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Measuring condensate fraction in superconductors
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~Received 13 August 1999!

An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation func-
tion is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus,
magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor.
It is also argued that recent measurements in high-temperature superconductors come very close to achieving
this goal.
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I. INTRODUCTION

Off-diagonal long-range order1,2 ~ODLRO! provides an
intriguing characterization of superconductors and super
ids for which the order parameter signifies a unique coh
ence property of a macroscopic quantum system corresp
ing to the spontaneous breakdown of global gau
symmetry. It is therefore unfortunate that direct measu
ments of this order parameter are few and far between.3

For BCS superconductors, all definitions of supercond
tivity are directly linked to the energy gap in the singl
particle excitation spectrum. Therefore, observations of
gap, which are abundant, are virtually the same as obse
tions of ODLRO. In contrast, the high-temperature superc
ductors sometimes exhibit an apparent gap at tempera
well above the superconducting transition temperatureTc ,
similar to the gap seen belowTc .4 In those instances, th
presence of a gap is not the same as the presence of ODL
and it becomes necessary to explore ODLRO in more g
eral terms, not restricted by the BCS theory.

The purpose of the present paper is to offer some ins
into the question of ODLRO in high-temperature superc
ductors and to indicate experiments that may shed light
this topic. In fact, we argue that recent magnetic neut
scattering measurements come tantalizingly close to acc
plishing this goal.5 We show that the instantaneous spin-sp
correlation function is influenced by the existence
ODLRO. This is partially because the spin operators
composite fermion operators, and the correlation funct
can acquire anomalous expectation value, but also bec
the anisotropic order parameter strongly enhances the ef
We also deduce that strong interaction effects are neces
for the magnitude of the effect to be observable.

II. SUMMARY OF EXPERIMENTS

We begin with a brief summary of experiments. The ma
netic neutron scattering cross section is proportional
the equilibrium dynamic structure factorS(k,v).
The corresponding instantaneous structure factorS(k)
5*2`

` dv S(k,v) is

S~k!5v0(
l

eik"Rl^S~0!•S~ l!&, ~1!
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wherev0 is the volume of the unit cell, andS is the spin
operator.

For the class of bilayer cuprate superconduct
YBa2Cu3O61d and Bi2Sr2CaCu2O81d corresponding to op-
timal doping, theS(k,v) has a resolution-limited resonanc
peak, at an energy'40 meV and the special wave vecto
kÄq5(p/a,p/a,p/c), for T,Tc ; a andc are the lattice
constants. More precisely, theS(k,v) can be classified into
parts that are even and odd with respect to the individ
layers of a bilayer. The resonance appears in the odd cha
(qz5p/c), and its energy is almost independent of tempe
ture, but its intensity vanishes forT.Tc . For underdoped
superconductors, there is also a peak forT.Tc , but its char-
acter is quite different, as we note below.

The existence of the resonance peak belowTc allows us
to isolate a distinctpart of the instantaneous structure facto
by integrating with respect to frequency across the re
nance, that has a simple theoretical interpretation in term
the condensate fraction, as we shall see. In this sense
resonance peak plays an essential role; in its absenc
would be difficult to obtain the same information, as
La22dSrdCuO4.

III. THE OFF-DIAGONAL LONG-RANGE ORDER

The ODLRO for a singlet superconductor is defined a
property of the two-particle density matrix, which is

r (2)~1↑,2↓;3↑,4↓ ![^c↑
†~x1!c↓

†~x2!c↓~x4!c↑~x3!&,
~2!

wherec↑
†(x) is the creation operator of the fermion field o

spin up and locationx. Its existence implies that

ur (2)~1↑,2↓;3↑,4↓ !2F~x1↑,x2↓ !* F~x3↑,x4↓ !u

<S N

VDg~ ux12x3u,ux22x4u!, ~3!

where the non-negative functiong(r 1 ,r 2), which is indepen-
dent ofN, tends to zero if eitherr 1 or r 2 tends to`.

