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Effect of thermal phase fluctuations on the inductances of Josephson junctions,
arrays of junctions, and superconducting films

Thomas R. Lemberger, Aaron A. Pesetski, and Stefan J. Turneaure
Department of Physics, Ohio State University, Columbus, Ohio 43210-1106

~Received 10 May 1999!

We calculate the factor by which thermal phase fluctuations, as distinct from phase-slip fluctuations, increase
the inductanceLJ of a resistively shunted Josephson junction~JJ! above its mean-field valueL0 . We find that
quantum mechanics suppresses fluctuations whenT drops below a temperature,TQ5\/kBGL0 , whereG is the
shunt conductance. Examination of the calculated sheet inductanceLA(T)/L0(T) of arrays of JJ’s reveals that
two-dimensional~2D! interconnections halve fluctuation effects, while reducing phase-slip effects by a much
larger factor. Guided by these results, we calculate the sheet inductanceLF(T)/L0(T) of 2D films by treating
each plasma oscillation mode as an overdamped JJ. In disordereds-wave superconductors, quantum suppres-
sion is important forLF(0)/LF(T).0.14 ~or T/TC0,0.94!. In optimally doped YBCO and BSCCO quantum
suppression is important forl2(0)/l2(T).0.25, wherel is the penetration depth.
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I. INTRODUCTION

This work is directed toward understanding the effect
thermal phase fluctuations on the sheet inductance of t
dimensional ~2D! homogeneous superconducting film
Strictly speaking, thermal phase fluctuations include pha
slip fluctuations, i.e., vortex-antivortex pairs, which are ge
erated near the 2D transition where fluctuations are v
strong, and whose dynamics are believed to mediate
super-to-normal transition as measured resistively. In
work we are interested in the non-phase-slip part of the fl
tuations, and that is what we mean by ‘‘thermal phase fl
tuations.’’ ~These are sometimes called phase phonons
spin waves.! A key issue naturally involves the width of th
vortex-dominated region: Over what range of temperatu
does the effect of vortex-antivortex pairs on the sheet ind
tance exceed that of thermal phase fluctuations? Ano
question involves lower temperatures: Below what tempe
ture, and by what factor, does quantum mechanics supp
thermal phase fluctuations?

The superconducting-to-normal phase transition in two
mensions is a problem of long-standing interest.1,2 In films of
conventionals-wave superconductors, and in arrays of J
sephson junctions, the dynamics of vortex-antivortex pair
calculated in the Kosterlitz-Thouless-Berezinski~KTB!
theory does not describe the dependencies of the com
sheet resistivity,r/d5r1(v,T)/d2 j r2(v,T)/d, on v or T
particularly well.3–5 In particular, the KTB theory predicts
that the contribution of vortex-antivortex pairs to the sh
inductance should be confined to a very narrow tempera
interval, just below the transition, in which the spacing b
tween pairs and the size of a typical pair are compara
while the experimentally observed interval over which flu
tuation effects are evident is much larger. The present w
finds that, as regardsr2 , vortex-antivortex pairs are indee
important only very close to the transition, and thermal ph
fluctuations account for most of the upturn inr2 , i.e., the
downturn in areal superfluid density,nS(T)}d/l2(T)
[1/l'(T), that occurs asT approachesTKTB .3–6
PRB 610163-1829/2000/61~2!/1483~7!/$15.00
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A more recent problem concerns the role of thermal ph
fluctuations in quasi-2D cuprate superconductors. A qu
analysis shows that a KTB transition would occur in ea
CuO layer of optimally doped YBCO about 5 K below the
measuredTC , if there were no coupling between layers. Th
suggests that fluctuations could be the dominant influence
the T dependence of the superfluid density over a mu
wider temperature range than we are familiar with from stu
ies of thin films of low-TC superconductors. Indeed, the pe
etration depth, l22(T) ~Refs. 7 and 8! and thermal
expansivity9 measured in very clean YBCO crystals seem
exhibit critical fluctuations over a 5–10 K interval up t
'0.998TC . The situation is a bit clouded for several re
sons. First, the critical exponent indicates that fluctuatio
are 3D, not 2D. Second, the width of the critical region
very sensitive to unknown parameters:l22(T) measured10

