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We calculate the factor by which thermal phase fluctuations, as distinct from phase-slip fluctuations, increase
the inductancé ; of a resistively shunted Josephson junct{dd above its mean-field value,. We find that
quantum mechanics suppresses fluctuations Whanops below a temperaturéq=7/kgGL,, whereG is the
shunt conductance. Examination of the calculated sheet indudtaii@®/Lo(T) of arrays of JJ's reveals that
two-dimensional2D) interconnections halve fluctuation effects, while reducing phase-slip effects by a much
larger factor. Guided by these results, we calculate the sheet indudtaiEF'Lo(T) of 2D films by treating
each plasma oscillation mode as an overdamped JJ. In disorstarade superconductors, quantum suppres-
sion is important folLg(0)/Le(T)>0.14(or T/T¢(<<0.94). In optimally doped YBCO and BSCCO quantum
suppression is important for?(0)/\?(T)>0.25, where\ is the penetration depth.

I. INTRODUCTION A more recent problem concerns the role of thermal phase
fluctuations in quasi-2D cuprate superconductors. A quick
This work is directed toward understanding the effect ofanalysis shows that a KTB transition would occur in each
thermal phase fluctuations on the sheet inductance of twdzuO layer of optimally doped YBCO abbs K below the
dimensional (2D) homogeneous superconducting films. measured ¢, if there were no coupling between layers. This
Strictly speaking, thermal phase fluctuations include phasesuggests that fluctuations could be the dominant influence on
slip fluctuations, i.e., vortex-antivortex pairs, which are gen-the T dependence of the superfluid density over a much
erated near the 2D transition where fluctuations are veryider temperature range than we are familiar with from stud-
strong, and whose dynamics are believed to mediate thies of thin films of lowT superconductors. Indeed, the pen-
super-to-normal transition as measured resistively. In thigtration depth,\"2(T) (Refs. 7 and 8 and thermal
work we are interested in the non-phase-slip part of the flucexpansivity measured in very clean YBCO crystals seem to
tuations, and that is what we mean by “thermal phase flucexhibit critical fluctuations over a 5—10 K interval up to
tuations.” (These are sometimes called phase phonons o=0.998T.. The situation is a bit clouded for several rea-
spin waves. A key issue naturally involves the width of the sons. First, the critical exponent indicates that fluctuations
vortex-dominated region: Over what range of temperatureare 3D, not 2D. Second, the width of the critical region is
does the effect of vortex-antivortex pairs on the sheet inducvery sensitive to unknown parameteis:?(T) measuretf
tance exceed that of thermal phase fluctuations? Anothesn YBCO crystals which are nominally identical to those of
question involves lower temperatures: Below what temperaRefs. 7 and 8, and on high-quality YBCO filfs!2 do not
ture, and by what factor, does quantum mechanics suppresxhibit critical fluctuations. Despite these concerns, the pos-
thermal phase fluctuations? sible significance of phase fluctuations in cuprates must be
The superconducting-to-normal phase transition in two diexplored. Qualitatively, phase fluctuations can account
mensions is a problem of long-standing intefesin films of ~ for*>~%the T-linear behavior of ~%(T) at low T,*"*®and for
conventionals-wave superconductors, and in arrays of Jo-the approximate proportionality betwe@ga and ~2(0) for
sephson junctions, the dynamics of vortex-antivortex pairs aanderdoped cupratés.
calculated in the Kosterlitz-Thouless-BerezinskKTB) In the present work, we lay the groundwork for a critical
theory does not describe the dependencies of the complexamination of phase fluctuations in cuprates by considering
sheet resistivityp/d=p,(w,T)/d—jp,(»,T)/d, onw or T their role in simpler systems, namely, Josephson junctions
particularly well*=° In particular, the KTB theory predicts and arrays of junctions. We apply our results to the question
that the contribution of vortex-antivortex pairs to the sheetof whether thermal phase fluctuations could account for the
inductance should be confined to a very narrow temperaturé-linear behavior in\ in cuprates at lowl, and defer the
interval, just below the transition, in which the spacing be-more complicated question of critical behavior n&ar.
tween pairs and the size of a typical pair are comparable, The most detailed calculation of the effect of phase fluc-
while the experimentally observed interval over which fluc-tuations on the sheet inductance of a superconducting film is
tuation effects are evident is much larger. The present workhat of Coffey'® who calculated the lowest-order effect of
finds that, as regards,, vortex-antivortex pairs are indeed classical phase fluctuations within the Lawrence-Doniach
important only very close to the transition, and thermal phasenodel?® The present work can be viewed as an extrapolation
fluctuations account for most of the upturn g, i.e., the of that work to higher temperatures, where fluctuations are
downturn in areal superfluid densityng(T)od/A%(T) large and nonlinear effects come into play, and lower tem-
=1/\, (T), that occurs a3 approached «rg.>° peratures where quantum mechanics is important. Our calcu-
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or capacitor, i.e.wLy<{R,1/wC}. As w increases, eventu-
ally wL, exceeds eitheR or 1/wC, and noise currents pass
through the resistor or capacitor instead of the junction. For
an overdamped junctiof® is much less than &/C, and only
noise currents witho<w, contribute to(13). Thus when
kgT/% drops beloww,, (13) drops below its classical value.
This is what is meant by quantum suppression of thermal
fluctuations.