Following Ref. 1, one can show that, in the thermod
namic limit, the number of particlesN→` and the volume
V→` such that (N/V)→n. The functionF is the eigenfunc-
tion of the two-particle density matrix corresponding to t
largest eigenvaluelM ,6 given by
14 821 ©2000 The American Physical Society
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lM5E dx1dx2uF~x1↑,x2↓ !u2, ~4!

where lM /N is the condensate fraction, defined to be t
fraction of electrons participating in pairing, not to be m
taken for the superfluid densityns , which is the stiffness
with respect to an imposed twist of the order parame
Hence, in the thermodynamic limit, the following spectr
decomposition of the density matrix holds forall separa-
tions:

r (2)~1↑,2↓;3↑,4↓ !5F~x1↑,x2↓ !* F~x3↑,x4↓ !

1G~x1↑,x2↓;x3↑,x4↓ !. ~5!

The functionG vanishes when the separation between
groups (x1 ,x2) and (x3 ,x4) tends to`. While the first term
of Eq. ~5! vanishes aboveTc , the second term continue
smoothly to the normal state aboveTc .

For a translationally invariant system corresponding t
condensate of zero total momentum, we can w
F(x1↑,x2↓)[F(x12x2)(u↑↓&2u↓↑&)/A2, where F(x)
5F(2x).

For a BCS superconductor~in an abbreviated notation!,

r (2)5F0~x12!* F0~x34!1g0~x13!* g0~x24!, ~6!

where the BCS functionF0(x12)[F0(x12x2) is a function
of the separation between the mates of a Cooper pair
integral (1/N)*dxuF0(x)u2 is the condensate fraction. I
BCS theory, and in the absence of disorder,ns5n, while the
condensate fraction is'N(0)D, where D is the gap, and
N(0) is the density of states at the Fermi energy. AsT
→Tc , the condensate fraction tends to zero asD2N(0)/Tc ,
similarly to ns . In general, these are distinct concepts, ho
ever. The BCS functiong0(x) is the parallel spin correlation
function modified by the presence of a gap, which smoot
continues to the normal state. In contrast, the functionF0(x)
vanishes in the normal state.

The discussion above can be summarized as follows:~1!
the spectral decomposition in Eq.~5! is general and does no
depend on the BCS theory;~2! the order parameter functio
F includes, in principle, all effects of electron-electron i
teraction; ~3! in common with BCS theory,lM vanishes
above Tc , while the contribution due toG continues
smoothly aboveTc ; ~4! as in BCS theory, the functionG
must be a global gauge singlet.

IV. THE SPIN-SPIN CORRELATION FUNCTION

From here on we shall abandon the continuum nota
and adopt the more natural lattice notation. Assuming t
the spin rotational symmetry is unbroken, we note that

^S~ l1!•S~ l2!&5 3
4 d1,2no2 3

2 r (2)~1↑,2↓;2↑,1↓ !, ~7!

whereno is the average occupation of a site. Making use
the spectral decomposition of the two-particle density m
trix, we can write

^S~ l1!•S~ l2!&5 3
4 d l1 ,l2

no2 3
2 @F~ l1↑,l2↓ !* F~ l2↑,l1↓ !

1G~ l1↑,l2↓; l2↑,l1↓ !#. ~8!
e
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Then remembering spin rotational symmetry and us
Eqs.~8! and ~1!, we get

S~k!5 3
4 v0no2 3

2 v0(
l

eik"Rl@lMu f ~ l!u21G~ l!#, ~9!

where f ( l) is now assumed to be normalized@v0( lu f ( l)u2
51#. From the perspective of ODLRO, the summation va
ablel in Eq. ~9! is a degree of freedom internal to the Coop
pair, denoting the separation between its mates. In the
sence of simultaneous diagonal long-range order,G( l) is a
short-ranged quantity, which is qualitatively unaffected
superconductivity, essentially because the short-dista
electron-electron interaction is similar in both the normal a
the superconducting phases. The underdoped cuprates
cussed below, are more complex.

We first consider a single CuO plane, ignoring the flu
tuations that destroy ODLRO at any finite temperatureT; the
coupling between the planes is discussed below in Sec.
The wave vectorsk and q are to be interpreted as two
dimensional~2D! vectors, strictlyki andqi , until Sec. VII;
similarly, Rl is to be interpreted as a 2D vector. We hope th
this is not a cause for confusion.