on YBCO crystals which are nominally identical to those
Refs. 7 and 8, and on high-quality YBCO films,11,12 do not
exhibit critical fluctuations. Despite these concerns, the p
sible significance of phase fluctuations in cuprates mus
explored. Qualitatively, phase fluctuations can acco
for13–16theT-linear behavior ofl22(T) at low T,17,18and for
the approximate proportionality betweenTC andl22(0) for
underdoped cuprates.19

In the present work, we lay the groundwork for a critic
examination of phase fluctuations in cuprates by conside
their role in simpler systems, namely, Josephson juncti
and arrays of junctions. We apply our results to the ques
of whether thermal phase fluctuations could account for
T-linear behavior inl in cuprates at lowT, and defer the
more complicated question of critical behavior nearTC .

The most detailed calculation of the effect of phase flu
tuations on the sheet inductance of a superconducting film
that of Coffey,16 who calculated the lowest-order effect o
classical phase fluctuations within the Lawrence-Donia
model.20 The present work can be viewed as an extrapolat
of that work to higher temperatures, where fluctuations
large and nonlinear effects come into play, and lower te
peratures where quantum mechanics is important. Our ca
1483 ©2000 The American Physical Society
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lation employs some approximations, but our final result
films is consistent with measurements of the sheet ind
tance of thin homogeneous films of a conventional superc
ductor, amorphous MoGe, including the quantum crossov5

An interesting unconventional measurement of therm
phase fluctuations is the tunneling study of weakly dis
dered, thin, homogeneous superconducting Al films.21 The
decrease in the relaxation time of a quasiparticle charge
balance with increasing sheet resistance of Al films agr
well with the present model, although possible quantum
fects were not considered.

II. INDUCTANCE OF A JOSEPHSON JUNCTION

Quantum suppression of thermal phase fluctuations i
central importance, but it is difficult to calculate for a hom
geneous film. Fortunately, it emerges naturally from a cal
lation of the effect of thermal phase fluctuations on the
ductanceLJ(T) of a Josephson tunnel junction~JJ!.

The physics of JJ’s is described in detail by Likharev22

The simplest model has a junction with intrinsic critical cu
rent I C(T) in parallel with a capacitanceC ~Fig. 1!, and an
external shunt resistorR that is much smaller than th
normal-state resistance of the junction. For low amplitude
bias current, and in the absence of noise, the junction
haves like an inductor with impedance j vL0
5 j v\/2eIC(T). The shunt ensures that the effective jun
tion resistance is independent of the voltage across
thereby simplifying the equation of motion for the pha
difference across the junction. It also ensures that junc
dynamics take place below a low-pass frequencyv0(T)
[R/L0(T) that is much smaller than the gap frequen
D(T)/\ in the junction electrodes. With this constraint,I C is
effectively independent ofv. C is the sum of the physica
capacitance of the junction and the effective quasipart
capacitance obtained from the Kramers-Kronig~KK ! trans-
form of the quasiparticle contribution to the real conductan
s1(v) of the tunnel junction.23

Thermal fluctuations originate in the resistor and are r
resented by a noise currenti n(t) in parallel with R. The
influence of thermal noise on the junction comes from
mean-square supercurrent^I S

2& through the junction. We ne
glect fluctuations inI C . It is straightforward to see why only
the low-frequency components ofi n contribute to ^I S

2&.
Noise currents are ‘‘white’’ up tov'kBT/\ and diminish at
higherv due to quantum mechanics.24 Low-frequency noise
currents pass through the junction as supercurrents bec
the impedance of the junction is much less than the resi

FIG. 1. Circuit diagram for a model Josephson Junction.
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or capacitor, i.e.,vL0!$R,1/vC%. As v increases, eventu
ally vL0 exceeds eitherR or 1/vC, and noise currents pas
through the resistor or capacitor instead of the junction.
an overdamped junction,R is much less than 1/vC, and only
noise currents withv,v0 contribute to^I S

2&. Thus when
kBT/\ drops belowv0 , ^I S

2& drops below its classical value
This is what is meant by quantum suppression of therm
fluctuations.

