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Origin of mist and hackle patterns in brittle fracture
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A velocity growth rule for secondary cracks in brittle materials is suggested. This rule agrees with the
assumption that the mist-hackle transition originates from the inability of the primary crack to overtake
secondary cracks. The geometrical shapes of the secondary cracks in the mist and hackle zones change
gradually with distance from the fracture origin. The velocity rule is used to calculate these shapes across the
mist and at the beginning of the hackle zone. These calculations are shown to be in agreement with experi-
mental results.

[. INTRODUCTION location of the fracture origin can usually be identified as the
locus where radial striae megdriginate. Concentricundu-

One of the methods to determine fracture properties, eilations which form by mixed modes | and Il, define the front
ther in their brittle or their ductile modes, is to analyze theiron the fracture surface and are commonly convex towards
surface morphology. While the morphology of brittle frac-
ture surfaces has been known for many yéamscomplete
understanding of the physical processes leading to the ob-
served patterns is still missing.

Surface morphologieffracture markingsare ubiquitous
on almost all fracture surfaces and particularly occur in vari-
ous shapes and styles in brittle and semibrittle materials, in-
cluding silicate glasses® ceramics,® single crystals like
quartz® sapphire, germaniunf and diamond, metals like
steel!® vitreous carbort! transparent polymers(like
PMMA),*213and resins? Fracture markings were also iden- Concentric
tified in nonbrittle materials, like jelliés and rubber® Frac- @ undulation
tography analyses the causes and mechanisms of fracture via
the characterization of fracture surface morphology in mate-
rials.

Fractography handles surfaces as small as several mi-
crometers(fractured fibers that can be examined only by
scanning electron microscog$EM) or optical microscopy
and as large as 100 rfgeological exposureésMost mor-
phologies in the above-mentioned materials can be seen ei- ; Vi
ther by the naked eye or by a simple magnifying glass. Un- I [_ I_LZCi.-LJ _j
der ideal fracture conditions fractography displays some ten rm fm
distinct morphological markingg=ig. 1(a)]. However, in re- t
ality only two to four markings appear. ®

_There is a difference in morphology between cracks ob- g 1. (a) Schematic representation of a fracture surface show-
tained under pure tension and cracks obtained under a corfyg the fracture origin at the initial flaw, the mirror plane, radial
bination of tension(mode ) and shearso-called modes Il strige, concentric undulations, Wallner lines, mist, hackle, and the
and Ill). We concentrate here on pure mode | but for the sakeirror radiusr,,. (b) The usual brittle crack morphologgsche-
of completeness mention also the other morpholo@ésae  matig). Shown are initial flaw length@; , critical flaw length Z..,,
describe the fracture appearance that results from the corthe mirror radius ,, (mirror-mist boundary; the mist radius (mist-
bined modes | and IIl, and are manifested by elongated linesackle boundary and the hackle radius, (initiation of crack
which are parallel to the direction of crack propagation. Thebranching.
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the direction of fracture propagatioiFig. 1(a)]. Wallner  the two new “mirror” surfaces, some energy goes to create
linesare very delicate curves that enable the measurement small secondary cracksin “parallel” to the primary crack.
crack velocity. These lines arise from the interaction of theThese secondary cracks form the “mist> A portion of
fracture itself and the acoustic waves that accompany it. Théhese secondary cracks grows under the influence of the
curvatures of Wallner lines change with the ratio of crackstress field created by the primary crack until they are “swal-
velocity to the speed of sound. Kerkhbgives the ranges of lowed up” by it as it passes them By.

crack velocities and stress intensity factors at which Wallner It was showR® that further up in the mist zone, the grow-
lines are produced in glass as follows: 10X ing secondary cracks become longer before the primary

<1500 m/s and 27 N m#f<K,<68 N mn+2, crack overtakes them, and therefore the mist area becomes
In a usual crack morphology of brittle materials, severalrougher’’

zones appear in a sequence:ithigal flaw is followed by the Next, there is a transition to the hackle zone. The exis-

critical flaw, which in turn develops into thenirror. The  tence of such a transition has been questioned recently. In

mist and hackle zones appear in logical successitf fol- ~ Mecholshy’'s papef? for example, the mist and hackle re-

