MELTING RELATION

on a sound theoretical basis by Yamamoto and Izuydma,
and was recently employed by Kierfeld and VinoKuto
model dislocation-mediated phase transitions of vortex-line
lattices in highT, superconductors.

The constantr accounts for the nonlinear elastic effects
in the dislocation core. Hirth and Lotffecompare disloca-
tion energies in the Peierls-Nabarfdiscrete and Volterra
(continuum) dislocation models and find

1 d( sir? 8

a e’(1- 1) 29

~=25 +cog ﬂ) ,
where y=(1-2v)/4(1-v)~1/8, d is the interplanar spac-
ing, andB is the angle between the Burgers and sense vec-
tors of the dislocation. In a face-centered-cufar) crystal,

the smallest perfect-dislocation Burgers vectors#rEl0a

and the primary glide planes af&11} with d=a/\/3, where

a is the lattice constant. Experimental eviden€ef. 26,
Table 9-2, p. 27p suggests that the predominant high-
temperature glide system in body-centered-cubico) lat-

I1_ices is{110}, which hasd=a/\/2. The smallest bcc perfect-

dislocation Burgers vectors agg¢11la. Thus, in both cases
d/b=/2/3. Averaging ove, we find a~2.9 for both fcc
and bcc lattices. Atomistic calculations of core energies in
ionic crystals(Ref. 26, p. 232indicate thate~ 3. In metals,

no such calculations have been performed. We aise2.9

for all elements.

We have also assumed that no backtracking is allowed for
dislocationsz’ =z— 1, since each backtracking would result
in a divergence in the linear elastic interaction energy be-
tween the overlapping segments. The coordination numbers
for the elements considered in our analysis belowz&

The effective line tensiomr [see Eq(1)] vanishes atthe for a simple cubic(sg lattice, z=8 for bcc and body-

critical temperatur&g T, = ob/Inz". Consequently, disloca- centered tetragondbct) lattices, andz= 12 for fcc, hexago-

tions proliferate asl, is approached from below. At tem- na| close-packedhcp), and double hcpgdhep lattices. Re-
peratures abov&,, the divergence oZ; signals the break- placing

down of the underlying theory, and the system enters a new

phase. Hence, the temperatufg corresponds to a phase b3=\vws,
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FIG. 1. Values of/\ = Guvywd47 T, In(z—1) from experimental
data for 51 elements.

where vy is the volume of the Wigner-Seitz cell of the
crystal lattice andk is a geometric constant, we finally obtain
our formula for the melting temperature of the elements:

)\GUWS

= 2msinz—1) 21

T ( 1.45 )
, =xIn| —].
b\p(Tm)
In Ref. 19 we evaluateGv ,d47 T, In(z—1) for 51 ele-
ments and found/\ to be 1.01-0.17, where the error is the

root-mean-square deviation. ThedE\ are summarized in
Fig. 1.
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IV. FREE ENERGY OF THE DISLOCATION ENSEMBLE

To calculate the free energy of a dislocation ensemble,

Eqg. (15), let us rewrite Eqs(10) and (12), using Eq.(19)
with R=1/\/p, and replace the sumsvhich start withL
=4b, the smallest loop lengthby the corresponding inte-
grals:

2

v oo 4b e
Zl=—A(q,z’)f dx x 971 —p(z’)llC , (29
b3 4 a?

We now assume that the dislocation ensemble is domi-

nated by perfect dislocations with the smallest possible Bur-
gers vectors, since the dislocation energy is proportion-

al to b2, For a bcc crystab=a\/3/2, vyys=2a%/2, andb
=al\2, vws=a’l4 for a fcc crystal. Thenp®~1.3Wys
and 1.4b.g, respectively. For a hcp lattice\
=(4/\3)(c/a)~*, so that for an ideal hcp crystalcia
=/8/3) one would have.= /2. As estimated for two hcp
metals!® b~ 1.4, for Mg and 1.24ys for Zn. Hence,
we take\ =1.33+ 0.09~4/3. This embraces all of the values
guoted above.