Calculation of the normalized inductancg(T)/Lo(T) of
the junction proceeds as follo$.With an external bias
currentl,(t)=145+1,4t), which includes a small ac compo-
nentl,., at angular frequency, conservation of current

] o . leads to
lation employs some approximations, but our final result for

films is consistent with measurements of the sheet induc- | +1,(t)+i,(t)=1csin ¢(t)]+GV(t)+ CdV(t)/dt.

tance of thin homogeneous films of a conventional supercon- (1)
ductor, amorphous MoGe, including the quantum crossdver. ] ] i
An interesting unconventional measurement of thermaln EQ. (1), G=1/Ris the conductance of the resistor. With
phase fluctuations is the tunneling study of weakly disorihe Josephson relatiodg(t)/dt=2eV(t)/%, for the phase
dered, thin, homogeneous superconducting Al fimZhe difference¢(t) across the junction, a time derivative leads to
decrease in the relaxation time of a quasiparticle charge im- .

balance with increasing sheet resistance of Al films agreed dladt)/dt+diy(t)/dt=1ccog $)2eV(t)/h

well with the present model, although possible quantum ef- +GdV(t)/dt+ CdV(t)/dt2.

fects were not considered.

@Ib Ic R in :‘: C

FIG. 1. Circuit diagram for a model Josephson Junction.

2
Il. INDUCTANCE OF A JOSEPHSON JUNCTION Taking an ensemble average, we find to lowest order in ther-

Quantum suppression of thermal phase fluctuations is Orpal noise
central importance, but it is difficult to calculate for a homo- di(t)/dt=1c(cog ¢))2eMt)/%:
geneous film. Fortunately, it emerges naturally from a calcu-
lation of the effect of thermal phase fluctuations on the in- +GdV(t)/dt+ Cd?V(t)/dt? 3
ductancel;(T) of a Josephson tunnel junctidd).

The physics of JJ's is described in detail by Likhafév. ~lc[1—(12+(12)N2]1Y22eMt) /4
The simplest model has a junction with intrinsic critical cur-
rent1(T) in parallel with a capacitancé (Fig. 1), and an +GdV(t)/dt+Cd?V/dt?. 4

external shunt resistoR that is much smaller than the o .. . pias means| o/ w<lc/wy=2eG/Gq, (Gg

normal-state resistance of the junction. For low amplitude ac_, o
) ; . : . =4e°/h~1/1027Q). (Ig) is the mean-square supercurrent

bias current, and in the absence of noise, the junction bet—hrou h the iunction. A Fourier transform vields

haves like an inductor with impedancejwlg 9 J ' y
=jwfi/2elc(T). The shunt ensures that the effective junc-

tion resistance is independent of the voltage across it,

thereby simplifying the equation of motion for the phasewhere 1L, decreases with dc bidg/I2 and with thermal
difference across the junction. It also ensures that junctio%oise“%)“%:

dynamics take place below a low-pass frequergyT)