Calculation of the normalized inductanceLJ(T)/L0(T) of
the junction proceeds as follows.22 With an external bias
currentI b(t)5I 01I ac(t), which includes a small ac compo
nent I ac, at angular frequencyv, conservation of curren
leads to

I 01I ac~ t !1 i n~ t !5I C sin@f~ t !#1GV~ t !1CdV~ t !/dt.
~1!

In Eq. ~1!, G[1/R is the conductance of the resistor. Wi
the Josephson relation,df(t)/dt52 eV(t)/\, for the phase
differencef(t) across the junction, a time derivative leads

dIac~ t !/dt1din~ t !/dt5I C cos~f!2eV~ t !/\

1GdV~ t !/dt1Cd2V~ t !/dt2.

~2!

Taking an ensemble average, we find to lowest order in th
mal noise

dIac~ t !/dt'I C^cos~f!&2eV~ t !/\

1GdV~ t !/dt1Cd2V~ t !/dt2 ~3!

'I C@12~ I 0
21^I S

2&!/I C
2 #1/22eV~ t !/\

1GdV~ t !/dt1Cd2V/dt2. ~4!

Small ac bias meansI ac/v!I C /v052eG/GQ , (GQ

[4e2/\'1/1027V). ^I S
2& is the mean-square supercurre

through the junction. A Fourier transform yields

I ac~v!5V~v!@1/j vLJ1G1 j vC#, ~5!

where 1/LJ decreases with dc biasI 0
2/I C

2 and with thermal
noise^I S

2&/I C
2 :

L0~T!/LJ~ I 0 ,T!5@12I 0
2/I C

2 2a^I S
2&/I C

2 #1/2. ~6!

‘‘ a’’ measures the sensitivity of the inductance to therm
supercurrents. The preceding analysis leads us to expea
'1 for Josephson junctions. We work in terms of the inve
inductance, as in Eq.~6!, because 1/LJ is analogous to the
superfluid density in a film. When̂I S

2& is sufficiently large,
the phase difference across the junction can slip by 2p re-
sulting in a small voltage spike. In order to understand
importance of phase-slip events relative to thermal ph
fluctuations, we calculate the full junction impedance belo

Before calculatingLJ(T) for an unbiased junction from
Eq. ~1!, we pause to calculatêI S

2& vs T and quantify the
quantum crossover. The mean-square noise current tha
within a small bandwidthDB centered onv is24

^u i n~v!u2&DB54G$\v/21\v/@e\v/kT21#%DB. ~7!
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The right-hand side of Eq.~7! reduces to the classical valu
4kBTGDB for \v!kBT. From here on, we neglect th
zero-point motion quantum contribution 2G\vDB to
^u i n(v)u2&. The mean-squarethermal noise current through
the junction is

^I S
2&5E

0

`

~dv/2p!4G\v@e\v/kBT21#21

3@v2/v0
21~12v2/vJ

2!2#21, ~8!

where vJ[(L0C)21/2. In the classical limit, kBT/\
@min$v0,vJ%, Eq. ~8! yields the classical result:̂ I S

2&
5kBT/L0[^I S

2&C , by direct integration. The thermal facto
in Eq. ~8! shows that whenkBT/\ drops below min$v0,vJ%,
only a portion,'kBT/\ min$v0,vJ%, of the low-pass band is
excited, and we expect^I S

2& to drop below its classical valu
by about this factor.

