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Origin of mist and hackle patterns in brittle fracture
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A velocity growth rule for secondary cracks in brittle materials is suggested. This rule agrees with the
assumption that the mist-hackle transition originates from the inability of the primary crack to overtake
secondary cracks. The geometrical shapes of the secondary cracks in the mist and hackle zones change
gradually with distance from the fracture origin. The velocity rule is used to calculate these shapes across the
mist and at the beginning of the hackle zone. These calculations are shown to be in agreement with experi-
mental results.
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I. INTRODUCTION

One of the methods to determine fracture properties,
ther in their brittle or their ductile modes, is to analyze th
surface morphology. While the morphology of brittle fra
ture surfaces has been known for many years,1 a complete
understanding of the physical processes leading to the
served patterns is still missing.

Surface morphologies~fracture markings! are ubiquitous
on almost all fracture surfaces and particularly occur in va
ous shapes and styles in brittle and semibrittle materials
cluding silicate glasses,2,3 ceramics,4,5 single crystals like
quartz,6 sapphire,7 germanium,8 and diamond,9 metals like
steel,10 vitreous carbon,11 transparent polymers~like
PMMA!,12,13and resins.14 Fracture markings were also iden
tified in nonbrittle materials, like jellies15 and rubber.16 Frac-
tography analyses the causes and mechanisms of fractur
the characterization of fracture surface morphology in ma
rials.

Fractography handles surfaces as small as several
crometers~fractured fibers! that can be examined only b
scanning electron microscopy~SEM! or optical microscopy3

and as large as 100 m~geological exposures!. Most mor-
phologies in the above-mentioned materials can be see
ther by the naked eye or by a simple magnifying glass. U
der ideal fracture conditions fractography displays some
distinct morphological markings@Fig. 1~a!#. However, in re-
ality only two to four markings appear.

There is a difference in morphology between cracks
tained under pure tension and cracks obtained under a c
bination of tension~mode I! and shear~so-called modes II
and III!. We concentrate here on pure mode I but for the s
of completeness mention also the other morphologies.Striae
describe the fracture appearance that results from the c
bined modes I and III, and are manifested by elongated li
which are parallel to the direction of crack propagation. T
PRB 610163-1829/2000/61~22!/14968~7!/$15.00
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location of the fracture origin can usually be identified as
locus where radial striae meet~originate!. Concentricundu-
lations, which form by mixed modes I and II, define the fro
on the fracture surface and are commonly convex towa

FIG. 1. ~a! Schematic representation of a fracture surface sh
ing the fracture origin at the initial flaw, the mirror plane, radi
striae, concentric undulations, Wallner lines, mist, hackle, and
mirror radius r m . ~b! The usual brittle crack morphology~sche-
matic!. Shown are initial flaw length 2Ci , critical flaw length 2Ccr ,
the mirror radiusr m ~mirror-mist boundary!, the mist radiusr ~mist-
hackle boundary!, and the hackle radiusr b ~initiation of crack
branching!.
14 968 ©2000 The American Physical Society
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PRB 61 14 969ORIGIN OF MIST AND HACKLE PATTERNS IN . . .
the direction of fracture propagation@Fig. 1~a!#. Wallner
linesare very delicate curves that enable the measureme
crack velocity. These lines arise from the interaction of
fracture itself and the acoustic waves that accompany it.
curvatures of Wallner lines change with the ratio of cra
velocity to the speed of sound. Kerkhof17 gives the ranges o
crack velocities and stress intensity factors at which Wall
lines are produced in glass as follows: 10 m/s<V
<1500 m/s and 27 N mm3/2<KI<68 N mm3/2.

In a usual crack morphology of brittle materials, seve
zones appear in a sequence: theinitial flaw is followed by the
critical flaw, which in turn develops into themirror. The
mist and hacklezones appear in logical succession15,18 fol-
lowed bycrack branching.1,18The mirror is a smooth surfac
which reflects light~hence the name!. The mist, which is our
main interest in this paper, consists of fine-scale second
cracks which develop because of the stress field at the ti
the primary crack. Its name is due to the misty appearanc
this zone. The hackle has a ‘‘feathery’’-like appearan
where roughening of the secondary cracks occurs. Cr
branching occurs at the outside boundary of the hac
zone19 @Figs. 1~a! and 1~b!#.