ER/Lo(.T) thgt iS .much smaller thgn the gap frgqqency Lo(T)/Ly(lg, T)=[1—12112—a(1})/12]¥2 (6)

A(T)/% in the junction electrodes. With this constraihg,is

effectively independent ofv. C is the sum of the physical *a’ measures the sensitivity of the inductance to thermal
capacitance of the junction and the effective quasiparticlessupercurrents. The preceding analysis leads us to expect

lodw)=V(w)[ljoL;+G+jwC], (5)

capacitance obtained from the Kramers-Kro(#) trans-  ~1 for Josephson junctions. We work in terms of the inverse
form of the quasiparticle contribution to the real conductanceénductance, as in Eq6), because 1/ is analogous to the
o1(w) of the tunnel junctiort? superfluid density in a film. Whefi2) is sufficiently large,

Thermal fluctuations originate in the resistor and are repthe phase difference across the junction can slip byre-
resented by a noise currenf(t) in parallel with R. The  sulting in a small voltage spike. In order to understand the
influence of thermal noise on the junction comes from themportance of phase-slip events relative to thermal phase
mean-square supercurre(mé) through the junction. We ne- fluctuations, we calculate the full junction impedance below.
glect fluctuations i ¢ . It is straightforward to see why only Before calculatingL ;(T) for an unbiased junction from
the low-frequency components df, contribute to(1%).  Eq. (1), we pause to calculatél2) vs T and quantify the
Noise currents are “white” up taw~kgT/A and diminish at quantum crossover. The mean-square noise current that lies
higher w due to quantum mechanié$Low-frequency noise  within a small bandwidth\B centered onw is**
currents pass through the junction as supercurrents because
the impedance of the junction is much less than the resistor  (|iy(0)|)AB=4G{fw/2+hw/[e"/T—1]1AB. (7)
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FIG. 2. The quantum suppression factge=(15)/(13c, calcu-
lated from Eq.(8) for JJ's with w;>wy, 0;=0.70,, and w;
= wyl4. The dotted curves are approximations, Ej.
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FIG. 3. Normalized inductance;/L, and resistanc®;/R vs
Yo(T) for an overdampedd;> w,), resistively shunted Josephson

H : — —-1/2 —
The right-hand side of Eq7) reduces to the classical value 1Unction. @,=(LoC) "2 and wo=R/L,. The uppermost curve for

4kgTGAB for Aw<<kgT. From here on, we neglect the
zero-point motion quantum contribution G wAB to
{lin(®)|?). The mean-squarthermal noise current through
the junction is

(I §> = JO ‘(dw/27r)4Gﬁw[eh“’/kBT_ 171

X[wzlwg+(l—w2/w§)2]_l, (8)

where w;=(L,C) Y2 In the classical limit, kgT/A
>min{wy, w5}, EQ. (8) vyields the classical result{13)
=kgT/Lo=(1%¢, by direct integration. The thermal factor
in Eg. (8) shows that whekgT/% drops below mifwg,w;},
only a portion,~kgT/% min{wy,w;}, of the low-pass band is
excited, and we expe¢t3) to drop below its classical value
by about this factor.

We define the noise parameter g§T)=(12)/I2, and
calculate it from Egq.(8). In the classical limit, y(T)
=kgT/J(T), where the characteristic energy(T)

L,/Lg is for low frequency,w/ wy<<1, while the uppermost curve
for R;/R is for high frequencyw/wy>1.

¥~ YoKg TIH{A mMin[wo(T),w,(T) 1} (11)

for overdamped and underdamped junctions. The formal
guadraticT dependence of (wy andJ depend orT, too) at
low T was pointed out by Milliset al®®

We emphasize that for overdamped junctions thR&L™
frequencywg is important and the plasma frequeney is
not. We argue below that the same is true for homogeneous
superconducting films because the quantum crossover occurs
at high temperatures where plasma oscillations are highly
damped. In principle, the plasma frequency can be important
at low temperatures, where (q,w,T) is very small and
damping is weak.