T)=A ' fwd —q 4b%p 1\1ic - = KGb?
&(T)=A(q,2") , dxx 7(2) S ErkgT
(26)
Here, (4%p/a?)(z')Y=exp{—8mos/kGb? <1, since
oe#=0. Integrating Eq(25) by parts we find
5V KGb3| 2 .
1= 4b? BrkgT | 2 (Z")7|&(T)
, 4
ACEI LV
44 a?
V O'effb A(qu,) 4 b/kaT
= — —— — @ “0eff
e KaT ET)+ 21 e B'|. (27
Hence,
F=—kgTe#*sTz,
\Vj A(q,z’)e"/kBT
__ 3_ — 40 blkgT
_qb3 oeiipb 29 kgTe *7effPX8! ||
(28)

where we have replacedcGb?/8)In(a?/4b%p) —kgT InZ'

by bog, in view of Egs.(1) and(19), and used Eq(18).
The second term on the right-hand side of E2B) takes

its largest value af=T,,, whereo.=0. To estimate its

In an ensemble of loops there are roughly equal amountsontribution to the free energy, consider the case of Cu dis-
of edge and screw dislocation in the crystal, so we haveussed in more detail below. In this case, to estimate
1/k=(1—v/2)* v/2=5/6+1/6. Therefore, as follows from A(q,z")exp{u(T)/ksT}/4%, we use Eqs(12) and(18), and

Eq. (22),
| 21 | 2(5/6+1/6) 1 o4e 033
" b2p(T,))  (133£0.09(1.01x0.17) 7 o
(22

Hence,
p(Tm)=(0.61+0.20b 2, (23

It follows from Egs.(21)—(23), with kA =1.6+0.3, that to
~20% accuracy

GUWS

Tm:47-rln(z—l)' (24)

We regard Eq(24) as a new dislocation melting law.

replace the sum by an integral:

b%p(Tr)
4qf dx x 9
4

A(q,z')e(TmkeTm  A(q,2') b2p(Ty)
49 49 &(Ty)

_ b%p(Tr)(g—1)
-

As discussed in Sec. Il, the value @fmay be expected to be
between 3/2(Brownian loop$ and ~7/4 (self-avoiding
loops. With b?p(T,,,) given in Eq.(23), we therefore obtain
A(q,2") explu(T)/Ks Tr}/49=0.095+ 0.037<0.1.

Hence, the contribution of the second term q&/V
would be=—0.7 meV A 3. As seen in Fig. 2, this contri-
bution is negligibly small. In fact, the second zeroFofor
T=T,, and A(q,z")exp{u(T)/ksT}/49=0.1 occurs ato?p
=0.61, which is within~5% of the value of 0.64the sec-
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10 [ . T<T., (
p(T)= _ 30
T=800K p(Tm)! T_Tm
5 In fact, it can be shown that Eq30) is the only physical
T-1es6K \ solution of Eq.(12) written as a “gap” equation:
0 I = (2 ab2p(T xGb3n/8rkgT
e HlkaTlZp(T)=Aq2) S, * q) (—p 2( ))
n=4 n [}
5
V. LATENT HEAT OF FUSION
10 N For the ensemble of strings on a lattice considered in Sec.

I, the internal energy and pressure are
FIG. 2. qF(p)/V for Cu at three different temperatures, in units

of meV A~3. The vertical line denotes the critical dislocation den- U ((9 In Z) N 97, Ik Vo £T)
. -2 f—— —_——_——_— - = e B! — ,
sity value of 0.684™~. B il T y Z, p b2
ond zero ofF at T=T,, with F/V given in Eqg.(29)], and (3D
within uncertainties in the values ofp(T,,) in Eq. (23). Inz N o7 T
Thus, we have derived the dislocation free energy density, — oinz —koT— 921 — enlkgT 2B "¢
s, w \ P=kgT kgT e SE(T).
and it is given approximately by N | Zy oV b
(32
gF(p) kG [4b%p| kgT Hence, the enthalpy is
v =0efip= — 8—7TIn 22 +?In(z—1) bzp. y
(29 H=U+PV= &e’d KT obg(T)+ksTET)]. (33

This form for the free energy density was previously sug-
gested but not derived by Cotterifi.It was later put on a The latent heat of fusion is the enthalpy difference
firm theoretical basis by Yamamoto and Izuyahhi.also is
a fundamental ingredient in the recently developed theory of Lm=H(Ty) —H(0). (34
dislocation-mediated phase transitions of vortex-line lattice
in high-T, superconductor