V. OPTIMALLY DOPED SUPERCONDUCTORS

Consider first the case of optimally doped supercondu
ors for whichS(k) is peaked atk5q for T,Tc , but not so
for T.Tc . Here,q is the vector (p/a,p/a). In Eq. ~9!, the
exponential factor changes sign rapidly on the scale o
lattice spacing whenk5q. For any functionsu f ( l)u2 and
G( l) that are smooth on the scale of a lattice spacing,
sum will be negligible.

An order parameter functionf ( l) such thatu f ( l)u2 van-
ishes when the vectorRl connects sites belonging to th
same sublattice of a bipartite square lattice7 can lead to a
peak inS(k), because

(
l

eiq•Rlu f ~ l!u252(
lPA

u f ~ l!u2, ~10!

where the sum on the right hand side is over the sublatticA.
Clearly, ad-wave order parameter satisfies this criterion, b
so does an anisotropics-wave order parameter. The distinc
tion between them can only be made on energetic grou
The range off ( l) is the ‘‘size of the Cooper pair.’’

From the argument given above, we expectG( l) to be
largely unaffected by superconductivity. We can then foc
on the quantity

DS~k¿q!5 3
2 v0lM(

lPA
eik"Rlu f ~ l!u2. ~11!

Then, noting thatf ( l) is normalized, we get

DS~q!

N
5

3

2

lM

N
. ~12!

The inversek width of DS(k1q) is the size of the Coope
pair. This result is consistent with a general inequality d
rived in Ref. 8. The authors of Ref. 8 have further appro
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mated the inequality to obtainDS(q)>(3/2)uDu2/x, whereD
is the nearest-neighbord-wave order parameter, andx is the
concentration of holes.

If lM were of the magnitude predicted for a BCS sup
conductor, that is,N(0)D, the intensity would be below the
sensitivity limit of current neutron scattering measuremen
That the intensity is readily detectable means that the c
densate fraction in the high-temperature superconducto
more than an order of magnitude greater than that predi
in BCS theory. For tightly bound noninteracting Coop
pairs, acting as molecules, the condensate density woul
the full densityn.

VI. UNDERDOPED SUPERCONDUCTORS

For underdoped superconductors,9 S(k) is peaked above
Tc at the wavevectorq, but the growth of the intensity is
gradual, increasing by about 20% from 300 K toTc;50 K,
seen in both even and odd channels. In contrast, the inte
in the odd channel rises by almost a factor of 2 belowTc . It
is very natural therefore to conclude thatG( l) is of very
different character thanf ( l). Thus, even in the underdope
case, it is possible to separate out the effect ofG( l) and to
focus on the contribution solely due tof ( l). Before interpret-
ing the data in terms of the condensate fraction, we rem
briefly on the peaked nature ofS(k) aboveTc ; there are a
number of distinct possibilities.

The first possibility is that the spin correlations are d
scribed by a quantum disordered state for which the struc
factor is peaked at the commensurate wave vectorq. For
such a quantum disordered state, it is difficult, however
construct ad-wave modulation of the gap in the single
particle excitation spectrum as seen in photoemiss
experiments.10

The second possibility is superconducting fluctuatio
aboveTc . While such fluctuations must exist aboveTc , es-
pecially in the underdoped regime, it is unlikely that th
produce a peakedS(k) at temperatures as high as 300 K.

The third possibility is a flux state for which the sadd
point result11 for the insulator is remarkably isomorphic t
the BCS result for a superconductor, andS(k) is peaked at
the wave vectorq for essentially the same reason. Unfort
nately, it is difficult to see why this should hold as the syst
is doped with holes, although it has been argued12 that the
notions of the flux state should continue to hold for t
doped case.

The interpretation ofDS(q) in terms of the condensat
fraction has interesting consequences for the quantum p
transition as a function of the hole concentrationx and hence
for the global phase diagram. Asx→xc

1 , typically ;5%, the
superfluid density is known to vanish,13 but the condensate
fraction increases as shown in Fig. 1. This is unusual
calls for an explanation.