We define the noise parameter asg(T)[^I S
2&/I C

2 , and
calculate it from Eq. ~8!. In the classical limit, g(T)
5kBT/J(T), where the characteristic energyJ(T)
[\/GQL0(T) is the usual Josephson coupling energy. If
define g0[kBT/J(T), then we can writeg5g0f Q , where
the quantum suppression factor is:f Q[^I S

2&/^I S
2&C . Figure 2

shows f Q vs kBT/\v0 , calculated for vJ@v0 , vJ
50.25v0 , and vJ50.70v0 . The dotted curves in Fig. 2
show approximations

f Q'1/~11\v0 /kBT! ~9a!

for the overdamped case,vJ@v0 , and

f Q'~2/p!arctan~pkBT/2\vJ! ~9b!

for the underdamped cases,vJ50.25v0 and 0.7v0 . We de-
fine a quantum crossover temperatureTQ from the condition

kBTQ5\ min$v0~TQ!,vJ~TQ!%. ~10!

For T/TQ, 1
2 ,

FIG. 2. The quantum suppression factorf Q[^I S
2&/^I S

2&C , calcu-
lated from Eq. ~8! for JJ’s with vJ@v0 , vJ50.7v0 , and vJ

5v0/4. The dotted curves are approximations, Eq.~9!.
g'g0kBT/$\ min@v0~T!,vJ~T!#% ~11!

for overdamped and underdamped junctions. The form
quadraticT dependence ofg ~v0 andJ depend onT, too! at
low T was pointed out by Milliset al.25

We emphasize that for overdamped junctions the ‘‘R/L ’’
frequencyv0 is important and the plasma frequencyvJ is
not. We argue below that the same is true for homogene
superconducting films because the quantum crossover oc
at high temperatures where plasma oscillations are hig
damped. In principle, the plasma frequency can be impor
at low temperatures, wheres1(q,v,T) is very small and
damping is weak.

Following Likharev,22 the impedance of an overdampe
junction is obtained from the solution to the Smoluchows
equation for the probabilitys(f,t) for the junction to sus-
tain at timet a phase differencef, when the normalized bias
current isI (t)5I 01I acsin(vt):

~1/v0!]s~f,t !/]t1]$s~f,t !@ I 01I acsin~vt !

2sin~f!#%/]f5g0]2s/]t2. ~12!

To solve,s(f,t) is Fourier transformed in bothf andt, with
the assumption thats(f,t) is periodic inf with period 2p.
The Fourier components ofs that involvee6 j vt are calcu-
lated, and from them the junction impedanceZJ5RJ
1 j vLJ is deduced.

Figure 3 showsLJ /L0 vs g0 andRJ /R vs g0 for an un-
biased junction (I 050) at several frequenciesv/v0 . In the
present work, we are interested in low frequenciesv/v0
!1, at which the resistanceRJ necessarily arises from phas
slip events. In this limit,RJ /R is found to be tiny forg0
,0.20, indicating that phase-slip events are rare. There
the increase inLJ /L0 for g0,0.20 comes from therma
phase fluctuations, not phase slips. For later comparison
arrays and continuous films, Fig. 4 showsL0 /LJ vs g0 for an

FIG. 3. Normalized inductanceLJ /L0 and resistanceRJ /R vs
g0(T) for an overdamped (vJ@v0), resistively shunted Josephso
junction. vJ[(L0C)21/2 andv0[R/L0 . The uppermost curve for
LJ /L0 is for low frequency,v/v0!1, while the uppermost curve
for RJ /R is for high frequency,v/v0@1.
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1486 PRB 61LEMBERGER, PESETSKI, AND TURNEAURE
overdamped junction in the classical limit. The dotted li
shows that the function@12g0#1/2 fits the numerical results
for small g0 , i.e., g0,0.20, as anticipated in Eq.~6!.