In Fig. 2 we plotqF(p)/V from Eq.(29) for Cu for three
different temperaturesT<T,,, T=T,,, and T>T,,. We
take k=6/5, «=2.9, G=47.7 GP&® T,,=1356 K, andb v
=255 A A first-order phase transition, that is, mel_ti_ng, |_m:_3eM(Tm)/kBkaBTm[|n(z_1)§(Tm) +E(Tm)]-
takes place when the second zerd-¢p) occurs at the criti- b
cal dislocation density(T,,). This is a transition from a (39

perfect crystalline solid to a highly dislocatelid, not a 14 gptain the latent heat per mole, the quantity tabulated in
liquid. In fact, our theory describes dislocations, which doye literature, one has to multiply the expressigB) by the
not exist in liquids. If a dislocation is viewed as a disclina- (4tig of the number of atoms per moldl,, to the total

tion dipole?® the dislocated solid may in turn undergo a number of atoms in the volumé which is equal to//v\ys.
Kosterlitz-Thouless-like transitidito a phase of free discli- Replacing Nkg by the gas constanR and using b

nations, i.e., a I|qU|d._Th|s _dlslocated solid may then _be:)\vwsy we obtain
viewed as the three-dimensional analog of an intermediate

$n our case,H(0)=0, which follows directly from Egs.
(30—(33) and Eq.(18). Using o¢(T,,) =0 and the melting
conditionkgT,= ob/In(z—1), we obtain

hexatic phase, between a solid and a liquid, in the Halperin-  .(Tp)/kgTr, 1 T,
Nelson theory of two-dimensional meltifg.The clarifica- Ly=——&T)RT,In(z—1)| 1+ - > "
tion of this point needs further investigation, to be under- A In(z=1) &(Tr)
taken elsewhere. Patashins&tial!! also identified melting (36)

as a transition from a perfect crystalline solid to a highly . =
dislocated solid, and Nelson and Totfefound residual To estimate the ratig(Tr)/{(Tr), we replace the sums

bond-orientational order in a three-dimensional solid with arfn Egs.(12) and(13) by the corresponding integrals:
equilibrium concentration of unbound dislocation loops,

which is analogous to that in the two-dimensional hexatic — f d(L/b)(L/b)~9-1

phase. §(Tm)  Jub=a ~9-1 3
Note that it is not possible to increase the dislocation den- &Tn) ([ 4 ~ 4q 37

sity progressively from zero tp(T,,) at a temperature lower fL/b:4d(L/b)(L/b)

thanT,, (e.g., by deformationbecause of the high energy
barrier at the maximum afF(p)/V. Hence, the dislocation With 3/2<q<7/4, as discussed in Sec. I, 0.G68%q
density, as a function of temperature, is —1)/49<0.107, i.e.,
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100 o @ " u Note that the possible inaccuracy in the value.dbr the
Ne A ¥ X n hcp, dhcp, and bct elements used in this analysis, on the
R . - order of~7%, may slightly increase uncertainty in the value
e o w o of p(T,) in Egs.(23) and (40).
", *,m gomoa @ " maa ® We do not have a reasonable explanation for the anoma-
0.50 lously high values op(T,,) for the noble gases. If the noble

gases are excluded from the analysis, th€R,,) turns out to
be (0.63-0.06)b 2 for the remaining 70 elements. Note
0.25 also that for deuteriuniD), which is not included in Fig. 3,
with the data onT, and L,, from Ref. 34, we obtain
b2p(T,,)=0.70.

0.00 ' ' ' '

0 20 40 60 80 100 The uncertainty-weighted average of the valuep@f,,)
7 given in Egs.(23) and(40) is
FIG. 3. Critical dislocation density as extracted from the experi- p(T,)=(0.64+0.14) b2, (41)

mental data on latent heat of fusion for 75 elements.

which we take as our result for the critical dislocation den-

ETr) sity at melt.
&(To) =0.095+0.012. (39

Therefore, the contribution of the second bracketed term on

the right-hand side of Eq36) (corresponding to the work As an independent consistency check on the rela{i®8s
contribution to enthalpyis 0.04—-0.06 (6<z=<12). We ex- and(40), we determine the critical dislocation density using
pect, therefore, that neglecting the second bracketed term ahe formuld®3¢

the right-hand side of Eq.36) will introduce an error not

VI. VOLUME CHANGE AT MELT

larger than~6%. Hence, with accuracy of 94% we have AV N G 1
the following formula for the latent heats of the elements: e= v " o2n E( e §) b2p(T,), (42
Lm:%bzp(Tm)RTm In(z—1), (39) WwhereAV is the difference between the liquid and solid spe-

cific volumes at meltG andB are the shear and bulk moduli,
respectively, andyg is the Grineisen constant. Here, is
identified with the dilation of the lattice as the reaction of the
crystal to the sudden proliferation of dislocations. In Table |