Following Likharev?? the impedance of an overdamped
junction is obtained from the solution to the Smoluchowski
equation for the probabilityr(¢,t) for the junction to sus-
tain at timet a phase difference, when the normalized bias
current isl (t) =1+ I z.Sin(wt):

=h/GglLo(T) is the usual Josephson coupling energy. If we

define yo=kgT/J(T), then we can writey= y,fq, where
the quantum suppression factor fg;=(13)/(I%)c . Figure 2
shows fo vs KgT/hwg, calculated for w;>wq, w;
=0.250p, and w;=0.70wy. The dotted curves in Fig. 2
show approximations

for the overdamped case,;> vy, and
fo=~(2/m)arctan mkgT/2h w,) (9b)

for the underdamped cases;=0.250», and 0.%,. We de-
fine a quantum crossover temperatiiggfrom the condition

For T/To<3,

(Ywg)da(p,t)]dt+d{o(d,t)[ 1o+ 4SSN wt)

—sin(¢) |V dp=yod*aldt?. (12

To solve,o(¢,t) is Fourier transformed in bott andt, with

the assumption that(¢,t) is periodic in¢ with period 2.

The Fourier components af that involvee™“! are calcu-
lated, and from them the junction impedan@g=R,;

+jwl;is deduced.

Figure 3 showd ;/Lg vs y, andR;/R vs 7y, for an un-
biased junction I(;=0) at several frequencias/w,. In the
present work, we are interested in low frequenci®so,
<1, at which the resistand®; necessarily arises from phase-
slip events. In this limit,R;/R is found to be tiny fory,
<0.20, indicating that phase-slip events are rare. Therefore
the increase inL;/Ly for y4<0.20 comes from thermal
phase fluctuations, not phase slips. For later comparison with
arrays and continuous films, Fig. 4 sholxs/L ; vs vy, for an



1486 LEMBERGER, PESETSKI, AND TURNEAURE PRB 61

tion and the exact calculation to mean that fgy up to at

1.4 least 0.7, thermal phase fluctuations dominate over phase-
] slip fluctuations, and the 2D interconnections among junc-
1.2 Josephson tions halve their effect. Calculations for triangular and hon-

] Junction eycomb array?€ lead to similar values, namelg=1/1.7 and

p 1/2.5, respectively. Thus the influence of thermal phase fluc-
tuations on 2D arrays is relatively insensitive to details. The
intersection of the line labeled “%,/ 7" with the curve for
Lo/La Vs yg marks the KTB transition where, in principle,
Lo/L 4 drops discontinuously from %,/ to zero.

Phase-slip fluctuations in the form of vortex-antivortex
pairs account for some of the difference between the numeri-
cal data and the approximation, £By,)Y? which repre-
sents thermal phase fluctuations. Even if all of the difference
were due to vortex-antivortex pairs, the suppression of the
“superfluid density” Ly/L, would still be dominated by
thermal phase fluctuations except for temperatures very close
to the transition.

L(TY/L(T)

Yo IV. HOMOGENEOUS SUPERCONDUCTING FILMS

We now consider homogeneous 2D films. We calculate
Lo/Lg, whereLy(T) is the “mean-field” sheet inductance.
1/L(T) is proportional to the areal superfluid density,
ng(T). The calculation is approximate, but it provides in-
sight into how microscopic details would enter a more rigor-
ous calculation. The most serious approximation, in our
view, is the omission of fluctuations in the amplitude of the
overdamped junction in the classical limit. The dotted lineorder parameter, which should become significant near the

shows that the functiopl — y,]Y2 fits the numerical results 2D Super-to-resistive transition.
for small y,, i.e., ,<0.20, as anticipated in E¢6). Equation(13) is the analog of Eq(6) for a Josephson
junction and it describes how the sheet inductance is affected

by supercurrent fluctuations:

FIG. 4. Normalized inverse inductancesys, calculated in the
classical limit for an overdamped, resistively shunted(sdlid
curve), a square array of identical JXsonnected dojsand a 2D
superconducting filngsolid curve. The junction and array are well
approximated at lowy, by Lo/Ly~(1— )2 and Lo/La~(1
— v0/2)Y2 (dotted curve respectively.