lowed bycrack branching"*8 The mirror is a smooth surface gions are described as “identical in appearance but different
which reflects lighthence the nameThe mist, which is our in scale.” Most authors, however, agféé’ that a sharp
main interest in this paper, consists of fine-scale secondaghange of form appears at the transition and even
cracks which develop because of the stress field at the tip dflecholsky’® concedes that there is an unexplained “abrupt
the primary crack. Its name is due to the misty appearance s¢fhange” there. We shall use the conventional app
this zone. The hackle has a “feathery”-like appearancelry to explain the origin of the different shapes appearing in
where roughening of the secondary cracks occurs. Cracthe mist and hackle zones. We would like to relate the onset
branching occurs at the outside boundary of the hackl@f the transition to the Hackle zone to timability of the
zoné?® [Figs. Xa) and ib)]. primary crack to catch up with the secondary cracks, which
The fracture plane extends from the critical flaly, to ~ then grow separatelguntil they coalesce together at a later
three differently defined radiiy, (the mirror-mist boundagy ~ stage. For such an interpretation we must have a velocity
r (the mist-hackle boundaryandr,, (initiation of macro- growth pattern for the secondary cracks that reflects such an
scopic crack branching® inability. As we presently show, for the “existing” fracture
The realization that the stippled perimeter of the smoottvelocity growth rules, the main crack always overtakes the
mirror surface, termed “mist,” defines the mirror boundary secondary ones and hence these rules cannot be used under
[Fig. 1(b)] sets the way for the estimati®rof fracture stress our assumptions. Our suggested new velocity rule fulfills the
by fractography. Ter&d observed that the breaking stress above requirement and therefore “explains” the mist-hackle
varied quite consistently with the reciprocal of the squaretransition. The check of this rule, howev@esides being the
root of the mirror radiu§Fig. 1(b)]. Many investigators have obvious first approximation; see belpvis in the possibility
obtained the semiempirical formula ofr = A;, whereg, 10 use it to derive the shapes of the growing secondary
is the fracture remote stress, is the distance to a particular cracks. Experimental evidence strongly supports this rule.
boundary, andh; is a corresponding constant. A previous attempt at calculating shapes of secondary
Very few studies considered the geometries of the secondﬂ"“:'furesO g 2 similar way was undertaken by several
ary cracks in the mist zone and their significance. JohnsoRUthors:”>*In these papers, however, the erronous assump-
and Holloway® suggested to identify two distinct types of tion tha’g the seconda_ry cracks_move, from their very incipi-
microcrack in the mist zone on the fracture surfaces of sods€nce, with the same final velociy of the primary crack has
lime silicate glass. One type predominates near the mirroled to “parabolic” or hyperbolic shapes all through. Such
boundary, and the other is concentrated near the hackfhapes actually appear in the hackle zone and not previously
boundary. Ballet al? studied the mist region in a series of (S€€ below: o
soda-lime silica float glasses. They found the width of the Note that a sharp rise in the length of “secondary
mist region,W,,«., to be inversely related to the square of €racks,” possibly, from hackles to brar?chélsﬁuractlog
o¢, which fits the mathematical prediction of the former Was identified at a critical crack velocity.=0.42/g,™
equation, W, =r2— r%: (AZ—Aﬁq)/of, wherer, ., A, whereVy is Reyleigh wave velocity. This range, however, is
andA,, are the mist-hackle and mirror-mist boundaries and®€yond the scope of the present study.
mist-hackle and mirror-mist constants, respectively.
Ravi-Chandar and Knau$sobserved parabolic markings Il. MODEL
in the mist and hackle zones that resulted from small flaws
that were activated by stresses operating ahead of the main
propagating crack and which interacted with the crack front Let us starf{Fig. 2(@] from a situation in which at time
as it advanced. In the hackle zone these markings were get=0 a secondary cradthere assumed circular and of radius
erally larger and penetrated deeper into the material belowg) begins to grow under the influence of the primary crack
the fracture surface than in the mist zone. It was seen that thgvhich is depicted as semicircular and of radRsat t=0
maximum depth of the surface markings increased monoand which is already growing with the final velocit).
tonically along the crack path. Following a brief treatment of the kinematics of a second-
We would like to relate the fracture zones to the dynamicsary crack initiatioR®>®and the obtainment thereby of its ge-
of crack propagation. When the rate of the elastic energpmetry, we discuss the secondary crack velocity rule and, by
liberated by the fracture proceéshich increases with crack using a Griffith-like condition for its propagation, arrive at
length becomes greater than that needed for the creation dhe definition of the mist-hackle transition.