A possible resolution is that the experimental system c
not be considered pure, at least forx close toxc , and that this
transition is radically altered by disorder, allowing the co
densate fraction to remain finite at the transition. The disc
tinuous drop in the condensate fraction atxc may suggest a
first-order transition, but it need not be. There is at least
example in statistical mechanics where it is known that
order parameter vanishes discontinuously, yet the correla
-
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length diverges at the transition.14 The role of disorder at this
quantum phase transition may then be of crucial importan
and any discussion of a quantum critical point15 must be
reconsidered in this light.

There may be another possible resolution.16 The
pseudogap phase may be a discrete broken symmetry p
in disguise, known variously as the ‘‘flux’’ or ‘‘dimer’’ or-
dered state, which has a peakedS(k). Superconductivity
then develops on top of this. Such a broken symmetry sta
easily corrupted by disorder, notoriously plentiful in th
class of materials, which is why it has been identified expe
mentally only as a ‘‘crossover’’ in some materials and not
all in others. This crossover will sharpen to an actual ph
transition as the material qualities improve. The neutron
tensity within the resonance peak is then a superposition
two effects, one due to the condensate fraction and the o
due to the discrete broken symmetry.

We cannot, of course, rule out the possibility that futu
measurements may reveal that the condensate fraction
around and vanishes continuously atxc , especially because
it is so difficult to obtain the absolute magnitude of the i
tensity in the neutron measurements. If this is the case,
interpretation of the quantum critical point atxc will be
straightforward. There is some evidence that the inten
may vanish atxc . The data shown in Fig. 1 were obtained b
integrating over only thepositivepart of the imaginary part
of the susceptibility enhanced over the normal state. Thu
more complete integration over the frequency will be nec
sary to obtain the true theoretical value of the condens
fraction.

VII. THREE-DIMENSIONAL AND BILAYER COUPLINGS

In bilayer superconductors, the adjacent layers
grouped into CuO bilayers, which are then very weak

FIG. 1. The imaginary part of the dynamical susceptibil
x19 (q,v) of YBa2Cu3O61d at 10 K ~Ref. 9!. This is proportional to
DS(q), because, at such low temperatures, the difference betw
the two is negligible. The subscript1 refers to the enhancemen
over the normal state close toTc ; the data are for the odd channe
as defined in the text. The parameterd'0.42 corresponds to the
critical hole concentrationxc at which the superconductivity disap
pears atT50.
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coupled. The small coupling between the bilayers sho
have a small effect on the 2D spin fluctuations seen ab
Tc , and indeed this is consistent with experiments. Likewi
such small couplings should have small effects also on
ordered state atT50. Close toTc , small 3D couplings
should affect the critical behavior, however, and belowTc
these couplings are necessary to establish an order pa
eter. As far as these weak 3D couplings of groups of bilay
are concerned, qualitatively, little needs to be added to
previous discussion. These comments would be scar
modified if we were considering superconductors in wh
single layers~instead of groups of bilayers! were coupled by
weak 3D coupling.

In contrast, there is evidence that the individual lay
within a bilayer are reasonably strongly coupled, there
splitting the bilayer spin responses that are odd and e
with respect to the individual layers. Although the dynam
is beyond the scope of the present paper, we can make a
brief qualitative remarks. For magnetic neutron measu
ments, the relevant coupling must be an antiferromagn
superexchange, which must gap the even response fun
at low frequencies, as in experiments. This can be seen
noting that the spin correlations are approximately descri
by a bilayers model17 and expanding the Euclidean La
grangian to quadratic order.18 The magnitude of the bilaye
gap is a function of thes-model parameters and must d
pend on doping, as in experiments.9 As a result, from the 3D
dynamic structure factor,
-
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S3D~k,v!5sin2S kzc

2 DSa
2D~ki ,v!1cos2S kzc

2 DSs
2D~ki ,v!,

the symmetric~even! part can be dropped at low frequencie
The integration across the resonance, which appears sh
in the odd~antisymmetric! channel, then gives the require
structure factor.

In conclusion, we have investigated the static struct
factor for which we could make precise statements, altho
the experiments on this are far from complete. We hope
future experiments will shed further light on the questio
raised here regarding the condensate fraction. It remain
be seen if similar precise statements could be made for
dynamical structure factor as well.
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