2
enetgyhas been rced prviously by Cote ot e e T caluate o 52 lemens
In Fig. 3 we plot the values db?p(T,,) extracted from P 28 e

the experimental data on latent heats for 75 elements. F(%eﬁperlmental values of are mostly taken from Ref. 34, and

: : ose ofG, B, andyg from Ref. 28. For Ar, Kr, Ne, and Xe,
%?(l).:,nagzlfysgz tl?c?r \Qé??_ﬁlog (E) Ogi‘,‘ ggg l}m S\rg lrgr?tsht;ynitglggn[)y,the values of5 andB are taken from Ref. 37 and thoseaf
Ce, Er, Gd, Ho, La, Nd, Sm, Tbh, and Yb, and the actinidesfrorn Ref. 38. . '
Am, Cm, and Th, we disregard their high-bcc phases Forall 32 elements in-Tabie | we find
which exist only in the very vicinity of melting(The inter-
mediate hcp-fcc phase transitions for Yb, dhepfcc for p(Tm)=(0.51+0.1)b "2, (43
Am, Ce, and La and fee hcp for Sr, as well as hep fcc for . o o
Co, do not change the coordination numpéfhe crystal where the error is the root-mean-square deviation. This is
structure Chosen for the eva|uation Of Ca’ CO, Mn, N, Np' O,SomeWhat IOWer than but St|” in agreement W|th bOth Eqs
Sm, Ti, Tl, U, and Zr corresponds to the phase from which(23) and (40) taking into account uncertainties associated
melting occurs. The data on both, andL,, for H, N, O, Pa,  With the three values. _
and Rn are taken from Ref. 33. The data on bbthandL, For comparison, we show in the last column of Table | the
for Am and Cm and o, for Ar, Kr, Ne, and Xe are taken values ofb?p(T,,) extracted for the same elements from the
from Ref. 34. The data oh,, for the lanthanides are taken data onLp,. Itis seen that the agreement between two sets of
from Ref. 35. The following values of are used: 1 for sc, the values ob®p(Ty) is reasonably good, except for Ag, Al,
1.3 for bee, 1.41 for fec, 1.24 for Zn, 1.42 for Mg, and 1.33 Cs, Cu, Ni, Pb, and Xe, for which the difference in both

where we have replaceet(Tm/ksTmg (T, ) by b2p(T,), in
view of Eq.(18). The proportionality of latent heat of fusion
to the critical concentration of defedtsiultiplied by the core

for all other elements. values ofb?p(T,,) is on the order of~50-60%, Lu, Ne,
For all these elements we find and Nd, for which the difference is 45%, and Ar, Kr, Pd,
and Tm, for which it is~35%. For all other elements, the
p(Tm)=(0.66+0.1)b~2, (40)  difference does not exceed30%.

Note that the contribution of the volume change at melt,
where the error is the root-mean-square deviation. This value, to the latent heat of fusion is proportional #8<1 %3¢
is in good agreement with that obtained from the meltingand is therefore negligibly small compared to the right-hand
temperatures alone, ER3). side of Eq.(39).
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TABLE I. Values of b?p(T,,) from experimental data on volume change at melt for 32 elements. For
comparison, we also show valueshifp(T,,) extracted for the same elements from the data on latent heats.