IIl. ARRAYS OF IDENTICAL JOSEPHSON JUNCTIONS

We seek to understand the effect of therrradn-phase- Lo(T/Le(T)~1-a(THpD&(T)2h*=1-y. (13
slip) phase fluctuations on the inverse sheet inductaricg 1/ . . . . . 29
of a square JJ array. The proportionality between,Iand ~ While Ed.(13) is most Zeaglly derived within GL theof§,
the superfluid density of a homogeneous film was developeli iS generally valid.(p;) is thezmean-square thermal mo-
by Berezinsk?® In the classical limit, the current noise mentum of a Cooper pair, aris)¢*/%i°~(¢?), the mean-
y(T)=(12)/1% in each junction is set by the equipartition Square spatial variation in phase of the order parameter.
theorem, and is unaffected by interconnections. We expect, 'ne factora(T) is a measure of how strongly phase fluc-
and find, that the 2D array is affected by phase-slip fluctuatuations affect the sheet inductance. For dl_rty limit supercon-
tions much less than a 0D single junction, permitting a superductors, we expec(T) to be temperature independent and
to-resistive phase transition instead of a crossover. less than unity, in analogy with the noise term found for

The sheet inductande,(T) of an array of identicalnon- ~ arrays _vvhere the suppression of the_ sheet mducta_nce was
interacting inductorsL is proportional toL. (For a square Proportional to (- y¢/2)*(a=3) and in contrast to single
array, La=L. For triangular and honeycomb arrayls, Junctions wherea=1. For clean superconductorsy(T)
=L/y3 and /3L, respectively. The proportionality is lost Should be unity neafc, but have a strongd dependence at
for an array of identical Josephson junctions because dPW T.In the enda for dirty limit superconductors must be
noise. In an array, the noise current in each junction comedecided by experiment.
from all of the shunt resistors, not just the local shunt. The Calculatingy amounts to calculatingpZ), which we do
inductances of nearby junctions fluctuate in a correlated wayhy summing(p3), over plasma oscillation modes, labeled by
so that they are effectively interacting inductors. a wave vectork, and by treating each mode like an over-

Figure 4 shows the normalized inverse sheet inductancdamped JJ, in analogy with E(B). We cut off the sum ok
Lo/La VS v, calculated for a square array of overdampedfor |k|>2m/&(T), presuming that the superfluid is insensi-
JJs in the classical limit’ In arrays, we definey, tive to fluctuations at length scales shorter ti§éf). To use
=kgTGglLo(T)/, whereL, is the mean-field sheet induc- EQ. (8), we must connect the fluctuation current of each
tance of the array. As seen in Fig. 4, the function (1mode,(I3), with (p2),. The inductance and conductance in
—ay) Y2 with a=1% (dotted curvg, fits the numerical data Eq. (8) connect with the sheet conductanced=o;d
for y¢<<0.7. If L, were proportional td;, thenawould be  —jo,d, of a film. We definar,g(k,w,T) to be the Kramers-
unity. We interpret the agreement between this simple funcKronig transform of the delta function in,(k,»,T) atw=0,
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S0 oo5(k,w,T)x1/w, and we can define a sheet inductance

Le(k,T) as:Le(k,T)=1lwo,5(k,w,T)d. With generic film
dimensionsWXWxd, we have

(19)x=W?d%(J3) = (nseWd2m) X p2),

=W(p2)i/[Le(k,T)2e]2. (14)

Js=ngeps/2m is the supercurrent density, andn2is the
mass of a Cooper pair. The shunt conducta@de Eq. (8)
becomesr,(k,w,T)d. We neglect capacitance by setting
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Ns(To)/Ns(0)=Le(0)/Le(To)=(1+To/Tc) *. (20)

As discussed in the following sections, for cuprates and for
dirty swave superconductor$y, is several times larger than
Tc, songis much smaller thamg(0) at the crossover. To
estimate T, from Eq. (20), we use the approximation:
Le(0)/Lg(Tg)=3(1-Tqo/T¢c), which is valid in dirty
swave superconductors neg@g, to obtain

to infinity. We assume that the thermal factor which repre-Below Tq the noise term is then

sents noise currents is the same as for a JJ. Replacing the

lumped circuit elements implicit img in Eq. (8) by corre-

sponding parameters for the film, the “circuit” factor be-

comes

[0 w3+ 1] =[(woLed)2+1]7 1 (15)

We find
y~ a(T)El'([éL,:(k,T)Ze/hV\I]Zfomdw[Zﬁwald/w]

X[€"KT— 17" (wo,dLp)2+1] L. (16)

The prime on the summation indicates a cutoff |&t
=27/ &(T).