A. Velocity rule
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In order that the integral does not diverge, the integrand
should approach zetd faster thant™*. Regular velocity
“rules” for crack growth are of the forrfr—%’

Co |”
R ‘} VB Bt)=|1 W) :
G 2 where the most useds are 3 and 1. Evidently, for large

and for anyv, c(t)—Vt, and therefore + B(t) behaves as

t~1. This type of a velocity rule is thus inappropriate for
secondary crack growth under our assumptions. Although an
exact form for the secondary crack velocity is unknoftire
secondary crack moves under a changing stress field caused
by the primary crack, whose distance from the secondary one
is continuously changing, and by the sample’s remote sgtress
() the following constraints have to be fulfilled.

(A) The secondary crack should start from zero, i.e.,
B(0)=0.

(B) Asymptaotically, this velocity should readh, the final
velocity in this material, i.e.8(t—)=1.

(C) Since the secondary crack starts to increase in size
only after the stress at its tip is above the critical one, its
initial acceleration should be positive, i.eip/dt (t=0)
>0.

(D) The necessary “no overtake” condition should be
possible.

We therefore assume the following velocity growth rule
which is a natural first approximation to the actual rule and
(b) meets all these constraints:

A

FIG. 2. (a) A schematic picture of the geometrical setup. A B(t)=1—exp{— {Vt/cy}, (1)
secondary crack of lengthcg at a distance from the origin of the

primary crack starts to grow at=0. (b) Side view of the primary Where? is a dimensionless parameter and, as we presently
crack, T its tip. show, is related to the hackle radius.

Note that, according to Eql), the acceleration of the

Figure Zb) shows the situation where the primary crack secondary cracks,

induces a stress field ahead of its tip at the tip of an existing Vi te
“flaw” in the material. The dynamic elastic stress fields vz—gexp[ ]
Oxxs Oyy, andoy, in Cartesian coordinatgsr the principal
stresses;,0,) for a mode | crack opening are given by Ref. wherety=cqy/V. Thus, in contrast to the primary crack ve-
33. It is assuméd that the flaw would start to grow at an locity rule for which the initial acceleration is infinit&,Eq.
angle 6;, where the principal maximal stress attains its (1) yields afinite initial acceleration which diminishes expo-
maximum value. Furthermore, the direction of growth of thenentially. Equatior(1), again in contrast to the primary crack
secondary crack would be at an anglg[Fig. 2(b)] perpen-  rule, is readily integrable and gives for the secondary crack
dicular to the direction otr; at 6. radius
Neglecting interference from other secondary cracks

(s_,hielding and taking the secondary growth velocity to k_Je C=Co+ Vi+ Co ex;{ _ %) _1}_ ©)
given byVg(t), the two furthermost points, that of the main ¢ Co
crack and that of the secondary ofaong thex direction,
are, respectively, given by;=R—a+Vt and B. Relation betweena and R
In order that alwayx;=<x,, we obtain the condition
t
x2:c0+vf b(t")dt’. co={(a—R+cy). 3
0

However, for the secondary crack to commence growing,

A necessancondition that there exist a possibility that the it is necessarysee Ref. 26 for a full presentatipthat the

primary crack is “unable to overtake” the secondary one isStress intensity factdSIF) o1 (co)* at the tip of the flaw
that be greater than the critical SIFK(C). According to Ref. 26,

the criterion for the secondary crack to grow is, therefore,

a—R+

J;) [1-B(t")]dt" <. C—COZ(K|/K|C)21°2
0

cosé
5
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FIG. 3. Initiationt; and terminatiort; times for the SCS in the
mist zone, as a function & (betweerr ,, andr). Numbers relate to
the example calculated in Sec. lll. Times are measured in units of
to=Co/V, and the nondimension& is measured in units af,.

K, is the SIF of the primary crack, arfdf,v) is a geometric
factor® of the order of 1. For a constagtthe combined
condition is

2K

> -
K?f2cosf’

{ 4
with the equality sign occurring for hackle initiation, namely,
fOI’ K| = KIH'

Now, K, is proportional too\R, while K,C is propor-
tional to o/C., whereC,, is the critical radius of the pri-
mary crack andr is the remote stress causing the primary
fracture.

On the other hand, by the discussion following &),

B Ki, 2 2
&= K_IH f2cosh’ ®)
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FIG. 4. Calculated shapes of “final” secondary cracks in the
mist and hackle zones, for different radii of the primary crétdw
sizecy=0.002 mm) x andy scales are in mm@ R=0.3 mm, the

beginning of the mist zonéval); (b) R=0.4 mm, in the mist zone

where Ki,, is proportional too\r wherer is the radius of

mist to hackle transitiorfor in short the hackle radiusThe
criterion (3) thus becomes

Tw & ©
For f~1.4 and for~0°,% ;r~C,, [by Eq.(5)].
The relation between andR is therefore
Co Co

I'm

_—l
Coa Co

r

Ccr

(elliptic); (c) R=0.495 mm, towards the end of the mist zdtear
drop); (d) R=0.6 mm, in the hackle zongyperbolig.