b%p(Tm) b%p(Tm)
Element B (GPa G (GPa Yo g from Eq. (42 from Eq. (39
Ag 103 29.8 2.40 0.052 0.39 0.67
Al 76.0 26.1 2.19 0.064 0.44 0.81
Ar 1.83 0.75 2.59 0.144 0.69 1.00
Au 173 28.0 2.99 0.055 0.57 0.65
Be 111 151 1.11 0.115 0.51 0.63
Ca 16.7 7.4 1.15 0.048 0.64 0.63
Cs 2.01 0.65 1.41 0.026 0.36 0.56
Cu 137 47.7 2.02 0.046 0.35 0.68
Eu 17.0 7.53 1.39 0.048 0.50 0.67
Gd 37.8 21.6 0.63 0.021 0.59 0.65
Ho 40.8 26.3 1.18 0.075 0.65 0.66
In 42.0 4.78 2.43 0.025 0.49 0.62
K 3.3 0.9 1.29 0.025 0.46 0.56
Kr 2.04 0.85 2.64 0.151 0.70 1.00
Li 12.1 3.85 0.92 0.016 0.41 0.53
Lu 47.6 27.2 1.06 0.036 0.41 0.67
Na 6.74 1.98 1.19 0.027 0.52 0.56
Nb 171 37.6 1.77 0.029 0.44 0.59
Nd 32.9 17.4 0.57 0.009 0.34 0.56
Ne 0.88 0.40 2.79 0.156 0.62 0.98
Ni 183 85.8 1.93 0.063 0.37 0.72
Pb 44.7 8.6 2.74 0.037 0.36 0.56
Pd 193 48.0 2.56 0.059 0.47 0.66
Pt 283 63.7 2.87 0.066 0.51 0.68
Rb 2.3 0.63 0.99 0.026 0.70 0.60
Ta 193 69.0 1.74 0.052 0.50 0.59
Th 38.7 22.1 0.74 0.032 0.65 0.67
Tl 35.7 5.4 2.10 0.033 0.60 0.60
m 46.2 29.1 1.43 0.069 0.47 0.68
W 310 160 1.67 0.090 0.63 0.77
Xe 2.1 1.0 2.56 0.130 0.54 1.01
Yb 14.9 8.06 1.04 0.036 0.44 0.56
VIl. CONCLUDING REMARKS ours. Kierfeld and Vinokdf modeled dislocation-mediated

Our theory of dislocation-mediated melting was devel_phase_tzransmons Of.,gg vortex-line lattice and foysir )
oped in the approximation that dislocations are noninteract 0-&® " Vzachaspan study of topological defect forma-
ing. This approximation is good only in the vicinity of melt ion gavea“p(Ty,)~0.88 for a simple cubic lattice. This
where the dislocation density is very high and the otherwisdransiates intg(T,) ~0.660 2 for bee lattices &=2/1/3b)
long-range interactions are sufficiently screefle@he sta- and p(T,)~0.4402 for fcc lattices @= \2b), which are
tistical mechanics of noninteracting dislocations on a latticeconsistent with our result. In agreement with Vachaspati,
yields simple, accurate relations between the dislocation derKibble* found a?p(T,,) ~0.89 for a simple cubic lattice.
sity at melt and both the melting temperature and latent heat Although our main results do not depend on the precise
of fusion, despite the indeterminacy of the parameténat ~ value ofg, there is a particular value af at which the rela-
takes into account the possible non-Brownian nature of th&ons(29) and(39) become exacg=1. In this limit, as seen
dislocation network. The values qf(T,,), as determined in Eq. (12), £(T,)—, so that Eq.(39) becomes exact in
from an extensive analysis df., andL, data, are remark- Vview of Eq.(36). Requiring finite internal energy in this limit
ably consistent: (0.6t0.20)b~ 2 and (0.66-0.11)o 2, re- leads, via Eq(31), to exdu(Tm)/KeTm}—0 ((Trm)— —),
spectively. The uncertainty-weighted average of these valueadnd therefore, Eq29) becomes exact, since the second term
is p(Tm) = (0.64+0.14)b 2, which we take as our result for on the right-hand side of Eq28) disappears. In fact, the
the dislocation density at melt. Poirier and Ptitanalyzed study of cosmological networks of string loops in three di-
14 elements and foung(T,)vws/b=0.48+0.12. Using mensions by Magueijo, Sandvik, and Sféeresults in a
vws=b%/\ with \~4/3, their result corresponds (T, scale-invariant loop distribution of the form of Eq9) and
=(0.64+0.16)0~ 2, which is in excellent agreement with (10) with q+1<5/2: Ref. 42 1.9cq+1<2.1 or Ref. 43
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g+1=2.03 (plus error bars and so in this studyg~1. Guys
Thus, it is quite possible that linear defects which correspond kBTmzm, (44)
to two apparently distinct physical phenomena, namely, cos-
mic strings and crystal dislocations, are of a very similar _In(z—1)

> ) Lm RTn. (45)
statistical-mechanical nature. 2

The average total dislocation length per Wigner-Seitz cellThe accuracy of these relations depends critically on the fac-
at melt isp(Tm)vws=0b3p(Tm)/A=b/2, sincex~4/3. Since  tor of In(z—1), which is characteristic of a theory based on
a Wigner-Seitz cell containz links, each of lengthb/2, it linelike degrees of freedom.
follows that, on average, one mfinks in each Wigner-Seitz

cell is covered by a dislocation. Since each such a link is ACKNOWLEDGMENTS
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