III. ARRAYS OF IDENTICAL JOSEPHSON JUNCTIONS

We seek to understand the effect of thermal~non-phase-
slip! phase fluctuations on the inverse sheet inductance 1LA
of a square JJ array. The proportionality between 1/LA and
the superfluid density of a homogeneous film was develo
by Berezinski.26 In the classical limit, the current nois
g(T)[^I S

2&/I C
2 in each junction is set by the equipartitio

theorem, and is unaffected by interconnections. We exp
and find, that the 2D array is affected by phase-slip fluct
tions much less than a 0D single junction, permitting a sup
to-resistive phase transition instead of a crossover.

The sheet inductanceLA(T) of an array of identical,non-
interacting inductorsL is proportional toL. ~For a square
array, LA5L. For triangular and honeycomb arrays,LA
5L/A3 and A3L, respectively.! The proportionality is lost
for an array of identical Josephson junctions because
noise. In an array, the noise current in each junction com
from all of the shunt resistors, not just the local shunt. T
inductances of nearby junctions fluctuate in a correlated w
so that they are effectively interacting inductors.

Figure 4 shows the normalized inverse sheet inducta
L0 /LA vs g0 , calculated for a square array of overdamp
JJ’s in the classical limit.27 In arrays, we defineg0
[kBTGQL0(T)/\, whereL0 is the mean-field sheet induc
tance of the array. As seen in Fig. 4, the function
2ag0)1/2 with a5 1

2 ~dotted curve!, fits the numerical data
for g0,0.7. If LA were proportional toLJ , thena would be
unity. We interpret the agreement between this simple fu

FIG. 4. Normalized inverse inductances vsg0 , calculated in the
classical limit for an overdamped, resistively shunted JJ~solid
curve!, a square array of identical JJ’s~connected dots!, and a 2D
superconducting film~solid curve!. The junction and array are we
approximated at lowg0 by L0 /LJ'(12g0)1/2 and L0 /LA'(1
2g0/2)1/2 ~dotted curves!, respectively.
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tion and the exact calculation to mean that forg0 up to at
least 0.7, thermal phase fluctuations dominate over ph
slip fluctuations, and the 2D interconnections among ju
tions halve their effect. Calculations for triangular and ho
eycomb arrays28 lead to similar values, namely,a51/1.7 and
1/2.5, respectively. Thus the influence of thermal phase fl
tuations on 2D arrays is relatively insensitive to details. T
intersection of the line labeled ‘‘2g0 /p ’’ with the curve for
L0 /LA vs g0 marks the KTB transition where, in principle
L0 /LA drops discontinuously from 2g0 /p to zero.

Phase-slip fluctuations in the form of vortex-antivort
pairs account for some of the difference between the num
cal data and the approximation, (12ag0)1/2, which repre-
sents thermal phase fluctuations. Even if all of the differen
were due to vortex-antivortex pairs, the suppression of
‘‘superfluid density’’ L0 /LA would still be dominated by
thermal phase fluctuations except for temperatures very c
to the transition.

IV. HOMOGENEOUS SUPERCONDUCTING FILMS

We now consider homogeneous 2D films. We calcul
L0 /LF , whereL0(T) is the ‘‘mean-field’’ sheet inductance
1/LF(T) is proportional to the areal superfluid densit
nS(T). The calculation is approximate, but it provides i
sight into how microscopic details would enter a more rig
ous calculation. The most serious approximation, in o
view, is the omission of fluctuations in the amplitude of t
order parameter, which should become significant near
2D super-to-resistive transition.

Equation ~13! is the analog of Eq.~6! for a Josephson
junction and it describes how the sheet inductance is affe
by supercurrent fluctuations:

L0~T!/LF~T!'12a~T!^ps
2&j~T!2/\2[12g. ~13!