The fracture plane extends from the critical flawCcr to
three differently defined radiir m ~the mirror-mist boundary!,
r ~the mist-hackle boundary!, and r b ~initiation of macro-
scopic crack branching!.20

The realization that the stippled perimeter of the smo
mirror surface, termed ‘‘mist,’’ defines the mirror bounda
@Fig. 1~b!# sets the way for the estimation21 of fracture stress
by fractography. Terao22 observed that the breaking stre
varied quite consistently with the reciprocal of the squ
root of the mirror radius@Fig. 1~b!#. Many investigators have
obtained the semiempirical formula ofs f r j

1/25Aj , wheres f

is the fracture remote stress,r j is the distance to a particula
boundary, andAj is a corresponding constant.

Very few studies considered the geometries of the seco
ary cracks in the mist zone and their significance. John
and Holloway23 suggested to identify two distinct types o
microcrack in the mist zone on the fracture surfaces of so
lime silicate glass. One type predominates near the mi
boundary, and the other is concentrated near the ha
boundary. Ballet al.24 studied the mist region in a series
soda-lime silica float glasses. They found the width of
mist region,Wmist, to be inversely related to the square
s f , which fits the mathematical prediction of the form
equation, Wmist5r 22r m

2 5(A22Am
2 )/s f

2, where r, r m , A,
and Am are the mist-hackle and mirror-mist boundaries a
mist-hackle and mirror-mist constants, respectively.

Ravi-Chandar and Knauss12 observed parabolic marking
in the mist and hackle zones that resulted from small fla
that were activated by stresses operating ahead of the
propagating crack and which interacted with the crack fr
as it advanced. In the hackle zone these markings were
erally larger and penetrated deeper into the material be
the fracture surface than in the mist zone. It was seen tha
maximum depth of the surface markings increased mo
tonically along the crack path.

We would like to relate the fracture zones to the dynam
of crack propagation. When the rate of the elastic ene
liberated by the fracture process~which increases with crack
length! becomes greater than that needed for the creatio
of
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the two new ‘‘mirror’’ surfaces, some energy goes to cre
small secondary cracks12 in ‘‘parallel’’ to the primary crack.
These secondary cracks form the ‘‘mist.’’25 A portion of
these secondary cracks grows under the influence of
stress field created by the primary crack until they are ‘‘sw
lowed up’’ by it as it passes them by.7

It was shown26 that further up in the mist zone, the grow
ing secondary cracks become longer before the prim
crack overtakes them, and therefore the mist area beco
rougher.27

Next, there is a transition to the hackle zone. The ex
tence of such a transition has been questioned recently
Mecholshy’s paper,28 for example, the mist and hackle re
gions are described as ‘‘identical in appearance but differ
in scale.’’ Most authors, however, agree27,29 that a sharp
change of form appears at the transition and ev
Mecholsky28 concedes that there is an unexplained ‘‘abru
change’’ there. We shall use the conventional approach29 and
try to explain the origin of the different shapes appearing
the mist and hackle zones. We would like to relate the on
of the transition to the Hackle zone to theinability of the
primary crack to catch up with the secondary cracks, wh
then grow separately~until they coalesce together at a lat
stage!. For such an interpretation we must have a veloc
growth pattern for the secondary cracks that reflects such
inability. As we presently show, for the ‘‘existing’’ fracture
velocity growth rules, the main crack always overtakes
secondary ones and hence these rules cannot be used
our assumptions. Our suggested new velocity rule fulfills
above requirement and therefore ‘‘explains’’ the mist-hac
transition. The check of this rule, however~besides being the
obvious first approximation; see below!, is in the possibility
to use it to derive the shapes of the growing second
cracks. Experimental evidence strongly supports this rule

A previous attempt at calculating shapes of second
fractures in a similar way was undertaken by seve
authors.30,31 In these papers, however, the erronous assu
tion that the secondary cracks move, from their very inci
ence, with the same final velocityV of the primary crack has
led to ‘‘parabolic’’ or hyperbolic shapes all through. Suc
shapes actually appear in the hackle zone and not previo
~see below!.