We can approximate the sum in E@.6) becausek de-
pendence is generally unimportant. For disordesedave
superconductorsy is independent ok. For d-wave super-
conductors, the dependencembn k is not well known, but
most terms in the sum ovér have|k|~ 2=/ ¢, and for the
nearly tetragonabb plane of cuprates we expeeot to be
more sensitive to the magnitude than to the directiork.of
That is, in Eq.(16), o~o(|k|~y27/¢,0,T). To evaluate
Eq. (16), we replace the sum dnby the number of terms in
the sum, W/¢)?, times a single “average” term in which

y=a(T)(kgT)?GoGr(T)LA(T)/A?  (TITo<3).
(22

To compare our result for films with previous results on
arrays, we examine the classical limito(=1). Since our
calculation does not improve on the order of magnitude un-
certainty iny in the literature, we choose(T)=% in Eq.
(17) so that for small fluctuationgy,<1,L,/Lg agrees with
Lo/La calculated for square arrays. Coffey calculates a
slightly smaller value:a(T)= % In(2)/7.*® With these as-
sumptions, Eqs(13) and(17) yield

Lo/Le~1— yoLg/AL, (23)

In our calculation,y depends on the film’s fluctuation-
enhanced sheet inductance, so that@8) includes nonlin-
ear effects from strong fluctuations. Solving E@3) for
Lo/LE as a function of the normalized temperatygyields

(classical limi}.

Lo/Le=2+3[1—y]¥? (classical limiy. (24

This result, plotted in Fig. 4, probably overestimates the non-
linear effects of longitudinal phase fluctuations, but captures
the essential featured.o/Lg displays a phase fluctuation
driven phase transition whose features are similar to the KTB
transition. With the prefactaa= %, the transition would oc-

parameters represent the appropriate averages. We replagg aty,(T1p) =1 if it were not preceded by the KTB tran-

o (|k|=y2ml &€ @,T)d by “ GE(T),”” which is o, averaged
over frequencies up to &(T)/%, and we replace_g(|k
|~y2ml &,T) by “Lg(T).” With these approximations the
noise term may be written as

y=~a(T)[kgTGoLe(T)/A]fo(T)=a(T)yo(Le /Lo)fQ(-{l)'?)

where Eq.(99) may be used fof o(T). yo=KkgTGglL /% is
the classical value of.

sition at yo(Tre)~0.90. At the transitionLo/Ls=3% and
d(Lqy/Lg)/dT=—0o0, meaning that o/Lg drops discontinu-
ously from3 to zero. The valug0.50 of L,/L¢ at the tran-
sition is independent o&, and it is close to the values of
Lo/LA (0.64, 0.60, and 0.5t Txg for honeycomb, square,
and triangular arrays, respectively. Thus E2¢) is physi-
cally reasonable.

On the basis of this analysis, we conclude that the effect
of thermal phase fluctuations on the sheet inductance of films

We can identify the value of the normalized superfluid should be similar to their effect on arrays of Josephson junc-

density at the quantum crossover from the equation

Anticipating thatTq, is close toT¢, we setTo=Tc on the
left-hand side. From the conductivity sum réfeGg(T) is
approximately equal to its value,Ry, just abovel., mul-
tiplied by the normal-fluid fraction, +ng(T)/ng(0)=1
—Le(0)/Lg(T):

If we define a characteristic R/L” temperature, T,
=hRyN/kgLg(0), then Eqs(18) and(19) predict a crossover
at

tions. Their effect should be small beloW, and increase
rapidly as the 2D transition is approached. Fluctuations
should suppresky/Lg by 20% to 30% just before the rapid
drop which signals the 2D transition. These conclusions are
consistent with measurements aMoGe films®