While Eq. ~13! is most easily derived within GL theory,16,29

it is generally valid.^ps
2& is the mean-square thermal mo

mentum of a Cooper pair, and̂ps
2&j2/\2'^f2&, the mean-

square spatial variation in phase of the order parameter.
The factora(T) is a measure of how strongly phase flu

tuations affect the sheet inductance. For dirty limit superc
ductors, we expecta(T) to be temperature independent a
less than unity, in analogy with the noise term found f
arrays where the suppression of the sheet inductance
proportional to (12g0/2)1/2(a5 1

2 ) and in contrast to single
junctions wherea51. For clean superconductors,a(T)
should be unity nearTC , but have a strongT dependence a
low T. In the end,a for dirty limit superconductors must b
decided by experiment.

Calculatingg amounts to calculatinĝps
2&, which we do

by summinĝ ps
2&k over plasma oscillation modes, labeled b

a wave vectork, and by treating each mode like an ove
damped JJ, in analogy with Eq.~8!. We cut off the sum onk
for uku.2p/j(T), presuming that the superfluid is insens
tive to fluctuations at length scales shorter thanj(T). To use
Eq. ~8!, we must connect the fluctuation current of ea
mode,̂ I S

2&k , with ^ps
2&k . The inductance and conductance

Eq. ~8! connect with the sheet conductance,sd5s1d
2 j s2d, of a film. We defines2S(k,v,T) to be the Kramers-
Kronig transform of the delta function ins1(k,v,T) at v50,
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so s2S(k,v,T)}1/v, and we can define a sheet inductan
LF(k,T) as:LF(k,T)[1/vs2S(k,v,T)d. With generic film
dimensionsW3W3d, we have

^I S
2&k5W2d2^JS

2&k5~nSeWd/2m!2^ps
2&k

5W2^ps
2&k /@LF~k,T!2e#2. ~14!

JS5nSepS/2m is the supercurrent density, and 2m is the
mass of a Cooper pair. The shunt conductanceG in Eq. ~8!
becomess1(k,v,T)d. We neglect capacitance by settingvJ
to infinity. We assume that the thermal factor which rep
sents noise currents is the same as for a JJ. Replacing
lumped circuit elements implicit inv0 in Eq. ~8! by corre-
sponding parameters for the film, the ‘‘circuit’’ factor be
comes

@v2/v0
211#21→@~vs1LFd!211#21. ~15!

We find

g'a~T!Sk8@jLF~k,T!2e/\W#2E
0

`

dv@2\vs1d/p#

3@e\v/kT21#21@~vs1dLF!211#21. ~16!

The prime on the summation indicates a cutoff atuku
52p/j(T).

We can approximate the sum in Eq.~16! becausek de-
pendence is generally unimportant. For disordereds-wave
superconductors,s is independent ofk. For d-wave super-
conductors, the dependence ofs on k is not well known, but
most terms in the sum overk haveuku'A2p/j, and for the
nearly tetragonalab plane of cuprates we expects to be
more sensitive to the magnitude than to the direction ofk.
That is, in Eq.~16!, s's(uku'A2p/j,v,T). To evaluate
Eq. ~16!, we replace the sum onk by the number of terms in
the sum, (W/j)2, times a single ‘‘average’’ term in which
parameters represent the appropriate averages. We re
s1(uku'A2p/j,v,T)d by ‘‘ GF(T), ’ ’ which iss1 averaged
over frequencies up to 2D(T)/\, and we replaceLF(uk
u'A2p/j,T) by ‘‘ LF(T). ’ ’ With these approximations th
noise term may be written as

g'a~T!@kBTGQLF~T!/\# f Q~T!5a~T!g0~LF /L0! f Q~T!,
~17!

where Eq.~9a! may be used forf Q(T). g0[kBTGQL0 /\ is
the classical value ofg.

We can identify the value of the normalized superflu
density at the quantum crossover from the equation

kBTQ5\/GF~TQ!LF~TQ!. ~18!

Anticipating thatTQ is close toTC , we setTQ5TC on the
left-hand side. From the conductivity sum rule,29 GF(T) is
approximately equal to its value, 1/RN , just aboveTC , mul-
tiplied by the normal-fluid fraction, 12nS(T)/nS(0)51
2LF(0)/LF(T):

RNGF~T!'12LF~0!/LF~T!. ~19!