Note that a sharp rise in the length of ‘‘seconda
cracks,’’ possibly, from hackles to branches~bifuraction!
was identified at a critical crack velocityVc50.42VR ,32

whereVR is Reyleigh wave velocity. This range, however,
beyond the scope of the present study.

II. MODEL

A. Velocity rule

Let us start@Fig. 2~a!# from a situation in which at time
t50 a secondary crack~here assumed circular and of radiu
c0) begins to grow under the influence of the primary cra
~which is depicted as semicircular and of radiusR at t50
and which is already growing with the final velocityV).

Following a brief treatment of the kinematics of a secon
ary crack initiation26,33 and the obtainment thereby of its ge
ometry, we discuss the secondary crack velocity rule and
using a Griffith-like condition for its propagation, arrive a
the definition of the mist-hackle transition.
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Figure 2~b! shows the situation where the primary cra
induces a stress field ahead of its tip at the tip of an exis
‘‘flaw’’ in the material. The dynamic elastic stress field
sxx , syy , andsxy in Cartesian coordinates~or the principal
stressess1 ,s2) for a mode I crack opening are given by Re
33. It is assumed25 that the flaw would start to grow at a
angleu1 , where the principal maximal stresss1 attains its
maximum value. Furthermore, the direction of growth of t
secondary crack would be at an anglea1 @Fig. 2~b!# perpen-
dicular to the direction ofs1 at u1 .

Neglecting interference from other secondary cra
~shielding! and taking the secondary growth velocity to
given byVb(t), the two furthermost points, that of the ma
crack and that of the secondary one~along thex direction!,
are, respectively, given byx15R2a1Vt and

x25c01V E
0

t

b~ t8!dt8.

A necessarycondition that there exist a possibility that th
primary crack is ‘‘unable to overtake’’ the secondary one
that

E
0

`

@12b~ t8!#dt8,`.

FIG. 2. ~a! A schematic picture of the geometrical setup.
secondary crack of length 2c0 at a distancea from the origin of the
primary crack starts to grow att50. ~b! Side view of the primary
crack,T its tip.
g

s

In order that the integral does not diverge, the integra
should approach zero34 faster thant21. Regular velocity
‘‘rules’’ for crack growth are of the form35–37

b~ t !5S 12
c0

c~ t ! D
n

,

where the most usedn’s are 1
2 and 1. Evidently, for larget

and for anyn, c(t)→Vt, and therefore 12b(t) behaves as
t21. This type of a velocity rule is thus inappropriate fo
secondary crack growth under our assumptions. Although
exact form for the secondary crack velocity is unknown~the
secondary crack moves under a changing stress field ca
by the primary crack, whose distance from the secondary
is continuously changing, and by the sample’s remote str!
the following constraints have to be fulfilled.

~A! The secondary crack should start from zero, i.
b(0)50.

~B! Asymptotically, this velocity should reachV, the final
velocity in this material, i.e.,b(t→`)51.

~C! Since the secondary crack starts to increase in
only after the stress at its tip is above the critical one,
initial acceleration should be positive, i.e.,]b/]t (t50)
.0.

~D! The necessary ‘‘no overtake’’ condition should b
possible.

We therefore assume the following velocity growth ru
which is a natural first approximation to the actual rule a
meets all these constraints:

b~ t !512exp$2zVt/c0%, ~1!

wherez is a dimensionless parameter and, as we prese
show, is related to the hackle radius.