V. DISORDERED s-WAVE SUPERCONDUCTING FILMS

When discussing films, it is common to discuss the 2D
penetration depth, 1/ (T)=d/\%(T)=uo/Le(T), rather
thanLg . Dirty-limit sswave superconductors are particularly

simple. In them, the quantum crossover occurs at
)\L(O)/)\L(T%)wlﬂ [Eq. (20)] because Ry/Lg(0)
~aA(0)/h, and A(0)~2kgTco, leading to T,
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=mA(0)kg~27Tc. The corresponding value df, is about A o(T)/IN (T)=~1—(T/670 K)2 (YBCO, T<40K).
0.94T¢p. As a practical matter, films which exhibit fluctua- 27
tion effects large enough to study have sheet resistaRges

near 1 K}, soTq nearly coincides witflygr. Fluctuations — y, ,q thermal phase fluctuations cannot account for the linear
turn on very rapidly with increasing because quantum sup- 4 dependence of 1/ (T) below 30 K. The observed linear
pression diminishes as nonlinear effects turn on. As meng o i1t )\Z(O)d)\fz(T)/dTw—L K in optimally doped
tioned above, measurements @iMoGe films are consistent g~ is, better interpreted as ;I“r)]Zk IA4(0), yielding

with the modeP It remains to be seen whether other materi—A (0)/kg~ 250 K~3T BIZO0RE

als are consistent. 0 B c:

VI. CLEAN d-WAVE SUPERCONDUCTORS: VIl. CONCLUSION

OPTIMALLY DOPED YBCO . _ _ _
Guided by rigorous calculations of the inductances of re-

Cuprates offer the opportunity to study thermal phasssistively shunted Josephson junctions and 2D arrays of junc-
fluctuations in a clean quasi-2D superconductor. Insofar agons, the former presented as part of this work and the latter
the GL order parameter in cuprates is a complex scalar fungbtained from the literature, we have calculated the influence
tion, the foregoing analysis is applicable. Because of theibf thermal phase fluctuations on the superfluid density, or
sensitivity to disorderd-wave superconductors require an magnetic penetration depth, of effectively 2D superconduct-
extremely small elastic scattering rate,7o<Ay(0)/30, to  ors. We find that thermal phase fluctuations are much more
qualify as “clean” when strongly scattering impurities are jmportant than phase-slip fluctuations, except at temperatures
present. The constraint lessens for weaker scatters. Fery close to the super-to-normal transition. Quantum me-
strongly scattering impurities, the characteristic temperatureshanics strongly suppresses phase fluctuations below a cross-
keT*=[%A(0)/7¢]"* separates “very low” temperatures over temperature which is determined by thB/t” low-
from “low” temperatures>' The hallmark of clean cuprates pass frequency of the film, and which is expected to be
is \"2(T)—\"2(0)=T below about 0.3T¢c. Below T* im-  apove 0.9T. There is experimental evidence for this cross-
purity scattering causes a crossover frdrtinear toT?. over in measurements of the complex impedance of thin

We are particularly interested in identifying the quantumamorphous MoGe films.
crossover and examining behavior below that point. From Given that the quantum crossover is expected to lie near
Eq. (24), classical phase fluctuations lead to Tc, thermal phase flucztuations cannot be responsible for the

T-linear decrease in~<(T) at low T in optimally doped

Ao/ (T)~1-T/1500 K, (25 YBCO and BSCCO. At temperatures negg, the impor-
with numbers appropriate for thab plane of optimally tance of thermal phase fluctuations in cuprates depends criti-
doped YBaCu;O;_s:N,,(0)=150 nm (Ref. 32 and d  cally on the strength of interlayer coupling. More experimen-
=1.17nm¥> so A, (0)=17um. A, o(T) is the mean-field tal and theoretical work is needed to pin down the
penetration depth. SincBy~100xQ cm/1.17 nm=850(), systematics of phase fluctuations in conventional and cuprate
T, is about 300 K. From Eqg20) and (21), the quantum superconductors.
crossover occurs at; (0)/\, (Tg)~ 3. For optimally doped
YBCO, this condition occurs af3~0.90-0.99 . Below
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