If we define a characteristic ‘‘R/L ’’ temperature, T0
[\RN /kBLF(0), then Eqs.~18! and~19! predict a crossove
at
e

-
the

ace

nS~TQ!/nS~0!5LF~0!/LF~TQ!'~11T0 /TC!21. ~20!

As discussed in the following sections, for cuprates and
dirty s-wave superconductors,T0 is several times larger tha
TC , so nS is much smaller thannS(0) at the crossover. To
estimate TQ from Eq. ~20!, we use the approximation
LF(0)/LF(TQ)'3(12TQ /TC), which is valid in dirty
s-wave superconductors nearTC , to obtain

12TQ /TC'0.33/~11T0 /TC!. ~21!

Below TQ the noise term is then

g'a~T!~kBT!2GQGF~T!LF
2~T!/\2 ~T/TQ, 1

2 !.
~22!

To compare our result for films with previous results
arrays, we examine the classical limit (f Q51). Since our
calculation does not improve on the order of magnitude
certainty in g in the literature, we choosea(T)5 1

4 in Eq.
~17! so that for small fluctuations,g0!1,L0 /LF agrees with
L0 /LA calculated for square arrays. Coffey calculates
slightly smaller value:a(T)5 1

4 ln(2)/p.16 With these as-
sumptions, Eqs.~13! and ~17! yield

L0 /LF'12g0LF/4L0 ~classical limit!. ~23!

In our calculation,g depends on the film’s fluctuation
enhanced sheet inductance, so that Eq.~23! includes nonlin-
ear effects from strong fluctuations. Solving Eq.~23! for
L0 /LF as a function of the normalized temperatureg0 yields

L0 /LF5 1
2 1 1

2 @12g0#1/2 ~classical limit!. ~24!

This result, plotted in Fig. 4, probably overestimates the n
linear effects of longitudinal phase fluctuations, but captu
the essential features.L0 /LF displays a phase fluctuatio
driven phase transition whose features are similar to the K
transition. With the prefactora5 1

4 , the transition would oc-
cur atg0(TTPF)51 if it were not preceded by the KTB tran
sition at g0(TKTB)'0.90. At the transition,L0 /LF5 1

2 and
d(L0 /LF)/dT52`, meaning thatL0 /LF drops discontinu-
ously from 1

2 to zero. The value~0.50! of L0 /LF at the tran-
sition is independent ofa, and it is close to the values o
L0 /LA ~0.64, 0.60, and 0.54! at TKTB for honeycomb, square
and triangular arrays, respectively. Thus Eq.~24! is physi-
cally reasonable.

On the basis of this analysis, we conclude that the eff
of thermal phase fluctuations on the sheet inductance of fi
should be similar to their effect on arrays of Josephson ju
tions. Their effect should be small belowTQ and increase
rapidly as the 2D transition is approached. Fluctuatio
should suppressL0 /LF by 20% to 30% just before the rapi
drop which signals the 2D transition. These conclusions
consistent with measurements ona-MoGe films.5

V. DISORDERED s-WAVE SUPERCONDUCTING FILMS

When discussing films, it is common to discuss the
penetration depth, 1/l'(T)[d/l2(T)5m0 /LF(T), rather
thanLF . Dirty-limit s-wave superconductors are particular
simple. In them, the quantum crossover occurs
l'(0)/l'(TQ)'1/7 @Eq. ~20!# because RN /LF(0)
'pD(0)/\,30 and D(0)'2kBTC0 , leading to T0
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5pD(0)/kB'2pTC . The corresponding value ofTQ is about
0.94TC0 . As a practical matter, films which exhibit fluctua
tion effects large enough to study have sheet resistanceRN
near 1 kV, so TQ nearly coincides withTKBT . Fluctuations
turn on very rapidly with increasingT because quantum sup
pression diminishes as nonlinear effects turn on. As m
tioned above, measurements ona-MoGe films are consisten
with the model.5 It remains to be seen whether other mate
als are consistent.