Note that, according to Eq.~1!, the acceleration of the
secondary cracks,

v̇5
V

t0
z expH 2

tz

t0
J ,

wheret05c0 /V. Thus, in contrast to the primary crack ve
locity rule for which the initial acceleration is infinite,37 Eq.
~1! yields afinite initial acceleration which diminishes expo
nentially. Equation~1!, again in contrast to the primary crac
rule, is readily integrable and gives for the secondary cr
radius

c5c01Vt1
c0

z FexpS 2
zVt

c0
D21G . ~2!

B. Relation betweena and R

In order that alwaysx1<x2 , we obtain the condition

c0<z~a2R1c0!. ~3!

However, for the secondary crack to commence growi
it is necessary~see Ref. 26 for a full presentation! that the
stress intensity factor~SIF! s1(pc0)1/2 at the tip of the flaw
be greater than the critical SIF (KI c

). According to Ref. 26,
the criterion for the secondary crack to grow is, therefore

a2R1c0

c0
5~KI /KI c

!2f 2
cosu

2
.
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KI is the SIF of the primary crack, andf (u,v) is a geometric
factor,33 of the order of 1. For a constantz the combined
condition is

z>
2KI c

2

KI
2f 2 cosu

, ~4!

with the equality sign occurring for hackle initiation, name
for KI5KI H

.

Now, KI is proportional tosAR, while KI c
is propor-

tional to sACcr, whereCcr is the critical radius of the pri-
mary crack ands is the remote stress causing the prima
fracture.

On the other hand, by the discussion following Eq.~4!,

z5S KI c

KI H

D 2
2

f 2 cosu
, ~5!

whereKI H
is proportional tosAr where r is the radius of

mist to hackle transition~or in short the hackle radius!. The
criterion ~3! thus becomes

a2R1c0

c0
5

R

z r
. ~6!

For f '1.4 and foru'0°,26 zr'Ccr @by Eq. ~5!#.
The relation betweena andR is therefore

a5RF11
c0

z r
G2c0'RF11

c0

Ccr
G2c0 . ~7!

The distanceL between the leading fronts of the primary a
secondary cracks (L5a2R1c0) is a measure of the ‘‘ad
vantage’’ the secondary crack has with respect to the prim
when it commences to grow. It is given by

L'R
c0

Ccr
. ~8!

FIG. 3. Initiation t i and terminationt f times for the SCS in the
mist zone, as a function ofR ~betweenr m andr!. Numbers relate to
the example calculated in Sec. III. Times are measured in unit
t05c0 /V, and the nondimensionalR is measured in units ofc0 .
ry

For the range ofR valuesr m,R,r , we get

r m

Ccr
,

L

c0
,

r

Ccr
. ~9!

Our present interpretation of the hackle initiation proce
is as follows: all parameters exceptKI on the right-hand
side of Eq.~4! are constant for a specific material. For
constant stress process,KI increases in proportion to th
square root of the primary crack length. For small prima
crack lengths, Eq.~4! is not valid and all secondary crack
are stopped~mist region!. Given enough time,KI keeps in-
creasing until the equality sign of Eq.~4! is reached@Eq.
~5!#. At this point, the secondary cracks can no longer
stopped and hackle ensues. Note that for a constantz, all
secondary cracks, irrespective of their initial size, reach
‘‘hackle condition’’ for the same length of the primar

of

FIG. 4. Calculated shapes of ‘‘final’’ secondary cracks in t
mist and hackle zones, for different radii of the primary crack~flaw
sizec050.002 mm).x andy scales are in mm.~a! R50.3 mm, the
beginning of the mist zone~oval!; ~b! R50.4 mm, in the mist zone
~elliptic!; ~c! R50.495 mm, towards the end of the mist zone~tear
drop!; ~d! R50.6 mm, in the hackle zone~hyperbolic!.



s

s
us

-

x
en

y

nc

on

he

14 972 PRB 61A. RABINOVITCH, G. BELIZOVSKY, AND D. BAHAT
crack.38 Thus hackle should occur at a well-defined radiur
~Fig. 1!, a result well supported by experiments.