For the range oR valuesr ,<R<r, we get

(€)

Our present interpretation of the hackle initiation process
is as follows:

all parameters exceldt on the right-hand

side of Eq.(4) are constant for a specific material. For a
constant stress proceds, increases in proportion to the
square root of the primary crack length. For small primary

The distancé. between the leading fronts of the primary and 50k lengths, Eq(4) is not valid and all secondary cracks

secondary cracksL(=a—R+cg) is a measure of the “ad-

are stoppedmist regior). Given enough timeK, keeps in-

vantage” the secondary crack has with respect to the primaf%reasing until the equality sign of E¢4) is reached Eq.

when it commences to grow. It is given by

(5)]. At this poaint, the secondary cracks can no longer be

stopped and hackle ensues. Note that for a congtaall

C
L~R—2. (8)
Cor

secondary cracks, irrespective of their initial size, reach the
“hackle condition” for the same length of the primary
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crack® Thus hackle should occur at a well-defined radius
(Fig. 1), a result well supported by experiments.

C. Shapes of secondary cracks

In order to calculate the shapes of the secondary cracks in
the mist zone and in the mist-hackle transition region, we use
the following well-established mod&lwith our velocity rule
(see Fig. 2 The secondary crack is initially circular of ra-
diusc,. It grows in a parallel plarfé to that of the primary
one, with the velocityv3(t) of Eq. (1). The primary crack,
meanwhile, advances with velocity. A point on the sec-
ondary crack, which is “swept by'(in parallel t9 the pri-
mary crack, stops growing since the stress there has relaxed.
The “final shape” of the secondary crack is therefore given
by the intersection of the following two curves:

X2 +y?=(R+Vt)?,

o

wherea is a linear function oR [Eq. (7)]. This is a paramet-
ric formula for the finalshapeof the secondary crackSCS.

A nondimensional form of Eqg10) is obtained by mea-
suring lengths(i.e., x,y,R,a in units of cy and the time in
units oftg=cy/V (a half of the interval it takes the primary
crack to cross the length of the secondary jlaquations
(10) then become

Co

—a)24 2=
(x—a)“+y 7

CotVi+

x2+y?=(R+1)2,

(x—a)?+y’=

1 2
1+t+g(e§t—l)} . (11)

These equations, witla given by [see Eq.(7) where
a,R,C,, are in units ofcg]

1
a=R| 1+ —|-1, 12
o (12

constitute a parametric representation of the differenct
SCS’s. Note that for a specific cagas a constant whilé&R
changes across the mist zone, from to r, with different
ensuing SCS’s along the way.

In order to evaluate the times of initiation and termination
of the SCS'’s, intersections of the latter with tkeaxis are
needed. These are given by

FIG. 5. Experimental results for soda lime glass fracta.

x=R+t, The beginning of the mist zon@val), scale bar 2.5um; (b) to-
L wards the end of the mist zorfeear drop, scale bar 10.Qum; (c) at
_ the mist hackle transitioiitwo semiparallel lines scale bar 10.0
—a— _ U
x—a==x|1+t+ g(e D (13 um; (d) in the hackle zonéneighboring hyperbolic SCS’s, e.g., A

and B), scale bar 20.@um.
The minus sign gives the first intersection time, while the

plus sign relates to the termination tintehen it exists— 1 R
before hackle sets jnWe denote these times §sandt;, ti=— —In( 1— _), (14
respectively. 3

The termination time; is easily calculated from EqéL3)
to be while t; can be calculated from
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1 R turns into a “tear-drop”-like form later on. At the mist-
2t + Ee_gti: R 2t 7 (15  hackle transitionrR~0.5mm, the SCS’s assume the “two-
¢ parallel-line” shape.
Results for the case treated below are given in Fig. 3. It For R~0.6, in the hackle zone, the hyperbolic forms ap-
seems that whilg; increases slowly withR, mainly due to pear, increasing in aperture wity.
the increase of the “advantagd”,t; increases very sharply The calculated SCS’s of Fig. 4 are in good agreement
as the hackle is approached and goes to infinity. Since thg, existing experimental resultsee, e.g., Ref. 23 for the

SCS's are dependenlt %n thet; intsrva_l and tg'e latter in(; mist zone and with our experimental results of the mist and
creases monotonously etweeman, r, itis to be expected |, qy e regions shown in Fig. 5 measured for a broader mist
that, qualitatively, the same SCS’s would be obtained for.