VI. CLEAN d-WAVE SUPERCONDUCTORS:
OPTIMALLY DOPED YBCO

Cuprates offer the opportunity to study thermal pha
fluctuations in a clean quasi-2D superconductor. Insofa
the GL order parameter in cuprates is a complex scalar fu
tion, the foregoing analysis is applicable. Because of th
sensitivity to disorder,d-wave superconductors require a
extremely small elastic scattering rate,\/tel!D0(0)/30, to
qualify as ‘‘clean’’ when strongly scattering impurities a
present. The constraint lessens for weaker scatters.
strongly scattering impurities, the characteristic temperat
kBT* [@\D0(0)/tel#

1/2 separates ‘‘very low’’ temperature
from ‘‘low’’ temperatures.31 The hallmark of clean cuprate
is l22(T)2l22(0)}T below about 0.3TC . Below T* im-
purity scattering causes a crossover fromT linear toT2.

We are particularly interested in identifying the quantu
crossover and examining behavior below that point. Fr
Eq. ~24!, classical phase fluctuations lead to

l',0~T!/l'~T!'12T/1500 K, ~25!

with numbers appropriate for theab plane of optimally
doped YBa2Cu3O72d : lab(0)5150 nm ~Ref. 32! and d
51.17 nm,33 so l'(0)517mm. l',0(T) is the mean-field
penetration depth. SinceRN'100mV cm/1.17 nm'850V,
T0 is about 300 K. From Eqs.~20! and ~21!, the quantum
crossover occurs atl'(0)/l'(TQ)' 1

4 . For optimally doped
YBCO, this condition occurs atTQ'0.90– 0.95TC . Below
TQ ,^pS

2& is suppressed by a small factor:

kBTGFLF /\'@kBT/D0~0!#2. ~26!

But a(T)'D0(T)/kBT.1 in this regime,34 reflecting the
sensitivity of d-wave superconductors to superfluid motio
sog is suppressed below its classical value by a single po
of kBT/D0(T). With D0(0)/kB'300 K, we find
,
f

n

Re
n-

-

e
s

c-
ir

or
e,

,
er

l',0~T!/l'~T!'12~T/670 K!2 ~YBCO, T,40 K!.
~27!

Thus thermal phase fluctuations cannot account for the lin
T dependence of 1/l'(T) below 30 K. The observed linea
behavior,11 l2(0)dl22(T)/dT'2 1

180 K in optimally doped
YBCO is better interpreted as22ln2kB /D0(0), yielding
D0(0)/kB'250 K'3TC .

VII. CONCLUSION

Guided by rigorous calculations of the inductances of
sistively shunted Josephson junctions and 2D arrays of ju
tions, the former presented as part of this work and the la
obtained from the literature, we have calculated the influe
of thermal phase fluctuations on the superfluid density,
magnetic penetration depth, of effectively 2D supercondu
ors. We find that thermal phase fluctuations are much m
important than phase-slip fluctuations, except at temperat
very close to the super-to-normal transition. Quantum m
chanics strongly suppresses phase fluctuations below a c
over temperature which is determined by the ‘‘R/L ’’ low-
pass frequency of the film, and which is expected to
above 0.9TC . There is experimental evidence for this cros
over in measurements of the complex impedance of t
amorphous MoGe films.

Given that the quantum crossover is expected to lie n
TC , thermal phase fluctuations cannot be responsible for
T-linear decrease inl22(T) at low T in optimally doped
YBCO and BSCCO. At temperatures nearTC , the impor-
tance of thermal phase fluctuations in cuprates depends
cally on the strength of interlayer coupling. More experime
tal and theoretical work is needed to pin down t
systematics of phase fluctuations in conventional and cup
superconductors.
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