C. Shapes of secondary cracks

In order to calculate the shapes of the secondary crack
the mist zone and in the mist-hackle transition region, we
the following well-established model39 with our velocity rule
~see Fig. 2!. The secondary crack is initially circular of ra
dius c0 . It grows in a parallel plane25 to that of the primary
one, with the velocityVb(t) of Eq. ~1!. The primary crack,
meanwhile, advances with velocityV. A point on the sec-
ondary crack, which is ‘‘swept by’’~in parallel to! the pri-
mary crack, stops growing since the stress there has rela
The ‘‘final shape’’ of the secondary crack is therefore giv
by the intersection of the following two curves:

x21y25~R1Vt!2,

~x2a!21y25H c01Vt1
c0

z FexpS 2
zVt

c0
D21G J 2

,

~10!

wherea is a linear function ofR @Eq. ~7!#. This is a paramet-
ric formula for the finalshapeof thesecondary crack~SCS!.

A nondimensional form of Eqs.~10! is obtained by mea-
suring lengths~i.e., x,y,R,a! in units of c0 and the time in
units of t05c0 /V ~a half of the interval it takes the primar
crack to cross the length of the secondary flaw!. Equations
~10! then become

x21y25~R1t !2,

~x2a!21y25F11t1
1

j
~e2zt21!G2

. ~11!

These equations, witha given by @see Eq.~7! where
a,R,Ccr are in units ofc0#

a5RS 11
1

Ccr
D21, ~12!

constitute a parametric representation of the differe
SCS’s. Note that for a specific casez is a constant whileR
changes across the mist zone, fromr m to r, with different
ensuing SCS’s along the way.

In order to evaluate the times of initiation and terminati
of the SCS’s, intersections of the latter with thex axis are
needed. These are given by

x5R1t,

x2a56F11t1
1

j
~e2zt21!G . ~13!

The minus sign gives the first intersection time, while t
plus sign relates to the termination time~when it exists—
before hackle sets in!. We denote these times ast i and t f ,
respectively.

The termination timet f is easily calculated from Eqs.~13!
to be
in
e

ed.

t

t f52
1

j
lnS 12

R

r D , ~14!

while t i can be calculated from

FIG. 5. Experimental results for soda lime glass fracture.~a!
The beginning of the mist zone~oval!, scale bar 2.5mm; ~b! to-
wards the end of the mist zone~tear drop!, scale bar 10.0mm; ~c! at
the mist hackle transition~two semiparallel lines!, scale bar 10.0
mm; ~d! in the hackle zone~neighboring hyperbolic SCS’s, e.g., A
and B!, scale bar 20.0mm.
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2t i1
1

j
e2zt i5

R

Rc
221

1

z
. ~15!

Results for the case treated below are given in Fig. 3
seems that whilet i increases slowly withR, mainly due to
the increase of the ‘‘advantage’’L,t f increases very sharpl
as the hackle is approached and goes to infinity. Since
SCS’s are dependent on thet f-t i interval and the latter in-
creases monotonously betweenr m andr , it is to be expected
that, qualitatively, the same SCS’s would be obtained
every brittle fracture, albeit at different positions and w
different magnitudes.

DenotingU5R1c0 /z2c0 , the ‘‘no overtake’’ condition
~3! is U<a. For the ‘‘exact’’ hackle conditionU5a, Eq.
~13! yields the result that the second intersection of the S
with thex axis occurs atx→` (t→`). Physically, it means
that atr the SCS develops as two parallel lines.

For R.r the SCS reaches asymptotically a hyperbola.
see this assume that the time is large enough so that
exponent in Eq.~10! or ~13! can be neglected. In polar co
ordinates Eq.~10! is then given by

1

2
5

2U

U22a2 ~12e cosu!, ~16!

wheree5a/U and is.1. This is the equation of a hyperbo
with asymptotes cosu5U/a. The prefactor is negative, as i
the case of scattering from a central repelling force.