. . . " ..~ zone. Note that observations of “penny-shape@d? circu-
every brittle f“?‘Ct“fe' albeit at different positions and with lar) secondary cracks are very rare. This is of course due to
different magnitudes.

DenotingU = R+ ¢y /¢ — ¢, the “no overtake” condition the fact that flaws are seldom of this shape and their initial
= 0 - ) e : : .
(3) is U=a. For the “exact” hackle conditiorU=a, Eq. orientation is seldom in parallel to the main crack. Since

. ) ) hat is measured are the “projections” of the SCS’s onto
(1.3) yields the result that the second mters.ectlon. of the SC%:e primary fracture plane and since the SCS’s change their
with the x axis occurs ak—o (t—o0). Physically, it means

that atr the SCS develops as two paraliel lines, orientation (in the third dimensionduring their growth, a

. quantitative comparison is very difficult. Qualitatively, how-
ForR>r the SCS reaches asympitotically a hyperbola. Toever, these results show trends similar to those of Fig.

see this assume that the time is large enough so that t@g ( ; ;
. a) The lengths of the experimental SC$&ee scales in
exponent in Eq(10) or (13) can be neglected. In polar co- Fig. 5 monotonically increase by similar magnifications as

ordinates Eq(10) is then given by in Fig. 4 across the mist zoné) Elongated ellipses appear,

1 2U developing a “narrowing” and eventually assuming hyper-
5= W(l—ecosf)), (16)  bolic features(even though not in the same planat the
—-a hackle zone.

wheree=a/U and is>1. This is the equation of a hyperbola  Note that “two-parallel-line” shapes do appear, bas
with asymptotes cog=U/a. The prefactor is negative, as in also happens for the hyperbolic shapés not continue for
the case of scattering from a central repelling force. large distances due to various interactions.

Since at this stage the secondary cracks move with a ve- This agreement gives support to our model.
locity mearly equal to the final one, the treatment of Refs. 30 For fracture in polymers of relatively high molecular
and 31 becomes asymstotically applicable, and hence th&eights, interesting features which look like “parabolas” or

agreement with the hyperbolic shapes here. “hyperbolas” appear within the mirror zorfé.Since these
materials exhibit some unique properties, such as strain rate
IIl. COMPARISON WITH EXPERIMENTAL RESULTS sensitivity, crazes, etc., we expect that this “untimely” ap-

pearance of the hyperbolic shapes is due to some specific

To demonstrate the shapes of the SCS, we use the follownechanism. One possibility is that, for some flaws in these

ing ‘“realistic parameters” for soda-ime gla8%: V. materials is not a constant, but achieves high values even
=1500 m/secKy /K ~3.1, andf~1.4. The range of the in the mirror plane. For these flaws, therefoig, can ap-

mist zone in this caé@is 0.3mm<R<0.5mm. In Figs. 4 pear earlier than usual, even in the mirror zone. By far, how-
and 5 calculated SCS’s are compared with experimental resver, “the most important and widely observed features of
sults. The calculated SCS’s are for the above-mentionederamic fracture are the normally sequentially formed mirror,
range and for an initialc, of 2 um* Hence t;~1.3 mist, hackle and crack branching patterr@”For these
x 10 9sec,a~1.0R—2x10 3(mm), andL~0.04R. For  brittle materials, our model should describe the natural se-
the mist zoner ,<R<r, we have 12zm<L<20um, 6  quence of events indicating a constgritehavior.
~0°, r=0.5, and therefore/=3.1"2~0.1 and C,~{r Thus, assuming a simple exponential growth law for the
~50um. secondary crack velocity, we have obtained both a possible
The patterns show the following features. At the begin-understanding of the SCS'’s in the mist and hackle zones and
ning of the mist zone R~0.3mm), the SCS’s look like a simple explanation of the mist-hackle transition itself.
elongated ellipses where the elongation increases @4th Knowledge of the exact velocity growth rule would provide
(thus, for smallcy’s, the SCS would resemble circjesur-  a better quantitative comparison of shapes and transition
ther on in the mist zone, the SCS’s start to develop goints, but the overall qualitative picture should, in our opin-
“narrowing” #? pointing towards the hackle zone which ion, remain intact.
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