Since at this stage the secondary cracks move with a
locity mearly equal to the final one, the treatment of Refs.
and 31 becomes asymstotically applicable, and hence
agreement with the hyperbolic shapes here.

III. COMPARISON WITH EXPERIMENTAL RESULTS

To demonstrate the shapes of the SCS, we use the fol
ing ‘‘realistic parameters’’ for soda-lime glass:40 V
51500 m/sec,KH /KI c

;3.1, and f ;1.4. The range of the

mist zone in this case40 is 0.3 mm<R<0.5 mm. In Figs. 4
and 5 calculated SCS’s are compared with experimenta
sults. The calculated SCS’s are for the above-mentio
range and for an initialc0 of 2 mm.41 Hence t0;1.3
31029 sec,a;1.04R2231023 (mm), andL;0.04R. For
the mist zoner m,R,r , we have 12mm,L,20mm, u
;0°, r 50.5, and therefore,z53.122;0.1 and Ccr;zr
;50mm.

The patterns show the following features. At the beg
ning of the mist zone (R;0.3 mm), the SCS’s look like
elongated ellipses where the elongation increases withc0
~thus, for smallc0’s, the SCS would resemble circles!. Fur-
ther on in the mist zone, the SCS’s start to develop
‘‘narrowing’’ 42 pointing towards the hackle zone whic
It
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r

S
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e-
0
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w-

e-
d

-

a

turns into a ‘‘tear-drop’’-like form later on. At the mist
hackle transitionR;0.5 mm, the SCS’s assume the ‘‘two
parallel-line’’ shape.

For R;0.6, in the hackle zone, the hyperbolic forms a
pear, increasing in aperture withc0 .

The calculated SCS’s of Fig. 4 are in good agreem
with existing experimental results~see, e.g., Ref. 23 for the
mist zone! and with our experimental results of the mist a
hackle regions shown in Fig. 5 measured for a broader m
zone. Note that observations of ‘‘penny-shaped’’~or circu-
lar! secondary cracks are very rare. This is of course du
the fact that flaws are seldom of this shape and their ini
orientation is seldom in parallel to the main crack. Sin
what is measured are the ‘‘projections’’ of the SCS’s on
the primary fracture plane and since the SCS’s change t
orientation ~in the third dimension! during their growth, a
quantitative comparison is very difficult. Qualitatively, how
ever, these results show trends similar to those of F
4: ~a! The lengths of the experimental SCS’s~see scales in
Fig. 5! monotonically increase by similar magnifications
in Fig. 4 across the mist zone.~b! Elongated ellipses appea
developing a ‘‘narrowing’’ and eventually assuming hype
bolic features~even though not in the same plane! at the
hackle zone.

Note that ‘‘two-parallel-line’’ shapes do appear, but~as
also happens for the hyperbolic shapes! do not continue for
large distances due to various interactions.

This agreement gives support to our model.
For fracture in polymers of relatively high molecula

weights, interesting features which look like ‘‘parabolas’’
‘‘hyperbolas’’ appear within the mirror zone.43 Since these
materials exhibit some unique properties, such as strain
sensitivity, crazes, etc., we expect that this ‘‘untimely’’ a
pearance of the hyperbolic shapes is due to some spe
mechanism. One possibility is that, for some flaws in the
materials,z is not a constant, but achieves high values ev
in the mirror plane. For these flaws, therefore,KI H

can ap-
pear earlier than usual, even in the mirror zone. By far, ho
ever, ‘‘the most important and widely observed features
ceramic fracture are the normally sequentially formed mirr
mist, hackle and crack branching patterns.’’28 For these
brittle materials, our model should describe the natural
quence of events indicating a constantz behavior.

Thus, assuming a simple exponential growth law for t
secondary crack velocity, we have obtained both a poss
understanding of the SCS’s in the mist and hackle zones
a simple explanation of the mist-hackle transition itse
Knowledge of the exact velocity growth rule would provid
a better quantitative comparison of shapes and transi
points, but the overall qualitative picture should, in our op
ion, remain intact.
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